
I - PHYSICAOO 
ELSEVIER Physica D 120 ( 1998) 168-176 

Reversible simulation of irreversible computation* 
Ming Li a.*, John Tromp b. l, Paul Vitanyi b. 2 

a Department of Compwer Science, University of Warer/oo, Waterloo, Ont. Canada N2L JG I 
b CW!, Kruis/cum 413, 1098 SJ Amsterdam, Netherlands 

Abstract 

Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized 
by among other things generating excess therrnic entropy in the computation. Computing performance has improved to the 
extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation 
of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method 
was proposed by Bennett and can be analyzed using a simple 'reversible' pebble game. The reachable reversible simulation 
instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we 
obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce 
irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain 
in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the 
simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is 
unknown. © 1998 Elsevier Science B. V. All rights reserved. 

1. Introduction 

Both classical and quantum physics are believed 
to be strictly reversible: A complete description of 
the microscopic state of the system uniquely deter­
mines the earlier and future states of the system -
this holds not only in Newtonian mechanics but for 
example also for the unitary evolution of any quan­
tum mechanical system. Currently, computations are 
commonly irreversible, even though the physical de-

*We complete the preliminary work in f 14, 15]. Here we an­
alyze the reversible pebbling technique completely and derive 
the earlier results as simple corollaries. 
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vices that execute them are fundamentally reversible. 
This contrast is only possible at the cost of efficiency 
loss by generating thermal entropy into the environ­
ment. With computational device technology rapidly 
approaching the elementary particle level it has been 
argued many times that this effect gains in signi­
ficance to the extent that efficient operation (or oper­
ation at all) of future computers requires them to be 
reversible (for example, in [l,2,6,7,9,I0,14,l9,20]). 
Especially Landauer [ IO] has argued that it is only 
the 'logically irreversible' operations in a physical 
computer that necessarily dissipate energy by gen­
erating a corresponding amount of entropy for ev­
ery bit of infonnation that gets irreversibly erased; 
the logically reversible operations can in principle 
be performed dissipation-free. Reversible comput­
ers can be implemented using classical technolo­
gies [2,6, 16] or quantum-mechanical technologies 
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as in (4,8, 17]; the latter quantum-mechanical com­
puters are reversible except for the observation 
phases. 

The traditional models used in the analysis of com­
putation, for example Turing machines, RAMs, or cir­
cuits, allow logically irreversible operations. To reflect 
physical reality they must be replaced by completely 
reversible computational models, for example by uni­
versal simulation. Simulation of irreversible Turing 
machines by reversible ones goes back to Lecerf [12] 
and Bennett [I]. The original methods required an 
amount of memory proportional to the amount of com­
putation time, since the step-by-step reproducibility 
of the history was achieved by remembering it dur­
ing most of the computation. It was recognized later 
that keeping the configuration only of certain times 
("checkpoints") of the original computation can re­
duce the memory requirement at the expense of in­
creasing the computing time. 

Bennett in a "Remark" in [3] compares the "check­
pointing" to moves in a certain pebble game. This 
paper takes up this suggestion to analyze time-space 
and space-irreversibility tradeoffs. It completely char­
acterizes the realizable pebble configurations of the 
reversible pebble games (they encode the reachable 
instantaneous descriptions of a Turing machine re­
versibly simulating an irreversible computation). As 
corollary we obtain Bennett's earlier [3] simulation 
and a first proof that this simulation is a space-optimal 
pebble game. It also introduces irreversible steps and 
gives a theorem on the tradeoff between the number 
of allowed irreversible steps and the memory gain in 
the pebble game. For such a tradeoff the limited ir­
reversible actions have to take place at precise times 
during the reversible simulation, and cannot be de­
layed to be executed all together at the end of the 
computation (as is possible in computations without 
time or space resource bounds). Finally, in all such 
reversible simulations it is assumed that the num­
ber of steps to be simulated is known in advance 
and used to construct the simulation (for that num­
ber of steps). We show how to reversibly simulate 
an irreversible computation of unknown computing 
time, using the same order of magnitude of simulation 
time. 

