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A differential geometric approach to optimal control*) 

by 

J.C.P. Bus 

ABSTRACT 

A general formalism is introduced for the optimal control problem on 

manifolds. It is based on a general formulation of Lagrange's multiplier 

theorem and recent definitions of nonlinear control systems. It is shown 

that we can give Pontryagin's maximum principle in this formalism. We expect 

that the problem formulation given in this paper is particularly suitable 

for application of modern results about controllability etc. in nonlinear 

control systems. 

KEY WORDS & PHRASES: Nonlinear system theory, Optimal control problems on 

manifolds, Necessary conditions for optimality, 

First order conditions 

*) Thi~ report will be submitted for publication elsewhere, 





INTRODUCTION 

In this paper we present a differential geometric formulation of the 

problem of optimal feedback control of nonlinear time-invariant control 

systems. Basic to this approach is the definition of control systems as 

proposed by BROCKETT [1977] and WILLEMS [1981) and worked out by van der 

SCHAFT [1982] and NIJMEIJER & van der SCHAFT [1982]. The results about the 

(Lagrange) variational problem as given in sections 2 up to 4 are essen­

tially known, but usually not treated in the way we did or not published 

in the open literature. Basic references for these sections are CARTAN 

[1922], CARATHEODORY [1935], HERMANN [1962,1977], SPIVAK [1979,I & II] and 

unpublished course notes of TAKENS [1978]. Compared with Hermann's work we 

think that our approach is more geometrical and more suitable for application 

of modern differential geometric results in system theory. See for instance 

SUSSMANN & JURDJEVIC [1972], HERMANN & KRENER [1977], ISIDOR! et al. [1981], 

HIRSCHORN [1981], NIJMEIJER [1981], NIJMEIJER & van der SCHAFT [1982] and 

van der SCHAFT [1982 a,b] • Particularly, the formulation and proof of 

Lagrange's multiplier theorem on manifolds is new, although the basic ideas 

are in Takens' course notes. This theorem expresses the equivalence between 

a variational problem on a manifold with restrictions given by a distribution, 

and an unrestricted variational problem on the annihilator of this distri­

bution, which is a codistribution on the manifold. 

Optimal control concerns itself with finding optimal trajectories of 

control systems, given a certain optimality criterion. Hence, we search for 

I-dimensional immersions in the configuration space which satisfy certain 

optimality criteria. Results given in this paper may be extendable to more­

dimensional immersions, yielding multiple integrals. We did not try to do 

that. A reference concerning such problems is DEDECKER [1977]. In sections 

5 and 6 we actually give the formulation of the optimal control problem 

on manifolds. The formalism is illustrated by working out the linear-qua~· 

dratic regulator problem on ]R_n. This reduces very elegantly to the well­

known results expressed by Pontryagin's maximum principle. 

We shall close this section by giving some comments about the notational 

conveations in this paper. The differential geometric notation follows 
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closely that of SPIVAK [1979, I&II]. For instance, if Mis a smooth mani­

fold, TM is its tangent bundle (TM is the tangent space at x € M) and 
* X TM is the cotangent bundle. If f :M + N is a mapping between smooth mani-

folds Mand N then f* :TM+ TN is its lift to the tangent bundles and for 

any k-form won N, f*w is a k-form on M which is defined by (f*w)(v) = w(f*v) 

for all v € TM. Some minor deviations from Spivak's notation occur. The set 

of smooth vector fields on a smooth manifold is denoted by X(tl). Furth~r­

more, given a k-form wand a vectorfield X on M, we define the contraction 

tXw of w with respect to X, to be the (k-1)-form on M defined by 

for 

X. € X(M) (i=I, ••• ,k-1). 
l. 

Unless stated otherwise all manifolds, mappings, forms and vector 

fields are assumed to be smooth, i.e. C
00 

2. THE UNRESTRICTED VARIATIONAL PROBLEM 

Let M be a manifold with dim M = m and a a I-form on M. Let I denote 
00 

some closed interval, [a,b] say, in JR. Then, for C curves <I> :I+ M we 

can define the action of a along <I> by 

(2. 1) J (<f>) = f a = f <I> *a • 

<I> I 

(In the first integral the integration path is Im <f>). The variaUonaZ prob-

Zemon M with respect to a is to find curves which are locally optimal, 

i.e. which produce an optimal value for the action relative to small vari­

ations of the curves. We shall restrict ourselves to first order necessary 

conditions, hence to stationarity rather than optimality of the action. The 

following definition is standard in the calculus of variations. 

DEFINITION 2.1. A mapping i :(-o,o) x I+ M (for some o > O) is called a 

variation keeping end point fixed (k.e.p.f) of <I> :I+ M if 
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(i) 
~ ex, 

$ is C in each variable 
~ (ii) $(0,t) = $(t) for all t EI; 

(iii) ¢(E,a) = $(a) , ~(E,b) = ~(b) for all EE (-o,o). 

We denote for short: $ (t) = ~(E,t). 
E 

Now, let XE X(M) satisfy: 

(2.2) X($(a)) = X($(b)) = 0 • 

Then X defines a variation k.e.p.f. of$ by 

(2.3) , E E(-o,o), t EI, 

E for some o > O,where X denotes the I-parameter flow over E generated by X. 

Therefore, such an XE X(M) satisfying (2.2) is called a variation vector 

field of$ k.e.p.f. We denote the set of such fields by X$(M) or shortly 

by X$ if no confusion can arise. 

If$ is an injective map then we can define a vector field along$ to be a 

smooth mapping V: Im$ ➔ TM such that V(x) ET M for all x E Im$ • Then, 
X 

each variation¢ of$ defines a vector field along$ by: 

(2.4) 

This vector field along$ can be arbitrarily (smoothly) extended to a vari­

ation vector field XE X$. The set of vector fields along$ defined by 

variations k.e.p.f. is denoted by X$(M) (or X$). 

Stationary curves for the action are curves which make the first vari­

ation of the action vanish. With the above definitions we can make this more 

precise. 

DEFINITION 2.2. A curve$: I ➔ Mis stationary with respect to a, if for 

all variations k.e.p.f. $E of$ we have 

(2.5) d 
dE l E=O 
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From now on we shall assume that the curves we consider are injective 

maps. This is a rather natural assumption as curves with double points are 

usually not optimal, because of occurrence of a loop. In such cases we can 

formulate the variational problem for piecewise injective curves as a sum 

of variational problems for each piece (see also SPIVAK [1979,II ch.6.14]). 

