
I - PHYSICAOO
ELSEVIER Physica D 120 (1998) 168-176

Reversible simulation of irreversible computation*
Ming Li a.*, John Tromp b. l, Paul Vitanyi b. 2

a Department of Compwer Science, University of Warer/oo, Waterloo, Ont. Canada N2L JG I
b CW!, Kruis/cum 413, 1098 SJ Amsterdam, Netherlands

Abstract

Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized
by among other things generating excess therrnic entropy in the computation. Computing performance has improved to the
extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation
of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method
was proposed by Bennett and can be analyzed using a simple 'reversible' pebble game. The reachable reversible simulation
instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we
obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce
irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain
in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the
simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is
unknown. © 1998 Elsevier Science B. V. All rights reserved.

1. Introduction

Both classical and quantum physics are believed
to be strictly reversible: A complete description of
the microscopic state of the system uniquely deter­
mines the earlier and future states of the system -
this holds not only in Newtonian mechanics but for
example also for the unitary evolution of any quan­
tum mechanical system. Currently, computations are
commonly irreversible, even though the physical de-

*We complete the preliminary work in f 14, 15]. Here we an­
alyze the reversible pebbling technique completely and derive
the earlier results as simple corollaries.

•Corresponding author. Tel.: 519 888 4659; e-mail:
mli@math.uwaterloo.ca.

1 E-mail: tromp@cwi.nl.
2 E-mail: paulv@cwi.nl.

vices that execute them are fundamentally reversible.
This contrast is only possible at the cost of efficiency
loss by generating thermal entropy into the environ­
ment. With computational device technology rapidly
approaching the elementary particle level it has been
argued many times that this effect gains in signi­
ficance to the extent that efficient operation (or oper­
ation at all) of future computers requires them to be
reversible (for example, in [l,2,6,7,9,I0,14,l9,20]).
Especially Landauer [IO] has argued that it is only
the 'logically irreversible' operations in a physical
computer that necessarily dissipate energy by gen­
erating a corresponding amount of entropy for ev­
ery bit of infonnation that gets irreversibly erased;
the logically reversible operations can in principle
be performed dissipation-free. Reversible comput­
ers can be implemented using classical technolo­
gies [2,6, 16] or quantum-mechanical technologies

0167-2789/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII: SOl67-2789(98)00052-2

M. Li et al./Physica D 120 (/998) 168-176 169

as in (4,8, 17]; the latter quantum-mechanical com­
puters are reversible except for the observation
phases.

The traditional models used in the analysis of com­
putation, for example Turing machines, RAMs, or cir­
cuits, allow logically irreversible operations. To reflect
physical reality they must be replaced by completely
reversible computational models, for example by uni­
versal simulation. Simulation of irreversible Turing
machines by reversible ones goes back to Lecerf [12]
and Bennett [I]. The original methods required an
amount of memory proportional to the amount of com­
putation time, since the step-by-step reproducibility
of the history was achieved by remembering it dur­
ing most of the computation. It was recognized later
that keeping the configuration only of certain times
("checkpoints") of the original computation can re­
duce the memory requirement at the expense of in­
creasing the computing time.

Bennett in a "Remark" in [3] compares the "check­
pointing" to moves in a certain pebble game. This
paper takes up this suggestion to analyze time-space
and space-irreversibility tradeoffs. It completely char­
acterizes the realizable pebble configurations of the
reversible pebble games (they encode the reachable
instantaneous descriptions of a Turing machine re­
versibly simulating an irreversible computation). As
corollary we obtain Bennett's earlier [3] simulation
and a first proof that this simulation is a space-optimal
pebble game. It also introduces irreversible steps and
gives a theorem on the tradeoff between the number
of allowed irreversible steps and the memory gain in
the pebble game. For such a tradeoff the limited ir­
reversible actions have to take place at precise times
during the reversible simulation, and cannot be de­
layed to be executed all together at the end of the
computation (as is possible in computations without
time or space resource bounds). Finally, in all such
reversible simulations it is assumed that the num­
ber of steps to be simulated is known in advance
and used to construct the simulation (for that num­
ber of steps). We show how to reversibly simulate
an irreversible computation of unknown computing
time, using the same order of magnitude of simulation
time.