1.1. Reversible Turing machines 

In the standard model of a Turing machine the 
elementary operations are rules in quadruple format 
(p, s, a, q) meaning that if the finite control is in state 
p and the machine scans tape symbol s, then the ma­
chine performs action a and subsequently the finite 
control enters state q. Such an action a consists of 
either printing a symbol s' in the tape square under 
scan, or moving the scanning head one tape square 
left, right or not at all. 

Quadruples are said to overlap in domain if they 
cause the machine to be in the same state and scan­
ning the same symbol to perform different actions. A 
deterministic Turing machine is defined as a Turing 
machine with quadruples no two of which overlap in 
domain. 

Now consider the special format (deterministic) 
Turing machines using quadruples of two types: 
read/write quadruples and move quadruples. A 
read/write quadruple (p, a, b, q) causes the machine 
in state p scanning tape symbol a to write symbol 
b and enter state q. A move quadruple (p, *·a, q) 

causes the machine in state p to move its tape head 
by a E (-1, 0, +I} squares and enter state q, oblivi­
ous to the particular symbol in the currently scanned 
tape square. (Here ' - I' means 'one square left', 'O' 
means 'no move' and '+1' means 'one square right'.) 
Quadruples are said to overlap in range if they cause 
the machine to enter the same state and either both of 
them write the same symbol or (at least) one of them 
moves the head. Said differently, quadruples that en­
ter the same state overlap in range unless they write 
different symbols. A reversible Turing machine is a 
deterministic Turing machine with quadruples no two 
of which overlap in range. A k-tape reversible Turing 
machine uses (2k + 2) tuples which, for every tape 
separately, selects a read/write or moves on that tape. 
Moreover, any two tuples can be restricted to some 
single tape where they don't overlap in range. 

To show that every partial recursive function can 
be computed by a reversible Turing machine one can 
proceed as follows. Take the standard irreversible Tur­
ing machine computing that function. We modify it 
by adding an auxiliary storage tape called the 'history 
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tape'. The quadruple rules are extended to 6-tuples to 
additionally manipulate the history tape. To be able to 
reversibly undo (retrace) the computation determinis­
tically, the new 6-tuple rules have the effect that the 
machine keeps a record on the auxiliary history tape 
consisting of the sequence of quadruples executed on 
the original tape. Reversibly undoing a computation 
entails also erasing the record of its execution from 
the history tape. This notion of reversible computa­
tion means that only I : I recursive functions can be 
computed. To reversibly simulate an irreversible com­
putation from x to f (x) one reversibly computes from 
input x to output (x, f (x)). 

1.2. Reversible programming 

Reversible Turing machines or other reversible 
computers will require special reversible programs. 
One feature of such programs is that they should be 
executable when read from bottom to top as well as 
when read from top to bottom. Examples are the pro­
grams F ( ·) and A ( ·) we show in the later sections. 
In general, writing reversible programs will be diffi­
cult. However, given a general reversible simulation 
of irreversible computation, one can simply write an 
oldfashioned irreversible program in an irreversible 
programming language, and subsequently simulate it 
reversibly. This leads to the following: 

Definition I. An irreversible-to-reversible compiler 

receives an irreversible program as input and re­
versibly compiles it to a reversible program. Sub­
sequently, the reversible program can be executed 
reversibly. 

Note that there is a decisive difference between 
reversible circuits and reversible special purpose 
computers on the one hand, and reversible universal 
computers on the other hand. While one can design a 
special-purpose reversible version for every particular 
irreversible circuit using reversible universal gates, 
such a method does not yield an irreversible-to­
reversible compiler that can execute any irreversible 
program on a fixed universal reversible computer 
architecture as we are interested in here. 

1.3. Models of reversible simulation and related work 

The reversible simulation in ( 1] of T steps of an ir­
reversible computation from x to f (x) reversibly com­
putes from input x to output (x, f (x)) in T' = O(T) 
time. However, since this reversible simulation at some 
time instant has to record the entire history of the irre­
versible computation, its space use increases linearly 
with the number of simulated steps T. That is, if the 
simulated irreversible computation uses S space, then 
for some constant c > I the simulation uses T' ~ 
c + cT time and S' ~ c + c(S + T) space. This can be 
an unacceptable amount of space for many practically 
useful computations. 