Then, for X € X$ and$£ given by (2.3), we have 

(2.6) 

where LX denotes the Lie-derivative with respect to X. Moreover, if 

X,X EX$ are both smooth extensions of the same vector field V along$, 

defined by a variation k.e.p.f. i according to (2.4), then 

or simply $* LXa =$*½ca. Therefore, the following definition is equiv­

alent to 2.2. 

DEFINITION 2.2' $ is stationary with respect to a on M if for all X € X$ . 

(2. 7) 

We shall consider yet another approach to define stationarity of curves. 

To do so we need some introduction (see SPIVAK [1979,II ch.6]). 

A (KoszuZ) connection on Mis a map V: 
00 

X(M) x X(M) + X(M) which satisfies for X,¥,Z € X(M) , f,g € C (M) 

(2.8) VfX + gY z 

(2.9) = 

(2.10) = 

Moreover, we denote VXY(p) = VX Y and we can consider V also as a map 
p 
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assigning a vector VX YET M to every X ET Mand YE X(M). 
p p p p 

On M we can choose an arbitrary Riemannian metric (SPIVAK [1979, 

I ch.9.4]). It is known that, given any metric<., • > on M, there exists 

a unique connection V, called the Levi-Civita connection, which satisfies: 

(2. I 1) > , 

(2.12) 

where [ , J denotes the Lie-bracket of vector fields. (2.11) expresses 

compatibiZity of the connection V with the metric< .•• > and (2.12) ex­

presses symmetry of V • The next step is to define covariant dif ferentiatipn. 

Given any connection V and curve cj> , there is precisely one operation 

Vt--+ DV 
from x<I> to xcj> with the following properties 

dt 
, 

(2. 13) D(V+W) DV + DW = dt dt dt' 

(2.14) D(fV) df V + f dV = cit , 
dt dt 

for 
00 

V, WE Xcj>, f EC (M) and if XE X(M) is an arbitrary extension of 

V to M then 

(2.15) DV 
Vdcj> X cit = 

dt 

DV is called the covariant dt derivative of V along cj>. Note that we can con­

sider V to be a function from I to TM by identifying V(t) = V{cj>{t)). 

Finally, we can uniquely extend the map VX to the algebra of smooth tensor 

fields on M. Then we have for a k-form won M: 

k 
(2.16) (Vxw) (YI, ... ,Yk) = Vx(w(Yl, ••• ,Yk)) - Jt<Yl' ••• ,VXYi' ••• ,Yk). 

With these notions we can formulate a third equivalent definition of 

stati9narity. 
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DEFINITION 2.211 cf> is stationary with respect to a if, for a given 

Riemannian metric and associated Levi-Civita connection and covariant dif­

ferentiation as above, we have 

(2. 17) Ja ( ~! )dt = 0 V V E Xcf> , 

I 

where t --t- cf> (t) gives a parametrization of cf> on I. 

The equivalence of definitions 2.2" and 2.2' follows from the following 

lemma. 

LEMMA 2.3. Let (M,< , >) be a Riemannian manifold and V the Levi-Civita 
D 

connection defined by the metric. Let cf> : [a, b] -+ M be a cUY'Ve on M and dt 

denote covariant- differentiation along cf> associated with V • Then, for any 

1-form won M the following equality holds: 

(2. 18) ,i. * L w = w ( DV ) d t 
'I' Y dt 

for aU vector' fields Y defined on a neighbourhood of cf> and vector field 

V along cf> with V(cf>(t)) = Y(cf>(t)). 

PROOF. Interpreting w(Y) as a function on a neighbourhood of cf> we have 

(see SPIVAK [1979,II.6.4]) 

(2.19) 

Choose coordinates x 1, ••• ,xm locally in Mand write: 

m cl m I Y(x) = I y. (x) a I ; w(x) = l w. (x)dx. ; cf>(t) =(cf>l (t), ... ,</> (t)). 
i=l i xix i=l i 1 x m 

Using the well-known rule: 

(2.20) 

w~. have 



(2.21) 

Now 

(2. 22) = l. 
i,j 

a(w.Y.) 
l. l. 

ax. 
J 

d<j>. 
<ff = V d<j> (w(Y)) 

dt 

according to (2.19). Furthermore, computation shows 

(2.23) 
aw. aw. d<j>. 

\ l. J l. 
= l ( ax. - ax. ) dt y j 

i,j J l. 

The definition of Vw in coordinates is given by: 

with 

Vw = l 
i,j 

w • • dx. A dx. , 
J;l. J l. 
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and rtk (µ,i,k = I, ••• ,m) the so-called Christoffel symbols of the Levi­

Civita connection. This last formula yields, by symmetry of the Levi-Civita 

connection (rtk = r~i, i,k,µ = I, .•. ,m) : 

aw. aw. 
l. J - w w = 

ax. - ax. - i:k - k·i 
J l. , ' 

Substituting in (2.23) : 

a d<j>. 
(2.24) = 1 l. 

1.ydw ( <I>* at) dt yj 
i,j 

Vw ( a ax. 
l. 

Vw a 
( ax. , 

l. 

So, (2.21), (2.22), (2.24) yield: 

a 
ax.) 

J 

* a = Vd<l>(w(Y)) - (Vd<j> w)(Y) (<I> Lyw)(at) = 
dt dt 

where (2.16) is used for the last equality. 

= Vfil ( d<j> 
dt , Y). 

w(V d<j> Y) ~ 

dt 

The result follows by choosing V(<j>(t)) = Y(<j>(t)) , t E [a,b] • 0 
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The last characterization of stationarity which is relevant to our 

theory is expressed in the following theorem. 

THEOREM 2.4. $: I ➔ Mis stationary w.r.t. a if and only if $'(t) E ker da 

for all t EI, where ker da = {v E TM I da (v,w) = 0 V w E Tw(v)M} and 

w natural projection on M. 

PROOF. Use of (2.20), Stokes theorem and the fact that 

X($(a)) = X($(b)) = 0 V XE X~ yields : 

J ~ * LX a = j ~ * i Xda + J d ~ * i X a = 

I I I 

This proves the theorem. 

