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1. Introduction

What is computer programming? Most programmers view their work as the
construction of algorithms and their expression in a computer language.
They usually first create or find (from textbooks, program libraries, etc.)
an algorithm to solve a stated problem. Then they specify the algorithm in
the rigorous and unambiguous form of a computer program. Finally, the pro-
gram is debugged by running it with test inputs for which the output is
known. A few programmers even document the program before moving to their
next problem!

In outline form we have:

Steps in programming (traditional view)

1. Understand the problem. (What is the input and output? Are there computer
time/memory restrictions? How often will the

program be used? Etc.)
2. Find an algorithm. (See definition below.)

3. Construct a computer program. (Express the algorithm in a computer

language. )

i, Debug and test the program. (Translate it to detect syntax errors; rum it
with representative inputs for which the out-

put is known to detect semantic errors.)

5. Document the above. (Rarely done!)

Features of an algorithm

An algorithm is a finite set of rules for solving the problem. It has five

important features:

1. Finiteness. It terminates after a finite and reasonable number (say

10! ® 33 million) of steps.

2. Definiteness. Each step is precisely defined so that the actions to be

carried out are rigorously and unambiguously specified for each case.

3. Input. The > O data items.



4. Qutput. The > 1 answers,

5. Effectiveness. The operations to be done can be performed by your

computer exactly and in a reasonable length of time.

This traditional approach to computer programming has successfully -
produced much software; however, there is definitely need for more efficient
production of more efficient software. The newly discussed area of "software
engineering" (Naur and Randell 1969; Buxton and Randell 19T70; Turski 1971,
Bauer 1972) seeks to meet this need. Employing concepts such as "structured
programs" (Dijkstra 1970), "stepwise refinement" (Wirth 1971), and
"algorithmic analysis" (Knuth 1971), attempts are being made to turn the
"art" of programming into the "science" of programming. Unfortunately, it
is difficult to learn and adopt these new programming concepts and tech-
niques when your education and experience are grounded in the traditional
notions of programming.

For example, years ago Dijkstra (1968) rejected goto statements
(branches, jumps) as being logically unnecessary, a frequent source of
error, and demanding an unnatural mode of thought. After his short note "Go
to considered harmful" appeared, Dijkstra was immediately rebutted by a
colleague (Rice 1968) who was worried about effects the note would have on
"young, novice programmers". It is currently a well-justified view that the
use of goto statements in programming is neither desirable nor necessary;
Wulf (1971) reports on favorable long-term experiences with a programming
language (Bliss) which has absolutely no goto. Naturally, a language such
as FORTRAN which has no compound statements forces the programmer to use
goto statements. For these reasons ALGOL 60 without goto will be employed
in this syllabus.

We will view the activity of programming as the construction and anal-

ysis of computer algorithms. By analysis of a computer algorithm is meant,

roughly, an investigation to answer the two questions:

1. Does the algorithm work?

2. Is the algorithm any good?

Obviously, a programmer who constructs a well-structured algorithm will

find its analysis facilitated. And, conversely, analysis of an algorithm

F



will often lead to the construction of an improved algorithm.
Some theory and techniques currently known for answering the above
two questions are the subject of sections 2-6. An example algorithm is ana-

lyzed in section 2. The first question is answered by a proof of correctness

as described in section 3. A program correctness proof does not consist of
testing the program with representative input data. As Dijkstra remarks,
"Testing is a very inefficient way of convincing oneself of the correctness
of a program". The second question may be answered by evaluating the per-
formance of the algorithm, particularly with respect to running time (sec-
tion L) and storage requirements (section 5). To show that a particular
algorithm is optimal in the sense that it involves the fewest number of
computational steps in a precisely defined class or it uses the minimum
memory possible or it maintains a desired accuracy is, in general, very dif-

ficult. But to demand, seek, and prefer computational efficlency in an al-

gorithm can yield significant savings in both computer and programming time.
Moreover, the solution of a problem may actually be impossible before devel-
opment of an "efficient" algorithm. For example, to determine that a forty
digit integer n is prime by successively dividing it by 2,3,4,...,/n is im-
practical on a contemporary computer; yet algorithms for proving the pri-
mality of such an n in a few seconds of computer time exist (Knuth 1969).
Much of the research in artificial intelligence todasy is vitally concerned
with defining "good" algorithms for chess-playing, picture analysis,
theorem-proving, and other problem-solving areas.

Section 6 covers some additional measures of computational performance
besides running time and storage. For instance, aspects of a program such
as its accuracy and portability are receiving deserved attention nowadays.
By asking questions about portability, ease of expression, stability,
accuracy and precision, reliability, adaptability, and so on, a programmer
can approach problems of how to choose the programming language, select/
build library procedures, adapt existing programs, etc.

This syllabus emphasizes the analysis rather than the construction of
computer programs, because it seems easier to discuss whether a program
works or is any good, than to describe how to construct good, working

programs. As Polya (1945) said: "A person who behaves the right way does
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not care to express his behavior in clear words and, possibly, he cannot
express it so".

Nevertheless, construction and analysis of programs are the two inti-
mately related aspects of programming. We now construct two computer pro-
grams using stepwise refinement. The first example shows how transparent
an algorithm can become by constructing it carefully. The second example
shows how during the construction, an algorithm can be found deficient in
efficiency.

A program can be constructed by the process of successive refinements
(Wirth 1971). Each refinement is a more detailed specification of the
previous step and refinement terminates when all instructions are expressed
in terms of a computer or programming language. A simple example to exhibit

program development by stepwise refinement follows:

1. begin Solve the Problem end

2. begin comment Problem statement;

Read input;
Compute solution;
Write output

end

&b%hcmmMT%ﬂ%emm=LM%M+ﬂM—1vwwsm1mrmﬁws

values of n, where v(n) = number of ones in the binary
representation of n (see exercise 2.1);
until No More Input repeat
begin Input;
for n:= nMIN step 1 until nMAX do

begin Compute M(n);
Output
end
end

end



4. Refinement of "Input" in step 3:

Input:

where

RULE:

nMIN:= read; output("nMIN" ,nMIN);
nMAX:= read; output("nMAX" ,nMAX);

procedure output (text, variable); string text;
begin nler; printtext (text); printtext ("="); print (variable) end;

Whenever an input value is read in, immediately output it. Other-

wise, how do you know what problem you are (or were) solving?

5. Refinement of "Compute M(n)" in step 3:

integer Mn, n;
Compute Mn: Mn:= log 2(n) + v(n) - 13

where

real procedure log 2(x); value x; integer x;

log 2:= 1n(x)/1n(2.0);

because logax = logbx/logba.

6. Refinement of "Output" in step 3:

T. Refinement of "v(n)'

Output: nler; output("n",n); output("Mn",Mn); output("n-1",n-1);

1

in step 5:

integer procedure v(n); value n; integer n;

begin comment v(n) = Number of 1's in the binary representation of n;

end;

integer Answer;

Answer:= 0;

for n:= n, n#2 while n#0 do

if o0dd(n) then Answer:= Answer + 1;

v:= Answer

8. Our final refinement (an MC ALGOL 60 program) appears in Figure 2.4.

Note that only at refinement step 5 did we make a decision about data

types. In the final program, variables nMIN and nMAX could have been type

real. Other equally good solutions to our example problem could be developed

by the method of stepwise program refinement; nevertheless, the above de-

tailed elaborations of our relatively short program indicate that program-
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ming can be done by a careful, gradual development.
We next program a nontrivial problem using the method of stepwise

refinement:

1. Comment For various values of ¥y and n, compute yn by the S-and-X Binary
Method;
until No More Input repeat
begin Input;
yTOn:= Exponentistion (base, exponent);
Output

end;
2. Refinement of the procedure Exponentiation in step 1;

integer base, exponent;
if base = 0 V exponent < O then
begin printtext ("Illegal argument to y+n procedure");
output ("y", base); output ("n", exponent)
end
Initialize;
for Bit:= Nextbit of exponent while There is a bit do
begin Square Z;
if Bit = 1 then Multiply Z by base
end;
Exponentiation:= Z

end;
3. Refinement of statement after the else in step 2:

7:= basej 1i:= Number of bits(k) in exponent;

for i:= i-1 while i>0 do

begin Bit:= The i-th bit (di) of exponent, which is
dkdk—1'°'d1d0.in binary notation;
Z:= 7IXZ;
if Bit = 1 then Z:= Z x base

end;



ki, Step 3 is difficult to refine in ALGOL 60 because

di = 1°if ‘dnd only if base * o is odd
cannot be determined efficiently. In machine language this quotient can
be found by shifting. Thus we are lead to alter the S-and-X Binary
Method so that it is based on a right-to-left scan of n; see Algorithm R

in section 2 for details.
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EXERCISES

1.1. Restate the following ALGOL 60 program without using goto statements:

1.2.

1.3.

1.k,

1.5.

comment B1 and B2 are Boolean procedures;
loop: Alil:= e;

if B1 then begin e:= e+1; go to loop end;
if B2 then begin i:= i+1; go to loop end;

Restate the following ALGOL 60 program without using goto statements:

comment B1 and B2 are Boolean procedures;
loop: Ali]:= e,

if B1 then begin e:= e+1; goto loop end
else if B2 then begin i:= i+1; goto loop end;

To measure computer performance we might use the standard of measure-
ment, n/t, where m = size of the memory and t = basic add instruction
time. This ratio measures roughly the capacity both to hold and to
process information. Perform an order of magnitude calculation to see
how this criterion of computer performance has increased over the past

twenty years.

Suppose you wanted to do exhaustive testing of a procedure whose input

is a binary matrix (integer array Al1:n,1:n] with every element either

0 or 1). How many cases must you test? When would n be too large for

testing all these cases on your computer?

Write a general ALGOL 60 program which consists of r nested for state-
ments, where r is a parameter. For example, when r = 3 the program
should have the effect of:

for k[11:= 0 step 1 until K[ 1] do
for k[2]1:= 0 step 1 until K[2] do
for k[31:= 0 step 1 until K[ 3] do
begin comment Compute using k[ 1], k[2], k[3]; end;




SOLUTIONS

1.1. A.<e

false

Boolean b1,b2;
loop: bl:= true;

while b1 do begin b2:= false; Ali]:= e;

if B1 then e:= e+l else b2:= true;

while b2 do if B2 then begin i:= i+1;
b2:= false
end
else b1:= b2:= false

end;

1.3. Year Computer t(sec) m(words) comments
1951 Univae I 107
1971 IBM 360 107"

1K First commercially available computer.

128K Faster and bigger machines exist.

Thus computer performance (m/t) has increased by a factor of ten (an

order of magnitude) every three years. This is a conservative

estimate!
1.4, n There is a O or 1 in each box and hence
oa .... 0O (2n)n = 2 cases to test. When n = 5, this
n O number already exceeds 3 billion.
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1.5. comment Assume K[1],...,K[r] > 0 and r > 03
integer j;
for j:= 1 step 1 until r do k[jl:= 0;

compute: begin comment Use k1""’kr; end;

Ji=r;
loop: k[jl:= k[Jj1 + 1;
if x[j] < K[j] then goto compute;
k[jl:= 03 j:= j-1;
if j > 0 then goto loop;

As a further exercise, the reader is asked to rewrite the above in

goto-less form.
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In this section we shall program and analyze the "binary method" for
computing yn, given y and n, where n igs a positive integer. Many ALGOL
(ytn) and FORTRAN (y**n) compilers obtain the answer with successive inline

multiplications. For example, to compute y13

we could simply start with y
and multiply by y twelve times. But is is possible to obtain the same answer
with only five multiplications, if we again start with y and then "square,

multiply by y, square, square, and multiply by y". In other words, we obtain

y3 = (PP
by successively computing y2, y3, y6, y12,y13.

The same idea applies to any value of n in the following way: Given
the exponent n in binary representation (e.g., n = 1310 = 11012), replace
each "1" by "SX" and each "0" by "S" (e.g., 1101 - SXSXSSX), Cancel the "SX"
at the left end and then interpret the resulting string as ordered instruc-
tions, where "S" = "Square" and "X" = "Multiply". This general algorithm
for evaluation of powers is known as the "binary method".

Since we have specified the binary method in the English language,
there is the possibility the reader might not understand exactly what the
author intended. We must therefore be more "definite"; that is, each step
of our algorithm must be precisely defined so that the actions to be carried
out are rigorously and unambiguously specified for each case. Consider the

following expression of the binary method:

Algorithm B. (Binary method for exponentiation). This algorithm evaluates
yn, where n is a positive integer. Functions f and g are defined below.
B1. [Initialize.] Set Z <« y and i <« f(n) - 1.

B2. [Done?] If i < 0, the algorithm terminates, with Z as the answer.

B3. [Bquare.] Set Z « Z times Z.

B4, [Bit = 1?] If g(n,i) # 1, skip to step B6.

B5. [Multiply.] Set Z <« Z times y.

&
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B6. [Next bit.].Decrease i by one and return to step B2,

Definition: Let dkdk—1 cos d1d0 be the binary notation for n.

Then f(n) = k and g(n,i) = d; for 0 < i < k.

Figure 2.1. Flowchart for Algorithm B, with the arrows between boxes
labelled by the number of times that path will be followed
during one run of the Algorithm.

B1., Initialize | B6. Locate next bit

B3. Square 7

BS5.Multiply 2 by ¥y

Before we render Algorithm B in a programming language such as
ALGOL 60, a "local" analysis of the amount of work it does will be given.
"Work" is usually measured in terms of the number of times each step is

performed, or how much memory the algorithm needs:

Storage analysis. The S-and-X binary method (Algorithm B) for obtaining yn

requires variable storage only for the inputs y and n, for the current
partial result Z, and for the bit index i. This assumes thgt the functions
f and g require no temporary storage; that is, f(n) and g(n,i) must be
computable directly from their arguments, without using temporary storage.

Hence Algorithm B needs a small, fixed amount of storage for variables.
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Frequency analysis. The "profile" (collection of frequency counts) of

Algorithm B is easily deduced from Figure 2.1, where each pathway in the

algorithm was labelled with the frequency it is traversed.

Figure 2.2. Profile of Algorithm B.

Step Number of times executed
B1 1
B2 k+1
B3 k
Bk k
B5 b-1
B6 k

This profile gives us information necessary to determine the running time
of the algorithm on a particular computer. To complete the analysis we must
interpret the quantities k and b. Clearly, k equals Lloggnj, one less than
the total number of bits in the binary notation for n. (|X] denotes the
greatest integer < X.) The quantity b equals v(n), the number of ones in
the binary representation of n.

We were at the start of this section interested in computing yn with
fewer multiplications than the n-1 required by the serial method. Now we
know that the number, M(n), of multiplications required by Algorithm B is
precisely M(n) = Llogznj +v(n)-1. Thus the execution time in applications
with large exponents n can be reduced from order n (serial method) to order
log n (binary method). For small values of n, say n < 10, the bookkeeping
time required to evaluate f and g values in Algorithm B exceeds the time
saved by'fewer multiplications, unless the time for a multiplication is
comparatively large. Multiplication would require a significant amount of
time i1f, for example, y was a matrix or polynomial or multiple-precision
number, instead of a simple variable.

Several authors asserted that the binary method has "absolute"
efficiency, i.e. gives the minimum possible number of multiplications in all
cases. The smallest counterexample is n = 15, when M(15) = 6 and yet we can

calculate

&
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v = (P2PG)
with only five multiplications by using the intermediate result y2y. This
leads us to do a "global" analysis of the entire family of algorithms to
evaluate y. In particular, we could investigate the "best possible" proce—
dures in this class from the point of view of minimal multiplications re-
quired. This has been done by Knuth (1968, section 4.6.3). An optimal proce-
dure for all n is not known. Nevertheless, Figure 2.3 taken from Knuth gives
a systematic method to compute yn in the minimum number of multiplications
for every value of n <100. Computer tests have shown that this "tree method"
is indeed optimal for all n < 100. In summary, a global analysis of evalua-
tion of powers algorithms shows that the binary method excels the serial
method in minimizing multiplications, but the tree method (Figure 2.3) is
optimal for most n which occur in practical applications.

To render Algorithm B in ALGOL causes problems because of the functions
f and g. This S-and-X binary method requires that the binary representation
of n be scanned from left-to-right, while it is more convenient in ALGOL to
deduce the binary representation from right—td—left by successively dividing
by 2 until zero is reached. That is, if n in binary notation equals

dkdk—1 ces d1d0’ then we use the fact that for 0 < i < k:

g(n,i) = d. = 1 iff n ¢+ 2" is odd.

i _—

Therefore the following Algorithm R, based on a right-to-left scan of n, can
be easily translated into ALGOL:

Algorithm R. (Right-to-left binary method for exponentiation.) This algo-
rithm avaluates yn, where n 1s a nonnegative integer.

R1. [Initialize.] Set N« n, Y <y, and 2 < 1.

R2. [Done?] If N = 0, the algorithm terminates with Z as the answer.

R3. [Bit = 12] If N is even, skip to step R5.

Rk, [Multiply.] Set Z < Z times Y.
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RS. [Halve N.] Set N <« [N/2].

R6. [Square.] Set Y <« Y times Y, and return to step R2.

Figure Flowchart for Algorithm R, with paths labeled by the frequency

of their traversal,

R2.Done?

R1.Initialize R5. Halve N.

R4, Multiply

R6. Square
k+1 k+1
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Figure 2.4, Program to tabulate M(n) = Lloggnj + v(n) - 1

versus n-1 for various values .of n. See exercise 2.1.

begin integer Mn, n, nMIN, nMAX;

procedure output(text,variable); string text;

begin nler; printtext(text); printtext("="); print(variable) end;

real procedure log 2(x); value x; integer x;
log 2:= 1n(x)/1n(2.0);

integer procedure v(n); value n; integer n;

begin comment v(n) = Number of ones in the binary

representation of n;
integer Answerj; Answer:= 0;
for n:= n, n:2 while n#0 do
if odd (n) then Answer:= Answer+1;
v:= Answer
end;
Boolean procedure odd(n); value n; integer n;

odd:= (n+2)x2#n;

for nMIN:= read while true do

begin output ("nMIN", nMIN);
nMAX:= read; output ("nMAX", nMAX);
for n:= nMIN step 1 until nMAX do

begin Mn:= log 2(n) + v(n) - 1;
nler; output ("n", n); output ("Mu", Mn);
output ("n-1", N-1)
end
end

end
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Figure 2.5. Profile of Algorithm R.

Step Number of times executed
R1 1

R2 k+2

R3 k+1

Rk b

R5 k+1

R6 k+1

From the profile of Algorithm R (Figure 2.5), we find that it requires
kK+b+ 1= LloggnJ + v(n) + 1 multiplications. This is two more than
Algorithm B, due to the multiplication by unity in the first execution of
step R} and to the redundant execution of step R6 when N = 0. We next give

an ALGOL program for Algorithm R and prove its correctness.

Figure 2.6. Program in an ALGOL dialect for Algorithm R.

comment Evaluate yn for integral n > 0O

[1] N:=nj Yi=y; Z:= 1;

(2] while N # 0 do

£3] begin if odd(N) do Z:= Z * Y;

4] N:=N = 2;

[51 iIfN#0doYi=Y x Y

[6] end;

As an example of this program, consider the steps in the evaluation of y23:
N Y Z

After line 1 23 ¥y

After line 3 23 y y

After line 5 11 y2 y

After line 3 11 2 -

After line 5 5 yh Y3

After line 3 > yh YT
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N Y z
After line 5 2 y8 y7
After line 3 2 y8 Y7
After line 5 Y16 Y7
After line 3 1 y16 y23
After step 5 0 y16 y23

An informal but rigorous correctness proof for this program has to show

that all variable keep integer values and that the "inductive assertion":

N>0andy® =21

always holds before and after execution of the while clause (line 2). Our
approach is to show that if this assertion is true before execution of lines

3-6, then it is also true after execution of these four lines.