In [3] another elegant simulation technique is de­
vised reducing the auxiliary storage space. This simu­
lation does not save the entire history of the irreversible 
computation but it breaks up the simulated computa­
tion into segments of about S steps and saves in a hi­
erarchical manner checkpoints consisting of complete 
instantaneous descriptions of the simulated machine 
(entire tape contents, tape heads positions, state of 
the finite control). After a later checkpoint is reached 
and saved, the simulating machine reversibly undoes 
its intermediate computation, reversibly erasing the 
intermediate history and reversibly canceling the pre­
viously saved checkpoint. Subsequently, the computa­
tion is resumed from the new checkpoint onwards. 

The reversible computation simulates kn segment<; 
of length m of irreversible computation into (2k - I)" 
segments of length G(m + S) of reversible compu­
tation using n(k - I)+ 1 checkpoint registers using 
6>(m + S) space each, for every k, n, m. 

This way it is established that there are vari­
ous tradeoffs possible in time-space in between 
T' = <9(T) and S' = G(T S) at one extreme (k =I, 
m = T, n = I) and (with the corrections of [13]) 
T' = 6>(T 1+• /S") and S' = B(c(E)S(l +log T /S)) 
with c( E) = E2 1 /• for every E > 0, using always the 
same simulation method but with different parameters 
k, n, where E = 1ogk(2k - I) and m = ('9(S). Typi­
cally, for k = 2 we have E = log 3. Since for T > 25 

the machine goes into a computational loop, we al­
ways have S ::; log T. Therefore, every irreversible 
Turing machine using space S can be simulated by 
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a reversible machine using space S2 in polynomial 
time. Let us note that it is possible to improve the sit­
uation by reversibly simulating only the irreversible 
steps. Call a quadruple of a Turing machine irre­
versible if its range overlaps with the range of another 
quadruple. A step of the computation is irreversible 
if it uses an irreversible quadruple. Let the number of 
irreversible steps in a T step computation be denoted 
by I. Clearly, I ::-::: T. The simulation results hold 
with T in the auxiliary space use replaced by I. In 
particular, S' = O(S log I). In many computations, I 
may be much smaller than T. There arises the prob­
lem of estimating the number of irreversible steps in a 
computation. (More complicatedly, one could extend 
the notion of irreversible step to those steps which 
can be reversed on local information alone. In some 
ca~s this is possible even when the used quadruple 
itself was irreversible.) 

In a preliminary version of this paper [15], two 
of us (Li and Vitanyi) proposed a quantitative study 
of exchanges of computing resources such as time 
and space for number of irreversible operations which 
we believe will be relevant for the physics of fu­
ture computation devices. We conjectured that all re­
versible simulations of an irreversible computation 
can essentially be represented as the pebble game de­
fined below, and that consequently the lower bound of 
Corollary 4 applies to all reversible simulations of ir­
reversible computations. This conjecture was refuted 
in [ 11] using a technique due to Sipser [ 18] to show 
that there exists a general reversible simulation of an 
irreversible computation using only order S space at 
the cost of using a thoroughly unrealistic simulation 
time exponential in S. 

In retrospect the conjecture is phrased too general: it 
should be restricted to useful simulations - using linear 
or slightly superlinear time and space simultaneously. 
The real question is whether there is a compiler that 
takes as input any irreversible algorithm A using S 
space and T time and produces a reversible algorithm 
B such that B(x) = A(x) for all input x and using 
T' = O(T) time and S' = O(S) space. In the extreme 
cases of time and space use this is possible: If S = 
GJ(T) then the simulation in [l] does the trick, and if 
T = 8 (25 ) then the simulation of Lange et al. [ 11] 

works. For all other cases the pebble game analysis 
below has been used in [5] to show that any such 
simulation, if it exists, cannot relativize to oracles, or 
work in cases where the space bound is much less than 
the input length. (This is a standard method of giving 
evidence that the aimed-for result - here: simulation 
does not exist - is likely to be true in case the result 
itself is too hard to obtain.) 

