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1. Introduction 

What is computer programming? Most programmers view their work as the 

construction of algorithms and their expression in a computer language. 

They usually first create or find (from textbooks, program libraries, etc.) 

an algorithm to solve a stated problem. Then they specify the algorithm in 

the rigorous and unambiguous form of a computer program. Finally, the pro

gram is debugged by running it with test inputs for which the output is 

known. A few programmers even document the program before moving to their 

next problem! 

In outline form we have: 

Steps in programming (traditional view) 

1. Understand the problem. (What. is the input and output? Are there computer 

time/memory restrictions? How often will the 

program be used? Etc.) 

2. Find an algorithm. (See definition below.) 

3. Construct a computer program. (Express the algorithm in a computer 

language.) 

4. Debug and test the program. (Translate it to detect s~ntax errors; run it 

with representative inputs for which the out

put is known to detect semantic errors.) 

5. Document the above. (Rarely done!) 

Features of an algorithm 

An algorithm is a finite set of rules for solving the problem. It has five 

important features: 

1. Finiteness. It terminates after a finite and reasonable number (say 

10~ ~ 3~ million) of steps. 

2. Definiteness. Each step is precisely defined so that the actions to be 

carried out are rigorously and unambiguously specified for each case. 

3. Input. The> 0 data items. 
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4. Output. The .::_ 1 answers. 

5. Effectiveness. The operation~ to be done can be performed by your 

computer exactly and in a reasonable length of time. 

This traditional approach to computer programming has successfully 

produced much software; however, there is definitely need for more efficient 

production of more efficient software. The newly discussed area of "software 

engineering" (Naur and Randell 1969; Buxton and Randell 1970; Turski 1971; 

Bauer 1972) seeks to meet this need. Employing concepts such as "structured 

programs" (Dijkstra 1970), "stepwise refinement" (Wirth 1971), and 

"algorithmic analysis" (Knuth 1971 ), attempts are being made to turn the 

"art" of programming into the "science" of programming. Unfortunately, it 

is difficult to learn and adopt these new programming concepts and tech

niques when your education and experience are grounded in the traditional 

notions of programming. 

For example, years ago Dijkstra (1968) rejected goto statements 

(branches, jumps) as being logically unnecessary, a frequent source of 

error, and demanding an unnatural mode of thought. After his short note "Go 

to considered harmful" appeared, Dijkstra was immediately rebutted by a 

colleague (Rice 1968) who was worried about effects the note would have on 

"young, novice programmers". It is currently a well-justified view that the 

use of goto statements in programming is neither desirable nor necessary; 

Wulf (1971) reports on favorable long-term experiences with a programming 

language (Bliss) which has absolutely no goto. Naturally, a language such 

as FORTRAN which has no compound statements forces the programmer to use 

goto statements. For these reasons ALGOL 60 without goto will be employed 

in this syllabus. 

We will view the activity of programming as the construction and anal

ysis of computer algorithms. By -analysis of a computer algorithm is meant, 

roughly, an investigation to answer the two questions: 

1. Does the algorithm work? 

2. Is the algorithm any good? 

Obviously, a programmer who constructs a well-structured algorithm will 

find its analysis facilitated. And, conversely, analysis of an algorithm 
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will often lead to the construction of an improved algorithm. 

Some theory and techniques currently known for answering the above 

two questions are the subject of sections 2-6. An example algorithm is ana

lyzed in section 2. The first question is answered by a proof of correctness 

as described in section 3. A program correctness proof does not consist of 

testing the program with representative input data. As Dijkstra remarks, 

"Testing is a very inefficient wey of convincing oneself of the correctness 

of a program". The second question may be answered by evaluating the per

formance of the algorithm, particularly with respect to running time (sec

tion 4) and storage requirements (section 5). To show that a particular 

algorithm is optimal in the sense that it involves the fewest number of 

computational steps in a precisely defined class or it uses the minimum 

memory possible or it maintains a desired accuracy is, in general, very dif

ficult. But to demand, seek, and prefer computational efficiency in an al

gorithm can yield significant savings in both computer and programming time. 