Correctness proof. After line 1 is executed, the assertion is trivially true

because N =n > 0 and Z * YN =1 % yn = yn. Suppose next that it holds for
fixed values of Z, Y, and N before execution of lines 3-6. If N = 0, then
the test in the while clause will successfully avoid execution of these
three lines and will end the program with yn =7 * YN =7 % YO = 7. Other-

wise, N > O and we have two cases depending upon the parity of N:

Case 1. N is odd. Then line 3 multiplies Z by Y, line 4 replaces N with
[N/2], and (assuming N#1 before line 4) line 5 squares Y so that the

net effect is to assign the value

(zxy) » (x/2])2

to Z * YN. Had N equaled 1, the test in line 5 would have prevented
the squaring of Y so that

7 * YN =7 % Y, as required.
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Case 2. N is even. Then line 4 halves N and line 5 squares Y so that the

net effect is to assign the value

7 % (YN/2)2
to Z * YN.

Thus, in both cases, yn =7 * YN remains invariant after execution of
lines 3-6.

Clearly, the only change in value to N occurs in line 4 and always
results in a new, nonnegative integral value since N is initialized in
line 1 to n > 0. The reason we restricted all variables to integers in our
proof was to avoid the complication of accuracy considerations.
Termination. This program terminates because the initial value n > 0 for N
will be repeatedly halved in line 4 until N = 0 in a finite number of steps

and then the while clause ends the execution.
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EXERCISES

2.1. Tabulate and graph M(n) versus n-1 for n = 1(1)100.

2.2. Construct and analyze an algorithm which computes yn in a serial manner
(multiplying repeatedly by y). Make comparisons with Algorithm B.

2.3. How is y975 calculated by the (i) binary method? (ii) method of
Figure 2.3%? Can you do it in fewer multiplications?

2.k, (Knuth 1969, 4.6.3.10) Figure 2.3. shows a tree that indicates one way
to compute yn with the fewest number of multiplications, for all
n < 100. How can this tree be conveniently represented within a com~
puter, in just 100 memory locations?

2.5. Let e be a fraction, 0 < e < 1, expressed in the binary number system
as

e = .d d dk)

Design and analyze an algorithm to compute ye using the operations of
multiplication and square-root extraction.

2.6. The "factor method" is a recursive procedure for evaluating v based on

a factorization of n: If n=1, we have yn triviglly. If n is prime, we
calculate yn_1 and multiply by y. If n = pg, where g > 1 and p is the
smallest prime factor of n, we calculate yn by first calculating yp and
then raising this quantity to the g-th power.

25

For example, to calculate y”~ by the factor method, we first evaluate

z = yS = yhy = (ya)zy,

and then form 211 = z1oz = (z

2)52.

Prove that there are infinitely many values of n
a) for which the factor method is better than the binary method;
b) for which the binary method is better than the factor method;

&



2.7.

2.8.

2-9-
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¢) for which some other method is better than both the binary and

factor methods. (Here "better" means using fewer multiplications. )

Construct and analyze an MC-ALGOL procedure to find d(n) = the number
of decimal digits in the integer n > 0.

31,

How does the Binary Method compute y~ ? Can you compute y31

with
fewer arithmetic operations if division is allowed? In general, the
serial method for evaluating yn requires sbout n multiplications;
what is the order of magnitude for the number of multiplications
required by the Binary Method for a large exponent n? (For example,
about how many multiplies when n = 106?) Prove that the Binary Method

does not minimize the number of multiplications required in all cases.

Construct a recursive version of the binary method for computing y-.
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SOLUTIONS

2.1,

2.7.

2.9.

See ALGOL program and plotter output on next pages.

Here are three different solutions (assume integer 4, k, D;):
(i) d:= 03 for D:= 0, D+1 while mod(n,104D) # n do d4:= d + 1;
(i1) d:= 1n(n)/In(10.0) + 1;
(iii) k=
k:

I

13 d:= 03 for D:= 0, D+1 while n ¥+ k # O do begin
10xk; d:= d+1 end;

y31 = (((yzy)ey)ey)gy (8 multiplications)
= ((((_y2)2)2)2)2/y (6 operations)
= (([yzyjzy)2)2[y2y] (7 multiplications)

The smallest counter-example is:

Y15 = ((yey)zy)ay (binary method; 6 multiplies)
= ([y%y1%)21y%y (5 multiplies)
6 6 18
log, 10" & log2(23) = log,2 = = 18,

or log2106 =6 log, 10 R 6% 3.3™ 20.

Furthermore, v(106) < log2106 so that

M(1O6) = Llog21o§J + v(1o6) -1®2 log2106 &~ 4o,

In ALGOL 68 we have:

op * = (int y, n) int:
if n = O then 1
else if n = 1 then y

else (if odd(n) then y else 1 £fi) » (yxy) + (ns2) fi fi;
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1 TEECIN' 'INTEGER' MN,N,NMIN,NMAX ,MAXMN;
2 YEOCLEAN' *PROCEDURE' ODD(N); "VALUE' N; 'INTEGER' N}
3 OCD:=(NZ2)22 % N: '
4 *PRCCEDURE' QUTPUT(TEXT,VARIABLE): *'STRING' TEXT}
5 *BEGINY PRINTTEXTC(TEXT); PRINTTEXT("=3")} PRINT(VARIABLE)
& *REAL' 'PROCEDURE' LOG2{(X); 'VALUE' X; 'INTEGER' X3
7 TREGINTY YREALY Wi wisX; LOG2:=LN(W)/LN(2,0) 'END';
5 'INTEGER' 'PROCEDURE' V(N); - 'VALUE' Nj 'INTEGER' N}
9 'EEGIN' 'COMMENT' V(N) = NUMBER OF ONES IN THE B8INARY REPRESENTATION. QF N:
AERE ¢ "INTEGER®' ANSWER; ANSWER:=(;
11 'FOR' Ni= N,N12 'wHMILE' N$0 'DO!
12 YIFY ODD(N) !'THEN' ANSWER:=ANSWER+1:
23 VizANSWER
14 YEND Y
15 OUTPUT("LN(2)",LN(2)); NLCR;
16 *FORY NMINI=READ 'WHILE' *TRUE' *Do?
a7 CBEGIN' OUTPUT('"NMINY ,NMIN);
18 ; NMAXIsREAD; OUTPUT("NMAX",NNAX):
19 NLCR; NLCR;
20 ' "BEGIN' *INTEGER' 'ARRAY' GRAPH[NMININMAX];
21 MAXMN:=0; )
c ) T YFOR' Ni=z NMIN YSTEP' 1 'UNTIL' NMAX 'DO?
z3 YEEGIN' MNI=LOG2(N)+V(N)=~1;
24 ) NLCR; QUTPUT("N",N); OUTPUT("M(N)",MN);
? OUTPUT("N=1",N=1)}
6 OUTPUT ("LOG2IN)",LOG2(NY); OUTPUT("V(N)",VIN))}
%7 YIFYT MNDMAXMN 'THEN' MAXMN:=ZMN;
28 GRAPH[NT:=MN;
2 TEND ' ;
20 "PLOTPICTURE(N, GRAPH[N],N,NMAX,9,0,0066,
231 NMIN,NMAX,1, 3800,
2 M eeeme>
23 0, MAXMN,1,2300, "M(N) =c==ed>v,PLOTL INE)
e VEND ) == AR X
5 TEND!

36 'END!

42

e
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NV IN= w1 NMAXz . +100
Nz +1 M(N)= { N=1=z =0 LOG2(N)= -0 ViN)=
Nz -2 COMtN)= . ‘ +1 Nelz +1 LOG2(N)® 1 VINYE
Na +3 MI(N)= +3 N-ls +*2 LOG2/N)2+,1584962500721u+ 1 VIN)=
N= +4 7 MmNy T 42 N=1z +3 LOG2(N)=+,2000000000004u+ .1 VIN)=
Ne +5 M(N)= +3 N-l=z +4 LOG2(N)®+,2321928094887s+ - L VIN)=
Ne i 6 T M(NYE - 4 Nedz *5 LOG2(N)=+,25B84962500725u+ 1 V(N)=
N= +7 M(N)= +5 Nelz -6 LOG2(N)B+,2807354922061w+ 1 VI(N)m
N= +8 S MIN)= ‘ +3 Nelz «7 LOG2(N)B+.29999999099996w+ 1 VINI=
N= +9 M{N)= +4 Nelsz *8 LOG2(N}=+,3169925001443,+ 1 VI(N)=
Nz +10 ©OM(N)= +4 Nelsz +9 . LOG2(N)=z+,3321928094887,+ 41 VI(N)=
Nz +11 M(N)= +5 N=isz +10 LOG2(N)2+,34590431618638u+ 1 VI(NI=
N= 12 M{N)= +5 Nelz +11 LOG2(N)=+,3584962500721u+ 1 V(N)=
N= +13 M{N)= +6 N=1z +12 LOG2(N)=B+,3700439718137u+ 1 VIN)=
N= ) 14 MIN)= ) +6 N=iz +13 LOG2IN)=+, 3807334922057+ 1 VI(N)=m
N& +15 M{N)= +7 N-iz «14 LOG2(N)B4,3906890598605a+ 4 VI(N)2
Nz +16 M(NYy= ’ +4 Neiz +15 LOG2(N)Y= +4 V(N)=
Nz +17 M(N)= +5 Nw-lz +16 LOG2(N)=+.4087462841257w+ 1 V(N)2
N= ) +18 TomiNy= +5° N-1z «17 LOG2(N)=+,4169925004443u+ 1 VIN)=
NEe +19 M(N}= ) +6 Ne=iz +18 © LOG2(N)=4,4247927513446+ 1 VIN)=
N= : +20 T OM(NYE ' +5 N-1z +19 LOG2(N)8+,4321928094891u+ 1 VIN)=
N& +21 . M(N)= +6 Nelz +20 LOG2(N)=+,43923174227824+ 1 VIN)=
Nz +22 7 m(Ny= +6 N=i= *21 LOG2(N)=+.4459431618641u+ 1 VIN)=z
N= +23 M(N)= «8 Nei= +22 LOG2(N)E+,4523561956055u+ 1 VIN)=
Nz ) +24 . T m(Ny= +6 Neiz +23 LOG2(N)=4,4584762500725u+¢ 1 VIN)=
Nz +25 M(N)= +7 N=1z *24 LOG2(N)=+,4643856189774+ 1 V(N)=
N= T 426 MIN)= ) +7 N-1s= +25 LOG2IN)=a%.4700439718137u+ 1 VIN)=
N= +27 M(Ny= ) +B Nels= . »26 LOG2(N)E+.,4754887502168m+ 1 VI(N)=
Nz - +28 M{N) = +7 Nels= +27 LOG2{(N)=+.4807354922057u+" 1 VI(N)=
N= +29 M(NY= . +8 N=1= +28 LOG2{N)=4+,4857980995133u+ 1 VI(N)=
NE h +30 M{N)= +8 Nels 29 LOG2(N)=+,45906890595608u+ 1 VIN)=
NS w31 m(N)s T N-1= _ +30 LOG2(N)=+.49541963103910+ 1 VIN)=
N ) +32 MINY= +5 Nelz +31 LOG2(N)= +5 ViN)=
N= +33 P{N)= 6 N=i=z +32 LOG2(N)=+,5044394119366u+ 1 VI(N)=
Nz : +34 7 MmNy +6 N=l= +33 LOG2(N)=+,5087462841257u+ 1 VIN)=
Nz +35 M{N)= +7 Nelz +34 LOG2(N)®+,5129283016948uw+ 1 VI(N)=
Nz +36 M{N)= *6 N=iz +35 LOG2(N)=®+,5169925001450u+ 1 VIN)=
Nz +37 . M{N)= +7 T +36 LLOG2(NY®=+,.5209453365635+ 1 VI(N)e
Ns ' +38 MIN)= T +7 Nel=z »37 LOG2(N)=+,5247927513446+ 1 VI(N)=
N= +39 M{N)= +8 Nels +38 LOG2(N)=s+,528540221886%4+ 1 VI(N)=
Nz " +40 M{N)= +6 Nei= *39 LOG2(N)=+,53219280948%1u+ 1 VIN)=
NS +41 M(N)= +7 N=1= *40 LOG2(N)E4+,.535755200462%a+ 1 VI(N)=
Nz +42 " M(N)Y= N +7 Nels +41 LOG2(N)=+,5392317422782u+ 1 VI(N)=
Ne +43 M({NY= +8 N-li= +42 LOG2(N)®+,5426264754708u+ 1 VIN)=
N& s44 T M(N)= +7 N-1iz «43 LOG2(N)=2+,5459431618641u+ 1 VIN)=
NE +45 M(N)= +8 Nels +44 LOG2(N)®4,5491853096333w+ 1 VIN)=
N= T w48 MY T T sy Nelsz +45 LOG2(NY=+,5523561956063w+ 1 V(N)=
Nz +47 MIN)= +10 Nelz 46 LOG2(N)=+,5554588851686u+ 1 VIN)=
Nz B +48 MIN)= +7 N-i=z +47 LOG2(N)=+,5584962500725u+ 1 V(N)=
Ne +49 M(N}= +8 N=1z +48 LBG2(N)=2+,5614709844122u+ 1 VI(N)=
Nz - +50 7 M(N)= ) ’ +8 N=i=z +49 LOGZ2(N)®+,5643856189781us 1 VIN)=
N= . | +51 M(N)= +9 Nelz +50 LOG2(N)®+.5672425341974a+ 1 V{(N)=
Nz +52 M(N)= +8 N-1z 51 LOG2(N)®+.5700439718144u+ 1 VI(N)=
Nz +53. M(N)= +9 Nelsz %52 LOGR(N)®+.5727920454570us 1 VINI=
Ne +54 M(NY= *9 Nelz +53 LOG2(N)£+,5754887502168+ 1 VIN)=
Nz +55 M(N)= +10 N-1= «54 LOG2(N)8+,5781359713532,+ 1 V(N)=
Nels' +55 LOG2{N)®+,5807354922064n+ 1 VI(N)=

N= i +56 COM(Ny= - +8

Ge
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3. Correctness proofs

A program (or algorithm) ought to be accompanied by a proof of

correctness.

Advantages. The discipline of proof has the advantages:

1. Provides a systematic search for errors.
2. Gives sufficient reasons why the program must be correct.
3. May lead to ways by which the program can be improved.

k. Makes explicit the assumptions on which correctness rests.

Hence an attempt to satisfy yourself as to the correctness of a program is

the first and most basic par£ of the analysis of any computer algorithm.

Feasibility. What is a "correctness proof?" It is not reading a program
closely and then announcing that it works. Nor is it using the standard
debugging technique of testing “"representative" input and checking the
resultant output. As Dijkstra says (in Burton and Randell 1970), "Testing
shows the presence, not the absence of bugs". By correctness proof we will
mean a rigorous mathematical proof which verifies that a program which
appears to be intuitively adequate is in fact correct. It is hardly easier
to prove the correctness of programs than to establish proofs of theorems.
However, a correctness proof expressed completely formally in, say,
predicate calculus notation will not be our goal. Indeed, we will emphasize
informal, but rigorous, demonstrations given as standard mathematical argu~
ments in prose form. The detail and precision used will depend in part on
the particular program to be proved, on the programming language used, and
on the audience to whom the proof is directed. Preliminary work has been
done on automated verification of correct programs (let the computer do
it!), but current techniques fall short of producing such proofs automati-

cally in all (or even most) cases.

Saddle point program proof. To provide an example correctness proof, we

consider the problem of finding a saddle point of an m x n matrix A.

Element A[i,j] is a saddle point if

£
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(3.1) Ali,j] = min Ali,k] = max Alfk,jl.
1<k<n “1<k<m

Figure 3.1. specifies‘an ALGOL program to output a saddle point of A if
there is at least one, or a zero if there is no saddle point. We now show
that this program works properly for all matrices A. Our method is to label
each key step of the program with an assertion sbout the current state of
affairs at the time the computation reaches that step. These "key inductive
assertions" are given as comments in the program text.

Assertion A1 always hold by virtue of the initialization of the row
index i to zero and the while clause controlling the for statement on i.

Similarly, assertion A2 is always true when control reaches that
pbint.

Assertion A3 follows from the fact that the for statement preceding it
sets SP to false iff

(3.2) Ali,k] < Ali,j] for some 1 < k < n.
Clearly, equation (3.2) holds iff
Ali,51 # min Ali,k],

1<k<n

that is, element Ali,j] is not a saddle point of A because there is a
smaller element in its row.

Assertion AW has two parts which follow from the two cases:
(1) 8P is true after assertion A3.
Then the for statement preceding assertion AL sets SP to false iff

(3.3) Alk,j] » Ali,j] for some 1 <k < m.

Clearly, equation (3.3) holds iff
Ali,j] # max Alk,j],
1<k<m

that is, element A[i,j] is not a saddle point of A because there is a

larger element in its columm.
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(2) &SP is false after assertion A3.
Then A[i,j] is not a saddle point of A and the statements between

assertions A3 and A4 have no effect on SP.

Assertion A5 is obvious from the block structure of the program.

Finally, assertion A6 holds because both for statements on i and j‘ter—
minate only when either: (1) SP = true, and hence A[I,J] is a saddle point
by virtue of assertions A3 and A4 along with definition (3.1)3; or (2) SP =
false, with I = m and J = n, so that all possible values of I and J have
been tried without finding a saddle point.

The author readily confesses that constructing the sbove proof demon-
strated to him the need for the varigbles I and J; in other words, my first
incorrect version of the program printed out A[i,j] as a saddle point. Note
it is also not possible to print A[i-1,j-1] if SP is true, because ALGOL 60

1"

leaves the controlled variables i and J "undefined" after exit from the for

clauses.

Termination. There remains one important point: We never showed that the
program terminates! Indeed, proofs of termination are usually handled sepa-
rately from the verification of correct results. Termination of the saddle
point program is easily established because the program does not use trans-
fers of control by means of goto statements. We need only remark that each
of the four for statements starts with controlled variable equal to 0, in-
crementing it by 1 for a finite number of times since it cannot exceed
max{m,n}, by virtue of the while clauses. Thus control always reaches the

print procedure call after executing each line of code at most

(m+1) (n+1) (max{m,n}+1)

times.

Key inductive assertions. This method of algorithm-proving in terms of key

inductive assertions is essentially due to Floyd (1967) and Naur (1966), who
called them "general snapshots". In general, the method places assertions

concerning the progress of the computation between lines of code. Next, it

&
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is demonstrated that each assertion is trué every time control reaches that
assertion, under the assumption that the previously encountered assertions
hold. Using induction on the number of lines of code, it follows (Knuth
1968) that this yields a valid proof. Termination of the program is then

shown separately.

Square root example. That a program terminates can be more difficult to show

than that the correct result is achieved. This is the case for program ROOT
in Figure 3.2 which computes the square root of a real positive argument x,
by the Newton-Raphson method. In the Newton-Raphson method (see Hamming

1971, section 2.8: "Newton's method (another method to avoid)"), an initial

guess y for vx is iteratively improved by

(3.4) Vigq = (yi+x/yi)/2 for i = 0,1,2,... .
We take ¥y = 1 and stop the guessing when
(3.5) y; < [(1+e)/(1-a)]1/2/£ for ¢ = 107°.

From equations (3.4) and (3.5) it is easy to see that we stop guessing when

(3.6) yi+1_yi' _J

Yi41 ¥y

- X
< g = 10"6.

PO RO

+ X

In our program (Figure 3.2), z and y correspond to yi+1

Thus the while clause correctly stops the guessing when equation (3.6) is

and ;o respectively.

satisfied.

But is (3.6) ever satisfied? To show that this program does indeed
terminate, we note that (except for ¥, end assuming exact arithmetic) each
guess y. . is > V/x and is < ;e (x=1 is a trivial special case.) Therefore,
we have a bounded monotone sequence of guesses which, of course, must
eventually produce successive guesses which differ in relative error by less
then any ¢ > O.

A mathematician would now be satisfied that program ROOT terminates.
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A numerical analyst or programmer should continue to worry about the precise
number of iterations needed. We could set an upper limit to the number of
iterations, so that ROOT stops if it does not converge rapidly enough. In
fact, it is good programming practise to set an upper 1imit to the number of
iterations used in any iterative algorithm. But we can do better; for
assuming exact arithmetic, the maximum number of times that procedure ROOT

will execute the statement "y:= z;" is

(3.7 5+ |1og,

Formula (3.7) is based upon two facts: (1) The first guesses y; are approx-
imately equal to x/2%; (ii) When ROOT gets close to vx, it tends on each
step almost to double the number of decimal places that are accurate.

