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Invertibility of affine nonlinear control systems: a geometric approach*) 

by 

Henk Nijmeijer 

ABSTRACT 

The paper deals with the invertibility of multivariable nonlinear con­

trol syst.ems. By using the recently developed theory on controlled invariant 

and controllability distributions necessary and sufficient conditions for 

invertibility are derived. 

KEY WORDS & PHRASES: nonZinea:r> aontroZ systems, invertibiZity, aontroZZed 

inva:r>ianae, aontroZZabiZity distributions 

*) This report will be submitted for publication elsewhere. 





I . INTRODUCTION 

Consider the affine nonlinear control system 

(1. I) 
{

x(t) = 

y(t) = 

A(x(t)) + 

C(x{t)) 

m 

I 
i=l 

B • (x ( t) ) u • ( t) , 
1. 1. 

x(O) = 

where x are local coordinates of an analytic n-dimensional manifold M, 

A,B 1, ••• ,Bm are analytic vector fields on Mand the inputfunction u(t) = 

= (u 1{t), ••• ,um{t)) belongs to U, the class of analytic functions from 

[0, 00 ) into JR.m. Furthermore C is the analytic output map from the state 

space Minto the analytic p-dimensional output-manifold N. We will assume 

that C is a surjective submersion. The system (I.I) is said to be invertible 

if the corresponding input-output map is injective. A refined notion is 

given by: the system (I.I) is invertible at x0 EM, if when~ver u and u are 

distinct admissible controls, then the corresponding outputfunctions 

y(•,u,x0) and y(•,u,x0) are different. The system is strongly invertible at 

x0 if the system is invertible for each x in V for some neighborhood V of 

x0 and the system is said to be strongly invertible if there exists an 

open and dense submanifold M0 of M such that for all x0 E M0 the system is 

strongly invertible at x0 • The above definitions come from HIRSCHORN 

([2,3,4]), who firstly studied nonlinear invertibility. For multivariable 

linear systems there are several different ways to characterize invertibil­

ity. Shortly said Hirschorn's approach is the nonlinear version of that of 

SILVERMAN ([12]). In that way one constructs a left-inverse system for the 

original system (see also SINGH [13]). The approach we present here is 

completely different from that of Hirschorn. Based on the recent developed 

theory on nonlinear controlled invariance, see e.g. HIRSCHORN ([5]), 

ISIDORI et al. ([6]), NIJMEIJER & van der SCHAFT {[10]), we will set up 

a geometric theory for nonlinear invertibility. The basic objects we need 

here are the so-called controllability distributions, a special class of 

controlled invariant distributions, introduced in NIJMEIJER ([8], see 

also KRENER & ISIDORI [7]). In this way we obtain a result which seems to be 

an improvement of REBHUHN [11]. 



2 

The outline of the paper is as follows. In section 2 we will derive a 

geometric condition for strong invertibility of multivariable linear sys­

tems. In section 3 we study single input nonlinear systems, while in 

section 4 we deal with multivariable nonlinear systems. 

2. STRONG INVERTIBILITY OF MULTIVARIABLE LINEAR SYSTEMS 

Consider the linear system 

Ax.+ Bu, 

(2. I) 

where x E ]Rn, u E ]Rm , y E ]RP and A,B and C m'atrices of appropriate 

dimensions. Furthermore we assume that the matrix B has full rank (other­

wise the system (2.1) is never invertible). Invertibility of (2.1) at 

x
0 

E ]Rn can easily be expressed in geometric terms. Recall that a sub­

space R c ]Rn is called a controZZabiZity subspace of the system (2.1) if 

there exists a linear map F: ]Rn -+ ]Rm such that R = <A+BF I BnR> := B n R + 

+ (A+BF)B n R + •••• + (A+BF)n-lB n R where B := Im B (see WONHAM [16]). The 

maximal controllability subspace contained in Ker C - which does exist, 

cf. [1] - will be denoted by R*.,Then we have 

THEOREM 2.1. The system (2.1) is strongZy invertibZe at x0 if and onZy if 
* R = o. 