Note that da is an integral invariant for the stationary curves of 

a (cf. CARTAN [1922]). A curve$ : I ➔ M satisfying ~'(t) E ker w, for 

some 2-form w , is called a characteristic curve of w • 

3. THE RESTRICTED VARIATIONAL PROBLEM 

□ 

We shall first consider restrictions on curves in M which are defined 
00 

by a set of C I-forms 8. (i=I, ••• ,p) on M. That means: we call a curve 
]. 

$: I ➔ JR admissable if ~*8. = 0 (i=I, ••• ,p) on I. Then we can define 
]. 

stationarity under restrictions by: 

DEFINITION 3. I • A curve ~ : I ➔ M is stationary w. r. t. a on M under the 

restrictions 8. (i=I, ••• ,p) if all variations k.e.p.f. $ of~ which are 
]. € 

admissable, satisfy equation (2.5). 

This definition may cause serious problems with isolated admissable 

curves, i.e. admissable curves that do not allow admissable variations. 

Therefore we shall use a stronger notion suggested by TAKENS [1978] • 

DEFINITION 3. 2. A curve ~ : I ➔ M is formaUy stationary w. r. t. a under 

restrictions 8. (i=I, ••• ,p) if~ is admissable (i.e. ~*8· = O, i = I, ••• ,p) 
]. ]. 

and, if~ is a variation k.e.p.f. of$ satisfying 
' € 



(3. I) 

then¢ satisfies (2.5) • 
E: 
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i=I, ••• ,p, 

* Clearly, ¢ 8- = 0 implies (3.1), so that formal stationarity implies 
E: 1 

stationarity. The reverse is not true in general. Conditions which imply 

equivalence are not worked out in this paper. We shall restrict attention 

to formal stationarity for restricted problems only. 

Similar to definitions 2.2' and 2.2" we can give two more equivalent 

definitions of formal stationarity. 

DEFINITION 3.2'. ¢ is formally stationary w.r.t. a under restrictions 

8. (i=I, ... ,p) if ¢*8. = 0 (i=I, ••• ,p) and for all XE X~ 
1 1 o/ 

(3.2) => 0 • 

And, if (M, < , >) is a Riemannian manifold, V the associated Levi­

Civita connection and-~ the associated covariant differentiation the 
dt 

third definition is given by: 

DEFINITION 3.2". ¢ is formally stationary w.r.t. a under restrictions 

* S.(i=I, ••• ,p) if¢ 8. = 0 (i=I, ••• ,p) and for all VEX~ 
1 1 o/ 

(3.3) => fa ( ~! ) d t = 0 • 

I 

If the restriction forms are nondegenerate and independent in each 

point of M, then we can define a (n-p) - dimensional distribution S on M by 

(3.4) s = 
X 

p 
n ker S. 

i=I 1X 
v'xEM. 

Conversely, given a distribution S (of constant dimension n-p) on M, then 

we can define, at least locally, p nondegenerate independent I-forms s. 
1 

satisfying (3.4) locally. This suggests to consider restrictions defined 

by d:i,,.stributions. We say that a curve ¢ : I + M is admissable under the 
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restriction defined by a distribution S on.M if <l>'(t) E S<f>(t) , t EI. 

We assume that the distribution S has constant dimension n-p. Then we can 

define its annihilator E (=S.L) to be the following submanifold of.· the cotan-

* gent bundle TM: 

(3.5) E = { t E T* M I t ( s) = 0 V s E S } , V x E M. 
X X X 

Eis a p-dimensional codistribution. 

Note that TIE :E + M, with TIE the natural projection~ * . TM+ Mrestr1.c-

ted to E, is a vector bundle over M. Hence, for all x EM we can find a 

neighbourhood U of x in Mand I-forms S.(i=l, ••• ,p) which form a basis for 
l. 

the fibres TI-~(x)(x EU). So the following definition for formal stationarity 

under restrictions given by a distribution seems at hand. 

DEFINITION 3.3. A curve <I> : I+ Mis formaZZy stationary under restriction 

S, with Sa distribution on M of constant dimension, if <1>*~ = 0 for all 
.L s EE= S and for all XE X</> 

(3. 6) V~EE => a. = 0 • 

This definition is locally consistent with 3.2' as 1.s shown by the fol­

lowing argument. Locally, any~ EE can be written as : 

p 

~ = 2, 
i=I 

for some p (codimension of S) , functions A. and I-forms s.(i=l, ••• ,p) on M. 
l. l. 

Then 

p * p * 
= I <1> Ai. Lx s1.. + I <1> x< Ai.) s1.. = 

i=I i=I 

p * p * 
= l <I> A• LX s • + l (X(A •) O ¢) <I> s • • 

i=I 1. 1. i=I 1. 1. 

* * · 1."f ~*a. 0 So <I> s = 0 and <I> LX ~ = 0 for all ~ E U c E 1.f and only "' µ1. = and 

* <I> LX S~ = 0 (i=l, ••• ,p) for p independent nondegenerate I-forms Si on U. 

This shows the local consistency of 3.3 with 3.2'. 
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REMARK 3.4. Clearly, definition 3.2" can also be translated to distribution 

constraints. We just have to replace 13. (i= 1, ••• , p) by l; , VE; E E • 
l. 

With the given formalism we are able to prove equivalence of a restrict­

ed variational problem on M w.r.t. a, to an unrestricted variational problem 

on E with respect to the so-called Cartan form. This equivalence forms the 

heart of the theory. In fact, it enables us to reduce the restricted vari­

ational problem to the problem of finding the characteristic curves of some 

2-form on the annihilator bundle E over M. The equivalence theorem is essen­

tially the multiplier theorem of Lagrange, but translated to the variational 

problem on manifolds. Before stating this theorem some more notions must be 

defined. 

DEFINITION 3.5. Let M be a manifold with cotangent bundle T*M and natural 

projection 'IT :T*M + M. Then, the canonical., 1-form eon T*M is defined by 

(3. 7) 

for all 

e (E;) = * 'IT l; 

* l;ETM. 

REMARK 3.6. By definition of * 'IT , (3. 7) implies 

(3.8) 

* * * for all l; E T M' V E Tl; T M ('IT* : TT M + TM) • 

If we choose coordinates x 1, ••• ,xm in some open neighbourhood in M, then we 

can define canonical., coordinates x.,p., i = l, ... ,m by 
l. l. 