Before the author supplied the above correctness proof for procedure
ROOT, he felt that he understood the Newton-Raphson method. But after
struggling to prove correctness, especially termination, he had a greatly
increased understanding of programming the Newton-~Raphson method for square
roots. We often fail to realize how little we know about an algorithm until
we attempt to prove it works!

Because some programmers believe correctness proofs to be impossible,
too difficult, trivial, and/or not worth the effort, let us seek to clarify
what is meant by "increased understanding" and at the same time discuss com-

plaints made against proving correctness. (See Smith 1972.)

Levels of understanding. E. de Bono (1971) distinguishes between five levels

of understanding in practical thinking:

1. Simple description. (Just describe what ROOT seems to do.)

"It computes vx for positive x".

2. Porridge words. (Use vague words like approximation, iteratively,

accuracy.)
"It approximates vx, for positive x, by iteratively improving guesses

until the desired accuracy is attained".
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3. Give it a name. (Identify and name theé process.)

"It approximates vx, for x > 0, by the Newton-Raphson method."

Iy, The way it works. (Describe process in broad terms.)

"It approximates vx, for x > 0, by y in the following steps: Guess a
value of 1 for y; find the average of y and the quotient x/y; this is
a better guess; repeat until the relative error between successive

guesses is less than 10 ."

5. Full details. (Full details of what is happening.)
"Refer to the ALGOL 60 program text (Figure 3.2) and to the correctness

proof for it given above."

It is not uncommon for programmers to use level 1 (Simple description)
understanding to provide the basis for action and for decision in their com-~
puter work. For example, if they need a logarithm program, then a simple

description such as

"Library procedure In(x) computes the natural logarithm of real

positive x."

can satisfy them.
Level 2 (Porridge words) understanding is more specific than level 1
because it is based upon useable explanations instead of just a simple des-

cription. For example, although

"Library procedure CURVEFIT outputs the parameter values of that
particular curve of best fit at the input points."

is a vague explanation of CURVEFIT ("curve" and "best fit" are clearly
Porridge words), it offers a useable explanation. The author knows computer

users who often used programs. which

"perform a significance test for independence in a two-way contigency

table",

without worrying about the Porridge word "significance test", which includes
the cases: Chi-square (xe), x2 with Yate's correction for continuity, and

an exact test (such as Fisher's for 2 x 2 tables) based on a multinomial

&
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distribution. Differences in significance can arise depending upon which
test is used.

Level 3 (Give it a name) understanding is a very big step forward from
levels 1 and 2, because as soon as an algorithm is named (Newton—Raphson
method, Least squares straight line, Binary sort), you can loock it up or
otherwise identify it to your satisfaction. Even a cautions numerical ana-
lyst will frequently settle for level 3 understanding since a name like
"Fast Fourier transform algorithm" can convey so much information to him.

Level 4 (The way it works) understanding is based upon a general des-
cription of the way the program works. Consider the following level 4 des-

cription of a binary search in a sorted list:

"Comparison is made with the element at the center of the list:
whichever way the comparison goes, the item being searched for is
now known to lie in some list which 1s one half as long as the ori-
ginal list. Comparison is now made with the element at the center of
this list, and the process continues. At every stage, it is possible
to identify a list half as long as one previously identified, as the
one contalning the item. Hence at most n + 1 tests are necessary to

find the item if there are 2% elements in the list."

Textbook authors will specify compuber algorithms in this way to avoid
painful details and yet explain the way it works. They strive to stop at
that fullness of detail which makes it unnecessary for anyone to ask why or
how.

Level 5 (Full details) understanding is the most detailed although it
is obviously impossible to give complete details in any absolute sense. For
example, "complete details" for an ALGOL 60 program would have to include
the correctness of its compiler and the hardware of the computer used! But
as de Bono says, "if you go beyond the practical detail to further detail
the situation may become unfamiliar again".

In this syllabus full details of an algorithm should always include

an annotated program text accompanied by an correctness proof.

Arguments against correctness proofs. Viewed from the above five levels of

undggstanding, whether or not you require program correctness to be shown
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depends on what level of detail you desire. As an illustration of this,
there was a recent essay contest (McCracken 1971) on the topic "Would you
trust the lives of your children to a highly complicated computer system
that cannot be checked out?" The computer system is the Safeguard Anti
Ballistic Missile system (ABM) in America. Essays in this contest argue aﬁ
all levels from 1 to 5. A level 1 point is that the mere description of an
ABM system should prevent its ever being used. (Like the "Doomsday machine"
in Dr. Strangelove.) A level 5 point is that the ABM cannot be "fully"
checked out without testing under actual operating conditions. One program-~
mer (Glass 1971) with 15 years experience in the aerospace industry claimed
in his essay, "And I have never yet written a checked out program".
Arguments against level 5 understanding are based upon expediency; that

is, "Practical man has to be right as soon as possible because he has things
to do (de Bono 1971)". Yet the practical explanation of a program which is
more useful under certain circumstances is not necessarily better than a
deeper explanation. Surely one has increased confidence whenever a program
is accompanied by a correctness proof, even though proofs of correctness
share problems with more usual mathematical proofs (e.g., communication of

the proof to the reader, level of detail, finding the proof).

Proof techniques. That concludes our definitions and justifications for

program correctness proofs. We next examine some useful techniques, however

imprecisely defined, for constructing convincing program proofs:

Varigble change table. A cross reference table of the identifiers declared,

changed, and/or used in an ALGOL 60 block is useful in:

(1) showing variables are unchanged between two points.
(ii) detecting undeclared or multiply declared identifiers.
(111i) finding variables used before they are changed.

(iv) 1locating control statements, variable usages, etc.

To illustrate these uses for a variable change tdble, we consider the
meaningless "nonsense program" in Figure 3.5. Corresponding to the one

procedure (SORT) and the outer block (exclusive of SORT), there are two
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variagbles change tables as given in Figures 3.3 and 3.L4. These tables are
clear from inspection of thé program and could bé producéd almost entirely
automatically.

Information provided by the table in Figure 3.3 follows. Firstly, we
see that the label "loop" is defined at line number 20 and there exists two
jumps to loop, one at line 13 and one at line 2k, Whenever goto's are used,
the labels should be included in a variable change table. If there is no
line number in the "declared" column, then obviously the program is trans-
ferring control to a nonexistent label. Similarly, if there are no line
numbers in the "used" column, then the program contains a redundant label.

There are precisely two procedure statements and they both invoke pro-
cedure SORT whose declaration appears in lines 4 to 8 inclusive. From the
procedure names which have no line numbers in the "declared" column, you can
determine which library procedures the program requires.

Array D is referenced in lines 20 and 21 but was never declared. Of
course, ALGOL demands that all variables be declared so that the compiler
should catch this error. Languages such as FORTRAN and PL/1, however, permit
declaration by default and then knowledge of a missing explicit declaration
may be useful. Multiple declarations are easily detected by looking for two
or more line numbers in the "declared" column.

' The simple variable alpha, although properly delcared and assigned a
value, is never used in an arithmetic expression. On the other hand, the
array element BL3] is undefined when it is used at line 15. In general, when
a variable is used at line number U, changed at line number C, and U < C,
then beware for an undefined (not undeclared) variable.

Note that array A is both used and changed in line 14 where it appears
as a parameter to procedure SORT. You must trace procedure parameters to
check if their values are changed by the activated procedure. Naturally,
when a formal parameter of the procedure is a value parameter, then the
corresponding parameter in the procedure call can be used but not changed.
A call by name parameter must ultimately appear on the left hand side of
the assignment operator (:=) in order to be changed. _

Begides locating errors a variables change table permits you to make

assertions like:
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"Except for Y and D[ ], nothing else is changed in lines 21 through 25."

"Formal parameter n in procedure SORT is used only in an arithmetic expres-

sion after an until {line 6)."

Such assertions that a variasble value is changed only in a specified way,
are useful in program correctness proofs. A variable change table is a

precise verification of such assertions.

Debugging syntax errors. Errors in grammar should be uncovered before a

correctness proof is attempted. Much confusion and frustration is caused by
spelling mistakes in mathematics texts and, technically, any formula is just
not correct when it contains a grammatical error. Of course, ALGOL 60 com-
pilers often will not translate a program until its syntax agrees with the

Revised Report. For example, the code
vi= 6. %X w;

is illegal because a zero is missing after the decimal point.
Because FORTRAN and PL/1 have default options and their syntax was ill-
defined until recently, debugging syntax errors in these languages 1s more

difficult. It even happens that a legal FORTRAN statement such as
FORMAT(6H)=(A+B)

often stops compilers. Explicit and mandatory declarations in ALGOL avoid
most spelling errors in identifiers from going unnoticed.

Certainly the clerical exercise of detecting syntax errors is "work
unfit for a Christian" and should be automated. Both compile- and runtime

diagnostics are desirable. In the program
begin array A[1:5]; print (Alread]) end
only a run~time check will detect an illegal subscript. Wafning messages are

also desirable. It can be helpful to be warned that an identifier was de-

clared but never used in an ALGOL program.



38

A common error in ALGOL programming is to omit a semicolon after an énd
which théreby turns the text following the end into a comment. A warning can
be provided when this comment contains a delimiter (:=, +, go to, etc.).
Automated error detection can even be coupled with automatic correction

schemes to convert the illegal ALGOL text into a legal program.

Testing for semantical and logical errors. It is not reasonable to "prove"

correctness details before we have good reasons to believe that the program
works. The classical testing techniques are not only easier to carry out,
they also provide timing data end extensive empirical evidence for algo-~
rithmic analyses. Consideration of the cost for certification of a program
often leads to the experimental (testing) rather than the analytic (correct-
ness proof) approach. However, no matter how many experiments are conducted,
a program can never be shown to be correct by testing alone. A tested pro-
gram may be considered "empirically 0.K." and testing can establish mile-
stones for the measurement of programming progress, but only a correctness
proof can precisely and sufficiently demonstrate that the program achieves
the desired results.

We want to distinguish between testing for semantic errors and for

logic errors. An example of a semantics error in ALGOL is

begin integer a,b;

procedure one(x); two(x)
procedure two(x); x:= k;
a:= b:= 13 one (a+b)

end

where the meaning of "at+b:= 4" is undefined. Note that the above program is
syntactically valid ALGOL; it is semantically invalid. Explanations of the
semantics of ALGOL 60 are considered too well-known to be stated explicitly
in a correctness proof. Nevertheless, details of rarely used (e.g., Jensen's
device) ALGOL features should be spelled out when they are incorporated
within a program. It is surprising that many ALGOL programmers fail to take
into account that the controlled variable in a for loop is undefined upon

exit from the loop. They rely upon their particular hardware representation

&
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for an exit value, rather than adhere to the semantics in the reference
language. ¢

Logieal errors are mistakes in program construction where the text has
both valid syntax and semantics, but it does not have the intended effect.

1"

When "i:= i+1" is written erroneously for "i:= i-1", when an array is sorted

erroneously in ascending rather than descending order, when the relational

mnmon

>" is used erroneously instead of "<"

~-—- these are logical errors in the
program,

Testing for semantical and logical errors involves the classical tech-
niques of dumps, snapshots, traces, ete. The idea is to run the program with
a test case for input and to verify the output or else trace the route to
failure. The testing is best done in an incremental fashion so that only one
procedure or block is being tested at one time. A good strategy is to re-
place untested program sections with simplified working sections, and then
substitute the tested sections for their simplified versions in steps.

Test input may consist of actual data or constructed data. The data may
be stereotyped or a statistically generated random sample. A program to gen-
erate the test data may help. For example, to test a matrix inversion proce~-

dure the 1ll-conditioned Hilbert matrix
Ali, 31 = 1/(i+3-1) for 1 <i, j <nmn

may be input. These matrices probably represent an extreme case relative to
what the inversion procedure will usually handle. But extreme and excep-
tional conditions should be tested when possible. Often library procedures
are undocumented with respect to division by zero, square root of negative
argument, subscript out of range, overflow, and so forth. You may have to
test these situations to learn what to expect.

Solutions for test data may be obtained from: (1) books, journals,
etc.; (2) hand calculation; (3) a program which has been proved correct and
which solves the problem in another way. It pays to always perform an order
of magnitude check on final results. When the sample variance of a set of
observations seems large, for example, a mispunched data vaiue should be

suspect.
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Redundant output. Every program.ought to produce lists of intermediate

results for examination. This output will allow you to measure program pro-
gress should your time limit be exceeded or a machine failure occur or a
programming error prevent successful completion. Such output should also

be planned to provide interesting statistics of long successful runs. For
example, when the program is sorting a large file, there are numerous
questions which might be answered upon termination: How unsorted was the
original file? (Perhaps measured by the total number of interchanges re-
quired.) Which step in the sort algorithm consumed the most time? (An empir-
ical profile - see section 4 - would answer this.) Was the sort input/output
bound?

When the output of a program is basically negative in value, there are
still possibilities for useful statistics and/or further work. For example,
if a nunber theory calculation fails to show that n = 2P_1 is a Mersenne
prime for some large prime p, then the factors of n should be output both
for human verification and for possible interesting properties.

The need for well-labeled output is obvious, for when you cannot
identify an answer you must examine perhaps the entire program to learn its
meaning., Output should include every input value that was read inj; other-
wise, you may not know which problem was solved. When the program has
options (like more than one sorting or matrix inversion procedure), the
alternative actually used should be identified.

Indeed, an alternate algorithm to double-check results may be advanta-
geous. In any case, you should compare the output with a commonsense esti-
mate of the answer. Check the output. Look at it. Be shocked by wnlikely
results. Does the sum of some computed probabilities equal one? Does the
product of A and I (as computed) equal I? If not, how much do they differ?
Perform a difference table analysis to detect errors in a table of computed
values. Although s final printout or postmortem dump of global variables

may be redundant output, many bugs and other useful information have been

gleaned from such output by observant programmers.

Enumeration proof. Why doesn't exhaustive testing prove correctness? After

all, if your n! procedure accepts only the ten values 1 < n < 10, then by

&



b1

successively calling this procedure with each of these .ten values and then
checking the answers, have you not provéd'corréctnéss of the procedure by
enumeration? No, because there are programs which work on "day 1" but fail
on "day 2". Figure 3.6 displays three versions of an n factorial procedure,
each one of which could work properly for the first ten calls (day 1) and
then fail miserably (day 2). Version 1 depends on a loop counter, version 2
tests a random number, and version 3 relies on special initialization. When-
ever a new version of the library (compiler, sqrt procedure, overflow
handler, etc.) is installed, some users usually complain because their
correct program no longer works. There is an authentic case where physicists
had been "successfully" running their lengthy, complicated ALGOL programs
for a year. Then one day run~time subscript checking was introduced into the
system. Their programs immediately terminated with "subscript out of bounds"
error messages, They demanded that subscript checking be made optional and
then chose to supress it!

The "It-works-if-a~test-case~does" school of programming also ignores
compiler and language specifications. To determine the exit value of a con-~
trolled variable in ALGOL, they run a test case instead of reading the
Revised Report. Furthermore, the "Change-it-until-it-works" school of pro-
gramming ignores compiler errors, documentation ambiguities, and so on. When
their program doesn't work, they make changes until "it does".

There exists one situation where testing can indeed prove correctness.
That is the case where the program output can be checked by hand or by
another correct program. If the output yields the correct answer, then it

can be asserted that the program worked for that specific case. For example,

a matrix inversion procedure which computes B, the supposed inverse to A,
can be verified correct for a specific input A by testing that AB = I. But

if it is run again, you must test the output each time.

Using the problem domain. When developing a program correctness proof, it

should be expected that relations or properties from the problem domain will
be used. For example, in the exponentiation programs of Section 2 we needed

the law of exponents
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which was assumed as obvious. A relation such as
(x+y) mod n = x mod n + y mod n,

may have to be proven explicitly for some readers while others will accept
it as an obvious fact from modular arithmetic. _
Besides relations peculiar to the problem domain, the proof may follow
and depend on general principles unrelated to the problem domain or to pro-
gramming. Much of the discrete mathematics found in (Knuth 1968) can be
applied in correctness proofs as well as in frequency and storage analyses.
Recall the correctness proof for square root by Newton-Raphson iteration was
based upon a theorem in calculus on bounded monotone series. Your ability to
exploit mathematics (combinatorial, statistics, probability, logic, etc.)
will determine the ease with whiech a correctness proof is established., As

usual, the more math you know, the better off you usually are.

Well-defined generalized input. There is a computing cliché&: "Garbage in,

garbage out". And it is true that numerical mistakes can arise from bad in-
put} Only by printing out the input values read in will you be sure to
eliminate keypunching and format errors. In addition, the program should
check that certain conditions are satisfied. For example, while reading in
a probability distribution p; (i=1,2,...,n) the program should check n > 0
and each O <p; < 1, while printing the values input. The sum Z p; should
also be verified equal to 1.

To avoid clerical errors, free format helps. Instead of demanding
that n be punéhed right-justified in columns 6 to 10, it is helpful to allow
n to appear anywhere (including after blank cards) as the first data item,

Even better would be to use unordered input:

n = 3; pl3l:=0.5;
pL1]:= 0.25;
pl21:= 0.25;
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The advantages are that a shuffled data deck is not an error and that a
specific input value such as pl3] can be changed by simply adding its new
value to the end of the input deck. Also, such labeled input is self-

documenting. Additional comments can be placed between, say, "¢" signs:
n = 3 ¢Number of probabilitiesd; pl[3]:= 0.5;

Backus~Naur notation can be used to define what input syntax is legal
in order to avoid misunderstandings. Questions like "Are leading zeroes
permitted (0.61)?", "Do plus signs have to be punched?", and "Is there a
power-of-ten notation?", can be easily answered by referring to the well-
defined input specifications.

A library program with sizable input should be designed around an
"input language". For instance, the self-explanatory input to a linear pro-

gramming procedure might look like:

begin comment Problem 1 input;

number of equations = Lj
33

initial guess x = (1,1,0);

number of varigbles

no objective function;
3x[1] + Wx[2] - x[3] < 13

5x[2] - 7x[3] = 33
x(1]1 + xl2] > 03
x[3]1 > 03

end

The difficulty with input languages is the task of programming compiler-like
procedures to translate them. Nevertheless, some of the most popular library
procedures are and should be based upon a well-defined, generalized input

language for the user.

Flowcharts. Understanding both a program and its correctness proof can be

facilitated by introducing suitable notation and drawing a figure (flow-

&
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chart). Flowcharts are easy to produce, easy tO'recbgnizé;'and easy -to
remember., They are a pregnant notation for éxpréssing more at a glance than
the program text. Do not give too much detail in your flowcharts; otherwise,
you might as well simply read the program text directly. See the sample
flowchart in Figure 3.7.

Flowchart notation for for loops should consists of a single box.
Figure 3.8 gives possible notations for the three kinds of for statements.
Flowchart standards (diamond-shaped box for decisions, square box for com-
putations, etc.) exist and should be adhered to if you seek a wider audience
for your flowcharts. The notation used within the flowchart boxes should be
two-dimensional (like the ALGOL publication language) rather than linear
(1ike the ALGOL reference language). For example,

versus abs (ALi,j]42) < log 2(sqrt(3.0) )=

Type analysis. In science there is a gimple but powerful technique named

"dimensional analysis" which consists of substituting the units of each
variable into a formula and then canceling to check for consistency of the
units. In ALGOL there are chances to perform a somewhat similar "type anal-
ysis". For example, when calling the procedure sin(x), you should always
check that x has the right type (real or integer) and the right units
(radians or degrees). Some compilers do not check type compatibilities, so
it will be the programmer's responsibility to call In(x) with a real or
integer or either, depending upon local library conventions. Type compati-
bility of actual and formal parameters of a procedure should be made any-
ways to avoid an embarassing error message after the program is supposedly
correct.

Mixed modes are useful but must be checked for the desired effect. Most
language manuals provide a table of mode possibilities for the left- and

right-hand variables in substitution statements. Thus, whether

real y; Boolean b3

¥yi=bj
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is allowed and what it means is specified. Substituting a real into an in-
teger variable usually has the résult of applying thé'greatest integer
function to the real. Allowable input data types should also be carefully
defined and checked.