* PROOF. (-.) Suppose that R IQ. Then there exists a feedback matrix F such 

that R* = <A+BFjBnR*>. Clearly, cf. [16], there exists an (m,m)-matrix 
* . G # 0 such that Im(BG) = B n R. Now consider the 'subsystem' ([16,8]) of 

(2.1): 

(A+BF)x + BGv, 

(2. 2) 

Clearly'all inputs u = Fx + Gv in the system (2.1) give rise to the same 
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output function; i.e. the system (2.1) is not invertible at x
O

• 

(<=) Suppose that the system (2.1) is not strontly invertible at x
0

• Then 

there exist input functions u 1(.) and u2(.) such that their corresponding 

output functions coincide, i.e. for all t ~ 0 

t t 

C At +CI A(t-cr)B c· )d = e x
0 

e u
1 

a a At Ce x0 + C f eA(t-cr)Bu
2

(cr)dcr 

0 0 

0 t 

Now if we define V = Sp>an [ f eA(t-cr)B(u
1
-u

2
)(cr)da], 

t-0 O 

then we see that this linear subspace Vis controlled invariant for the 

system (2.1). Furthermore it is easy to see that V n B # 0, which implies 

that R* # O. □ 

REMARK. The linearity of the system (2.1) implies that if the system is 

strongly invertible at a point x
0

, then it is strongly invertible everywhere. 

Throughout the paper we are especially interested in a special class of 

controllability subspaces, namely we will mainly deal with those controll­

ability subspaces R for which R = <A+BF,b> for an n-vector b EB and a feed­

back matrix F. We will call such an Ra single-input controllability subspace. 

By using Heymann's lennna (see e.g. [16]), it is easily shown that every 

controllability subspace R can be written as a single input controllability 

subspace. We then have 

COROLLARY 2.2. The system (2.1) is strongly invertible (at x0) if and only 

if there is no single-input controllability subspace contained in Ker C. 

3. STRONG INVERTIBILITY OF SINGLE-INPUT NONLINEAR SYSTEMS 

Now we consider the affine nonlinear system 

(3. I) ,. {

x = 

y = 

A(x) + B(x)u 

C(x) 
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where x EM, y EN, Mand N,A,B and Care as in the introduction. Necessary 

and sufficient conditions for strong invertibility (at a point xO) for 

(3.1) can be found in [2]. In what follows we will frequently use those 

results. As in section 2 we have to investigate controllability subspaces 

for (3.1). Clearly, in general for nonlinear systems such subspaces do not 

exist. The suitable generalization we need is given in [8], which uses to 

a large extent the notion of aaaessibility of SUSSMANN & JURDJEVIC ([14]). 

Recall the following definition (cf. [8]) 

DEFINITION 3.1. The aaaessibility distribution D of the system (3.1) is 

given by 

D := involutive closure of {adfB, j = 0,1,2, ••• }. 

j O j+l j 
REMARKS (i). As usual adAB is defined as follows adAB = B, adA B = [A,adAB], 

j = 0,1,2, •••• 

(ii) The distribution Dis a regulaY' controllability distribution for the 

system (3.1), see [8]. As in the linear case - for a single-input linear 

system there exists only one controllability subspace - Dis the only 

controllability distribution for the system (3.1). This is almost trivial, 

while Dis invariant under state-feedback (cf. [8]). 

(iii) In [8] we only considered controllability distributions of fixed 

dimension. Without this assumption the above definition is the obvious 

extension. It is well known that for an,analytic system the accessibility 

distribution has fixed dimension on an open and dense submanifold M' of M 

(cf. [14]). 

The output map C:M + N, which is a surjective submersion, induces 

another involutive distribution of fixed dimension on M, namely Ker C*. 

Obviously if we consider the two distributions D and Ker C , then we have 
* 

two possibilities. Or the distribution Dis contained in Ker C*, or there 

exists an open and dense submanifold MO of M such that on MO Dis not con­

tained in Ker C*. We now obtain: 

THEOREM 3.1. The system (3.1) is strongly invertible if and only if there 

exists ,an open and dense submanifold MO of M suah that on MO the distribu-



5 

Dis not contained in Ker c*. 

And as a local result we have 

THEOREM 3.2. The system (3.1) is stpongZy invertibZe at x0 if and onZy if 

there exists a neighborhood U(x0) such that on U(x0) the distribution Dis 

not contained in Ker c*. 