1.1. Reversible Turing machines

In the standard model of a Turing machine the
elementary operations are rules in quadruple format
(p, s, a, q) meaning that if the finite control is in state
p and the machine scans tape symbol s, then the ma­
chine performs action a and subsequently the finite
control enters state q. Such an action a consists of
either printing a symbol s' in the tape square under
scan, or moving the scanning head one tape square
left, right or not at all.

Quadruples are said to overlap in domain if they
cause the machine to be in the same state and scan­
ning the same symbol to perform different actions. A
deterministic Turing machine is defined as a Turing
machine with quadruples no two of which overlap in
domain.

Now consider the special format (deterministic)
Turing machines using quadruples of two types:
read/write quadruples and move quadruples. A
read/write quadruple (p, a, b, q) causes the machine
in state p scanning tape symbol a to write symbol
b and enter state q. A move quadruple (p, *·a, q)

causes the machine in state p to move its tape head
by a E (-1, 0, +I} squares and enter state q, oblivi­
ous to the particular symbol in the currently scanned
tape square. (Here ' - I' means 'one square left', 'O'
means 'no move' and '+1' means 'one square right'.)
Quadruples are said to overlap in range if they cause
the machine to enter the same state and either both of
them write the same symbol or (at least) one of them
moves the head. Said differently, quadruples that en­
ter the same state overlap in range unless they write
different symbols. A reversible Turing machine is a
deterministic Turing machine with quadruples no two
of which overlap in range. A k-tape reversible Turing
machine uses (2k + 2) tuples which, for every tape
separately, selects a read/write or moves on that tape.
Moreover, any two tuples can be restricted to some
single tape where they don't overlap in range.

To show that every partial recursive function can
be computed by a reversible Turing machine one can
proceed as follows. Take the standard irreversible Tur­
ing machine computing that function. We modify it
by adding an auxiliary storage tape called the 'history

170 M. Li et al.I Physica D 120 (1998) 168-176

tape'. The quadruple rules are extended to 6-tuples to
additionally manipulate the history tape. To be able to
reversibly undo (retrace) the computation determinis­
tically, the new 6-tuple rules have the effect that the
machine keeps a record on the auxiliary history tape
consisting of the sequence of quadruples executed on
the original tape. Reversibly undoing a computation
entails also erasing the record of its execution from
the history tape. This notion of reversible computa­
tion means that only I : I recursive functions can be
computed. To reversibly simulate an irreversible com­
putation from x to f (x) one reversibly computes from
input x to output (x, f (x)).

1.2. Reversible programming

Reversible Turing machines or other reversible
computers will require special reversible programs.
One feature of such programs is that they should be
executable when read from bottom to top as well as
when read from top to bottom. Examples are the pro­
grams F (·) and A (·) we show in the later sections.
In general, writing reversible programs will be diffi­
cult. However, given a general reversible simulation
of irreversible computation, one can simply write an
oldfashioned irreversible program in an irreversible
programming language, and subsequently simulate it
reversibly. This leads to the following:

Definition I. An irreversible-to-reversible compiler

receives an irreversible program as input and re­
versibly compiles it to a reversible program. Sub­
sequently, the reversible program can be executed
reversibly.

Note that there is a decisive difference between
reversible circuits and reversible special purpose
computers on the one hand, and reversible universal
computers on the other hand. While one can design a
special-purpose reversible version for every particular
irreversible circuit using reversible universal gates,
such a method does not yield an irreversible-to­
reversible compiler that can execute any irreversible
program on a fixed universal reversible computer
architecture as we are interested in here.

1.3. Models of reversible simulation and related work

The reversible simulation in (1] of T steps of an ir­
reversible computation from x to f (x) reversibly com­
putes from input x to output (x, f (x)) in T' = O(T)
time. However, since this reversible simulation at some
time instant has to record the entire history of the irre­
versible computation, its space use increases linearly
with the number of simulated steps T. That is, if the
simulated irreversible computation uses S space, then
for some constant c > I the simulation uses T' ~
c + cT time and S' ~ c + c(S + T) space. This can be
an unacceptable amount of space for many practically
useful computations.