By using or assuming all numeric variables to be of type integer, the
correctness proof need not consider round-off error.

Lastly, a word about array references being within bounds. Sometimes
checking of subscripts is an optional feature at run-time. This is analogous
to a man who always keeps a fire-extinguisher in his car whenever it is not
being used, and takes the fire-extinguisher out whenever he goes on a trip.
That is, a program in production needs subscript error checking because that
is when money or life depends on it. It is not disastrous, on the other

hand, when a subscript error occurs while testing your program.

Documentation. Communicating the correctness proof is an art because it

requires ingenuity and creativity. Reading a convincing proof should be
easier than reading the program. The need for documentation of the correct-
ness proof is clear, for "If it isn't written down, it doesn't exist". Con-
sequently, the user will not know the program is well-tested if it isn't
well documented.

In the documentation there should be an informal statement of the
problem in a natural language followed by explicit identification of all
assumptions including accuracy, round-off error, input ranges, overflow,
and so forth. Crossreferencing in both directions should exist between
documentation and program text. Hence the program must be highly readable
with meaningful line identification numbers and indentations (don't be
afraid to insert blank line between, for example, procedures and blocks).
Furthermore, the key inductive assertions of the correctness proof should
appear in the program as comments. Where the documentation is lacking or
incomplete with respect to these points, the program itself must be con-
sidered to be defective.

A documented correctness proof may be checked for error-freeness by
the various program users, and it serves to set forth the best method for

program certification known.

&
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Program equivalence, One approach to showing program Q is correct, is to
show that Q is equivalent to a correct program P, Thus you réduce the pro-
blem to one previously solved.

For example, the two traversal programs in Figures 5.5 and 5.6 both
visit a tree in postorder. The recursive version (Figure 5.5) is easy to
write, elegant, and trivial to prove. The iterative version is portable to
languages which have no recursion. To prove the iterative version (Q) one
can simply show it is equivalent to the correct recursive version (P).
Equivalence is shown by proving that any tree input to Q produces the same
output as P does, and vice-versa. Output here means the same sequence of
calls to procedure VISIT;

Induction. A general method applicable to proving the validity of any al-
gorithm uses mathematical induction. After labeling each of the arrows in
the flowchart of the algorithm with an assertion about the current state of
affairs at the time the computation reaches that arrow, induction is used to
show that all these assertions are true during any execution of the algo-

rithm. Consider the example of computing the sum:
I
(3.8) SUM= ) x..

Figure 3.9 gives the flowchart along with the "key inductive assertions".
It is easy to prove that each key inductive assertion leading into a box
implies each assertion leading out, for this particular example. By induc-
tion if follows that (3.8) holds upon exit from this algorithm.

Thus this proof technique consists mostly of inventing the key asser-
tions to put in the flowchart. In loops we require an assertion describing
the processing accomplished by the i~th execution of the loop. In recursive
calls of a procedure we require an assertion describing the result of in-
voking the procedure for the i-th time. The well-known change problem (how
many ways can you change one guilder?) can be stated as a recursive algo-

rithm and then proved correct by recursive induction (see Polya 195T).
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Case analysis. The old strategy "Divide and conquer" can be employed in
correctness proofs. We hamé alréady mentioned that the checkout of assem-
blages of program components 1s best accomplished in an incremental fashion.
Further, input possibilities can be sectioned so that, for example, the
cases n < 0, n =0, and n > 0 are treated separately.

When labeling the flowchart with inductive asserfions, the key steps
can be chosen to be procedures, blocks, and starting or ending points of
loops. This breaks the program up into managable pieces. Complex decision
choices (if-then-else structures) can also be broken up into cases. The con-
ditions with their resulting actions to be taken should be displayed in a

table such as:

Income~tax calculation

Condition Action
line 10 < line 11 Pay refund
line 10 = line 11 Close account
line 10 > line 11 Bill taxpayer

This table is used as an intermediate representation or notation. Hence,
first you need to show that this table follows from the code and, secondly,
you show that the table is implemented properly. One complicated step is
thereby replaced by two simpler steps. This is merely the technique mathe-
maticians use when they develop the proof of a main theorem through a series
of lemmas.

Nevertheless, before decomposing the problem into cases and working at
details, you should understand the program as a whole so that you don't lose
yourself in details. A common fault of programmers is that they rush into
constructing their program before they have thoroughly understood the pro~
blem and have devised a general plan for its solution.

It is obvious that a program which uses library procedure or well-known
algorithms is partly proved correct since these parts have already been

certified or otherwise shown correct.
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Figure 3.1. Program to print a saddle point (i.e. an element which is the
smallest valué in its row and the largest value in its column)
of matrix A if one exists; otherwise, it prints zero. Key steps
are labeled with assertions which prove the validity of the

program.

Boolean SP; integer i, j, k, I, J3 array Al1:m,1:n];
SP:= falsej i:= 03
for i:= i+1 while 48P A i < m do

begin comment Al: 1 < i < m and SP = false;

I:=1; J:= 03
for j:= j+1 while 48P A j < n do

begin comment A2: 1 < i <mand 1 < J <n and SP = false;

SP:= true; k:= 0; J:= j;
for k:= k+1 while SP A k < n do
if A[i,k] < A[i,j] then SP:= false;

comment A3: SP = true iff A[I,J] = min A[I,k7;
: 1<k<n
k:= 0;

for k:= k+1 while SP A k < m do
if Alk,j1 > A[i,j] then SP:= false;

comment Al: SP = true implies A[I,J] = max Al[k,J];
1<k<m

SP = false implies A[I,J] # saddle point of Aj
end;
comment A5: Same as Al
end;
comment A6: SP

true implies A[I,J] = min A[I,k] = max Alk,J];
1<k<n 1<k<m

SP = false implies A has no saddle point;
print (if SP then A[I,J] else 0);
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Figure 3.2. Procedure to find an approximate square root of a positive real

argument x by Newton's method.

real procedure ROOT(x); value x; real x;

begin real y, z, error;
if x > 0 then begin

error:= 0.,000001;

for z:= 1, (z+x/z)/2 while abs(y-z)/z > error do y:= z;
ROOT:= (y+x/y)/2
end
else if x = 0 then ROOT:= 0
else begin
printtext ("Procedure ROOT entered with negative argument
equal to");
print(x); ROOT:= 0
end

end

comment Test of ROOT with x = 1010 on the X-8 computer. The successive

variable wvalues are:

z x=10000000000.0 error=0.000001 ¥

1 ?
5000000000 .5 1
2500000001. 3 5000000000.5
1250000002.6 ETC.

625000005 .3
312500010.7
156250021. 3
78125042, 7
39062585.3
19531420.7
9765966.3
4883495. 1
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Tz x=10000000000.0° error=0,000001

2hh2771.
1223432,
615803.
316021.
173832.
101062.62
100005 .586
100000.0001560
100000 .0000000

W = = O\

Note: 5 + abs(log2(105)) = 21.61;
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Figure 3.3. Variables change table for outer block in the program of

Figure 3.5.

Identifier

Declared at line

Changed at line

Used at line

i
alpha

Y
B[ 3] (array)
Al 1 (array)
loop (label)
DL 1 (array)
SORT (proc.)

2
10

20

h-8

12,20
12
12,23
18
1,17

20,21

15,16,17,20
13,22

15

1k

13,24

21

14,21

Figure 3.4. Variables change table for procedure SORT in the

Figure 3.5.

program of

Identifier

Declared at lihe

Changed at line

Used at line

SORT (proc.)
cl 1 (array)_
n
i

sqrt (proc.)

4,7
h
6

-~ -1 o\ =
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Figure 3.5. Nonsense program to illustrate possibilities in a variables

change table. See Figure 3.3 and 3.L.

[ 1] begin comment Nonsense program;

[ 2] integer 1i;

[ 31 real Y;

L 4] procedure SORT (C,n); integer array C[1:n]; integer n;
[ 5] begin integer 1i;

[ 6] for i:= 1 step 1 until n-1 do

[ 71 if c[il < CLi+1] then CLil:= sqrt (CLi+1])
L 81 end;

[ 9] integer array B[1:10], A[1:501];

£101 Boolean alphas;

111 '

[12] Y:= read; alpha:= Eigg; i:= 0y
£13] if ¥ < O then go to loop;

[1k4] SORT (A,25);

151 if BL3] = 1 then begin

£16] . for i:= 1 step 1 until 10 do
L1713 Alil:= i,

(181 B[3]:= 0

£19] end;

La2o1] loop: for i:= 1 step 1 until 10 do D[il:= 03
[211] SORT (D,10);
[22] if Y = 6.3 then begin

[23] Yi= 03
[2k] go to loop
L251 end;

[26] end
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Figure 3.6. Three versions of an n factorial procedure (nfac) which work

correctly only sometimes.

comment Version 1 works (assume i is initially zero) for the first ten
calls only;
1:= i+1;

nfac:= if i < 10 then n! else -1;

comment Version 2 works if and only if a random number is in the interval
(0,215

nfac:= if random < 0.5 then n! else -1;

comment Version 3 works if and only if i is initially zero or one while
n > 0, or else i is initially > O and n=0;

answer:= 1;

for i:= i+1 while i < n do answer:= answer X ij;

nfac:= answer;
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Figure 3.7. Possible flowchart for the saddle point program of Figuré 3.1.

. N Output >  end
begin Saddle Point
13 .
i<1 \/V\/\/\/\/\/\/\/
SP<fals NO
qSPAif_m
YES J<1 YES
i+i+1 qSPAjin
NO
j<j+1 Set switch

SP to true

YES

1

Set switch
SP to false [~
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Figure 3.8, Possible flowchart notations for the list, increment (step -

until), and while types of for statements.

enter

for p = 2,3,5,7,11,13, and 17 ——> exit

enter —=1 <1 NO .
———————> exit
=R yES
i<i+1
|
. .2
enter ———= +
J€J +2 NO .
—————————> eXx1%t
i+j<n TES
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Figure 3.9. Flowchart labeled with key inductive assertions for computing

the sum:

begin —>» | 1 4 1; SUM« O

YESJ’ 1<i<IASWM= ] x

SUM <« SUM + x[i]

i<i+1
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EXERCISES

3.1.

3.2.

303-

3.k,

The saddle point program in Figure 3.1 is clearly inefficient with
respect to comparisons made (see exercise 4.1). Write and prove

correct a more efficient version.

It is desired to construct and prove correctness of an algorithm

which will help prevent accidents between raillroad trains. Suppose

n = Number of trains on a particular track.
m, = Identification number of train i (1<i<n).
Pi = Position of front of engine of train i, measured from end of
the track.
; = Length of train i,

Minimum allowable free distance between trains.

Construct and verify an algorithm which checks the spacing of the

trains and output a message if two trains are too close to each other.

In the following ALGOL:

real X3
for x:= 0.3, x+0.3 while x # 1.8 do begin

end

use of the rational # is bad programming practice for at least two

reasons. Explain.

(Newton's method for square root) Prove that successive guesses,
equation (3.4), for vx satisfy:

/E_j_yi+1 =¥ for every i > O.

Derive formula (3.7) for the maximum number of steps before procedure
ROOT (Figure 3.2) terminates. Prove that each application of Newton's

rule squares the relative error under appropriate conditions.
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3.6.

3.7.

3.8.

58

Construct and prove correctness of a program for a binary search.
Assume the element y being searched for is in the vector Al 1:n] which

is stored in ascending order.

The approximate cube root y of a number x > 0 may be calculated by‘

Newton's method as:

2 )
Veoq = (2yi+X/yi) i=0,1,2,...

'..l
+
W |-

Yo = 1
Construct and verify a program for this calculation.

Once an algorithm has been programmed, the question arises as to
whether or not this program terminates for given input. For example,

consider the "simple" program:

integer procedure f(n); integer n;
f:= if n = 1 then O
else if EVEN(n) then f(n3:2)

else f(3%xn+1);

Find the largest N such that the above procedure terminates for all
n=1,2,3,...,N. You are allowed only one minute of computer time to

find this N!

There is a theoretical result on the subject of testing termination
of a program which denies the existence of a general Boolean procedure

T whose input is any program R such that T operates on R to yield:
true, if R terminates when run
T(R) =

false, if R does not terminate.

Here is an informal proof that no such procedure T can be programmed:
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Assume, contrariwise, that T does exist and terminates for every input

program R. Then consider program P defined by

program P.
loop: if T(P) then go to loop else stop.

and which uses procedure T as a subroutine. Hence if T(P) = true,
then program P will loop forever. If T{P) = false, then P terminates.
In each case T has exactly the wrong value.

This contradiction shows that T cannot exist.

This result means, roughly, that nobody can write a general program

which would successfully check everyone elses program for termination.

However, special programs can be written which verify termination
sometimes. It is a termination checking program which works every time

that is impossible.

Determine whether or not the function f defined below terminstes for

all positive input (n>0).

integer procedure f(n); integer n;

f:= if n > 100 then n-10 else f(f(n+11));

comment For example, the computation sequence of £(99) is:

£(99) » £(£(110)) » £(100) > £(£(111)) > £(101) » 91.

In this case (n=99) we say that £(99) is defined and £(99) = 91. When

the computation sequence is infinite, we say that f(n) is undefined

for that value of n;

Find an argument n for which the following recursive function g does

not terminate:

integer procedure g(n); integer n;

g:= if n > 100 then n-11 else g(g(n+11));
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3.10. What is your personal opinion gbout program correctness proofs?

3.11. Describe errors in the ALGOL program whose variables change table is

given by:
Identifier Declared at line Changed at line Used at line
i 2 7,19 9,35
alpha 5 Lo 35
b4 5 15 -
start (label) 2 - 6,25
stop (label) 100 — —-—
AL 1 (array) b - 45,55
Bl 1 (array) 5 16 18,23
¢l 1 (array) —-— 25 30,31
D[3] (array) 2,5 T 30
sort (procedure) 8-13 — 50,55

log 2 (procedure) —— - 60
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3.1. Beware of equal elements in a given row or column.

3.2. Did you assume trains are arranged in the order i=1,2,...,n along

the length of the track?

3.3. (1)
(ii)
(iii)

3.k, Y541
Yi+1

Because of precision problems, x may never equal 1.8 exactly.
On many machines, the real integer 3 is represented internally

as 0.3*101; therefore the following code is just as bad:

real x, ¥
for y:= 3, y+3 while y # 18 do
begin x:= y/10;

end;

If x accidently "skips" the value 1.8 (say, by a machine error
or by an improper assignment between begin - end or by a jump
into the for loop), then the for statement again may loop

forever.

The # relational means that the correctness proof must consider
x > 1.8. Also, understanding the program becomes more difficult:

Will x ever exceed 1.8%

- Vx = 3 (y;-2/x+x/y;)

= 1 (42

1 2 . _
2y, (yi—/g) > 0, since y, = 1 > 0.

> /x for all i > 0.

i > 0 implies:

y.. . - V% (v.-¥x)° 3. - /x
1+1 = 1 = -3 < 1 since >/x if i >0
y. - ¥ 2y. (y.-vx) 2y. > i Z :
i i vi i
IRETS IR
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array AL1:n]; integer i,j,.k,n;

ii= 13 k:= nj

for j:= (i+k)+2 while y # A[j] do

if y < ALj] then k:= j-1 else i:= j+1;

comment j is the index of the element selected for comparison.

i and k are the indices of the terminal elements of the
remaining subset. If n = 2m, then for a uniform distribution
of arguments, the expected number of comparisons required in

a binary search is
((m-1)2"4m+2)/2",

which is approximately (m-1). For general n, the number is
approximately TiogzﬁT - 1, which differs only slightly from
the worst case of r10g2(n+171;

There is a known, but difficult, termination proof for this

"famous 91-function". Its output value is always 91.
The computation sequence of g(99) is:

g(99) + g(g(110)) » g(99) » glg(110)) » g(99) -~ ...

i.e., the computation sequence is infinite and hence g(99) is un-

defined (g(99) does not terminate).

Remarks on correctness proofs:

I suppose a "good" test case is one which uncovers at least one error.
Therefore,. if your program is correct, there are no "good" test cases,
by this definition! Test cases may be "sufficient" for some program-
mers, but they are never "rigorous" for proving correctness.

Program correctness proofs are difficult. Mathematicians and machines
may Be better at proving correctness, bubt then they are also better
programmers !

A correctness proof for a program which calculates the mean is not so

trivial when you worry about accuracy.
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You can learn about and concentrate on a program while discovering the
inductive assertions for a correctness proof.

It is impossible to test for all cases ...

The identifiers sort, B, and i seem 0.K. Label "start" is declared
before the declaration for procedure "sort"; hence a possible error.

Variable "Y" is never used, but perhaps it is a counter like in:

for Y:= 1 step 1 until n do w:= w+tu;

Variable "alpha" is probably undefined because it is used in a line
above where it is changed.

Array "D" is probably multiply declared, although the two declarations
could be in different blocks. Label "stop" appears to be redundant
(not necessary), but maybe it is being used as a comment.

Procedure "log2" must be in the library; otherwise it is undeclared.

There are only two certain errors: Array "A" is undefined (its elements

are never given values) and arrsy "C" is undeclared.
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4, Frequency analysis

A common and obvious measure of performance for a computer program is

running time. We can consider the execution time for a program in terms of:

(i) the worst case (maximum time used under the last favorable choice
of inputs).
(ii) the best case (minimﬁm time used under the most favorable choice of
inputs). .
(iii) an average case (expected time under a given input distribution).
(iv) the exact amount (the analytic formula for running time as a function
of arbitrary input).
(v) an empirical estimate (an empirical formula fitted to certain input

parameters).

However,‘rather than give the running time in seconds for a particular
computer, we will count the number of times each step is executed. Clearly,
the time required to perform an algorithm can always be detérmined when you
know the number of times each step is executed. These counts, then, give us
an essentially machine-independent method for the determination of running

time.

Example. We illustrate the five above possibilities by a simple example.
See Figures 4.1 and 4.2. The profile (collection of frequenecy counts) for

program M is:

Step number Number of times
M1 1
M2 n
M3 n-1
Mh A

The value of n is given, but we do not know the quantity A, which is the
number of times we must change the value of the current maximum m. We thus

study the possibilities for A:
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(i) the worst case (for pessimistic people) is A = n-1 when’

y[11 > yl2]1 > ... > y[aJ.

(ii) +the best case (for optimistic people) is A = 0 when y[n] is a maximum

element of array y.

(iii) an average value (for probabilistic people) for A lies between 0 and
n-1. In particular, based on the assumptions that the n input values
y[11,yL21,...,y[n] are distinct and that each of the n! permutations
of these values are equally likely, the average value of A is approx-

imately I1n(n) when n is large (Knuth, section 1.2.10, 1968).

(iv) +the exact value of A does not depend on what the precise values of the
y[k] are; only the relative order is involved. However, no simple
formula for the exact value of A as a function of n and the relative
order of the y values is available. Particular cases, such as n = 3

and y[3] > y[2] > y[1] for which A = 2, must be treated separately.

(v) an empirical estimate, n/3, for the value of A could be based upon,

say, five samples

Sample n A
1 5 2
2 10 3
3 50 16
L 100 30
> 500 170

by fitting a straight line using the least squares criteria.

General principles. The following are general principles of attack for

performing a frequency analysis:

1. Label a flowchart of the algorithm and apply "Kirchhoff's" conservation
law for flowcharts (the amount of flow into each node must equal the

amount of flow going out).

2. Reduce and identify the flowchart variables by using important charac-

teristics of the problemn,

&
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3. Explore the behavior of the final profile parameters (worst case,

average case, asymptotic, ete.).

Example. Let us now do a frequency analysis to illustrate these principles.
Figure 4.3 is the flowchart of an algorithm, called T, found in (Alanen
1972). The first step is to label this flowchart; we have labeled the arrows

with a TEPHLY and use the notation that step Ti is executed X, times.

1°%2
Kirchhoff's law is

"sum of a's into box Ti x; = sum of a's leaving box".