(3.9) xi (l;) = xi ('ITl;) ; Pi (l;) = l; ( a!. I ) 
l. X (l;) 

• In canonical coordinates, the canonical 1-form We shall identify x: and x. 
l. 

e * on TM is given by 

m 

(3. 10) e = ). p. dx. . 
i=l l. l. 

' 
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DEFINITION 3.7. Let M be a manifold with I~form a and distribution Son M. 

Let E = S~ (cf. (3.5)). Then the Cartan form 0 on E, associated with a is 
a 

defined by 

(3. I I) 

where TIE is the restriction to E of the natural projection TI 

0E is the restriction to E of the canonical I-form on T*M. 

* TM+Mand 

Now we are ready to formulate Lagrange's multiplier theorem. 

THEOREM 3.8. Let M be a manifold with 1-form a and distribution S of constant 

dimension. Then, an injective curve~= I+ Mis formally stationary with 

respect to a under restriction S if and only if there exists an injective 
-I curve n: I-+ E with n(t) E TIE (~(t)) and n stationary in E with respect 

to the Cartan form e . 
a 

PROOF. Choose any Riemannian metric < • > on E with Levi-Civita connection 
D E 

V and covariant differentiation dt along an arbitrary curve n : I-+ E 
-I which satisfies n (t) E TI E(Ht)) for some curve ~ l--r M. 

Let s: M -+ E be a smooth section in the bundle TIE: E -+ M , such that 

s O ~=non I. Define a metric<. >Mon M by< v, w >M = < s*v,s*w>E 

for all v,w E TM. Let V denote the Levi-Civita connection compatible with 

this metric and let D/ dt denote the associated covariant differentiation 

along~. 
T N If XE X (E), then we can split X(x) = X (x) +X (x), for all x E s(M) with 

XT tange:t to s(M) and XN vertical w.r.t. TIE (i.e. TIE*~= O). 

For each vertical variation vector field XN EX (E) we have 
n 

As 

and 

( * * N lxN dTI a)(Y) = (TI da)(X ,Y) = 0 , Vy EX (E) 



we conclude, using lennn.a 2.3, that 

(3. 12) 0 ' 

for all vertical v'"~ E X (i.e. ·~(t) = ~(<j>(t)), ~ E X ) . 
n n 

Hence, for arbitrary VE X we have 
n 

f 6a 
( DV) dt 

( T 

f 6E(~t) DV. (3.13) = 
J 0 a ( dt ,,)dt + dt dt 

I I I 
. h T wit V and ~ the tangential and vertical component of V. 

Now suppose n is stationary in E w.r.t. 0 • 
a 

Then the left hand side of (3.13) vanishes for 

arbitrary vertical variation field ~ satisfies 

all VEX • Therefore, an 
n 

13 

hence locally, basic forms 8,(i=l, ••• ,p) for E. 
1 

A.8.). The possible choice of VN such that 
1 1 

= xN(n(t))) yields ~*s. = O, which proves feasibility 
1 

Now choose W E X~ arbitrarily. Then , V = s* W E Xn • As s is an isometry 

by definition of the metric on M we have 

(3.14) 

Clearly Vis tangential and (3.13) yields, with the definition of the 

Cartan form 

f (DV)dt f * * DW 
0 = (,rE a + ,rE n(t)) (s*( dt )) dt a dt 

I I 

f - f -DW DW = a ( dt) dt + n(t) ( dt) dt 

I I 

As the left hand side equals zero by assumption, we get for all WE X~: 
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n ( t) (~~ ) = 0 => J a ( ~!) d t = 0 , 

I 

which proves formal stationarity of$ (see remark 3.4) given the stationarity 

of n • 

Conversely, let$ be formally stationary and V € X arbitrarily. We shall 
n 

prove that we can choose a smooth sections on a neighbourhood of$ in E 

such that V(t) is tangent to Im sat n(t) = s $ (t), and with W = 

'lfE* V = 'lfE* V 
T 

(3. 15) J a ( ~~ ) d t + J n ( t) ( ~~ ) d t = 0 

I I 

Then, it follows from (3.13) that 

(3. 16) ( DV) dt = 0 
dt 

hence n = s O $: I ➔ Eis stationary w.r.t. e 
a 

For simplicity we first assume that S has codimension I. Hence, locally 

we can find a I-form 8 on an open neighbourhood Uc M such that elements 

of E can be written by~ = A(x) 8 
X X 

(x € U) • So a section s: M ➔ E can 

locally be defined by a choice of 8 and A • 

Now choose an open covering {U} of$ and let {f} be a partition of unity µ V 

subordinate with it. Then we can write 

V V 

w 
V 

As {f} is subordinate with {U} we 
V µ can choose aµ such that W is a vari­

v 
ation vector field for $II = $ , where I is µ µ µ a subinterval of I which is 

appropriately chosen with Im$ c U and W ($ (a))= W ($ (b )) = 0 µ µ V µ µ V µ µ 
(I = [ a , b J ) • Moreover, µ µ µ 

(3. 17) 

where on the right hand side covariant differentiation is restricted along ,, 
$ • Clearly, formal stationarity of$ implies formal stationarity of$ • 
µ µ 
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So we have broken up the global problem with a distribution constraint into 

a sum of local problems with a constraint given by a I-form B • We show 
00 µ 

that we can find a A EC (U) such that for all W EX~ (U) : µ µ µ ~µ µ 

(3. I 8) f 
DW 

a. ( d~ ) dt dt. 

I µ 

To do so, we drop the subscriptµ to ease the notational pain and choose B 

to be such a I-form, spanning the fibres of E over U. 

We choose Z EX (U) such that B(Z)qi(t) = I, t EI and define 

x
2 

= {x E x (u) Ix = 1/J z , 1/J E c
00 

(u)} • 

Then, every XE Xqi(U) can be written as a s~m X = x1 + x2 of elements in 

X1 and X2 , with x2 = 1jJ Z and 1/J(q>(a)) = O, as X(q>(a)) = x1 (q>(a)) = O. 

Moreover, such a splitting is unique because: 

(3. 19) 

* * = qi ( 1jJ lz dB) + d ( qi 1jJ) , 

and this differential equation for ijj = 1jJ O qi has a unique solution given the 

initial condition ijj(a) = O. 

Therefore, x2 and thus x 1 are uniquely defined by the choice of Zand B. 