PROOF (of Theorem 3.1). (=>) Trivial, while if D c Ker C* the output function 

is independent of the input, for each initial state x0• 

(<=) This follows from [2]. A more direct argument, not using a left-inverse 

for the system (3.1), goes as follows. Suppose that u1,u2 EU are t~o 

different input functions. From the analyticity it follows that for some 

BE "N we have u
1 

(S)(O) # u~B)(O) (u(B)(O) := ::~ (0)). For each point x0 
in M0 the subspace D(x0) c Tx0M0 is generated by the vectors ad~ B(x

0
), 

k E "N (precisely D (x0) = involutive closure of {ad~ B (x0), k E "N } ) • Choose 

local coordinates around x0 and C(x0) and let ci be the i-th component of 

the output function (i=l, ••• ,p). Now D(x0) is not contained in (Ker C )(x0), 
k-1 * therefore there exists an a(x0) E "N\{O} such that (adA B)ci(x0) = O, 

k = l, ••• ,a(x0), i = I, ... ,p and for some i ad:<xo) Bci
0

(x0) # 0. By using 

the analyticity of the system (3.1) we see that the number a(x), x E M0 is 

a constant a on an open and dense submanifold MO of M0 , and therefore also 

on an open and dense submanifold of M. Usually this ci' is called the reZative 

order of the system (c.f. [2,3]). Suppose that XO E Mo. We have to show 

that the output functions which correspond to the input functions u
1 

and 

u2 are different. Without loss of generality we may assume that p = 1 and 

we write y
1
(t) (respectively y2(t)) as the output function of the system 

(3.1) with initial state x0 and input function u
1
(t) (respectively u2(t)). 

Then we have 

(3.2) 

(3. 3) y1 (0) - y2(0) = (LAC)(x0)+,(LBC)(x0).ul(O) .... (LAC){x0)""'(~C}(x0)u2(o) 

= (LBC)(x0}.[u1(0)-u2(0)] 

Now the right-hand side of (3.3) is different from zero if a= 1 and 8 = O. 

In a11'other cases we see that y
1

(0) - y2(0) vanishes. In the next step we 
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obtain 

yl(0) - Y2(0) = (LALAC)(xo)+(LALBC)(xo)ul(0)+(LBLAC)(xo)ul(0) 

(LBLBC)(x0)ui(O)+(LBC)(x0)u1(0)-(LALAC)(x0) 

2 
- (LALBC)(x0)u2 (0)-(LBLAC)(x0)u2(0)-(LBLBC)(x0)u2(0) 

(3.4) - (LBC)(x0}u2(o) 

= (LALBC}(x0)[u1 (0)-u2(0)]+(~LAC)(x0)[u1(0)-u2(0)J 

+ (LBLBC}(x0)[ui(O)-u~(O}]+(LBC)(x0)[u1(0)-u2(0)] 

Assuming that (a,S) # (1,0) the right-hand side of (3.4) does not vanish 

if and only if a= 1 and S = I or if a= 2 and S = 0 (note that if a= 2 

the expressions (LALBC)(x0) and (LBLBC)(x0) vanish on M0). In all other 

cases y1(0) - y2(0) = 0. 

Similarly we obtain 

(3. 5) 

(LALALBC)(x0)[u1(0)-u2(0)]+(LALBLAC)(x0)[u1(0)­

- u
2

(0)] + 

2 2 
(LALBLBC)(x0)[u1(0)-u2(0)] + 

2 
(LBLALAC)(x0)[u1(0)-u2(0)]+(LBLALBC)(x0)[u1(0)-

2 - u
2

(0)] + 

2 2 3 
(LBLBLAC)(x0)[u1(0)-u2(0)]+(LBLBLBC)(x0)[u1(0)-

3 - u
2

(0)] + 

3(LBLBC)(x
0
)[u1 (0)u1 (0)-u2(0)ui(0)] + 

2(LALBC)(x0)[u
1

(0}-u2(0)]+(LBLAC)(x0)[u
1
(0)­

- u
2

(o)J + 

(LBC)(xo)[iit(0)-ii2(0)] 