Moreover, the solution of a problem mey actually be impossible before devel

opment of an "efficient" algorithm. For example, to determine that a forty 

digit integer n is prime by successively dividing it by 2,3,4, ... ,/n is im

practical on a contemporary computer; yet algorithms for proving the pri

mali ty of such an n in a few seconds of computer time exist ( Knuth 1969). 

Much of the research in artificial intelligence todey is vitally concerned 

with defining II good" algorithms for chess-pleying, picture analysis, 

theorem-proving, and other problem-solving areas. 

Section 6 covers some additional measures of computational performance 

besides running time and storage. For instance, aspects of a program such 

as its accuracy and portability are receiving deserved attention nowadays. 

By asking questions about portability, ease of expression, stability, 

accuracy and precision, reliability, adaptability, and so on, a programmer 

can approach problems of how to choose the programming language, select/ 

build library procedures, adapt existing programs, etc. 

This syllabus emphasizes the analysis rather than the construction of 

computer programs, because it seems easier to discuss whether a program 

works or is any good, than to describe how to construct good, working 

programs. As Polya ( 1945) said: "A person who behaves the right way does 
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not care to express his behavior in clear words and, possibly, he cannot 

express it so". 

Nevertheless, construction and analysis of programs are the two inti

mately" related aspects of programming. We now construct two computer pro

grams using stepwise refinement. The first example shows how transparent 

an algorithm can become by constructing it carefully. The second example 

shows how during the construction, an algorithm can be found deficient in 

efficiency. 

A program can be constructed by the process of successive refinements 

(Wirth 1971). Each refinement is a more detailed specification of the 

previous step and refinement terminates when all instructions are expressed 

in terms of a computer or programming language. A simple example to exhibit 

program development by stepwise refinement follows: 

1. begin Solve the Problem end 

2. begin comment Problem statement; 

Read input; 

Compute solution; 

Write output 

end 

3. begin comment Tabulate M(n) = llog2nJ + v(n) - 1 versus n-1 for various 

values of n, where v(n) = number of ones in the binary 

representation of n (see exercise 2.1); 

until 

end 

No More Input repeat 

begin Input; 

end 

for n:= nMIN step 1 until nMAX do 

begin Compute M(n); 

Output 

end 
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4. Refinement of 11 Input" in step 3: 

Input: nMIN := read; output(1'nMIN11 ,nMIN); 

nMAX:= read; output( "nMAX" ,nMAX); 

where procedure output (text, variable); string text; 

begin nlcr; print text (text); printtext ( "="); print (variable) end; 

RULE: Whenever an input value is read in, immediately output it. Other

wise, how do you know what problem you are (or were) solving? 

5. Refinement of "Compute M( n)" in step 3: 

integer Mn, n; 

Compute Mn: Mn:= log 2(n) + v(n) - 1; 

where real procedure log 2(x); value x; integer x; 

log 2:= ln(x)/ln(2.0); 

because logax = lo~x/lo~a. 

6. Refinement of "Output" in step 3: 

Output: nlcr; output("n" ,n); output("Mn" ,Mn); output("n-1" ,n-1); 

7. Refinement of "v(n)" in step 5: 

integer procedure v(n); value n; integer n; 

begin comment v(n) = Number of 1's in the binary representation of n; 

integer Answer; 

end· --' 

Answer:= O; 

for n:= n, n¾2 while nlO do 

if odd(n) then Answer:= Answer+ 1; 

v:= Answer 

8. Our final refinement (an MC ALGOL 60 program) appears in Figure 2.4. 

Note that only at refinement step 5 did we make a decision about data 

types. In the final program, variables nMIN and nMAX could have been type 

real. Other equally good solutions to our example problem could be developed 

by the method of stepwise program refinement; nevertheless, the above de

tailed elaborations of our relatively short program indicate that program-
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ming can be done by a careful, gradual development. 