Then, for XE Xqi(U), X = x1 + x2 splitted as above, we obtain with Stokes 

theorem: 

(3.20) = f qi* 'lxda. + f d qi* 'l X CJ, = J qi* 1 X da. + J qi* 'lx 2 da. • 
I I I I I 

Formal stationarity for XI and use of Stokes theorem yields: 

b b 

(3.21) J qi* Lxl a, 
( * * 0 = = j qi t XI da. + (qi a.(X1))(b) . 

,. 
a a 



16 

Choose c0 E IR such that, with x2 = ip z, ip = ip o 4> 

Note that X1(4>(b)) = - X2(4>(b)) = - iji (b) Z(q>(b)) , so that c
0 

depends only 

on the choice of Zand f3 and not on X. Then (3.20) and (3.21) yield 

b b 

(3.22) J 4>*Lx a. = J 4>* lx2 da. - co ijJ (b) • 
a a 

Now define , 1 and , 2 on [a,b] (only dependent on X, f3 and 4>) 

* = q> lz da. 

and :>.. [a,b] + IR by : 

00 - -1 
Then we have for all XE Xq>(U) and:>.. EC (U)(:>.. = 11.4> ) independent 

of X : 

b 

I * 0.19) 
I° ( t) q> LX f3 = 

b 

f °f(t)(ijj" , 1 dt + d ¢) 
a a 

(3.23) b 

= J (5:°(t) , 1 ijJ ·- "5:°' (t) ~) dt - "5:°(b) f (b) 
a 
b (3.22) b 

= f ,2 $ dt + c0 f (b) = j 4>*Lxa.. 
a a 

If we introduce again the subscripts denoting the local neighbourhood and 

extending W to a variation vector field such that: µ 

t E I , 
µ 

we obtain (3.18) (with use of lemma 2.3). So, we have a local construction 
" 

for the sections: M + E specified by:>.. and f3 on Im q>, together with the 
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additional condition that V(t) is tangent to Im s. However, this construction 

is coordinate-free which is easiest seen by choosing another basic form 

$'. Then (3.23) implies for all X, locally: 

I ~ ' ( t) <I>* LX s ' = J i ( t) <I>* LX s 
I I µ µ 

(we omitted subscriptsµ in the integrands). Therefore, the integrands are 

equal on I for all X so that: 
µ 

on <l>(I ) • µ 

As this product defines the section, we see that the local definition of 

this sections restricted to Im <f> is coordinate-free. Therefore we can con­

clude, using n = s O <f> and (3.17) that (3.15) and therefore (3.16) are 

satisfied. 

This implies stationarity of n, at least for a distribution S of co-

dimension 1. For codimension k > 1 the proof can be given similarly. D 

REMARK 3.9. The choice of a metric on E (with Levi-Civita connection and 

covariant differentiation) does not appear in the formulation of the theorem. 

It is used only to relate variation vector fields on E with variation vec­

tor fields on M. This is not surprising. The only relevant aspects of a 

variation vector field is its behaviour along the curve under consideration, 

together with the fact that it is part of a vectorfield on M. Covariant 

differentiation provides an excellent tool to study just these aspects. 

4. THE LAGRANGE PROBLEM 

Consider a smooth manifold Q (the configuration space) with dim Q = n 

and a function L: TQ x I+ :JR which is called the Lagrangian (I is a closed 

interval in :JR as before). Then we can seek for curves$: I+ Q which 

minimize the action integral 

(4. I) ' J($) = J L($(t), $'(t),t)dt. 

I 
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This is called the Lagrange problem. We can formulate this problem according 

to section 3. To do so, choose a coordinate ton I and let 

(4.2) M = TQ XI , a.= L dt. 

Moreover, we can define a mapping l from the set of curves ijJ : I -r Q to the 

set of curves cf> : I -r M by 

(4.3) l (ijJ) (t) = (ijJ *OS (t), t) ; S (t) = ddt I ; t E I 
t 

(sis a mapping s: I -r TI). Subsequently, we can define a codistribution 

E C T *M by 

(4.4) E = {8 E T*Ml3 ljJ :I+ Q.such that (l(ip)),* f3 = O}. 

Eis a codistribution as the following coordinate representation shows. 

REMARK 4.1. Choosing canonical coordinates q,q,t on M, it can easily be 

shown that the fibres of E are spanned by I-forms$. (i=l, ••• ,n) locally, 
1 . 

given by 

(4.5) $. = dq. - q.dt 
1 1 1 

We have dim E = n and the restriction distribution S for the Lagrange 
L n 

problem is defined as the annihilator S = E- (S= i~l ker Bi). 

The above arguments show that the Lagrange problem can be formulated 

as the problem of minimizing 

(4.6) J (cf>) 
( 

= j * cf> C'J. 

I 

over curves in Munder restriction S. We restrict ourselves to first order 

conditions, i.e. stationarity. The restriction distribution in this case 

has special properties which the following conjecture suggests 
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CONJECTURE 4.2. For the above restricted variationaZ probZem we have equiv­

aZence between stationarity and formaZ stationarity of curves in M. 

A proof of this conjecture might go along the following lines. First we have 

the following lemma. 

LEMMA 4.3. Let S be a distribution of fixed dimension p on M. Suppose a curve 

~: I+ Mis given such that 

(4. 7) 

Let V e: X<j> be such that V(t) e: S(<ji(t)). Then there exists a variation of 

<p k.e.p.f: ~ :(-o,o) XI+ M such that 

(4.8) 

PROOF. Choose coordinates x
1

, ••• ,xm on a neighbourhood U of a point along 

<j> such that for ye: U: 

S(y) = span 

Let <j>(t) = (qi
1 
(t), ••• ,<j>m(t)) , V(t) = 

t e: { s e: I I <j> (s) E U } • 

It can be checked that~ defined by: 

f I } . 
xp y 

p 

I 
i=l 

satisfies the requirements and is in fact coordinate free. □ 

A second observation required for the proof of the conjecture is the fol­

lowing. Let <j> be an admissable stationary curve under restriction S. Choose 

a metric with Levi-Civita connection and covariant differentiation. If 
- . DV(t) V(t) E X<j> , with ---;rr- E, S(<j>(t)) , can be splitted : 
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DV2(t) 
with v1 t O , v1 (t) E S(<P(t)) , dt = 0 , then v1 (t) defines an ad-

missable variation k.e.p.f. <P (t) according to lemma 4.3. So stationarity 
£ 

of <P implies : 

d ( 
* J a 

DV1 
de j <P a = 0 = ( dt)dt 

£ 

I I 

Hence 

f a ( ~!) dt f a 

DV
1 ( DV 

= ( dt ) dt + j a ( d; ) dt = 0 

I I I 

Therefore, stationarity implies formal stationarity if every V(t) E X<P with 

DVd~) E S(<P (t)) admits such a splitting in a nontrivial part in the distri­

bution and a part which is parallel along <P. 