It yields the equations:

Xy = 1
x, = 1+ a9r+ a5 T 8y
X3 = a, ta =a,+ aq
Xy T 8 T B0 T By
¥5 7 811 7 %2
¥ = 8 T 20 T B
Xo = ag = ag
Xg = 8g = )
a6 = as + a8
a3 = a7 + 1
We next reduce the number of unknowns by elimination of X35 Xg» and Xg

using the above equations:

x1 = 1
X T 8y
X3=x2+x8



67

x5 = x5 - x7 -1
Xe = x7 + Xg

XT = ag

Xg = a5

Kirchhoff's law does not completely determine the number of times each
step is executed. More exactly, if there are n boxes and m arrows, then
Kirchhoff's law allows us to eliminate n-1 unknowns among the arrows (not
the boxes). In our example, n = 10 boxes and m = 15 arrows; we eliminated

n-1 = 9 arrows (namely, a3,ah,a6,a7,a8,a ,a10,a11,a12) which left us with

9

the six unknowns a1,a2,a5,a8,1 (into T1), and 1 (the "done" exit). Related

to the boxes we are left with five unknowns (x1,X2,xh,x and XB). Clearly

73
x, = 1 and we can further eliminate Xg because k is initialized to zero (at
step T1) and then the algorithm terminates only when k = 0. Thus for every
time k is increased by one in step T5, k must be decreased by one in step

T8; that is, Xg = X X, - x_ - 1.

There remain tgree inknogns (xg,xh,x7) and to interpret them by re-
lating them to pertinent characteristics of the dats requires knowledge of
what Algorithm T does. Since Algorithm T is rather complicated, we simply
state the final answer in Figure L.L4. It turns out that the profile for
Algorithm T (Figure 4.4) depends on three unknowns (a, B, and y) which can
be related to the input n.

Lastly, we remark on the behavior of the quantities o, B, and vy as n
increases. The quantity Yy can easily (if you understand Algorithm T) be
shown to be small; indeed, when n-1 is prime, vy = 2. The quantity a-8 seems
to grow as n0'815, which predicts observed values within relative error 3%.
This is strictly an empirical result arrived at by fitting the curve
a-8 = n% (a unknown) to the profile6date in Figure 4.k4. Similarly, B in-
1.

creases a little faster than 0.2 n . These empirical estimates for a-B
and B were derived because it was not possible to deduce an exact (or even
worst or average case) formula for their behavior in terms of n. Using
these empirical estimates, Algorithm T would perform about 107 steps to
handle the case n = 50000.

In summary, to derive the profile in Figure L4.l4 we labeled the arrows

&
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and boxes in the flowchart for Algorithm T. Thén wé applied Kirchhoff's law
to relate and eliminate these unknowns. Next we eliminated or identified the
remaining unknowns by applying our knowledge of this particular algorithm.
We were left with three parameters (a,B,y) which depend upon the input n in
complicated ways. Finally, we did an empirical study of the behavior of
these final profile parameters, Our conclusion was that Algorithm T has a

total running time proportional to n2.

Local and global analyses. There are generally two kinds of frequency

analyses, "local" and "global"™. A local frequency analysis investigates the
running time requirements of some particular algorithm; a global frequency
analysis, on the other hand, considers an entire family of algorithms and
attempts to identify one that is "optimal", in the sense of using the least
computer time,

Recall Algorithm M (Figure 4.1 and 4.2) which is a straightforward
procedure for finding the maximum (or minimum if you change the inequality
to < in step M3) of a list of n numbers.

In terms of comparisons among the elements of array x, our local
frequency analysis showed that algorithm M always requires n-1 comparisons.
If you had some special knowledge of the x-values, you might be able to
avoid some of these n-1 comparisons. Clearly, you could write an (ineffi-
cient) program which took more than n~1 comparisons.

A global analysis will show that the worst case optimal algorithm with
respect to comparisons is also Algorithm M; that is, in its worst case

(which is every case) it requires n-1 comparisons. No other algorithm

requires fewer than n-1 comparisons in its worst case.

The proof that Algorithm M is "the best" algorithm for computing a

maximum (minimum) is difficult. See exercise 4.3 for a related problem.
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Figure 4.1. Program M to find the maximum

m = max ylk] = y[J]
1<k<n

such that j is as large as possible.

integer k, j, n; array yl[1:n];
M1: j:= k:= n; m:= y[n];
M2: for k:= k-1 while k > 0 do
M3: if y[k] > m then Mh: begin j:= k;
m:= yl[k]

end;

Figure 4.2. Flowchart for program M in Figure L.1. Labels on the arrows

indicate the number of times each path is taken.

begin

M1. Initialize

YES
end

M2. Decrease k All tested?

m>y[k]

M3. Compare
n-1-A

M4, Change m
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T1. |k« I, <0

TT.

T8. |k « k-1
a), 1< 1+1

Figure L4.3. Flowchart of Algorithm T.

12
Ik« k+1
Ik <« i
A * B P4
%9
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Figure 4.4, Profile of Algorithm T.

Step

Times each step is executed for given n

T1
T2
T3
Th
T5
T6
T
T8

n=1

1
19
30
27
11
18

T
11

50

1
11k
203
198
89
113
24
89

500
1
3157
6160
6157
3003
3156
153
3003

5000

1
134550
268077
26807k
133527
134549

1022
133527

general
1

o
a+8

a+B-y=1

o-1

a-B-1
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EXERCISES

L.1.

4.2,

L.3.

L. L,

Perform best and worst case analyses for the number of comparisons

required by the saddle point program in Figure 3.1.

An improved I/0 subroutine was written in one man-year (f£20000) using
three hours of X8 time (£1000/hour). It is 10% faster than the old
version, which was used twice each day for 36 seconds per run. How long

before the improved version "pays its way"?

Find the worst case optimal algorithm, with respect to comparisons,
which computes both the maximum and the minimum of a list of n numbers
X15X55+.-,X . Note that this "best" algorithm executes fg-n] -2

comparisons and is somewhat wasteful of storage.

Use Kirchhoff's law to analyze the flowchart below so that boxes

n1,...,n6 are expressed completely in terms of the five arrow unknowns

T L ITE

Eg
s
ng
E
9
E
5 /n
’\5
10
Er
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4.5, Find the worst case optimal algorithm with respect to comparisons for

computing the median.

4,6, Time and memory are often used to measure the perfbrmance of a progranm.
Describe three more things to look at in order to see if a program is

"good" .

h,7. The following flowchart is for procedure ROOT (Algorithm R) in
Section 3. Fill in the profile below for this algorithm, assuming exact
arithmetic. For the average case assume the three input possibilities

(x<0, x=0 and x>0) are equally likely.

Flowchart for Algorithm R

begin
R4 R6 RT
R1
YES 10”
0 error < 10 v <z : z < 3(z+x/z)
z <« 1
NO
R5
R2
=0 > | roor <« 0 YES
NO
R3
ROOT < O end < ROOT < 3(y+x/y)

Print error
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Profile for Algorithm R

Time executed

Step Minimum Maximum Average Exact

R1 1 1 1 1

R9 0 1 1/3 : c

where c¢ = 3[sign(x) + sign(|x|)] and sign(x) = 1,0,-1
if x> 0, = 0, < 0.

&
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SOLUTIONS
L.1. Worst case Best case
m(m+n) comparisons m+n comparisons
11 ... 1 O 1 2 ... 2
2 2 ... 2 1 0
A= . A=
° . *
m m . mmnm-1 0
saddle point = Alm,n] = m-1 saddle point = A[1,1] = 1

h.,2, F20000 + £3000
2x360%,01%, 11000

f 23000 (Cost)
f T20/year (Saved)

32 years later!

4.3. comment Minimum and maximum calculation using I'-g— n] - 2 comparisons
(worst case optimal);
integer i,k,n;_array X[1:n],A,B[1:f‘S‘]];
k=1 3

. for i:= 1 step 2 until n-1 do

if X[i] < X[i+1] then begin AlkJ:= X[il;
Blk]:= x[i+1];
k= k+1

end
else begin Alk]:= X[i+1];
Blk]1:= x[i];
k= kt+1

end;
if odd (n) then begin if A[1] < X[n] then Blk]:= X[n]
else AL1]:= X[n];
end;
comment Now find the minimum element in array A and the maximum element
in array B using the usual optimal algorithms (Algorithm M in
Figure 4.1);
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4,k, From Kirchhoff's law we have the equations:

4.5.

n, =k, + E8 = E

1 1 2
n, = E2 + E7 = E3 + Eh
ny = B, = Bg + B
n) = E6 + E1O = E7 '
n5 = B5 = Eg * By

We can easily eliminate EQ, Eh’ E5, E_, and E8 as follows:

79

E2 = E1 + E8 = E1 + E3 + E9
E5 = E9 + E1O

Eh = E5 + E6 = E9 + E10 + E6
E7 = E6 + E10

E8A= E3 + E9

The final equations for the boxes are:

n, = E1 + E3 + E9 = E3 + E9
n2 = E1 + E3 + E6 + E9 + ETO = E3 + E6 + E9 + E1O
n3 = E6 + E9 + E1O
), = g+ Epp
n5 = E9 + E10
ng = B3 * ¥
But this implies that E, = 0 or E. = «» for some j, because there is

1
no exit arrow in the flowchart (i.e., an infinite loop exists iff you

enter at E1)!

No algorithm for computing medians is known which takes less than
n log(n) comparisons in the worst case. And no proof that n log(n)

comparisons are necessary has been found.
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L.6. Ease of expression. (For example, a recursive program is often easier

to read than the iterative version.)
Accuracy. (What is the precision of the output?)

Adaptability. (Can you change the program easily? For examples, are

constants parameterized and how can you vary the precision?)

Reliability. (Are your data structures protected from illegal use?

Is there subscript cheéking?)

Economy of representation. (For example, a transfer of control
statement is "j;goto label;" (ALGOL 60) or ";label;" (ALGOL 68)
or "™ label" (APL\360)).

Portability (Can you easily run your program on another computer or

even on the same computer somewhere else?)

Robustness. (Does the program give good results even when the input is

approximate?)

4.7. Profile for Algorithm R

Times executed

Step Minimum Maximum Average Exact

R1 1 1 1 1

R2 0 1 2/3 1-c

R3 0 1 1/3 c-sign(x)

Rk 0 1 1/3 c

R5 0 1 1/3 1-|sign(x)|
R6 0 *5+(log2/§[ c(5+|log2/§|)
RT 0 5+llog2/§] %(5+|log2/§!) "o

R8 0 5+|10g, 5] .

R9 0 1 1/3 c

where ¢ = 3[sign(x) + sign(|x|)] and sign(x) = 1,0,-1
if x>0, =0, < 0.

* & 1000 when x = 10028,

&
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5. Storage analysis

In this section we consider storage analyses of computer algorithms,
i.e. how much memory they are likely to need. It is important to acknowledge
that "storage analysis" in this section will refer solely to the analysis of

memory requirements for data structures; we will not examine the amount of

memory needed for the program itself, that is, for the instructions stored
in the computer memory. Furthermore, the data structures of an algorithm may
best be chosen with consideration of the class of operations to be done on
the data. If you repeatedly insert into the middle of a list, for instance,
then a linked list data structure is preferrable to a sequential list, in
order to minimize the steps executed in doing the many insertion operations.
But linked lists usually require more memory than sequential lists, so there
are tradeoffs here between storage and running time. Because we want to
focus on data storage used, in this section we will not worry about running
time. We thus postpone to later the important interrelations between a
frequency analysis and a storage analysis.

Computers have both internal (usually core storage) and external
(tapes, disk, drums) memory for storing data structures. Internal memory
tends to have rapid (random) access time but is limited in size (64K for the
X8). External memory has orders of magnitude greater capacity but a slower
access time (usually due to its serial nature). To simplify the storage
analyses in this section, we will ignore external memory and hence attempt
to fit our data structures into internal memory alone. Analysis of algorithms
which segment the data between internal and external memory will not be dis-
cussed.

Just as in the case of a frequency analysis (section 4), there are
generally two kinds of storage analysis, "local" and "global". A local
storage analysis investigates the memory requirements of some particular
algorithm; a global storage analysis, on the other hand, considers an entire
family of algorithms and attempts to identify one that is "optimal", in the
sense of using least memory. In both kinds of storage analysis we can con-

sider the amount of memory needed in terms of:
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(i) the worst case (maximum storage used under the least favorable choice

of inputs).

(i1) +the best case (minimum storage used under the most favorable choice

of inputs).

(iii) an average case (expected storage used under a given input distribu-

tion).

(iv) +the exact amount (the analytic formula for storage used as a function

of arbitrary input).

(v) an empirical estimate (an empirical formula fitted to certain input

parameters ).

Example. We illustrate these five possibilities by a simple example. Suppose

we have n+1 inputs:
n,XL11,X[27,...,%X[n]

and we wish to save only those values of X[i1 > 0 (1<i<n) in an array T.
Figure 5.1. specifies a program to accomplish this. For a local storage

analysis of this program, we investigate how large the variable k gets:

(i) the worst case is clearly when X[i] > O for all 1 < i < n. Then the

program saves n elements in T.

(ii) the best case corresponds ton = 0 or to X[i] < 0 for all 1 < i < n.

Then no locations are used in array T.

(iii) An average value for the upper subscript bound of array T is n/2,
based on the assumption that positive and nonpositive inputs X[i] are

equally likely (Prob{x[i]>0} = %'= Prob{X[1]<0} for 1 < i < n).

(iv) +the exact value of k after execution of the program is always

n

%. ) (sign(x[il) + sign(abs(x[il1))),
i=1

where
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1, if E > 0.
sign(E) = 0, if E =0,
-1, if E

A

(v) An empirical estimate, n/3, of the final value of k could be based

upon, say, five samples

Sample n Final k
1 5 2
2 10 3
3 50 - 16
L 100 30
5 500 170

by fitting a straight line using the least square criteria.

Which of these five estimates for the final value of k is the most
"meaningful"? Only the exact expression given in (iv) holds for every input
combination, yet it may not be possible to evaluate it easily without an
extra pass over the input values., The zero estimate of (ii) is clearly for
optimists and not very useful in this particular problem. The pessimistic
estimate (i), however, is the one most frequently used because programmers
usually want their program to work for all inputs and thus use the maximum
possible value of n for the upper subscript bound‘on array T. The average
value (iii) is a statistical estimate and further straightforward analysis

could be done to determine, for example, the value N such that:
Prob{k < N} = 0.90 for fixed n,

so that given n, an upper subscript bound of N for array T would imply 90%
certainty of enough space being available. These statistical estimates are
based on a gpecified input distribution whose appropriateness may be
questionable. Lastly, the empirical estimate (v) provides a rough guess
based upon some (hopefully) representative input samples.

Thus our local storage analysis of the program in Figure 5.1 reveals

that anywhere from O ton locations are needed for storage into the T array,
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depending upon whether you prefer a best case, average case, exact, empir-

ical, or worst case estimate of the final value of k.

Preliminary approximations. Will the input data and temporary results fit

into memory? For a first approximate answer to this question, one should
attempt an order of magnitude estimate of storage réquirements. For example,
40000 locations of memory may handle the 200 by 200 matrix A, but where will
you then put its computed inverse A_1? One solution is to design a matrix
inversion algorithm which stores A_1 on top of A, Anofher example: Suppose
you need all permutations of seven numbers in an algorithm. This means
storing T! = 5040 seven~tuples, or 7 * 5040 = 35280 numbers if the permuta-
tions are generated "all at once". A solution to minimize memory would use

a permutation algorithm which systematically generates every permutation
given only its latest result. Lastly, if an algorithm requires all the prime
numbers below X, then an asymptotic estimate for the number of such primes is

well - known to be_X/ln X. Hence X = 106 means storing approximately
106/ln 1o6 N 106/(6*2.3) & 72000

primes.

Too much input. Next, we analyse several statistical problems with too much

input data for memory. Such large volumes of input data are often produced
by, for example, physicists in their experiments or companies in their
management files. The need to "reduce" these data to summary statistics

(means, medians, variances, correlations, etc.) is widespread.

Sample variance. Suppose there are N data values X[11,X[21,...,X[N] and it

is required to compuie their sample variance:

(5.1) s2 =

X x[id.

(X[i]—i)e, where X =
1 i

([l ==
=1 B
IHo~=

=l

i 1
When N is large, memory capacity may be exceeded by inputing and saving the
N values X[(1],...,X[N]. To compute s§ according to the above formula, we

first need the value of X. But X is a function of all the N input values,

&
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so that the terms X[i] - X in the sum are not computable until after every
value X[i] has been read in and X computed. Then it is too late, for we
cannot save the N values read in. One solution is to make a second pass over
the input. Another solution is to employ the identity:

N N
(5.2) ) (X[11-X)% = ’ xiT° - N%2,

i=1 i=1

which clearly allows us to evaluate 52 in one pass over the input (See

X
Figure 5.2). The technique of partitioning sums of squares (such as in

equation (5.2)) is used frequently in statistical calculations.

Sample median. A simple algorithm to find the sample median XO 5 of the

distinct numbers X[1]1,X[21,...,X[2n+1] is to sort these 2n+1 numbers so that

X[n+1] becomes the median (half of the numbers are less than'XO 5 and half

exceed XO 5). When 2n+1 is large or when our goal is to compute XO 5

minimal storage, the algorithm of Figure 5.3 is recommended; it inputs the

using

numbers X[11,X[2],... one at a time and saves as few as possible on its way
to finding the median. This algorithm can be shown (see exercise 5.3) to be
worst case optimal with respect to memory used, for computing the median of

2n+1 distinct numbers.

Fitting straight lines. The well-known least squares estimates

Z(Xi—i)(yi—Y)

a, = and a =Y - a i,
i
for the slope and intercept of a straight line Y = 2 + a1X can be rearranged
to
nZX. Y. - IX.IY. Y. - a, ZX.
a. = 11 171 and a = 1 171
1 2 ' 0 n

nix. - (zx.)2
1 1

This allows the computations to be performed with only one reading of the

input data

n,X1,X2,...,Xh,Y1,Y2,.;.,Yn
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instead of the two passes ordinarily required when n is too large to save

the input in storage. However, the input values must clearly be arranged

in ordered pairs:

-
NN =

N e
e

P

5d v oo
e

to minimigze storage. Ordering of input values in statistical programming to
minimize storage requirements is a common and important technique.
We now turn our attention to the optimal allocation of storage for

arrays, orthogonél lists, and tables.

Sparse matrices A commonly occurring matrix form is one in which many of the

elements are zero. Such a matrix is called gparse. One scheme for storing
the sparse matrix A[L1:N,1:N] uses three vectors I,J,S[1:K] so that every
nonzero element A[i,j] corresponds uniquely to some k (1<k<K) for which

Lkl =1 A Jlk] = j A slk] = Ali,51].

For example,

oM o o

O O O =

- o o o
o

could correspond to

Ikl Jlk] Slk]

k
1
2
3
L4

W & = -
LY S I g
=
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thereby saving N2 -~ 3K = h2-3><h = 4 locations.,

If the size N of the sparse matrix A is not large, then the storage
saved by the above scheme is not a compelling reason to treat A differently
from full matrices. But for large N and O(N) nonzero entries (typically, say
2 to 10 nonzero entries per row), the usual storage requirement of N2 can be
reduced by a factor of N in many instances. Such a savings may dictate

whether or not some problems can be attempted.

Pointer indexing. An array declaration "array JL1:N1;" in ALGOL causes

storage to be reserved for N elements J[11,J[2],...,J[N] of vector J. If

only selected elements
J[i1],J[12],...,J[in]
are stored, then it may save memory to use (index, element) pairs:

array i,Y¥[1:n];

i i3] Y[ 31 = JLil31]
1 3 JL3]

2 L7 JLhT]

3 51 J51]

n 300 J[3001]

More explicitly, when 2n < N the above "pointer indexing" scheme conserves
.memory. We have already discussed pointer indexing as applied to sparse
matrices. Contingency tables with impossible or empty entries can also be
stored efficiently using pointer indexing. For example, a contingency table

for the three variables

AGE = 1,2,...,100 years
SEX O(male), 1(female), 2(unknown)
INCOME = 0,1,2,...,1000000 dollars per year
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based upon a population of 10000 persons is best stored in the form of three

sequential vectors

i AGE[i] SEX[i] INCOMEL1 ]

1 30 1 7500
2 10 0 150
3 Lo 0 15000
10000 16 0 6000

because many of the 3 x 100 x 1000001 = 300000003 combinations of sex, age,
and income are either impossible (a two-year old earning one million

dollars) or unlikely (women with annual incomes above $ 10000).