2. Reversible pebbling 

Let G be a linear list of nodes {I, 2, ... , Tc}. We 
define a pebble game on G as follows. The game pro­
ceeds in a discrete sequence of steps of a single player. 
There are n pebbles which can be put on nodes of G. 
At any time the set of pebbles is divided into pebbles 
on nodes of G and the remaining pebbles which are 
called free pebbles. At every step either an existing 
free pebble can be put on a node of G (and is thus re­
moved from the free pebble pool) or be removed from 
a node of G (and is added to the free pebble pool). 
Initially G is unpebbled and there is a pool of free 
pebbles. The game is played according to the follow­
ing rule: 

Reversible pebble rule: If node i is occupied by a 
pebble, then one may either place a free pebble on 
node i + 1 (if it was not occupied before), or remove 
the pebble from node i + 1. 

We assume an extra initial node 0 pennanently oc­
cupied by an extra, fixed pebble, so that node I may be 
(un)pebbled at will. This pebble game is inspired by 
the method of simulating irreversible Turing Machines 
on reversible ones in a space efficient manner. The 
placement of a pebble corresponds to checkpointing 
the current state of the irreversible computation, while 
the removal of a pebble corresponds to reversibly eras­
ing a checkpoint. Our main interest is in determining 
the number of pebbles k needed to pebble a given 
node i. 

The maximum number n of pebbles which are si­
multaneously on G at any one time in the game gives 
the space complexity nS of the simulation. If one 
deletes a pebble not following the above rules, then 
this means a block of bits of size S is erased irre-
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versibly. The limitation to Bennett's simulation is in 
fact space, rather than time. When space is limited, we 
may not have enough place to store garbage, and these 
garbage bits will have to be irreversibly erased. We 
establish a tight lower bound for any strategy for the 
pebble game in order to obtain a space-irreversibility 
tradeoff. 

2.1. Reachable pebble configurations 

We describe the idea of Bennett's simulation [3]. 
Given that some node s is pebbled, and that at least n 

free pebbles are available, the task of pebbling nodes 
s + I .... , s + 2n - I can be seen to reduce to the 
task of first pebbling nodes s + 1, ... , s + 211-I - J 

using n - I free pebbles, then placing a free peb­
ble on node s + 2n- I, then unpebbling nodes s + 
1, ... , s + 2n-I - 1 to retrieve our n - I pebbles, and 
finally pebbling nodes s + 2n-I + I, ... , s + 2n - 1 
using these pebbles. By symmetry, an analogous re­
duction works for the task of unpebbling nodes s + 
I, ... , s + 211 - 1 with n free pebbles. The follow­
ing two mutually recursive procedures implement this 
scheme; their correctness follows by straightforward 
induction. 
pebble(s, n) 
{ 

if (n = 0) return; 
t = S + 2n-I; 

pebble(s, n - I); 
put a free pebble on node t 
unpebble(s, n - I) 
pebble(t, n - I); 

unpebble(s, n) 
{ 

if (n = 0) return; 
t = s + zn-I; 

unpebble(t, n - 1 ); 
pebble(s, n - I) 
remove the pebble from node t 
unpebble(s, n - l); 

The difficult part is showing that this method is op­
timal. It turns out that characterizing the maximum 
node that can be pebbled with a given number of peb­
bles is best done by completely characterizing what 
pebble configurations are realizable. First we need to 
introduce some helpful notions. 

In a given pebble configuration with f free pebbles, 
a placed pebble is called available if there is another 
pebble at most 2! positions to its left (0 being the 
leftmost node). According to the above procedures, an 
available pebble can be removed with the use of the 
free pebbles. For convenience we imagine this as a 
single big step in our game. 

Call a pebble configuration weakly solvable if there 
is a way of repeatedly removing an available pebble 
until all are free. Note that such configurations are 
necessarily realizable, since the removal process can 
be run in reverse to recreate the original configura­
tion. Call a pebble configuration strongly solvable if 
all ways of repeatedly removing an available pebble 
lead to all being free. Obviously any strongly solvable 
configuration is also weakly solvable. 