The proof of the conjecture can be finished with the following arguments. 

The distribution Sin remark 4.1 is locally given by 

(4. 9) 
a n • a a 

s = span {aq". , .I1qJ. aq. + ai: } 
1 J= J 

and its orthogonal complement 

c { a • a } s = span a - qi at: 
qi 

is integrable. Loosely speaking, that means that TM/Sc is flat in the direc­

tions of Sc which makes a choice of a parallel field along <P, independent 

of S possible (i.e. a splitting as above is possible). We shall leave details 

of the last arguments for future, more general research and leave 4.2 as a 

conjecture. 

A direct consequence of theorem 3.8 and conjecture 4.2 is 

COROLLARY 4.4. An injective au:r>ve 1/J:I-+ Q is a stationa:rry cUY'Ve fo:r> the 

Lag:r>ange p:r>obZem if and onZy if the:r>e exists an injective cUY'Ve 

n : I -+ E (E defined by (4.4)), with ,rE O n = l(t/1) and n is stationa:r>y with 

:r>espect to the Ca:r>tan form 



(see (3.1 l) with a = Ldt) • 

Note that, by theorem 2.4, n :I+ Eis stationary with respect to eL 

if and only if n'(t) belongs to ker deL. It is illustrative to assume 

for a moment that we can give global coordinates q,q,t for M, and to work 

out the consequences of corollary 4. 4 in these coordinates. As the fibres 

of E are spanned by forms 8, (i=l, ••• ,n)(given by (4.5)) we can choose 
l. 

coordinates q,q, ;\ ,t on E (l; E E => l; = tr- A..8.) • We obtain 
i=l i i 

(4. IO) 
n 

eL = l L 8. + L dt • 
• l l. i 1.= 

As variation vector fields for curves in E have, by definition of E, a 
a at - component unequal to zero we may assume a parametrization of I such 
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that this component equals l. So we restrict ourselves to vector fields on 

E of the form 

X X a + x; a~ + x _a_ + _1_ 
= q. "q. ' "' "t O q. q, A].• OAi 0 

l. l. l. l. 

where summation over i = I, ... ,n is assumed. The condition that X should 

belong to ker deL , i.e •. tx.deL = 0 yields: 

n 
tx [ I (dA. "(dq.-q.dt) - Ldq. Adt) + dL Adt J = o • 

• ·1 l. l. l. l. l. 1.= 

Collecting the terms in dq.,dq.,d;\. and dt, respectively, yields the equa­
l. l. l. 

tions (i=l, ••• ,n) 

aL 
(4. 1 I) XL - = 0 , 

aq. 
l. l. 

(4.12) A. 
aL 

0 - -- = , 
l. aq. 

l. 
,. 

(4. 13) q. - X = 0 , 
l. q. 

l. 
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(4. 14) • ' ~x -q. X, - A.X. + 
1 Ao 1 q. dq. q. i i i i 

aL 
+ -.- x. = 0 • aq. q. 

i i 

It is easily seen that the first three equations imply the fourth, so that 

we have 3n equations. Clearly (4.12) defines a (2n+l)-dimensional submani­

fold N c E. Therefore, stationary curves lie in N and are integral curves 

of a vector field satisfying (4.11) and (4.13) (on E). In order that Xis 

a vector field on N (i.e. X ET N for all p EN) we must have 
p p 

which implies, using (4.11) and (4.13) : 

(4. 15) 

where expressions between ~arenthesis are matrices. So, (4.15) defines X. 

uniquely if and only if (a.~) has full rank. In this case, in each poin~ 
. aq 

of N, X defines a unique tangent vector to Nin ker deL, according to: 

with X. defined by (4.15). So stationary curves are integral curves of the 
qi 

thus defined vector field on N c E. 

In this, so-called hyperregular ,case, we can use coordinates q,q,t as well 

as q, >i.,t on N. Using (4.12) we get for deLIN: 

d8L d>i.. A dq. - q.d>i.. A dt + aL 
= -a- dq. i i i i q. i i 

= d>i.. A dq. - dH A dt i i 

if we define 

n 
H(q,q,>i.,t) = - L (q,q,t) + l qi Ai 

i=l 

A dt = 



Using (4.12) to express q in terms of q, A and t and denoting H = HIN in 

coordinates q,A and t thus obtained, we have 

~ ~ d8L = dl. A dq. - dH A dt 
]_ ]_ 

and 
~ ~ eL = Ldq. -'- H dt, . . ]_ ]_ 

which gives the Hamiltonian formalism for the Lagrange problem, which is 

well-known (see ABRAHAM & MARSDEN [1978]). 

5. THE LAGRANGE PROBLEM FOR NONLINEAR CONTROL SYSTEMS 
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We shall first recall the notion of a general nonlinear control system 

as given by BROCKETT [1977] and WILLEMS [1981] and worked out by van der 

SCHAFT [1982] and NIJMEIJER & van der SCHAFT [1982] • 

DEFINITION 5.1. A nonlinear (time-invariant) control system I is defined by 

a smooth manifold Q, a fibre bundle 1' : B + Q and a smooth map f : B + TQ 

such that the following diagram commutes 

B 

The system can be seen as a set of trajectories L defined by: 

I= {q: I+ QI q absolutely continuous,q(t) E f(.- 1(q(t))) almost everywhere} 

and is denoted by t(Q,B,f).I denotes the time interval under consideration. 

Each trajectory~ EI is associated with an input map, represented by a 

map v: Im~+ B, such that . 

(5.l) L O V = id 
Im~ 

In our situation Q represents the configuration space. The fibres of B re­

present the (state dependent) input spaces. If we denote local coordinates 
, -1 

q for Q and (q,u) for B (u local coordinates for the fibres 1' (q)), then 
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we obtain the familiar condition that the system trajectories satisfy 

q = f(q,u) for some u (with abuse of notation f: (q,u) t----r (q,f(q,u))). 