Tables sharing memory. Two tables A[1],A[2],...,A[m] and B[ 11,B[2],...,B[n]

can be arranged to coexist in memory by growing toward each other

Al1] | AL2] cene Alm] | » <« Blnl | ... B[2].| B[11]

rather than having them kept in separate independently bounded areas. This

means replacing the ALGOL declarations and references

array A[1:m],B[1:n];

Ali] 1<iz<m
n

BLj] 1< <

with the following

array CL1:N1;

i

Ali] = cLi]
B[j1 = CLN-j+1]

C "overflows" when m+n > N.
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Such table sharing has great storage advantages when the subscript bounds m
and n fluctuate, but théir sum mtn never exceeds N. '

Symmetric matrices of order n x n such as

1 0 3 2 5 0
A={0 1 & , B=|5 7 6 , 0 =3
3 4 1 0 6 2

can be made to share memory

1 2 5 0 AC1,11 BC1,11 BL1,2] BL1,3]
7 6 | =1 Al2,1] Al2,2] B[2,2] B[2,3]
12 AL3,1] A[3,2] AL3,3]1 BL3,3]

= e

0
3
and thereby reduce storage requirements by
2
2n~ - n(n+1) = n(n-1)
elements. In general, we replace

array A,Bl1:n,1:n];
with
array CL1:n,1:n+1];

and use the definitions

Jc[i,j] if i o>

A[i:j] =
L ALj,i] if i < j
(cli,j+11 if i <
B[i,j] = ¢
| B[j,i1 ifi >
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Recursion depth. A "recursive solution" to a problem can offer clarity and

conciseness over the corresponding iterative solution. For example, compare
the recursive (Figure 5.5) versus iterative (Figure 5.6) solutions for tra-
versing a binary tree in postorder. With respect to a storage analysis, how-
ever, the recursive solution may be more difficult to snalyze, because the
"depth of recursion" must be determined. In the iterative program (Figure
5.6), stack A saves a maximum of n elements, whereas the recursive program
(Figure 5.5) has a maximum recursion depth of n, the maximum level of the
tree., Thus the iterative solution makes you explicitly save values in a
stack, while the recursive solution stacks automatically through recursive

procedure calls.

Packing. The packing of data into computer words is a standard machine/
assembly language technique. Because bit and/or byte manipulation is not
machine independent, ALGOL 60 is not an ideal language for expressing these
packing operations. However, it is possible to pack in ALGOL 60 by multi-
plying and dividing by appropriate powers of 2 or 10, thus saving storage.
It should be realized that X-8 ALGOL automatically packs Boolean arrays

so that 27 elements occupy one X-8 word (each truth value requires one bit).
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Figure 5.1. Program to save those input values (among n values read in)

which are positive in an array T.

real array T[1:2];
integer i,k,n; real X;
i:= k:= 03 n:= read; printtext ("n="); print (n);
for i:= i+1 while i < n do
begin X:= read;
if X > 0 then begin k:= k+1;
Tlk]:= X
end

end;
Figure 5.2. Program to compute the sample variance

N
(7 xiT? -

i=1

N
(¥ x0i1)?)
1=1

=1

1
N
from the N+1 input values

N,xC11,xL2],...,X[N]

using minimal storage.

integer i,N;
N:= read; printtext ("N="); print (N);
Squares:= Sum:= Q3 1:= 0;
for i:= i+1 while i < N do
begin X:= read;
Sum:= Sum + X3
Squares:= Squares + X x X

end;

Variance: = if N < 0 then O else (Squares-(SumxSum)/N)/N;
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Figure 5.3. Program to compute the sample median of 2n+1 distinct input

values, using minimal storage in a worst case analysis.

comment procedure "sort" arranges the N elements of array X in increasing

order: X[1] < x[2] < ... < X[N];

integer n,N,i; real array X[1:?]; real J;
n:= read; printtext ("n="); print (n);
if n > 0 then begin
i:= N:= 1; X[1]:= read;
for i:= i+1 while i <2 Xxn + 1 do
begin J:= read;
if J < X[N] Vv N < n then
begin if N < n then N:= N+1;
 XIN]:= 33
sort
end
end; ,
‘Median:= X[N] . .

end;
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Figure 5.5. Recursive procedure for traversing a tree in postorder.

procedure TRAVERSE(P); value P; integer P;

if P # 0O then begin TRAVERSE(LLINK(P));
VISIT(P);
TRAVERSE(RLINK(P))

end;

Figure 5.6. Tterative procedure for traversing a binary tree in postorder,

making use of an auxiliary stack A.

procedure TBTREE(T); value T; integer T;

begin integer P,1; integer array Al 1:n]; Boolean B;

P:=T; i:= 0; B:= true;
while B do if P # O then begin i:= i+1; Alil:= P;
P:= LLINK(P)
end
else if 1 # O then begin P:= A[i];
i:= i-1; VISIT(P);
P:= RLINK(P)
end
else B:= false;

end;
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EXERCISES

5.1.

5.2.

5.3.

5.4,

5.5.

5.6.

5.7.

Discuss input possibilities for sparse matrices and how to handle them
in MC-ALGOL 60.

Find a suitable small (N?4) sample such that equations (5.1) and (5.2)
give dramatically different results on a machine which uses only, say,

six significant digit arithmetic.
Analyze the storage requirements for the median program of Figure 5.3.

Find an algorithm to compute the sample correlation coefficient

N
) (X[i1-%)(Y[i1-%)

i=1

r =

N SX sY

.which i1s optimal in storage needed.

Modify the median program (Figure 5.3) so that it will also handle

samples of even size (2n) for which the median X equals the average

0.5
of the two middle observations.

A bank has computerized its savings accounts; in the computer progranm,
an array BL1:N] contains the balance of account number i (1<i<n) in
element BLi]. Initially, there were n = 1000 savings accounts;
experience predicts an 8% increase in the number of accounts each
year. If each array element requires one memory location and there

are N total memory locations available, how many years before the
bank's program overflows memory? In particular, how many years before
n > N = 20000 ?

Using the storage scheme described in this section, how sparse must

an N x N matrix be to save storage?
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5.9.

5.11.
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Give the explicit function evaluated by the recursive procedure:

integer procedure f(x); value x; integer x;

f:= if x = 1 then 1 else x + 2 + f(x=1);

What is the maximum recursion depth of this procedure for given x > 17
Write a nonrecursive version of this procedure and compare storage

analyses.

Design general purpose MC ALGOL procedures to handle packing/unpacking
of a Boolean vector B[ 1:n] stored 26 elements to an X-8 word, with

1 <> true and 0 +— false.

How can you estimate w(x), the number of primes < x, without computing
the primes up to x? Approximate ﬂ(105). Code the primes to 105 so that

they occupy less than 400 words of X~8 memory.

Write and storage analyze two ALGOL programs, one recursive and the
other non-recursive, to evaluate the highest (greatest) common divisor
of two positive integers, m and n. Use the test cases:

(m,n) = (10,30), (60,14), (50,231), (261,0), (0,27), (38,57).

Analyze an efficient storage scheme for handling double precision
symmetric matrices in ALGOL.

Same problem for hermitian matrices.
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SOLUTIONS

5.1. Have program initialize all elements to zero and then read in only
nonzero elements.
5.3. n+1 elements are saved in all cases.

5.6. n_= 1.08%n; n >N = g > N/mn _ In 20

£ k In 1.08 ~ .033: = ¥
5.7T. 3K < N2 = > 33 1/3% zero elements .
X
5.8. f(x) = ) ;2 = x(x+1)(2x+1)
i=1 6

Maximum recursion depth = Xx.

integer procedure f(X); value X; integer X;

fi= (Xx(X+1) x (2xX+1))/6;

Storage requirements:
(i) Recursive - X locations for procedure arguments.

(ii) Nonrectwrsive ~ 1 location for variable X.

5.10. w{x) ~ x/1n x as x =+
(10°) = 9592
Use packing or Boolean array B[ 1:9592] with

Blil = true iff i prime.

5.11. integer procedure HCD(n,m); value n,m; integer m,n;
HCD:= if m > n then HCD(m,n)

else if m = O then n
else HCD(m, remainder(n,m));

comment remainder(n,m) = remainder of n/m;

integer procedure Euclid(n,m); value n,m; integer n,m;

begin integer r;

if m > n then begin r:= m; m:= n; n:= r end;
for r:= remainder(n,m) while r # 0 do

begin m:= n; n:= ¥ end;
Euclid:= n

end;



5.12.

ok

(Note first if is not necessary.)

HCD(10,30) = HCD(30,10) = HCD(10,0) = 10.

A(double precision symmetric) = (most sig. \ least sig.)
*

H(complex) hermitian <> (HT) =H

H = (real part \ complex part)

H* = BY => H.. = real, H..=a + ib, H.. = a - ib.
ii ij Ji
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6. Measures of program performance

The aim of software engineering is, according to F.L. Bauer, "to obtain
economically software that is reliable and works efficiently on real
machines". In section 3 we considered software to be "reliable" when
accompanied by a correctness procf. In sections 4 (Frequency analysis) and
5 (Storage analysis) we investigated the two most important and common
aspects of software efficiency: running time and memory. However, there are
numerous other aspects (such as robustness, portability, ease of expression,
accuracy, and adaptability) of software which serve as measures of "good-
ness" or performance.

In order to provide some indication of an algorithm's merits relative
to existing algorithms in the field, in this section we will define (if only
through examples) some of these measures of performance and we will exhibit
the kinds of questions you should ask to evaluate them and to make compari-

"improved" when one aspect (time,

sons between them. Clearly, a program is
memory, portability, accuracy, etc.) is done better while nothing else
_deteriorates. The trouble is that there are usually tradeoffs between these
perfofmance aspects. When you use double-precision arithmetic to increase
precision, for instance, then running time increases. If you program in a
high-level language in order to improve the portability of your programs,
then you may lose the time efficiency of machine-dependent procedures.

Nevertheless, it is worthwhile to ask whether an algorithm offers
possibilities for improvement. Such a question'usually leads to the ques-
tion "What is best under what circumstances?" A library procedure should
surely meet high standards of performance, whereas with a novel, one-shot
problem one is more likely to settle for any program that works. Recall the
situation in section 2 where "best" for computing y= depended upon whether
division was allowed. In sorting, the number of comparisons is often used
to measure performance; but when records are large you may be concerned
more with minimizing interchanges than comparisons.

Absolute measures of performance are fine when available ("procedure
sqrt computes the square root correctly to six significant digits") but
comparative (benchmark) measures of performance are more common ("with a

sample of student jobs, QUICKTRAN compiled an average of 60% faster than
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FORTRAN version 6"). Indeed, strict theoretical bounds on performance may
be over-pessimistic compared to actual practical performance. That theore-
ticians are always constructing weird counterexamples to prove that some
algorithm is either not constructable or else not efficient in the general
case has led Van der Poel to exclaim: "nearly all interesting problems of
practical value are unsolvable!"

Before some measures of program performance are defined and discussed,
I want to make several disclaimers: The following list of performance
aspects is not complete nor detailed. For example, Sammet (1971) and
Van der Poel (1972) study the problems of measuring and comparing program-
ming languages in far more depth than I would even attempt here. Further,

my condensed descriptions such as "robustness" and "ease of expression" are

not necessarily standard terminology and are difficult to define rigorously.

Robustness; This is a measure of program stability, i.e. "how does the
program behave under different data?" Suppose that a library procedure is
advertised to solve a guadratic equation. Then it would be robust if it
could handle the case of complex (imaginary) roots. Perhaps the procedure
only complains (with an error message) rather than processes an eguation
with complex roots, but even this compiaining is better than trying to
divide by zero or outputting nonsense.

A statistical program (such as an analysis ofvvariance procedure ) that
can cope with missing data (unbalanced ANOVA designs) would be termed
"robust". A least squares procedure which handles nonlinear equations and
a regression analysis program that will seek "the best stepwise fit" are
also robust programs.

"Adaptability" is another measure of program performance to be covered
later; it is mentioned here because it is closely related to robustness.
Whether, for example, a program that permits transformation of the data
should be called more robust (stable) or more adaptable (general) is an
open, but rather academic, question.

Once again, by "robustness" we mean the stability of an algorithm. The
question to ask is: How does this algorithm perform on problems harder or
different than those for which the results are guaranteed good? A numerical

&
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integration technique with "graceful degradation" on problems containing

singularities would qualify as robust.

Portability. This is a measure of the transferability of a program, i.e.
"Will the program run on another machine?" Suppose a program is written in
COBOL, a relatively machine-independent language. Can you then "easily"
transport that program from a CDC 6000 computer to an IBM 360/65 computer?
If the answer is yes, than that program would be called portable.

A language which is precisely defined, and for which translators exist
that conform to the language specifications, is a great asset for producing
portable software. Until recently, "FORTRAN" stood for a variety of languages
on a variety of machines. Hence portability was a serious problem for
FORTRAN users. Kahan (1971) documents the silly variability between FORTRAN

compilers; for example, the two statements

X =1.0 + 3/2

Y = 1.0 + (3/2)

i

sometimes yield two different results (namely X becomes 2.50, while Y equals
2.00).

The precision of a language's definition (ALGOL 68 and PL/1 are "well-
defined" languages in my opinion) and the conformity of a language compiler
to its specifications greatly influence portability. The United States Navy
has a COBOL certifier; any compiler that successfully compiles and runs
this collection of test programs is certified as a "COBOL compiler".

Portability has obvious tradeoffs with running time. That is why
random number generators are usually coded in machine language, i.e. for
the sake of speed, portability is ignored. When portability is not ignored,
language and/or machine dependence must be avoided. Identical plot proce-
dures for the printer, pen plotter, and cathode ray tube permit portability
between plotting devices.

To discuss repeating a program on the same machine leads to related
considerations of "reliability" (mentioned later). |

In review, by "portability" we mean the transferability of a program.

Questions are: Is this program machine dependent? Can I easily repeat the
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program using the same computer, a different machine, a different program

library, anocther compiler, etc.?

Ease of expression. When stating an algorithm in a programming language, the

economy and clarity of representation are relevant. Questions are: Are long
mnemonic identifiers possible? Is recursion available? Can I define new
operators? Does the language include graphical output and generalized input?
For array arithmetic must I program loops or is explicit evaluation (as in
API\360) permitted? And so on.

Whether a certain notation is "clearer" can be debatable. Take recur-

sion for example. A procedure in ALGOL 60

real procedure SUM(A,n); array A; integer n;

to compute .§1 Ai can be written iteratively
i=
begin integef i; real S;
S:= Al 1],
for i:= 2 step 1 until n do
S:=8 + A[i];
SUM:= S

end;
or else recursively
SUM:= if n=1 then A[n] else Aln] + SUM(A,n-1);

and until you learn to "think recursively", the iterative statement may seem
clearer. Because FORTRAN does not allow recursion, FORTRAN programmers often
fail to realize the elegant possibilities in a recursive algorithm. The lack
of compound statements in FORTRAN means that the FORTRAN programmer must
constantly use goto's, an undesirable statement for structured programming.

See the solution to exercise 2.9 for a recursive definition of an
operator in ALGOL 68.

There exist programming languages which permit easier expression of a

certain class of problems. For examples, SNOBOL for string manipulation,
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LISP for list processing, APL for array operations, and COGO for plane
~ geometry computations in surveying.

Default options can help you to write fewer marks. PL/1 is designed
around default options and although ALGOL 68 is the opposite of a typeless
language, it also includes default options in, for example, the for state-
ment ("by 1", "while true", etc. can be omitted).

Good documentation as well as custom designed punched-cards/printer-
paper make program preparation easier.

We mention the possibility of replacing a difficult analytic solution
to a problem with a simulation (Monte Carlo) study. The birthday problem in
exercise 6.6 is easier to simulate than to derive and compute the analytic
formula.

In conclusion, "ease of expression" is often a debatable performance
aspect in programming. Some people think English (such as used in COBOL)
allows clearest expression of computer algorithms, while the other extreme
is (perhaps) the APL\360 programmer who delights in producing the "one-

liner":
0.05x+/(*=X)#14XxX<0.1%,(1110)e.=0.5x1+ 1 ~1 x3% 0.5
to evaluate by quadrature the integral:

5 -

J e Fax
0 1+x

Accuracy. Rounding and/or truncation, coupled with the finite representation
of real numbers, in a computer lead to accuracy questions., For on a computer
it ig possible to have A+B = A even though B does not equal zero. Nor does
the associative law, (A+B) + C = A + (B+C), always hold. When one computes

30! as
30« 29 *x 28 % ,,, * 3% 2 % 1]
or as

1* 2% 3% L *x .., % 28 %29 % 30
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on a computer, the answers differ (assuming eight-significant digit arith-
metic with rounding after multiplication) by 1O2h.

Another source of accuracy problems is error introduced by using
approximate rather than exact data. In some problems a very slight change
in the data produces a major shift in the output. For example, the system

of simultaneous linear equations

]
-—

2X -y

i
\b]

2.001x - ¥y

has exact solution x = 1000, y = 1999. But a 0.05% change in the x coeffi-
cient. of equation two (2.0010 becomes 2.0000) makes the system insolvable!
And a 0.1% change (2.0010 becomes 1.9990) produces the solution x = -1000,
y = -2001. Thus input must be accurate to avoid such instability.

Kahan (1971) gives numerous examples of serious troubles with existing
FORTRAN and PL/1 dialects that stem from round-off, real number represen-
tations, overflow, and so forth.

An error message such as "Negative argument for square root" often
actually means '"To machine accuracy, matrix A at line 96 is not positive
definite". The latter message is preferred because it pinpoints the real
problem in the matrix inversion procedure.

Besides being aware of pitfalls in computation (Forsythe 1970) in order
to select the best algorithm (See, for instance, the paper by Young and
Cramer on choosing sum and sum-of-product algorithms), one must constantly
be alert to éccuracy situations that are potentially dangerous. As an
example, when writing a foreign currency conversion program you should ask
what would happen if there were a "small accuracy bug" in it. Big troubles
can grow from little errors.

To be safer, multiple precision or interval arithmetic can be employed.
They give more accurate results at the expense of time and memory.

If you never question the accuracy of your computer output, you de-

serve the nonsense you will sometimes get ...

Reliability. This is a measure of the protection a program has against

operator, machine, program, and user failures. As always, & program is as
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reliable as its input, so input should always be verified. Similarly, cal-
culations may be purposely duplicated to insure reliability (e.g. after
computing c:= atb, the product cxb can be compared to a). Elaborate internal
checks are mandatory in critical situations such as real-time space flights
controlled by computers.

Maintaining the integrity of data structures is a key problem nowadays.

Consider the typical newspaper report (Computerworld, vol. V, no. 52,

page 11):

"Computer tampering was sald to have been necessary in the
theft of 217 Penn. Central Railroad boxcars. The cars were
discovered on the tracks and yards of a tiny Illinois rail-
road. According to attorneys, someone 'had to put the fix'
on the Penn Central's computers to shuttle the boxcars to

the railroad and to 'make them disappear'."

Security against run-time errors will be provided by a good programming
system in the forms of subscript range checking, mismatched parameter-
argument values checking, exceptional arithmetic conditions checking, parity
checking, and more,

When evaluating the reliagbility of a software system, always assume the
worst will happen: operator drops program deck, card reader shuffles input,
user submits wrong input tape (header labels help eliminate this error),

control cards mispunched, etec.

Adaptability. This measures the generality of a program, i.e. "what is the

effect of a slight problem change?"

Changes in data types (real to complex, vector to matrix; single
precision to multiple precision) after the initial program is running,
happen so frequently that it should be anticipated. Use parameters for
array bounds, constants, etc. instead of fixed constants that are suitable
only to the current situation. Use a language which allows complex arith-
metic, multiple precision, ete. without great changes to the program.