The starting configuration is obviously both weakly 
and strongly solvable. How does the single rule of 
the game affect solvability? Clearly. adding a peb­
ble to a weakly solvable configuration yields another 
weakly solvable configuration, while removing a peb­
ble from a strongly solvable configuration yields an­
other strongly solvable configuration. It is not clear if 
removing a pebble from a weakly solvable configura­
tion yields another one. If such is the case then we may 
conclude that all realizable configurations are weakly 
solvable and hence the two classes coincide. This is 
exactly what the next theorem shows. 

Theorem 2. Every weakly solvable configuration is 
strongly solvable. 

Proof Let j be the number of free pebbles in a 
weakly solvable configuration. Number the placed 
pebbles f, f + I, ... , n - I according to their order 
of removal. It is given that, for all i, pebble i has a 
higher-numbered pebble at most i positions to its left 
(number the fixed pebble at 0 infinity). We know that 
pebble .f is available. Suppose a pebble g with g > .f 
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is also available - so there must be a pebble at most z! 
positions to its left. It suffices to show that if pebble g 
is removed first, then pebbles f, f + 1, ... , g - I are 
still available when their tum comes. Suppose pebble 
j finds pebble g at most 2j places to its left (otherwise 
j will still be available after g's removal for sure). 
Then after removal of pebbles g, f, f + I, ... , j - I, 
it will still find a higher-numbered pebble at most 
2j + 2! + 2! + zl+I + · · · + zj-I ::S: 2j+l places to 

its left, thus making it available given the extra now 
free pebble g. D 

Corollary 3. A configuration with f free pebbles is 
realizable if and only if its placed pebbles can be 
numbered f, f + 1, ... , n - 1 such that pebble i has 
a higher-numbered pebble at most i positions to its 

left. 

Corollary 4. The maximum reachable node with n 
pebbles is 'L?,:J 2i = 2n - 1. 

Moreover, if pebble(s, n) takes t(n) steps we find 
t(O) = I and t(n) = 3t(n - I)+ l = (3n+l - 1)/2. 
That is, the number of steps Tb of a winning play of 
a pebble game of size Ta = 2n - 1 is T(; ::::::: 1.53n, 

th . T' ,...., Tlog3 at IS, a""' G . 

2.2. Tradeoffs 

The simulation given in [3] follows the rules of the 
pebble game of length T G = zn - 1 with n pebbles 
above. A winning strategy for a game of length T G us­
ing n pebbles corresponds with reversibly simulating 
Ta segments of S steps of an irreversible computa­
tion using S space such that the reversible simulator 
uses T' ::::::: ST(; ::::::: STb0g 3 steps and total space S' = 
nS. The space S' corresponds to the maximal num­
ber of pebbles on G at any time during the game. 
The placement or removal of a pebble in the game 
corresponds to the reversible copying or reversible 
cancelation of a 'checkpoint' consisting of the entire 
instantaneous description of size S (work tape con­
tents, location of heads, state of finite control) of the 
simulated irreversible machine. The total time To S 
used by the irreversible computation is broken up in 

segments of size S so that the reversible copying and 
canceling of a checkpoint takes about the same num­
ber of steps as the computation segments in between 
checkpoints. 3 

We can now fonnulate a tradeoff between space 
used by a polynomial time reversible computation and 
irreversible erasures. First we show that allowing a 
limited amount of erasure in an otherwise reversible 
computation means that we can get by with less work 
space. Therefore, we define an m-erasure pebble game 
as the pebble game above but with the additional 
rule 
- In at most m steps the player can remove a pebble 

from any node i > 1 without node i - I being 
pebbled at the time. 
An m-erasure pebble game corresponds with an oth­

erwise reversible computation using mS irreversible 
bit erasures, where S is the space used by the irre­
versible computation being simulated. 

Lemma 5. There is a winning strategy with n + 2 
pebbles and m - I erasures for pebble games G with 

Ta= m211 , for all m 2: I. 