We shall assume th~t the dimension of the fibres of Bis constant and equal 

tom~ n = dim Q. Moreover, we assume that f is injective. 

Now suppose a I-form a on TB x I is given. Then we can pose the problem 

of minimizing the action integral 

(5. 2) J (<P) = f <P * a 

I 

over the set of curves <P: I -r TB x I for which there exists a trajectory 

ip: I -r Q of }: with associated input map v such that 

(5.3) <P = .t (v o ip) , 

with .l defined by (4.3). If we define T* :TB x I+ TQ by 

, V VE TB 

then we can easily deduce the following commutativity relation: 

(5.4) 

= ip* s (t) = f(v O lJ}(t)) • 

In fact, the reasoning of section 4 is applied to B instead of Q and ad­

ditional restrictions on curves in Bare given expressing the condition that 

they have to be a system trajectory. Denote the set of curves <P, for which 

there exists a ip,v such that (5.3) holds, by C. Then, given a <PE C, the 

pair w,v is uniquely defined, by injectivity off. Furthermore, each curve 

<P = .l(v O w) in C satisfies 
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using (5.4), with ;B :TB x I--+ B the natural projection. So, the set 

(5.5) 

is a submanifold of TB x I. The curves from C lie in M, so we can restrict 

our optimization to M. Then, define 

(5.6) E = { s I s E T*M , cp * s - o v cp E c } , 

where C is interpreted as a set of curves in M. So, our minimization problem 

is in fact a minimization problem in M with restriction distribution 

S = EL on M. That Eis a codistribution follows from its coordinate repre­

sentation. 

PROPOSITION 5.2. Let q denote local, COOPdinates in Q and (q,u) in B (u aPe 

cooPdinates foP fibPes). Let (q,u,q,u,t) be ZocaZ canonical, cooPdinates in 

TB x I. Then Mis ZocaZZy defined by: 

(5.7) q. = f.(q,u) 
]_ ]_ 

i = l, ... ,n. 

* MoPeoveP, in ZocaZ cooPdinates (q,u,u,t) foP M, E c TM as defined by (5.6) 

is spanned by n+m 1-f orms : 

(5.8) f3. = dq. -f.(q,u)dt 
]_ ]_ ]_ 

= du. 
J 

u.dt 
J 

i = I, ... ,n, 

j = I , ••• ,m 

HePe f.(q,4) denotes the i-th cooPdinate of f(q,u) in T( )Q • l. q,u 

PROOF. (5.7) follow.easily from (5.5). 
Let c/>(t) = (cf> (t), cf> (t), cp.(t),t) be a curve in M satisfying the restric-

q u u 
tion • .,Then (5.3) yields for certain$ and v (v(q) = (q,vu(q))) : 
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<P (t) = ljJ(t) , q 

<ji (t) = V (l/>(t)) , 
u u 

rp.(t) = _dd (v (l/>(t))) 
u q u 

Hence, for i = 1 , ••• , n : 

dljJi(t) 

dt 

dljJ(t) 
dt 

using (5.1). Furthermore, for j = I, ... ,m: 

dv .(1/>(t)) 

rp* f3 n+ j ( a~t I t ) u J - _!. (v (ljJ(t))) dijJ(t) = dt dq uj dt = 0 , 

using the chain rule. This proves the theorem as the dimension of E equals 
X 

n + m (x EM) due to determination of curves in C by a curye 1jJ in Q and a 

map v in B, satisfying (5.1). □ 

6. THE NONLINEAR OPTIMAL CONTROL PROBLEM 

Let E (Q,B,f) be a (time-invariant) nonlinear control system (cf.def. 

5.1). Suppose we have given a cost function g:B ➔ lR and two points 

qa,qb E Q. Then, the (time-invariant) optimal control problem, denoted by 

(E(Q,B,f) , g), is to find system trajectories 1jJ: I (= [a,b ]) ➔ Q and asso­

ciated input maps v such that ljJ(a) = qa , 1jJ (b) = qb and 

( 6. I) J g(v o ljJ(t)) dt 

I 

is minimized • 

. We want to formulate this problem as a Lagrange problem. This can be done 

if we specify a I-form a on M (see (5.5)) which satisfies 

(6.2) 

for all curves <P with <J>*s = 0 V f3 E E ( given by (5. 6)), where 1TM : M ➔ B is 
C 

the natural projection. As 1TM O <P = v O 1jJ for <P = l (v O ljJ) we have the fol-

lowing proposition. 
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PROPOSITION 6.1. Let a be a I-form on M satisfying (6.2). If~: I+ Mis 

optimal for a under restriction S = El, given certain end points ma'¾ EM. 

Then the trajectory 1/J =T O 1rM O ~ cmd associated input defined by 

vi/J = 1rM ~, minimize (6. I) provided T O 1rM(ma) = qa, T O 1rM(mb) = qb. Con­

versely, if 1/J,v is an optimal solution of the optimal control problem, then 

l(v o 1/J) is optimal for a under restriction S (with l(v O 1/1) interpreted 

as aurve in M) • 

It is clear that any choice of a of the form 

(6.3) a = g O 1rM dt + y , 

with y EE, satisfies (6.2) by definition of E. So we have some freedom 

in our problem definition which can be used, as will be shown later. 

Stationarity of a curve is a necessary condition for optimality. By theorem 
3.8, formal stationarity of the restricted problem is equivalent with sta-

tionarity of an unrestricted problem with respect to a Cartan form. If sta­

tionarity implies formal stationarity, then theorem 3.8 provides first order 

necessary conditions for optimality of a curve. In the rest of this section 

we shall use the following technical assumption. 

DEFINITION 6.2. The nonlinear optimal control problem (I(Q,B,f),g) has 

property S, if for the Lagrange problem associated with it as above, sta­

tionarity of curves implies formal stationarity of curves. 

In general, nonlinear optimal control problems do not have property S. 

One can easily follow the proof of conjecture 4.2 to see that integrability 

of the orthogonal complement of the restriction distribution plays a role. 

We shall not work out here more practical conditions implying property S. 

This will be a matter of future concern. We assume that all systems concerned 

have property S. Then we can use theorem 3.8 to obtain the following result. 