A good programmer appreciates how problem statements tend to change

drastically each time the program appears to be "near completion". A general

&

o TISEH  CENTAUM
cWEEK  MATHEMAT!
L AMSTERDAS
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program will be more easily adapted to such changes.

Closing remarks. We have now completed our considerations of the important
guestions of performance for a computer program. Through measurements of
performance and computational efficiency, significant savings in computa-
tional effort can be achieved. However, for the user who will not take the
time and trouble to search out the "best" program, the above techniques for
evaluating performance characteristics of proposed computer algorithms will
be of no value. Only a responsible user who questions the wvalidity of the
output and the efficiency of the processing will demand and compare ana-

lyzed computer programs. Quality scientific software will only become

available when both programmers and users begin to worry about the analysis

of computer programs.

&
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EXERCISES

6.1.

6.2.

6.3.

6.4,

6.5.

6.6.

6.7.

Construct and analyse a program which reads in temperatures in either
degrees Fahrenheit or degrees Centigrade and outputs the temperature

in the opposite scale.

In many matrix applications, such as the solution of simultaneous
equations, it 1s required to check whether or not the matrix is sym-
metriec, i.e. whether or not Ali,j] = A[j,i] for all i and j. Construct

and analyse an algorithm to check an nxn matrix A for symmetry.

A program uses G + M storage locations and runs in approximately
A/M + B time units. Choose M which gives the optimum product of space

times time.

Suppose that airplane Pi has identifying number i and coordinates
(xi,yi,zi) for i = 1,2,...,n. Construct and analyze a program which

checks for a specified safe minimum distance, Dmin, between planes.

An output procedure used 2989 digits to number the pages of printed

output. How many pages were output?

In a room containing n persons let Qn be the probability that there

are two or more persons with the same birthday. It can be shown that

3651
(365-n)! 365"

Qn = 1 - forn = 0,1,2,...,365.

Compute and tabulate (or plot) Qn versus n for n = 0(1)100.

Estimation of the sigze of an animal population from recapture data.

Suppose that n, fish caught in a lake are marked by red spots and

1
released. After a while a new catch of r fish is made, and it is found
that k among them have red spots. We are interested in estimating the
number n of fish in the lake. If qk(n) equals the probability that the

second catch contains exactly k red fish, then



6.8.

6.9.

6.10.

104

5 &)

k n1—k a atl
(n) = = were () = GRSy
)
1
For n, = r = 1000 and k = 100 find the particular value of n for

1
which qk(n) attains its largest value, since for that n our observa-

tions (100 red fish among the second sample of 1000 fish) would have
the greatest probability.

This value is called the maximum likelihood estimate of n.

An asymptotic approximation (for large n) to n! is given by Stirling's

formula:
1
n+z; -n
n'! ~/2rn % e .

How accurate is Stirling's formula?

A programmer claims that the birthday probability Qn in problem 6.6

above seems to be approximately equal to

~ n(n-1)

Qn T30

Do you agree?

How many different bridge hands can a bridge player obtain? How many
ways can a bridge deck be dealt into four hands (North, West, South,
and East)? (Hint: Use logarithms).

An accident assurance company finds that 0.001 of the population of
Amsterdam auto owners drive their car into a canal each year. Assuming
that the company has insured 10,000 Amsterdammers who own autos and who
were selected at random, compute the probability that not more than 3
of the company's policyholders will drive into some canal in a given

year:

3
) (E) pk(1—p)n-k, where p = 10_3 and n = 10u.
k=



6.12.

6.15.
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KIM airline finds that 4 percent of the persons making reservations
on the Amsterdam-to-London flight will not show up for the flight. If
their policy is to sell to 75 persons reserved seats on a plane that
has exactly T3 seats, then compute the probability that there will be

a seat to London for every person who shows up:

T3
) (i) pk(1—]p)n k, where p = 0.96 and n = T5.
k=0

n
(Hint: Use the binomial formula, (a+b)® = Z (i) akbn—k .)

k=0
Let Qk be the probability that in a group of 500 people (chosen at
random) exactly k will have birthday on April 25. Clearly

(n

k) pk(1-p)n_k, where n = 500 and p = L

365 °

Q’k=

The Poisson approximation to the binomial probability Qk is

k

A %T', where A = np.

% Ve
Compute and compare these formulas for k = 0(1)n.

Congider a Guilder-tossing situation with constant probability p
(0<p<1) for Queen Juliana's head. Let x, = 1 (0) indicate that the
Queen's head did (did not) occur on the i-th toss. Thus the probabil-

ity (likelihood) for an ordered sample of size 100 is:

Prob{(x1,x2,...,x1oo)} = px1(1—p)1_X1 - px100(1—p)1-X1OO
for x, = 0 or 1 (12iz100).
100
Iir .z X, = 47 was observed, compute the maximum likelihood estimate
of ;T1

Same problem as 6.14, except now order is not important but you

are interested in:
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H100 = total number of heads in 100 tosses.

100 h 100-~h .

() p (1-p) , if h=0,1,...,100
Prob{HmO = h} =

0, otherwise.

Compute the maximum likelihood estimate of p when h = L7 is observed.

Two persons, "You" and "Me", have initial (prior) opinions about the

parameter:
t = Average temperature in Centigrade at the exact North Pole.
These prior probabilities are:

You: t is Normal (mean -9, precision 1/36)
Me : t is Normal (mean 3, precision 1/4)

Remember that "x is Normal (mean p, precision p)" means x has the

probability density function

-\ 2
1 “%(EEE)

= V-2
0;2ﬂ e 2m €

- %(x—u)2

when the precision p eguals 15-, the reciprocal of the variance.
‘ o}

Four different normally distributed samples of size n are drawn to

better determine t:

Sample n sample mean X sample precision 15
s
1 0,1 1/4
2 0,06 1
3 9 0,001 9/h
L 16 0 L
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Tt can be shown (by Bayes' theorem) that after such a sample is drawn,

"You" must have a normally distributed posterior opinion with:

posterior mean = weighted mean of the datum value and the prior mean,

weighted with their precisions.

(-9)(3z) + :2(—18—2-)

1 1
=z) + (%)
36 S2
posterior precision = prior precision + datum precision
Similarly for "Me".
Compute and plot the four posterior opinions (corresponding to each of

the L4 samples) for both You and Me. For example, before the first
sample is observed, the plot would be:

2 4+ Me

O -4 —-=14+ 0
>
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6.17. The least squares straight line, y = mx + b, which fits the data:

i v X,

1 9.12 2000
2 20.44 Looo
3 32.47 6000
b 46.15 8000
5 55.82 10000
6 70.40 12000

consists of that slope m and intercept b which minimize the quantity:

10

2
.Z [yi - (mxi"'b)] .

i=1

Compute and plot this least squares line. How good doeg it fit the

data?

A soccer star's picture is enclosed in each packet of cigarettes you

buy. How many packets must you buy before you complete a set of ten

pictures? Do a simulation first; then try to derive an analytic

formula.



109

SOLUTIONS

6.3. Time t = A/M + B
Space s = G + M
Minimise £ = ts = AC/M + A + BG + BM with respect to M.

£, =B - AG/M® = 0 — M° = AG/B.

6.5. Preliminary estimate: 999 pages needs
99 + 2 x 90 + 3 x 900 = 2889 pages.
Thus, for y pages,

2889 + 4 x (y-999) = 2989

Ly = 102k,

6.6. See ALGOL program and plotter output on following pages.
n,r

6.7. The largest integer less than —%— . In this case, 9999.

6.8. The percentage error decreases steadily and Stirling's approximation

is remarkably accurate even for small n:

n nt Stirling's formula % _error
1 1 0.9221 8
2 2 1.919 L
5 120 118.019 2
10 3628800 3598600 0.8
100 * * 0.08

6.9. Yes, for n = 0,1,...,20.

2
2

524,394,26,,13y _ _521 18
(33 (2 (NG) -({—3!-)1; 5.36 x 10

6.10. (? ) = 635,013,559,600.
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6.11. 0.010

6.12.

6.13.

75
Compute 1 - ) (;5) 0.96k O.O’-LTS—k

k=Th
k Qk Poisson approximation
0 0.2537 0.2541
1 0.3L48k4 0.3481
2 0.2388 0.2385
3 0.1089 0.1089
h 0.0372 0.0373
5 0.0101 0.0102
6 0.0023 0.0023

A1l errors are in the fourth decimal place.

6.1k, 0.47

6.15. Same as 6.14, that is h/100 = 0.h47.

6.16. See ALGOL program and plotter output on following pages.
6.17. m = 0.006089 and b = 3.556.

integer procedure random;

comment Produces a pseudo-random digit from 0 to 9;

for i:= 0 step 1 until 9 do ALil:= 0;

r:= 0; comment r = number of different cards so far;
for c:= 1, c+1 while r <9 do
begin i:= random;
if A[i] = O then begin r:= r+i;
Alil:= 1
end
end;

print(c); comment ¢ = total number of cards;

You may also compute the waiting time, w, for each card.

&

Then
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E[wi] = 10/(11-1)
Var[wi] = 1O(i—1)/(11—i)2.

Total mean waiting time ®» 29,3 (variance 125.7).

The analytic formula involves the negative biqomial distribution.
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3 L PROGRAM BY JACK ALANEM, MC EXT, 3a, 21 APRIL 1972, TO SOLVE THE TWO PROBABILITY PROBLEMS! o
q » 1. iN A RCoM CONTAINING ¥ PERSONS LET ©K BE THE PROBABILITY THAT THERE ARE TWo OR MORE PERSONS WITH THE SANE @
» EIRTHDAY, NCW ®
(4 “* »
7 e OK = 2 - (1 = 17365)%(1 = 2/36b)e ,,, #(1 » (K=1)7365) FOR K81,2,,,. 365, @
] * . .. R ' ®
4 @ COMPUTE ahD PLOT QK VERSUS K -POR  Ksi(1)N, [

1u o 2, THE pROBLBILITY (IN PROBLEM 1 1§ SUPPOSED TO APPROXIMATELY EQUAL K#(K~1)/730, DO YOU AGREE? »
i * hd
1? LR A2 L 2 X Y P R Ry R Ry Y R ey s e L e T Ty Y T R Y Y A A R LY RSN R PR ST RS A2 2 R A )

1 YCONMENTY EAaS1C STRUCTURE OF THIS PROGRAM 1§

19 . LREAD IN INPUT (N},

1¢ PRINT READYNGS.,

17 . 'FCR® Ki®g 'STEP' 1 'UNTIL' N 'DO' 'BEGIN!

i3 COMPUTE QK.

iv . L . ) L ; PRINT K=TH LINE,

2l "ENDY, =

21 . PLCT PROBABILITIES, N

2% STCP,

23 ’

P

£, VINTEGER! I

a¢ .

27 . _YCOPMENT' BASIC PRGCEDURE FOR PRINTLR aUTPUT;

2t YPROCEDURE! CUT(STRINS,NAME); 'STRING' STRING;

ey  UVBEGINM' NLER; PRINTTEXT(STRING); PRINTTEXT(" = "}j PRINT{NAME) 'END'}

3 .

51

Se READ INTIRPUTE " NIzREADS QUT(uMAX NUMBER UF SEOPLE [N ROOM zN®,N);

53 o CVIFY qey oTHENT Ni=0 'ELSEY 0 IFY N>3IOS 'THEN' Ni=365;

34 :

3% THEGINT  "REAL' rARRAY' QK[1iN]; 'YREAL' TERN;

8t

37 L VCONHENT Y PARA”ETER; TO PLOT PROQCEDURE] .

36 tINTEGER' 1 ,MaRK,DELTAMARK, MODE.%AXX.MaxY,K.

39 'REAL! XMON XAX, DX, YHIN, YMAX, DY

49

41 . . .

42 PRINT HEADINGS?

43 L

G4 NLCR S

a5 o SPACE(3);

%0 PRINTTEXT("K")}

+7 N o CSPACE(2) .

48 PRINTTEXT("QK21~365FAC/ ((J65«K)FACaJOS#wK) M)}

49 SPACE(2) 3

50 . e e KT (AR SK# (K=1) /750§

51 SPACE(2); - ) N

52 e TPRINTTEXT{"RELATIVE PERCENT RRROR")}

54"
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Bt COMPUTE K3 ; "COMMENT' Qi=(0=zle=(l~(1-1)/355).
ot 4281 /7865=21-(1-1/365)
27 . e d321la(l=1/365)8(1=27565) .
o0 e
A . . WKELw(la1/365)0(1=2/7365)%, . ,2(1-(K=1)/365)3
o .
wl .
e TERMI=1; :
o L 'FOR' xizq "STEP' 1 PUNTIL! 4 'DO' 'BEGIN' TERMIZTERMa(1=(K«1)7365)5 QKIK]1=4=-TERM)}
G4 PRINT K TH LINES ABSFIXT(3,0,K)}
o . : . SPACE(3) 3
ou ABSFIXT(2,11,0K[{K])}
67 ) SPACE(15);
oL ABSFIXT(2,11,K#(K=1)7730)}
o } . . SPACE(3):
’ ’ R ' o ) FIXT(2+11,100# (0K IK]=K#(K=1)/730)/7QKIK])}
73 . IRV I o S NLCR3
72 TEND Y}
74 PLOT PROBASILITIES: . .
7t . PTCOMMENTY PLOT  X[1] = 1| VERSUS Y([}I) = QK(1] FOR {=3(1)4, SEE PLOT PROCEDURE WRITEUP IN LR1,1, SECTICN J,6,2,2»
7¢ ’ PAGES 4=19 AND 4w2n, APRIL 1971;
Y
’t MARK =53 'COMMENT' SYMBOIL (8) NUMBER 139 IN TABLE 6,3.2;
7% . s DELTAMARK 1213
gt MODE 200663
41 ) . XAIN1z03
de ’ XMAX 2100
35 Dxis1y3
44 MaAXX1=3009;5
3z o YIINS 20,03
& YMAX121,0}
37 e Dy:=zd,2;.
32 MAXY$22509;
3y
J07
91 PLOTPICTUREC,QK{1),1,N3
92 ’ MARK,BDELTAMARK, MADE,
v3 ’ XMIN, XMAX, DX, MAXY ,
Va4 Nuwwad> NUMBER OF PERSONS ‘ PROGRAM OF JAGK ALANEN 21 APRIL 4978
vo YMIN,YMAX, DY) MAXY,
96 . HPROBABILITY 1 wwed 11391 PEPINED BY 1S3INz21=(IS5FAC/(365.N)FACK365L69LN)Y,
97 PLCTLINE)
PA ’ . .
99 'coMv InT? PLCT (ON TOP OF PREVIOUS GRAPH) x[ilat VERSUS YI[{] = 1%(1=21)/730 POR 1=1(1)N}
agu '
L0 MARK: 263 'COMMENT! SYMBUL 140 (Y) IN TABLE 6,5,2
TR MIDE:=2066;
NI ~ ) PLOTPICTURE(I,"IF* 1a(1=1)/730 > 1 *'THEN' 4 'gLSE’' [#{121)/730,!,N,
g4 WARK, DELTAMARK, MYDE, :
iy XMIN, XMAX, DX, MAXY,
::uo nn'
297 ) . YREN, YMAK, DY, HAXY,
Jub "PROBABILITY 2 wae> 211401 DEFINED BY 193N 21224 N#(N=1)/730%,
LY . PLCTLINE);
13U

€L

111 o , .
sie YEND ! ’ .
113 TEND Y .



0800572-064

MAX NumbER OF "PEOPLE
ARIL=305FACY ((JHH=KIFACKIO6I#uK)

CEND Y &GN A

W ¥296v.1 JACKALANEN

LU0 ngng
(06273972503
WJBe0416TH3
01685591267
V2713857370
L04043743705
LU5%23570309
7433529035
LUP462333389
LILRERBLTT7L
1411313795382
16742473883
194494027523
.22313254.z00
292931319076
L 28343400528
L31503756529
84691141787
L3711 E52503
LA15630333568
L4d363F336516
47509530708
OB T72723432
2224444258791
o0deN%70397

V08d9OR33748
JTLRILER4D7
78945493373
AD304732705
77497385417
79551636462
81453323587
283213710538
L843/734303¢%
LB04us732108
87321966437
. 861231309982
WJi3315161148
F140304715¢
92392235566
SIE253536858
, 94097589947
94825234237

V9947744462383

96359797 256A
96577960032
P708735795¢8
97343199758
97800450033
98113811346
.98387.656276

T, 985262260H2

98833235446
99012245954

IN ROOM

=N

+100

CK=?sKe(K-1)/7730

L00C0egn0nue
00273572543
.008219173u8
01643835516
2027397261927
04109589947
L05753424458
07671232477
.09863(13899
L12328767123
L15068493151
18082191761
21369663114
249312436749
JEB7671232uB
W32R76712329
V37260273973
41917508219
4684931508
5209479451
5753446575
JE3287871703
693150684y
+756164383b6
621917804922
8904109590
GR1645B3507

L.03561¢43856

1.,21232676712
Le19278uB2192
L.27397:60274
1,35890410949
1.446575354247
1.536986301357
1.6301309835¢
1,72602739726
1.8624657934¢%
1.,92602739726
2,0630136985630
2,1389808C107
2.246575541347
2.358904104909
2.47397¢060274
2.59.78{8z1v2
2.71232676742
2,E£3561643R¢hH
2,96264583%02
3.09n4109%90
2,02191780822
3,356164.58356
3.493150068493
3.,63287471753
3.77534246%75

3,02054794321

4,06849315%708
4,21917808219
4,37260273973

RELATIVE PERCENT ERROR
*,1776646197514,+629

=, 00000000143
-, 18298262236
=-.50406052719
«,90436721133
~1.,56541741016
~2,30910864437
-3,19772256608
-4,23392599438
~5,4¢077153257
-6,76169759299
~8,20052774595
-9,9214688553%
®11,74910863431
=13,74841109909
=15,92471093532
«18,208370569058
-20,88144589639
«23,5/432267716
-26.51905266536
w29 67265987306
~33,0424543(551
»36,65600706542
~-40,46112175367
“44,52580204533
-48,88821513614
-53,4U665167250
=58,28¢48118015
~63.34510420199
«68,7819007869%
«74,40817593818
. =80,38210246328
~86.66166192677
«93,25458430835
=, 1001682879126+
», 1074096185008+
-, 1149857925551 v+
=, 1229023405650u*
-, 1312650568387+
«, 1397789528866+
-,1487484176415,+
=, 158U7718484010¢+
-, 1677683085331+
=, 1778241474559+
~,188¢4€35877111
=, 199%UZ59014475,+
-, 2101930494604+
=.2217174141684u+
-, 2330079760071+
=, 2458631246965+
-, 2584607055425+
-, 2714580738284 ¢
-, 2847921524872+
-, 2984794942462
w, 3125163454800

L. », 326898710877 2u%

©,341022417355%n¢

L2 Ol Gl . Gl G L K G Gl G G Gk G G G Kl O 00 G G G G

07

Ll



05U272~384

5%
DY
64
61
€2
5%
64
62
6o
67
én

3

7y
71
72
7%
/4

135)

87

8y

HO
G
9y
K’) é

G
Q@

Qn
Qy

ifu

=

D £29:v,1 JACKALANEN

,99166437639
0023644042
99412¢66087
LO050GE706EY,
L99890G85749¢(
WIBEYETREBT
LA97190647807
LHOT7683106731
JIYBR9BT NG
90344106098
.99372630105
LA T TN YR
Y99:15957506
LIYISQTBILE
JIYIEELAREA
L 99958 RENREE
99924 Lacan
99971682117
PYITTTLITAN
LIYIERLTT7GPA
999 GUUSanE
L999¢ 960840
.992914352 95
JIVYOY3I2RirAD,
L9409 RTYR G
IE9CHLALTHY
LYSRVRBUEDLY
LYEQETEGT S
V90968 INGLYY
L IS9UERGZ Ay
L9699 aniena?
90T HE AT
OEPLOTHEN 6
L9 9B SAs D
L9809 0652,73
,949297 39769
LYEGUGENGITS
949 0EDH L7
L9 90T g0
L 94979¢23505
LICGUILADRTAS
94929657340
96396640075

4,52876712329
4,68767123%7
4 ,8493151u6%50
5.013%696483 114
5,1R082.,717081,
5,.3%0484931b1
5,523287871¢3
5.,6986303135y8
S.,87671232177
6.05753424447
6,241094%89141
6.4273974610g8
6,61643685314
6,80821917%u8
7.002739725u3
7.200004009u0
7,40000490040

7.60273972%5u3

7.80821%17%u8
8,016435555816
€.22739726027
8.,44109089140
8.6575342454%8
8,87671:82377
$,05843,135v8
©.32228767143
9.550684931u1
9,78B082.917b1
10.013694639%:4
10.249215106349

10.4B7672223207 .