Proof The strategy is to use 2 pebbles as springboards 
that are alternately placed zn in front of each other 
using the remaining n pebbles to bridge the distance. 
The most backward springboard can be erased from 
its old position once all n pebbles are cleared from 
the space between it and the front springboard. We 
give the precise procedure in self-explanatory pseudo 
PASCAL using the procedures given in Section 2.1. 

Procedure A(n, m, G): 
for i := 0, 1, 2, ... , m - I: 

pebble(i2n, n); 

put springboard on node (i + 1)2n ; 
unpebble(i2n, n); 

if i < m - I erase springboard on node i2n ; 

3 If we are to accounc for the pennanent pebble on node 0, 
we get that the simulation uses n + 1 pebbles for a pebble 
game with n pebbles of length T G + I. The simulation uses 
n + 1 = S' /S pebbles for a simulated number of S(Ta + 1) 
steps of the irreversible computation. 
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The simulation time T(; is T(; ~ 2m . 3n-l + 

2 ~ 2m(Ta/m)log3 = 2ml-log3ybog3 for Ta = 
mzn-I_ D 

Theorem 6 (Space-irreversibility tradeoff). 
(i) Pebble games G of size zn - l can be won using 

n pebbles but not using n - 1 pebbles. 
(ii) If G is a pebble game with a winning strategy 

using n pebbles without erasures, then there is also 
a winning strategy for G using E erasures and 
n - log(E + 1) pebbles (for E is an odd integer 
at least 1 ). 

Proof 
(i) By Corollory 4. 

(ii) By (i), Ta = zn - 1 is the maximum length 
of a pebble game G for which there is a win­
ning strategy using n pebbles and no erasures. 
By Lemma 5, we can pebble a game G of length 
Ta =mzn-logm = 2n usingn+l-logm pebbles 

and 2m - 1 erasures. D 

We analyze the consequences of Theorem 6. It is 
convenient to consider the special sequence of values 
E := zk+Z - I for k := 0, I, ... Let G be Bennett's 
pebble game of Lemma 5 of length Ta = zn - I. It 
can be won using n pebbles without erasures, or using 
n - k pebbles plus zk+2 - I erasures (which gives a 
gain over not erasing as in Lemma 5 only for k ~ I), 
but not using n - 1 pebbles. 

Therefore, we can exchange space use for irre­
versible erasures. Such a tradeoff can be used to 
reduce the space requirements of the reversible simu­
lation. The correspondence between the erasure peb­
ble game and the otherwise reversible computations 
using irreversible erasures is that if the pebble game 
uses n - k pebbles and 2k+2 - I erasures, then the 
otherwise reversible computation uses (n - k)S space 
and erases (2k+2 - I )S bits irreversibly. 

Therefore, a reversible simulation according to 
the pebble game of every irreversible computation 
of length T = (2" - 1 )S can be done using nS 
space using (T / S)108 3 S time, but is impossible us­
ing (n - l )S space. It can also be performed using 
(n - k)S space, (2k+2 - 1 )S irreversible bit erasures 

and 2<k+l)(l-Iog 3HI(T/S)108 3S time. In the extreme 

case we use no space to store the history and erase 
about 4T bits. This corresponds to the fact that an 

irreversible computation may overwrite its scanned 
symbol irreversibly at each step. 

Definition 7. Consider a simulation according to the 
pebble game using S' storage space and T' time which 
reversibly computes y = (x, /(x)} from x in order 
to simulate an irreversible computation using S stor­
age space and T time which computes f (x) from x. 
The irreversible simulation cost B S' (x, y) of the sim­
ulation is the number of irreversibly erased bits in the 
simulation (with the parameters S, T, T' understood). 

If the irreversible simulated computation from x 
to /(x) uses T steps, then for S' = nS and n = 
log(T IS) we have above treated the most space parsi­
monious simulation which yields B81 (x, y) = 0, with 
y = {x, /(x)). 