PROPOSITION 6.3. Let the nonlinear optimal control problem (I(Q,B,f),g) 

have property s. Let y EE be arbitra-py. Then, a trajectory 1/J : I+ Q with 

associfated input v: Im 1/1 +Bis stationary if and only if there exists a 

curve n : I+ E which is stationary w.r.t. the Cartan form 
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(6.4) 

(with rrE: E + M projection, eE the canonical 1-form on T*M restricted to E) 

and which satisfies 

(6.5) 

A stationary curve can be obtained as a characteristic curve of de (see 
g 

end of section 2) and projection yields the associated trajectory and input. 

We shall illustrate this proposition using local coordinates as in 

proposition 5.2. For Ewe use coordinates (q,u,ti,>..,µ,t) for an element 
n m 

l; = L l >... S . + L l µJ. a
3
• + n • i= l. l. J = 

We choose 

(6.6) 
m 

y = /, 
j=l 

u. (du .-u .dt) • 
J J J 

Then, with sunnnation over i = 1, ••• ,n, j = 1, ••• ,m 

(6.7) 8 = >...(dq.-f.(q,u)dt) + (u.+ti.)(du.-ti.dt) + g(q,u)dt. 
g l. l.l. JJ JJ 

As in section 4 we may confine ourselves to variation vector fields with 

a~ - component equal to 1. Then such a vector field on Eis given by: 

Hence txdeg = 0 yields, as in section 4, by equating to zero the coeffi­

cients for dq , d>.. , du , dµ and du , respectively: 

n afk 
(6. 8) X>... = _lg_ - l A 

aq. 
l. aqi k~I k l. 

(6.9) X = f. (q,u) , q. l. 
' l. 
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_.£L 
n afk 

(6. 10) X + x. = - I "'k µ. u. au. au. 
, 

J J J k=l J 

(6. 11) X = u. , u. J 
J 

(6.12) µ. = • ..,., u. . 
J J 

The equation obtained from the dt-term is satisfied by substituting (6.8) 

up to (6.12) as in section 4. We have chosen y such that the last equation 

is solvable with respect to u .. This equation (6.12) determines an 
J 

2(n+m) + I-dimensional submanifold N c E and X. is uniquely defined by the u. 
equation 

(6.13) 0 = X( µ. +u.) = 
J J 

J 

X + X. 
µ_ u. 
J J 

So for all p E N , X e: TN, and the problem is reduced to finding integral 
p 

curves of the vector field XI N, satisfying (6.8) and (6.9) together with: 

(6. 14) 

(6. 15) 

o = ag 
au. 

J 

n 
- I 

k=l 

X = - µ •• 
u. J 

J 

In the case that 

(6.16) 
n afk a ag 2 -'-det ( - ( -- - . "k -a - ) ) . . r O , "u. "u. u l. J 

o i o J k=l j 

we can reduce the system even more by solving (6.14) with respect to u. Let 

this result be u = F(q,A). Then, from X(u-F(q,A)) = 0 we obtain 

(6. 17) X = aF X + aF X = G( ') ' q,/\ , u aq q aA /\ 

where G is obtained by substituting (6.8) and (6.9). With (6.15) we obtain 

(6. HU 

and the condition X(µ +G(g,A)) = O yields an expression for X 
µ 
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(6. 19) 

Summarizing, we may consider the (2n+l)-dimensional submanifold N c E 

defined by 

(6.20) u = + G(g,A) , µ = - G(q,A) , u = F(g,A), 

together with the vector field X, which satisfies X ET N for all p EN. 
p p 

Hence, formally stationary curves (and if property S holds: stationary curves) 

of the optimal control problem are integral curves in N of the vector field 

defined by: 

(6.21) 

X = f(q,F(q,A)) , q 

XA = : : ( q , F ( q , A ) ) - [ : ! ( q, F ( q , A ) ) ] A , 

provided (6.16) is satisfied. Equation (6.21) expresses first order neces­

sary conditions for optimality of a curve q(t), if property S holds. Note 

that, with 

we have 

T H(q,A,u) = g(q,u) - A f(q,u) 

X = q 

X = A 

aH(g,A,u) I 
oA u = 

oH(fJ.,A,u) 
ag 

These equations look more familiar. They are also obtained if we apply 

Pontryagin's maximum principle. 



Let us specialize it even more and lobk what we obtain for the time­

invariant linear-quadratic optimal control problem defined by: 

f(q,u) = Aq +Bu, 

g(q,u) HqTCTCq + T 
= u u) , 

then (6. 14) yields, 

(6. 22) u = BTA (= F(q,A)) 

(the determinant from (6.16) equals 1) • For G we obtain from (6.17): 

(6.23) 
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Hence, u andµ follow from (6.20) and the vector field (6.21) becomes on N: 

(6.24) 

which is the well-known equation for the linear Hamiltonian vector field 

for the linear-quadratic regulator problem (WONHAM [1979]). We shall not 

go into details about existence and uniqueness of integral curves of this 

vector field. Such results can be found for instance in BROCKETT [1970] • 

Our purpose was to show that our general theory for nonlinear time-invariant 

optimal control problems easily reduces to the familiar results in the linear­

quadratic case. 

Proposition 6.3 is the important result in this section. It yields the 

general formulation of first order necessary conditions for optimality (or 

necessary and sufficient conditions for stationarity) of curves for the op­

timal control problem. A particularly nice detail here, is the freedom of 

choosing yin E, which can be used to reduce the dimension of the problem 

by guaranteeing solvability of the equations with respect to certain vari­

ables and, moreover, to obtain simple equations, once we have chosen coor­

dinates. 
f', 
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7. CONCLUSION 

In this paper we gave a generalization of Lagrange's multiplier rule 

for restricted variational problems on manifolds. Using a recent formulation 

for nonlinear control systems on manifolds we are able to give a formulation 

of optimal control problems on manifolds and to derive first order necessary 

conditions in this formalism. These are based on finding characteristic 

curves of a certain 2-form, which is the differential of a specific Cartan 

form. We expect that the formalism given here is especially suitable for 

studying nonlinear optimal control problems. In particular, notions like non­

linear controllability, stabilizability etc. might be easily introduced in 

our setting, in order to study existence and uniqueness of solutions in non­

linear optimal control problems. 
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