In [3] another elegant simulation technique is de­
vised reducing the auxiliary storage space. This simu­
lation does not save the entire history of the irreversible
computation but it breaks up the simulated computa­
tion into segments of about S steps and saves in a hi­
erarchical manner checkpoints consisting of complete
instantaneous descriptions of the simulated machine
(entire tape contents, tape heads positions, state of
the finite control). After a later checkpoint is reached
and saved, the simulating machine reversibly undoes
its intermediate computation, reversibly erasing the
intermediate history and reversibly canceling the pre­
viously saved checkpoint. Subsequently, the computa­
tion is resumed from the new checkpoint onwards.

The reversible computation simulates kn segment<;
of length m of irreversible computation into (2k - I)"
segments of length G(m + S) of reversible compu­
tation using n(k - I)+ 1 checkpoint registers using
6>(m + S) space each, for every k, n, m.

This way it is established that there are vari­
ous tradeoffs possible in time-space in between
T' = <9(T) and S' = G(T S) at one extreme (k =I,
m = T, n = I) and (with the corrections of [13])
T' = 6>(T 1+• /S") and S' = B(c(E)S(l +log T /S))
with c(E) = E2 1 /• for every E > 0, using always the
same simulation method but with different parameters
k, n, where E = 1ogk(2k - I) and m = ('9(S). Typi­
cally, for k = 2 we have E = log 3. Since for T > 25

the machine goes into a computational loop, we al­
ways have S ::; log T. Therefore, every irreversible
Turing machine using space S can be simulated by

M. Li et al./Physica D 120 (1998) 168-176 171

a reversible machine using space S2 in polynomial
time. Let us note that it is possible to improve the sit­
uation by reversibly simulating only the irreversible
steps. Call a quadruple of a Turing machine irre­
versible if its range overlaps with the range of another
quadruple. A step of the computation is irreversible
if it uses an irreversible quadruple. Let the number of
irreversible steps in a T step computation be denoted
by I. Clearly, I ::-::: T. The simulation results hold
with T in the auxiliary space use replaced by I. In
particular, S' = O(S log I). In many computations, I
may be much smaller than T. There arises the prob­
lem of estimating the number of irreversible steps in a
computation. (More complicatedly, one could extend
the notion of irreversible step to those steps which
can be reversed on local information alone. In some
ca~s this is possible even when the used quadruple
itself was irreversible.)

In a preliminary version of this paper [15], two
of us (Li and Vitanyi) proposed a quantitative study
of exchanges of computing resources such as time
and space for number of irreversible operations which
we believe will be relevant for the physics of fu­
ture computation devices. We conjectured that all re­
versible simulations of an irreversible computation
can essentially be represented as the pebble game de­
fined below, and that consequently the lower bound of
Corollary 4 applies to all reversible simulations of ir­
reversible computations. This conjecture was refuted
in [11] using a technique due to Sipser [18] to show
that there exists a general reversible simulation of an
irreversible computation using only order S space at
the cost of using a thoroughly unrealistic simulation
time exponential in S.

In retrospect the conjecture is phrased too general: it
should be restricted to useful simulations - using linear
or slightly superlinear time and space simultaneously.
The real question is whether there is a compiler that
takes as input any irreversible algorithm A using S
space and T time and produces a reversible algorithm
B such that B(x) = A(x) for all input x and using
T' = O(T) time and S' = O(S) space. In the extreme
cases of time and space use this is possible: If S =
GJ(T) then the simulation in [l] does the trick, and if
T = 8 (25) then the simulation of Lange et al. [11]

works. For all other cases the pebble game analysis
below has been used in [5] to show that any such
simulation, if it exists, cannot relativize to oracles, or
work in cases where the space bound is much less than
the input length. (This is a standard method of giving
evidence that the aimed-for result - here: simulation
does not exist - is likely to be true in case the result
itself is too hard to obtain.)