10.728767125¢9

C10.97260573973

11.219174082,9

L 11.46B49515908
11,7205479451,

11.,97534.46%75
12,23287671203
12.49315u684y2
12,75616438357
13.02191780822
13.290420958y0

- 13.56164383502

®, 3556834760136+
=, 3720766409201 4%
w 3877984638512+
« 4038443436575+
=, 4202100721497+
=, 4368915692340+
=, 4538849184508«
w, 4741863912712
«, 4887928676407+
-, 5066998503483+
-.5249054741180n*
= ,5434065098707 1+
«,562200364719150%
=, 5812846782617+
-, 6006573157832+
=,6205163589425,0%
«, 6402600944964+
-, 8604870016100+
» 6809957382083
«, 7017851267988u+
-, 7228541401261+
», 7442013669864+
-, 7658275984200
=,7877306145020w+
=, 8099103718745+
»,8325663921254u+
«,855U982710626:+
«-, 8781056689322+
-, 9013863015558+
«,924Y459325550:0+
«,948377B3660162iu+
- 9720854406020+
«,9972670239685 0+
=,1022.923008109,0+
o,104068533052864+
=, 1072057844575+

=, 109/536568202:+

-, 4128289432559 ,+
=, 1149316399414,
w0, 1179617430650+
=,1202192534334,5+
=,1229041656215u+
«,1256164B00242,+
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YBEGINT 1COMMENT

CENOWM DR

D 2296V.014 DEJONG 1

» DE JONG, T1000, R250, P1000

<PROSBLEM 3 IN STATIST)C, THREF OF JACK ALANEN,
<D.D. 4 MAY 1972

<COMPUTE BY BENJAMIN DE JONG

<THE PROBLEM: ’

<TWO PERSONS, 'YOU' AND 'ME' 4AVE IN|TAL(PRIOR)

<OPiNIONS ABOUT THE PARAMEYER:

<T= AVERAGE TEMPERATURE IN CENTIGRADE AT THE
<EXACT NORTH POLE

<THE TWO. PRIOR PROBABILITIES ARE!

<YOU?! T iS NORMAL(MEAN =9,pRECISION 1/36)
<MET T 'S NORMAL(MEAN 3,PRECISION 174 )
<THEN WE MAD FOUR TESTING SAMPLES

<AND WE CHANCHING AFTER EACH SAMPLE THE MEAN
<AND THE PRECISION (BY BAYES' THEOREM)

<FOR THE MEAN WE NEED THE FORMULA:

<{OLD MEAN®#OLD PRECTISION+SuMPI.E MEAN#SAMPLE
<PRECISION)/{OLD PREC!S!ON#SAMPLE PRECISION)
<FOR THE PRECISHION WE NEED ThHE FORMULAG

<O0LD PRECISION # SAMPLE PRECISION

N .
AAAAAAAAAARNAAAAAAARAAAANAAAAAARRAARAAANANAANAANAA

>
>

VYVVVVYVVYVYVVVYVVVYVVY

<WE PLOT THESE FIVE OPINIONS WHICH NEEDING THE >

<FORMULAIPLOTP{CTURE WHICH PROCEDOURE 1S DESCR! >

<BED IN LR 1.3 SECTION 4.6,2,9,.

<FOR THE FUNCTION WE NEEDS

<DENSITY FUNCTION = SQRT(PRECISION/(24P1))a
<EXP(={PRECISION/2)# (X=MEAN) % 2)

>
>
»
?

VVVVUVYYVNV VYUV VRV VYN YV VN LS YUYV YV YRV Y VYV Y Vv Uy Y Y Y

>

N .
YREAL' YOUMEAN, YOUPRECISIONs MEMEAN, MEPRECISION, SAMPLEMEAN,
SAMPLEPRECISION, CLDMEAN: OLDPRECISION, Pi,N; .
'INTEGER! NUMBER, X, 2, XK;

TREAL Y tARRAY+ NN,SAMPLEM,SAMPLEP(1:4]):
'BOOLEAN' CHECK}S

'COMMENT* AT FIRST WE READ THE PRIOR PROBABILITIES;

YOUMEANI= READ;
YOUPRECISIoNtz READ];
MEMEANI® READS
MEPRECISICON!= READ;
Pili= 3,1415926535808;
CHECK:= 'TRUE';

'BEGINY

"PROCEDURE' OUTPUT(MEAN, PRECISION)] 'ValUE' MEAN, PRECISION?

1REAL! MEAN, PRECISION;
YBEGIN'
YIFY Z 'DIVY 2 s 2 5 Z 'THEN!'
*BEGINY SPACE(1)s ABSFIXT(2,0,N);
SPACE(3); FIXT(1,6,MEAN);
SPACE(2); FixXT(2,10,PRECISION)}
SPACE(80-PRINTPOS)! FIXT(1,6,MEAN - OLDMEAN);
SPACE(2); FIXT(2,10,PREC|SION = OLOPRECISION);
"CARRIAGE(D)}} 232 Z + 1 - C :

Lt
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26
57
1.}
29
o0
61
62
63,
64
6%
66
67
68
69
70
71
72
73
/4
75
76
77
/78
/9
80
81
82
83
84
.85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
iy
il
U2
103
104
1Y
1u6
47
Lu8
1u9
310
111
112
113
114
115

0 2296V.014 DEJONG . 2

tEND!
'ELSE!
*BEGINY

YEND Y

SPACE(37)3 FIXT(1,6,MEAN}
SPACE(2); FIxT(2,10,PRECISION)}

SPACE(113 =~ PRINTPOS); FiXT(1,6.MEAN = OLDMEAN)S
SPACE(2); FIXT(2,40,PRECISION = OLDPRECISION);

NLCR} Zzi= Z .+ 1

YEND! OUTPUT;

*PROCEDURE' DRAW(X,Y,1)s 'VALUE' X, Y, i} 'REAL' X,

Y3

' INTEGER?

[

VBEGIN' fCOMMENT! FOR THE PROCEDURES NEED N THIS PROCEDURE LOOKED
AT LR 1.1 -SECTION 4,6,1.1, 4,6.,1,3: 4,6.1.4,

4,6.2,43
YIFY 1 <« 2 '"THEN!
tBEGINY pLOT(YOUMEAN, 0, 2);
PLOT(YOUMEAN,;1.5,4);
SHAPE(D, 42, 0); .
COORD (YCUMEAN=1,5,.,75, 'TRUE!');
PLOTTEXT("YOU")
PLOT(MEMEAN, 0, 2)}
PLOT(MEMEAN,1.544)3
COORD (MEMEAN+0.5,,75, 'TRUE');
PLOTTEXT{HMEN)
COORD¢=18,1,35, 'TRUE'); .
PLOTTEXT("PROGRAM OF A,M,B., DE .JONG, D,D, 25 MAY 1972")¢
- SHAPE(D, 28, U);
COORD(-15, =,0625, 'TRUE');
FIXPLCT(3,5, YOUMEAN)}
COORD{=-15, =,09375, 'TRUE")}
FIXPLOT(3,5,MEMEAN);
COORD(~7,5, =.0625, '"TRUL')!
ABSFIXPLOT(1,5, YOUPRECISION);
COORD(~7,5, =.09375, "TRUE');
ABSFIXPLOT(1,5,/MEPRECISION)}
tIFT K > 0 'THEN!
tBEGIN' COORD(L6,~,06250, 'TRUE')
FiXPLOT(3,5,SAMPLEMIK]);
COORD(16,~,09375, 'TRUE');
FIXPLOT(3,5,SaMPLEPIK])
SHAPE(G.,28,0)3
COORD(10,1.35,'TRUE);
PLOTTEXT("CHANGING AFTER.SAMPLE"); .
SHAPE((0,28,0);
COORD(16,1,35,'TRUE");
ABSF IXPLOT(2,0,K);
COORD( 4, «0,06250 , 'TRUE');
ABSF IxPLOT(Z2,0:K);
COORD(4,~,09375, 'TRUE');
ABSF IXPLOT(2,0,N)}
YEND' 3
YEND'

PLOTCURVE(X, Y, i)}

YEND' DRAW;

YREAL' 'PROCEDURE' NORMALFUNCTION}

'BEGIN' 'REAL' HULPP,HULPM;
*IF' CHECK 'THEN!

62

gLl
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116
117
118
119
120
121
122
128
124
125
126
197
128
129
130
1351
132
133
154
1355
196
137
138
159
140
a1
142
143
144
345
146
147
1486
149"
i5u
151
iv2
158
154
155
156
107
158
159
16U
161
162
163
164
165
166
1067
168
169
170
171
172
173
174
175

D 2290V.034 DEJONG 3

'BEGINY -HULPP:i= YOUPRECISION; HULPM:s YOUMEAN 'END'
'ELSE!
'BEGIN' HULPP:s MEPREC|SION' HULPMIz MEMEAN 'END'}

NORMALFUNCTION:= SQRT(HULPP 7 (24P1)) » EXP(a( HULPP ; 2) ® ( 1/40 » X «20,025 = HULPM) -##2);

YENDY NORMALFUNCT!ON.

'YCOMMEMT' HEADING OF OUTPUT; -
SPACE(403); PRINTTEXT("CHANGING = TABLE"); NLCR;
NLCR} SPACE(3); PRINTTEXT(WN'");

SPACE(6); PRINTTEXT("YOUMEAN");

SPACE(6); PRINTTEXT{NYOUPRECISION");

SPACE(S); PRINTTEXT({WMEMEAN®)}

SPACE(5); PRINTTEXT(YMEPRECISION");

SPACE(RQ = PRINTPOS); PRINTTEXT("YOUMEAN");
SPACE(6)7 PRINTTEXT(WYOUPRECIS|ION®);

SPACE(10); PRINTTEXT("MEMEAN");

SPACE(5B); PRINTTEXT("MEPRECISION")}

NLCR}

SPACE(3); PRINTTEXT(n0U);
SPACE(4); FiXT(1,6,YOUMEAN);
SPACE(2); FiXT(2,10,YOUPRECISION)}
SPACE(2); FIXT(1,6,MEMEAN);
SPACE(2)} FiXT(2,10,MEPRECISION};
NLCR}

ztz 23

YCOMMENT' WE PLOT THE FIRST PROBABILITY WITH PROCEDURE PLOTPICTURE!

PLOTPICTURE(1/404X=20,025, NORMALFUNCTION,
X !1601I 1.0 1 0066"‘201 20: 11 3600!

. “NORMAL { YoU MEaN - ) YOu PRECISION )

t. MF MEAN , ME PRECISION )
,1,5,0,4,2400, : .
"AVERAGE TEMPERATURE IN CENTIGRADE AT THE £XACT NORTH POLE",
ORAW) ;
CMECKS= = CHECK;
PLOTPICTURE (1/404X%-20,025, NORMALFUNCTION,
X ,1601, 1, 0, 2077, «20, 20, 1, 360C,

i
e,

0,1.5,0,1,2400,
nu

’ .
PLOTCURVE)
CHECK!= = CHECK;

'COMMENT' WE READ THE TEST SAMPLES,
AT FIRST HOW MUCH SAMPLES
THEN FOR EACh SAMPLE:

FIRST ¢ mWOW MUCH OBSERVANCESa . . - - - -

SECOND? SaMPLE MEAN,
THIRD 3 SAMPLE PRECISION;

NUMBER:z READ:; o . . . -
TFOR' Ki= 1 'STEP' 1 'UNTIL' NUMBER 'DO! .
'BEGIN' NN[kliz Ni= READS
SAMPLEM{K) =z SAMPLEMEAN!= READ;
SAMPLEP[K]:= SAMPLEPRECISION:= READ}
OLDMEAN:= YOUMEAN;
OLDPRECISION:= YOUPRECISION;

YOUMEAN:= (YOUMEAN & YOUPRECISION « SAMPLEMEAN # SAMPLEPRECISION

N = 0%,

) 7 (YOUPRECISION & SAMPLEPRECISION)}

6L1
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176
177
178
179
180
181
182
183
184
165
186
187
188
189
190
191
192
193
194

195
146
197
198
199
2940
201
202
203
204
2u5
206
207
298
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

YEND'
YENDTY;

D 2296Vv.014 DEJONG 4
YOUPRECISI1ONt= YOUPRECISION' + SAMPLEPRECG|SION}
'BEGIN' 'COMMENT' WE PRINT TH1S PART ;1END';
OUTPUT({YOUMEAN, YOQUPRECISION); *

OLDMEAN{= MEMEAN;
OLDPRFCISiON's MEPRECISION;

MEMEAN? (MEMEAN » MEPRECISION + SAMPLEMEAN & SAMPLEPRECISION)/ (MEPRECISION » SAMPLEPRECISION)}

MEPRECIS\ON MEPRECISICN + SAMPLEPRECISION}

'BEGIN' 'COMMENT' WE PRINT THIS PART; 1gND';

OUTPUT{MEMEAN, MEPRECISION);

'BEGIN' YCOMMENT' WE PLCT CHANGING MEAN AND PRECISION OF YOU AND ME; 'END'}

PLOTPICTURE(1/40#Xx=20,025, NORMALFUNCTINN,
X ,1601, 1, 0, 0066, =20, 20, 1, 3600,
"NORMAL ( YOU MEAN » YOU PRECISION )

( -ME MEAN , ME PRECISION ) ) N
0,1.5,0.1,2400,
"AVERAGE TEMPERATURE IN CENTIGRADE AT THE EXACT NORTH POLE",
" DRAW); | ’
CHECK!® = CHECKS )
PLOTPICTYURE(1/40#x~20,025, NORMALFUNCTINN,
X ,1601, 1,0, 2077, =20, 20, 1, J4u0,

9&1.5:0.112400:

PLOTCURVE);
CHECK:= = CHECK}

YCOMMENT' PRINTING OF TESTRESULTS;

CARRIAGE(42)

'FOR' NUMBER!z. 1 'STEP' 1 'UNTIL!' 48 'po!

'BEGIN' PRINTTEXT(U#); sSPACE(1) 'END'; NLCR}

PRINTTEXT("1); SPACE(2); PRINTTEXT(“SAMPLE"); SPACE(1);
PRINTTEXT("})}; SPACE(3); PRINTTEXT("N"); SPACR(1)}
PRINTTEXT("Y); SPACE(2)}; PRINTTEXT("SAMPLE MEAN"); SPACE(1);
PRINTTEXT("T); SPACE(2); PRINTTEXT(“SAMPLE PRECISION"); SPACE(l):
PRINTTEXT("?); NLCR;

"FOR! NUMBELRi=z 1 'STEP! 1. 'UNTIL' 48 'po!

YBEGIN' PRINTTEXT(v2); SPACE(L1); 'END'; NLCR}

'FORY NUMBER!= YSTEPY 1 TUNTIL' 4 'DO*

YBEGIN' PRINTTEXT("¢); SPACE(L);.

ABSFIXT(3,0,NUMBER); SPACE(3)}
PRINTTEXT("$)5 SPACE(1l);

ABSF IXT(2,0,NNINUMBER]);
PRINTTEXT("$); SPACE(3); .
FIXT(1,4,SAMPLEMINUMBER]); SPACE(3);
PRINTTEXT("¢); SPACE(5S);
FIXT(2,4,5AMPLEPINUMBER]); SPACE(S5);
PR!NTTExT("$). NLCR

YEND '} :
TFOR! NUMseR-= 1 'STEP! 1 CUNTIL' 48 'po'_
'BEGIN' PRINTTEXT( 1)} SPACE({) 'END'; NLCR;

SAMPLE =

62 .

SAVPLE VEAN

SAMPLE PRECISIGN

oci

’
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235
236
237
248

=

D 22%6V.014 DEJONG

'FOR?! NUMBER!= 41 'STEP' 1 ftUNTIL? 48"00'

'BEGINY

YEND Y

PRINTTEXT(nny;

sPace(1)

YENDYS

NLCR Y

A
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N YOUMEAN .YoUPREClS|oN MEMEAN
0 «9.,:100000 +,0277777778  +3.000000
1 -, 810000 *,2777777778  +1,550000
.4 =,129130 +1.2777777778 +,556667
.9 -, d46134 +3.,5277777778 *, 223267
16 -:121620 *7.5277777778 +,108032
T TSARPLE |- N" EAMPLE MEAN ] SAMPLE PRECISION |
F I R R Rt T R RO T 1 T A
| 2 1 41 +,0600 | +1,0000 |
| 3 b9 +,0010 | +2,2500 |
! 4 1 16 ] «,0000 | +«4,0000 ]

- o o o i o 1 - e e i e e e e O e O B e W e s

- - e e e B e 2 o 0 S 0

MEPRFCISION

+,2500000000

+.50n0000000
+1.50n000000¢0
+3.7500000000
+7.7500000000

YOUMEAN

+8,190000
© ++,680870
+.082997

+,024314

62

CHANGING = TABLE

YOUPREC IS I1ON

+,2500000000
+1,000000n000
+2,2500000000

- +4,0000000000

MEMEAN

=1,450000
-,993333
-, 333400
=,115234

MEPRECISION

+,2500000000
+1,0000000000

+2,8500000000
+4,0000000000

ccl
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average Lemperature In centigrade ot the exact north pole

program of a.m.b. de jong, d.d. 25 may 1872

1
I
t
1
1
I
|
i
1
|
i
1
1
I
I
I
i
1
|
(|
!
I
I
I
1
1
{
[
[
i
i
I
i
i
1
!
1
1
i
i
!
I
1
i

you

N W T W T T .

e e e e A - o e S e e Ee M M e ey b G e e M A e G Sl - o b

me

‘changing ofter somple

A i i L i i

1

i

" {

-20

!
-18 -16 -14 -12 -10 -8 -6 -4 -2
normal ( you mean -.81000 , you precision .27778 )
{ me mean +1.55000 ., me precision .S0000 )

J
aon

10 12 14
sample mean
sample precision

16

18
+.10000
+.25000

20

el



average temperalure in cenligrode ab the exaci norih pola

1.5

1.4F

program of a.m.b. de jong, d.d. 25 may 1972

A k

i

k .

b 1

Y

L k 3 X

i Y

i

you

me

changing ofter sample

i 1 i A i

i

2

1

L

~-20

-18

-16

normal ( you meon

(

me mean

-4 -12

» you precision

~-.12813
+.55667

-10 -8

me precision

-6
1.27778
1.50000

)
)

-4

i ou

10 12 14
sample mean
sample precision

16

1
18

+.06000
+1.00000

sl



average temperature In centigrade ot the exact north pole

1.5

1.4}

7t

program of a.m.b. de jong, d.d. 25 may 1972

1 i

2 L

Y

i X i i

i
i
I
I
1
!
1
1
i
I
I
|
1
!
i
I
1
{
i
i
[
1
1
i
I
1
i
i

changing of'ter sample

Y I )

i

3

-20

b
-18

~16

normal ( you mean

{

me mean

-14 -12
» you precieion 3.52778

-.04613
+.22327

3
~10 -8 -6

me precision 3.75000

1 A

10 12 14
sample mean
sample precision

16

1
18

- +.00100
. +2.25000

9cl



average temperature In centlgrode al the exack north pole

.4t

Jr

)

program of a.m.b. de jong, d.d. 25 may 1972

e

i

N i i i i [ 2 i 1 i L i 1 i J

me

changling ofter sample

4

-20

i
-18

i
-16

normal ( you mean

(

me mean

-14 -12 -10 -8 -6

-.02162
+.10803

, you preclslon 7.52778
+ me precision 7.75000

}
)

-4

-2

i
10 12 14
somple mean =
sample precision =

18
+.00000
+4.00000

20

Pl
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