Excluding the three preceding possibilities (a,S) = (1,0), (a,S) = (1,1) 

and (a,S) = (2,0) we see that the right-hand side of (3.5) does not vanish 

if and only if a= 3 and S = 0 or a= 2 and S = I or a= 1 and S = 2. In 

general we obtain a lattice 
' 
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2 3 4 5 6 7 

where the index j at a vertex indicates that y(j)(O) - y(j)(O) is non-zero. 
1 2 · 

In our case the (~+$)-th derivative of y 1-y2 is different from zero at time 

t = O, i.e. the output functions y
1
(t) an~ y 2 (t) are different. D 

REMARK. Compare the proof of the above theorem with [2], [I.I], [9] and also 

the Fliess 1 approach, e.g. [l]. 

The proof of theorem 3.2 is completely similar and we will leave it 

for the reader. 

4. STRONG INVERTIBILITY OF MULTIVARIABLE NONLINEAR SYSTEMS 

Consider the affine nonlinear system 

m 

(4. 1) 
{

xy• :_ A(x) + 

C(x) 

I 
i=l 

B. (x)u. 
]. ]. 

where x,y,A,Biand Care as in the introduction. For studying invertibility 

of (4.1) we will assume throughout this section that the vector fields 

B1, ••• ,Bm are linearly independent at each point of M. Recall the follow­

ing definitions of [8] (See also [7]). 

DEFINITION 4.1. A(k-dimensional) subsystem of the system (4.1) is given by 
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k ~ 

{: 
= A(x) + }: B. (x)v. 

j=l J l. 
(4. 2) 

= C(x) 

where 

m 
A(x) = A(x) + }: B. (x)a. (x) 

i=l l. l. 

m 
B. <x) = }: B. (x) f3 •• (x) , j = 1 , ••• ,k 

J i=l l. l.J 

for analytic functions a., (3 •• , M + :JR, i = 1, ••• ,m, j = 1, ... ,k. We will 
l. l.J 

call a k~dimensional subsystem nontrivial at x
0 

if the rank of the matrix 

(f3 •• (x
0
)) •• is greater than zero. Finally, for a neighborhood Vin Ma 

l.J 1.,J 
k-dimensional subsystem is V-nontrivial if the rank of the matrix (f3 •• ) •• 

l.J l.J 
is greater than zero on V. 

DEFINITION 4.2. A eontrollability distribution D of the system (4.1) is the 

accessibility distribution of a subsystem (4.2) of the system (4.1), i.e. 

Dis the involutive closure of 

REMARK. In general a controllability distribution D of (4.1) is not locally 

controlled invariant for the original system (4.1), but it is locally con­

trolled invariant for the sub-system (4.2). If the distribution Dis also 

controlled invariant for (4.1) it is called a regular controllability dis­

tribution of (4.1), see [8]. 

THEOREM 4.3. The system (4.1) is strongly invertible at xO if and only if 

there exists a neighborhood V of x
0 

sueh that eaeh V-nontrivial single-in­

put subsystem (4.2) of (4.1) is strongly invertible at x
0

• 

PROOF.(~) Suppose that the system is strongly invertible at xO, i.e. the 

corresponding input-output map is injective on U. Consider an arbitrary 

subsystem (4.2) which is nonsingular at xO• Clearly the set of analytic 
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input functions of the subsystem (4.2) can be inbedded as a subset U1 of 

U. While the input-output map is injective on U it certainly is injective 

on U1, which implies that the subsystem is strongly invertible at x0 • 

(<=) Suppose that the system (4.1) is not strongly invertible at x0 • Then 

either it is not invertible at x0 , or it is not invertible at a point 

i 0 EV. We will only consider the first possibility; otherwise the same 

arguments can be applied by replacing i 0 instead of x0 • 

So suppose that the system (4.1) is not invertible at x0 • Then there 

exist two different analytic input functions u(t) = (u1(t), ••• ,um(t)) and 

u(t) = (~1(t), ••• ,um(t)) which give rise to the same output function. We 

will show that there exists a single-input subsystem, which is non­

singular at x0 , such that both the trajectories of (4.1) corresponding 

to the input functions u(t) and u(t) are also trajectories of this sub­

system. Clearly this gives us a contradiction with the fact that each 

single-input subsystem is strongly invertible at x0 • Let x(t), respectively 

i(t); denote the solution of (4.1) with input function u(t), respectively 

u(t) and initial state x(O) = x0 • We may assume that there exists an E > 0 

such that the map from [0,E) into M, defined by t + x(t) is an injective 

immersion (otherwise we can take x(t)). Therefore along this trajectory 

I - m T = {x(t) O~t<E} we can define a state feedback a:T + lR in the following 

way. Let x1 ET, then there is an unique t E [0,E) such that x(t) = x 1• 

Define ~.(x1) = u.(t), i = l, ••• ,m. While Tis an injectively immersed 
l. l. 