2. Reversible pebbling

Let G be a linear list of nodes {I, 2, ... , Tc}. We
define a pebble game on G as follows. The game pro­
ceeds in a discrete sequence of steps of a single player.
There are n pebbles which can be put on nodes of G.
At any time the set of pebbles is divided into pebbles
on nodes of G and the remaining pebbles which are
called free pebbles. At every step either an existing
free pebble can be put on a node of G (and is thus re­
moved from the free pebble pool) or be removed from
a node of G (and is added to the free pebble pool).
Initially G is unpebbled and there is a pool of free
pebbles. The game is played according to the follow­
ing rule:

Reversible pebble rule: If node i is occupied by a
pebble, then one may either place a free pebble on
node i + 1 (if it was not occupied before), or remove
the pebble from node i + 1.

We assume an extra initial node 0 pennanently oc­
cupied by an extra, fixed pebble, so that node I may be
(un)pebbled at will. This pebble game is inspired by
the method of simulating irreversible Turing Machines
on reversible ones in a space efficient manner. The
placement of a pebble corresponds to checkpointing
the current state of the irreversible computation, while
the removal of a pebble corresponds to reversibly eras­
ing a checkpoint. Our main interest is in determining
the number of pebbles k needed to pebble a given
node i.

The maximum number n of pebbles which are si­
multaneously on G at any one time in the game gives
the space complexity nS of the simulation. If one
deletes a pebble not following the above rules, then
this means a block of bits of size S is erased irre-

172 M. Li et al. I Physica D 120 (/ 998) 168-176

versibly. The limitation to Bennett's simulation is in
fact space, rather than time. When space is limited, we
may not have enough place to store garbage, and these
garbage bits will have to be irreversibly erased. We
establish a tight lower bound for any strategy for the
pebble game in order to obtain a space-irreversibility
tradeoff.

2.1. Reachable pebble configurations

We describe the idea of Bennett's simulation [3].
Given that some node s is pebbled, and that at least n

free pebbles are available, the task of pebbling nodes
s + I , s + 2n - I can be seen to reduce to the
task of first pebbling nodes s + 1, ... , s + 211-I - J

using n - I free pebbles, then placing a free peb­
ble on node s + 2n- I, then unpebbling nodes s +
1, ... , s + 2n-I - 1 to retrieve our n - I pebbles, and
finally pebbling nodes s + 2n-I + I, ... , s + 2n - 1
using these pebbles. By symmetry, an analogous re­
duction works for the task of unpebbling nodes s +
I, ... , s + 211 - 1 with n free pebbles. The follow­
ing two mutually recursive procedures implement this
scheme; their correctness follows by straightforward
induction.
pebble(s, n)
{

if (n = 0) return;
t = S + 2n-I;

pebble(s, n - I);
put a free pebble on node t
unpebble(s, n - I)
pebble(t, n - I);

unpebble(s, n)
{

if (n = 0) return;
t = s + zn-I;

unpebble(t, n - 1);
pebble(s, n - I)
remove the pebble from node t
unpebble(s, n - l);

The difficult part is showing that this method is op­
timal. It turns out that characterizing the maximum
node that can be pebbled with a given number of peb­
bles is best done by completely characterizing what
pebble configurations are realizable. First we need to
introduce some helpful notions.

In a given pebble configuration with f free pebbles,
a placed pebble is called available if there is another
pebble at most 2! positions to its left (0 being the
leftmost node). According to the above procedures, an
available pebble can be removed with the use of the
free pebbles. For convenience we imagine this as a
single big step in our game.

Call a pebble configuration weakly solvable if there
is a way of repeatedly removing an available pebble
until all are free. Note that such configurations are
necessarily realizable, since the removal process can
be run in reverse to recreate the original configura­
tion. Call a pebble configuration strongly solvable if
all ways of repeatedly removing an available pebble
lead to all being free. Obviously any strongly solvable
configuration is also weakly solvable.