Corollary 8 (Space-irreversibility tradeoff). Simulat­
ing a T = (2n - I) S step irreversible computation 
from x to f(x) using S space by a computation from 
x to y = (x, f (x)), the irreversible simulation cost 
satisfies: 
(i) B(n-k)S(x,y) ~ Bn5(x,y)+(2k+2 -1)Sforn ~ 

k ?::. l. 
(ii) B(n-l)S(x, y) > sn5(x, y) for n ~ I. 

For the most space parsimonious simulation with 
n = log(T / S) this means that 

BS(log(T/S)-kl(x, y) 

.::: BS!og(T/S)(x, y) + (2k+2 _ l)S. 

2.3. Local irreversible actions 

Suppose we have an otherwise reversible compu­
tation containing local irreversible actions. In [14) it 
is shown that we can always simulate such a compu­
tation with an otherwise reversible computation with 
all irreversibly provided bits provided at the beginning 
of the computation. and all irreversibly erased bits 
erased at the end of the computation. This is when we 
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are in the situation when there are no a priori bounds 
on the resources in time or space consumed by the 
computation. 

However, in the case above where there are very 
tight bounds on the space used by the computation, 
we found in Lemma 5 a method where at the cost of 
limited erasing, precisely controlled with respect to its 
spacing in the computation time, we could save on the 
auxiliary space use. By Corollary 4 it is impossible in 
our pebble game to shift these erasures to the end of the 
computation, since if we do, then the same auxiliary 
space is still needed at precise times spaced during the 
simulation time. 

Quantum computing is a particular form of re­
versible computation. Apart from classical irreversible 
erasures, quantum computing has a nonclassical form 
of irreversibility, namely the irreversible observations. 
An irreversible observation makes the superposition 
of the quantum state of the computer collapse from 
the original state space to a subspace thereof, where 
the probability amplitudes of constituent elements of 
the new superposition are renormalized. It is well 
known and observed in some papers [ 17], that we can 
replace all observations during the quantum computa­
tion by a composition of observations at the end of the 
computation. One wonders if this nonclassical type of 
irreversibility constituted by irreversible observation 
of quantum states also is constrained to strictly local 
instants during the computation by restrictions on 
time or space resources. This seems to be the case in 
the Jn data item queries unstructured database search 
algorithm of Grover [8). There, we have to observe 
and renonnalize at precise time instants during the 
computation to achieve the improvement of 0(,/Ti.) 
data item queries in the quantum algorithm over the 
classically required .Q(n) queries. 

2.4. Reversible simulation of unknown computing 
time 

In the previous analysis we have tacitly assumed 
that the reversible simulator knows in advance the 
number of steps T taken by the irreversible computa­
tion to be simulated. Indeed, the exhibited programs 
F(-) and A(-) have parameters h and G involving 

T. In this context one can distinguish on-line com­
putations and off-line computations to be simulated. 
On-line computations are computations which inter­
act with the outside environment and in principle keep 
running forever. An example is the operating system 
of a computer. Off-line computations are computations 
which compute a definite function from an input (ar­
gument) to an output (value). For example, given as 
input a positive integer number, compute as output all 
its prime factors. For every input such an algorithm 
will have a definite running time. A similar problem 
is choosing optimal parameters m, n as in Section 2.2 
without knowing T and space S. 

There is a well-known simple device (used in de­
tail in [3]) to remove this dependency for batch com­
putations without increasing the simulation time (and 
space) too much. Suppose we want to simulate a com­
putation with unknown computation time T. Then we 
simulate t steps of the computation with t running 
through the sequence of values 2, 22, 23 , ... For ev­
ery value t takes on we reversibly simulate the first t 
steps of the irreversible computation. If T > t then 
the computation is not finished at the end of this simu­
lation. Subsequently we reversibly undo the computa­
tion until the initial state is reached again, set t := 2t 
and reversibly simulate again. This way we continue 
until t ?: T at which bound the computation finishes. 
The total time spent in this simulation is 

flog Tl 
T' 5 2 L 2ilog3 :=:; 2(4T)log3_ 

i=l 

This is the canonical case. With these figures, just 
like the original simulation, by suitable choice of pa­
rameter k we can obtain T' = ecr1+E /S") for every 
constant E > 0. 
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