submanifold of M, we can extend the feedback (a1, ••• ,am) to a feedback 

(a1, ••• ,am) on a neighborhood in M of T, i.e. on T we have ai = ai. 

Define the vector field A by A(K) = A(x) + I~=l Bi(x)ai(x). Note that 

Tis the trajectory of the vector field A through x0 • In the same way we 

can treat i(t). There are two possibilities 

(i) There exists an e > 0 such that T = {i(t)!O~t<E} is also an injectively 

immersed submanifold of M. Clearly by choosing E and E sufficiently small 

we can achieve that T n T = {x0}. Furthermore we can construct a vector 
,..,, ,v m -

field B locally, B(x) = Ei=lBi(x)8i(x) and Tis the trajectory of the 

vector field A+ B through x0 • By choosing e sufficiently small we can 

also achieve that Bis non-zero on a neighborhood of x0 • 

(ii) For all t > 0 we have that i(t) = x0 • The construction of an appro­

priat& feedback function (8 1, ••• ,8m) as above now becomes almost trivial, 



10 

while such a feedback function now is only specified in x0 • Again we find 

that locally there exists a vector field B, such that Tis the trajectory 
~ of A+ B through x0 • Now consider the single-input subsystem 

(4.3) {y
x = A(x) 

= C(x) 

+ B(x)v, 

which by construction is nonsingular at a neighborhood of x0 • The input 

functions v = 0 and v = 1 give rise to the same output function; so the 

subsystem (4.3) is not strongly invertible. 0 

REMARK. This theorem seems to be an improvement of [11]. Following the no­

tation of [11], one of the hypotheses for invertibility is that Zj and 

D~ad!(i)Bi are linearly independent for j = 1, ••• ,q and i = 1, ••• ,m . 

(p.208). This assumption does not imply that linear combinations of z31 s 

are linearly independent of D~ad!(i)Bi, which. explicitly has been used 

(p.210). 

COROLLARY 4.4. The system (4.1) is strongZy invertibZe at x0 if and onZy 

if ZoaaZZy around x
0 

there is no aontroZZabiZity distribution, whiah is non­

triviaZ, aontained in Ker c*. 

PROOF. First we note that by using TSINIAS & KALOUPTSIDIS ([15]) one can 

easily prove (as in the linear case) that each controllability distribution 

arising from a k-dimensional subsystem of (4.1) also appears as controlla­

bility distribution of a single-input subsystem. Now applying theorems 

4.2 and 3.2 exactly yields the result. D 

Finally if we investigate strong invertibility of the system (4.1) we 

obtain as the analogue of theorem (3.1). 

THEOREM 4.5. The system (4.1) is ~trongZy invertibZe if and onZy if there 

exists an open and dense submanifoZd M
0 

of suah that on M
0 

no nontriviaZ 

aontroZZabiZity distribution is aontained in Ker C*. 

PROOF. Follows directly from theorem 4.3 and corollary 4.4. D 



11 

5. CONCLUSION 

Necessary and sufficient conditions for strong invertibility of affine 

nonlinear systems are derived. The well-known condition for strong inverti­

bility of linear multivariable systems - a linear system is strongly invert­

ible if and only if there does not exist a controllability subspace con­

tained in Ker C - has been generalized to nonlinear systems. From a practi­

cal point of view it would be desirable to have an algorithm for computing 

the largest controllability distribution in a given distribution. As already 

noted in [8] at the moment it is not clear if such a maximal element exists. 

It has been proven in [8], see also [7], that there does exist a maximal 

reguZa:t' controllability distribution in a given distribution, but clearly 

we also have to deal with non-regular controllability distributions. 
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