The starting configuration is obviously both weakly
and strongly solvable. How does the single rule of
the game affect solvability? Clearly. adding a peb­
ble to a weakly solvable configuration yields another
weakly solvable configuration, while removing a peb­
ble from a strongly solvable configuration yields an­
other strongly solvable configuration. It is not clear if
removing a pebble from a weakly solvable configura­
tion yields another one. If such is the case then we may
conclude that all realizable configurations are weakly
solvable and hence the two classes coincide. This is
exactly what the next theorem shows.

Theorem 2. Every weakly solvable configuration is
strongly solvable.

Proof Let j be the number of free pebbles in a
weakly solvable configuration. Number the placed
pebbles f, f + I, ... , n - I according to their order
of removal. It is given that, for all i, pebble i has a
higher-numbered pebble at most i positions to its left
(number the fixed pebble at 0 infinity). We know that
pebble .f is available. Suppose a pebble g with g > .f

M. Li et al./Physica D 120 (1998) 168-176 173

is also available - so there must be a pebble at most z!
positions to its left. It suffices to show that if pebble g
is removed first, then pebbles f, f + 1, ... , g - I are
still available when their tum comes. Suppose pebble
j finds pebble g at most 2j places to its left (otherwise
j will still be available after g's removal for sure).
Then after removal of pebbles g, f, f + I, ... , j - I,
it will still find a higher-numbered pebble at most
2j + 2! + 2! + zl+I + · · · + zj-I ::S: 2j+l places to

its left, thus making it available given the extra now
free pebble g. D

Corollary 3. A configuration with f free pebbles is
realizable if and only if its placed pebbles can be
numbered f, f + 1, ... , n - 1 such that pebble i has
a higher-numbered pebble at most i positions to its

left.

Corollary 4. The maximum reachable node with n
pebbles is 'L?,:J 2i = 2n - 1.

Moreover, if pebble(s, n) takes t(n) steps we find
t(O) = I and t(n) = 3t(n - I)+ l = (3n+l - 1)/2.
That is, the number of steps Tb of a winning play of
a pebble game of size Ta = 2n - 1 is T(; ::::::: 1.53n,

th . T' ,...., Tlog3 at IS, a""' G .

2.2. Tradeoffs

The simulation given in [3] follows the rules of the
pebble game of length T G = zn - 1 with n pebbles
above. A winning strategy for a game of length T G us­
ing n pebbles corresponds with reversibly simulating
Ta segments of S steps of an irreversible computa­
tion using S space such that the reversible simulator
uses T' ::::::: ST(; ::::::: STb0g 3 steps and total space S' =
nS. The space S' corresponds to the maximal num­
ber of pebbles on G at any time during the game.
The placement or removal of a pebble in the game
corresponds to the reversible copying or reversible
cancelation of a 'checkpoint' consisting of the entire
instantaneous description of size S (work tape con­
tents, location of heads, state of finite control) of the
simulated irreversible machine. The total time To S
used by the irreversible computation is broken up in

segments of size S so that the reversible copying and
canceling of a checkpoint takes about the same num­
ber of steps as the computation segments in between
checkpoints. 3

We can now fonnulate a tradeoff between space
used by a polynomial time reversible computation and
irreversible erasures. First we show that allowing a
limited amount of erasure in an otherwise reversible
computation means that we can get by with less work
space. Therefore, we define an m-erasure pebble game
as the pebble game above but with the additional
rule
- In at most m steps the player can remove a pebble

from any node i > 1 without node i - I being
pebbled at the time.
An m-erasure pebble game corresponds with an oth­

erwise reversible computation using mS irreversible
bit erasures, where S is the space used by the irre­
versible computation being simulated.

Lemma 5. There is a winning strategy with n + 2
pebbles and m - I erasures for pebble games G with

Ta= m211 , for all m 2: I.

Proof The strategy is to use 2 pebbles as springboards
that are alternately placed zn in front of each other
using the remaining n pebbles to bridge the distance.
The most backward springboard can be erased from
its old position once all n pebbles are cleared from
the space between it and the front springboard. We
give the precise procedure in self-explanatory pseudo
PASCAL using the procedures given in Section 2.1.

Procedure A(n, m, G):
for i := 0, 1, 2, ... , m - I:

pebble(i2n, n);

put springboard on node (i + 1)2n ;
unpebble(i2n, n);

if i < m - I erase springboard on node i2n ;

3 If we are to accounc for the pennanent pebble on node 0,
we get that the simulation uses n + 1 pebbles for a pebble
game with n pebbles of length T G + I. The simulation uses
n + 1 = S' /S pebbles for a simulated number of S(Ta + 1)
steps of the irreversible computation.

174 M. Li et al./Physica D 120 (1998) 168-176

The simulation time T(; is T(; ~ 2m . 3n-l +

2 ~ 2m(Ta/m)log3 = 2ml-log3ybog3 for Ta =
mzn-I_ D

Theorem 6 (Space-irreversibility tradeoff).
(i) Pebble games G of size zn - l can be won using

n pebbles but not using n - 1 pebbles.
(ii) If G is a pebble game with a winning strategy

using n pebbles without erasures, then there is also
a winning strategy for G using E erasures and
n - log(E + 1) pebbles (for E is an odd integer
at least 1).

Proof
(i) By Corollory 4.

(ii) By (i), Ta = zn - 1 is the maximum length
of a pebble game G for which there is a win­
ning strategy using n pebbles and no erasures.
By Lemma 5, we can pebble a game G of length
Ta =mzn-logm = 2n usingn+l-logm pebbles

and 2m - 1 erasures. D

We analyze the consequences of Theorem 6. It is
convenient to consider the special sequence of values
E := zk+Z - I for k := 0, I, ... Let G be Bennett's
pebble game of Lemma 5 of length Ta = zn - I. It
can be won using n pebbles without erasures, or using
n - k pebbles plus zk+2 - I erasures (which gives a
gain over not erasing as in Lemma 5 only for k ~ I),
but not using n - 1 pebbles.

Therefore, we can exchange space use for irre­
versible erasures. Such a tradeoff can be used to
reduce the space requirements of the reversible simu­
lation. The correspondence between the erasure peb­
ble game and the otherwise reversible computations
using irreversible erasures is that if the pebble game
uses n - k pebbles and 2k+2 - I erasures, then the
otherwise reversible computation uses (n - k)S space
and erases (2k+2 - I)S bits irreversibly.

Therefore, a reversible simulation according to
the pebble game of every irreversible computation
of length T = (2" - 1)S can be done using nS
space using (T / S)108 3 S time, but is impossible us­
ing (n - l)S space. It can also be performed using
(n - k)S space, (2k+2 - 1)S irreversible bit erasures

and 2<k+l)(l-Iog 3HI(T/S)108 3S time. In the extreme

case we use no space to store the history and erase
about 4T bits. This corresponds to the fact that an

irreversible computation may overwrite its scanned
symbol irreversibly at each step.

Definition 7. Consider a simulation according to the
pebble game using S' storage space and T' time which
reversibly computes y = (x, /(x)} from x in order
to simulate an irreversible computation using S stor­
age space and T time which computes f (x) from x.
The irreversible simulation cost B S' (x, y) of the sim­
ulation is the number of irreversibly erased bits in the
simulation (with the parameters S, T, T' understood).

If the irreversible simulated computation from x
to /(x) uses T steps, then for S' = nS and n =
log(T IS) we have above treated the most space parsi­
monious simulation which yields B81 (x, y) = 0, with
y = {x, /(x)).

Corollary 8 (Space-irreversibility tradeoff). Simulat­
ing a T = (2n - I) S step irreversible computation
from x to f(x) using S space by a computation from
x to y = (x, f (x)), the irreversible simulation cost
satisfies:
(i) B(n-k)S(x,y) ~ Bn5(x,y)+(2k+2 -1)Sforn ~

k ?::. l.
(ii) B(n-l)S(x, y) > sn5(x, y) for n ~ I.

For the most space parsimonious simulation with
n = log(T / S) this means that

BS(log(T/S)-kl(x, y)

.::: BS!og(T/S)(x, y) + (2k+2 _ l)S.

2.3. Local irreversible actions

Suppose we have an otherwise reversible compu­
tation containing local irreversible actions. In [14) it
is shown that we can always simulate such a compu­
tation with an otherwise reversible computation with
all irreversibly provided bits provided at the beginning
of the computation. and all irreversibly erased bits
erased at the end of the computation. This is when we

M. Li et al./Physica D 120 (1998) 168-176 175

are in the situation when there are no a priori bounds
on the resources in time or space consumed by the
computation.

However, in the case above where there are very
tight bounds on the space used by the computation,
we found in Lemma 5 a method where at the cost of
limited erasing, precisely controlled with respect to its
spacing in the computation time, we could save on the
auxiliary space use. By Corollary 4 it is impossible in
our pebble game to shift these erasures to the end of the
computation, since if we do, then the same auxiliary
space is still needed at precise times spaced during the
simulation time.

Quantum computing is a particular form of re­
versible computation. Apart from classical irreversible
erasures, quantum computing has a nonclassical form
of irreversibility, namely the irreversible observations.
An irreversible observation makes the superposition
of the quantum state of the computer collapse from
the original state space to a subspace thereof, where
the probability amplitudes of constituent elements of
the new superposition are renormalized. It is well
known and observed in some papers [17], that we can
replace all observations during the quantum computa­
tion by a composition of observations at the end of the
computation. One wonders if this nonclassical type of
irreversibility constituted by irreversible observation
of quantum states also is constrained to strictly local
instants during the computation by restrictions on
time or space resources. This seems to be the case in
the Jn data item queries unstructured database search
algorithm of Grover [8). There, we have to observe
and renonnalize at precise time instants during the
computation to achieve the improvement of 0(,/Ti.)
data item queries in the quantum algorithm over the
classically required .Q(n) queries.

2.4. Reversible simulation of unknown computing
time

In the previous analysis we have tacitly assumed
that the reversible simulator knows in advance the
number of steps T taken by the irreversible computa­
tion to be simulated. Indeed, the exhibited programs
F(-) and A(-) have parameters h and G involving

T. In this context one can distinguish on-line com­
putations and off-line computations to be simulated.
On-line computations are computations which inter­
act with the outside environment and in principle keep
running forever. An example is the operating system
of a computer. Off-line computations are computations
which compute a definite function from an input (ar­
gument) to an output (value). For example, given as
input a positive integer number, compute as output all
its prime factors. For every input such an algorithm
will have a definite running time. A similar problem
is choosing optimal parameters m, n as in Section 2.2
without knowing T and space S.

There is a well-known simple device (used in de­
tail in [3]) to remove this dependency for batch com­
putations without increasing the simulation time (and
space) too much. Suppose we want to simulate a com­
putation with unknown computation time T. Then we
simulate t steps of the computation with t running
through the sequence of values 2, 22, 23 , ... For ev­
ery value t takes on we reversibly simulate the first t
steps of the irreversible computation. If T > t then
the computation is not finished at the end of this simu­
lation. Subsequently we reversibly undo the computa­
tion until the initial state is reached again, set t := 2t
and reversibly simulate again. This way we continue
until t ?: T at which bound the computation finishes.
The total time spent in this simulation is

flog Tl
T' 5 2 L 2ilog3 :=:; 2(4T)log3_

i=l

This is the canonical case. With these figures, just
like the original simulation, by suitable choice of pa­
rameter k we can obtain T' = ecr1+E /S") for every
constant E > 0.

Acknowledgements

We thank Wim van Dam for pointing out an (harm­
less) error in the original proof (in [14]) of Lemma 5,
and Tom Toffoli and the referees for useful com­
ments. Ming Li was supported in part by the NSERC
Operating Grant OGP0046506, ITRC, a COAT grant,

176 '4. u et al. I PhuinJ D 120 (/</Wf/ lf>X 176

and the Steac1e Fellowship; John Tromp was panially
supported by the European Union through Ncuro­
COLT ESPRIT Working Group no. 8556. and by
NWO through NA Project ALADDIN under Contract
no NF 62-376; and Paul Vitanyi was partially sup­
ported by the European Union through NeuroCOLT
ESPRIT Working Group no. 8556, and by NWO
through NFl Project ALADDIN under Contract no.
NF 62-376 and NSERC under International Scientific
Exchange Award ISE0125663. Affiliations are CWI
and the University of Amsterdam.

References

11] C.H. Bennett, Logical reversibility of computation, IBM
J. Res. Develop. 17 (1973) 525-532.

[2J C.H. Bennett. The thennodynamics of computation - a
f'CVICW. lnt. J. Theorct. Phys. 21 { 1982) 905-940.

!31 C.H. Bennett, Time-space tradeoffs for reversible
ccrnputation. SIAM J. Comput. 18 (1989) 76&-776.

[4] D. Deutsch. Quantum theory, the Olun:h-Turing principle
and the universal quantum computer, Proc. Royal Society
London vol. A 400 (1985) 97-117.

[5] M.P Frank., M.J. Ammer, Separations of reversible and
irTe'ICl'Sible space-time complexity cla.~se~. Proceedings
of the l 3th IEEE Computational Complexity Conference,
subrmu.ed (http://www. ai. mit. edu/-mpf/rc/
me1110s/M06_oracle. html).

161 M. Frank, T. Knight, N. Margolus, Reversibility
in optimally scalable computer architectures. Manuscript,
MIT-LCS. 1997 (http:/ /www.ai.mit.edu/-mpf/publica­
liono. html).

[7] E. Fredlin, T. Toffoli. Conservati\le logic. lnt. J. Theoret.
Phys. 21 (1982) 219-253.

181 LK. Grover, A fast quantum mechanical algorithm for
~ search, Proceedings of the 28th ACM Symposium
on Theory ot Computing i19%) 212-219.

(91 R.W. Keye,, IRM J Res. Dev. 32 (1988) 24-28.
11 OJ R. 1.J.tndimer. lm:versibihty and hut generation in the

1:ompuung process, IBM J. Re,. Dcvelup. 5<1961) 183-
191

I 11 I KJ. Lange, P. McKenzie. A. Tapp. Reversible \p;.M.'C

equal' deterministic space. Proceedings of the 12th IEEE
Computauonal Complexity Conference. IEEE Computer
s~ic. Press, Silver Spnng. MD, 1997.

{ 121 Y. Lecerf, Machines de Turing revcrnbles, RCcuNive
tn"11ubihre en n E N de I' equation 11 "" 8", oil 9 est
un 1somorpl11sme de code!>, Comptes Rendus 257 (1963)
2597-2600.

1131 R.Y Levine. AT. Shennan. A note on Bennett's time­
~pa<:e tradeoff for reversible <.:amputation, SIAM J.
CompuL 19 (4) (199<Jl 673-677.

1141 M. Li. P.M.B Vitanyi. Reversibility and adiabittic
computation: trading time and space fot energy, Proc.
Royal Sciciety of London, Sl:ries A 452 (1996) 769-789.

[15) M. Li. P.M.B. Vitanyi, Reversible simulation of irrever~ibk:
computation, Proceedings of the I Ith IEEE Compullltional
Complexity Conference. IEEE Comput. Soc. Pre~s. Silver
Spring, MD. 19%, pp. 301-306.

1161 R.C. Merkle. Rever..ible electronic logic using swit<.:hes.
Nanotechnology 4<1993) 21-40.

[17] P. W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26 (5) (1997) 1484-1509.

118[M. Sipser, Halting spi!Ce-bounded computatioos, Theoret.
Comput. Sci. 10 (1980) 335-338.

[19] P.M.B. Vitanyi, Physics and the New Computatioo,
Proceedings of the lntematiooal Symposium on
Mathematical Foundations of Computer Science.
MFCS'95, Lecture Noies in Computer Science, vol. 969.
Springer. Heidelberg, 1995, pp. 106-128.

[20] J. von Neumann. in: A.W. Buries (Ed,). Theory of Self­
Reproducing Automata, University Illinois Press, Urbana.
1966.