We next program a nontrivial problem using the method of stepwise 

refinement: 

1. Comment For various values of y and n, compute yn by the S-and-X Binary 

Method; 

until No More Input repeat 

begin Input; 

end· __ , 
yTOn:= Exponentiation (base, exponent); 

Output 

2. Refinement of the procedure Exponentiation in step 1; 

integer base, exponent; 

if base = 0 v exponent .::_ 0 then 

begin printtext ("Illegal argument to ytn procedure"); 

output ( "y", base) ; output ( "n", exponent) 

end 

else begin 

Initialize; 

for Bit:= Nextbit of exponent while There is a bit do 

begin Square Z; 

if Bit = 1 then Multiply Z by base 

end; 

Exponentiation:= Z 

end; 

3. Refinement of statement after the else in step 2: 

Z:= base; i:= Number of bits(k) in exponent; 

for i:= i-1 while i>O do - -
begin Bit:= The i-th bit (d.) of exponent, which is 

l 

<\_<\__1 •.. d
1
d

0
_ in binary notation; 

Z:= zxz; 
if Bit= 1 then Z:= Z x base 

end· __ , 
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4. Step 3 is difficult to refine in ALGOL 60 because 

d. = 1 if and only if base f 21 is odd 
l 

cannot be determined efficiently. In machine language this quotient can 

be found by shifting. Thus we are lead to alter the S-and-X Binary 

Method so that it is based on a right-to-left scan of n; see Algorithm R 

in section 2 for details. 
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EXERCISES 

1.1. Restate the f'ollowing ALGOL 60 program without using goto statements: 

comment B1 and B2 are Boolean procedures; 

loop: A[i] := e· 
' 

if B1 then begin e:= e+1; .BQ_ to loop end· --' 
if B2 then begin 1:= i+1; .BQ. to loop end· --' 

1.2. Restate the following ALGOL 60 program without using goto statements: 

comment B1 and B2 are Boolean procedures; 

loop : A[ i J : = e ; 

if B 1 then begin e: = e+ 1 ; goto loop end 

else if B2 then begin i:= i+1; goto loop end; 

1 . 3. To measure computer performance we might use the standard of measure

ment, n/t, where m = size of the memory and t = basic add instruction 

time. This ratio measures roughly the capacity both to hold and to 

process information. Perform an order of magnitude calculation to see 

how this criterion of computer performance has increased over the past 

twenty years. 

1.4. Suppose you wanted to do exhaustive testing of a procedure whose input 

is a binary matrix (integer array A[1:n,1:n] with every element either 

0 or 1). How many cases must you test? When would n be too large for 

testing all these cases on your computer? 

1.5. Write a general ALGOL 60 program which consists of r nested for state

ments, where r is a parameter. For example, when r = 3 the program 

should have the effect of: 

for k[ 1 ]:= 0 step 1 until K[ 1] do 

for k[2 J := 0 step 1 until K[2] do 

for k[ 3] := 0 step 1 until K[3] do 

begin comment Compute using k[1], k[2], k[ 3]; end; 
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SOLUTIONS 

1. 1. A.+e __________ _, 
1 

true >------e+e+1 

false 

true ------i+i+1 

Boolean b 1, b2; 

loop : b 1 : = true ; 

while b1 do begin b2:= false; A[i]:= e; 

end· --' 

if B1 then e:= e+1 else b2:= true; 

while b2 do if B2 then begin i := i+1; 

b2:= false 

end 

else b1:= b2:= false 

1.3. Year 

1951 

1971 

Computer t (sec) 

Univac I 10-3 

IBM 360 10-7 

m(words) 

1K 

128K 

comments 

First commercially available computer. 

Faster and bigger machines exist. 

1 • 4. 

Thus computer performance (m/t) has increased by a factor of ten (an 

order of magnitude) every three years. This is a conservative 

estimate! 

There 1s a O or 1 1n each box and hence 
2 

(2n)n -- 2n t Wh 5 th" cases o test. en n = , 1s 

number already exceeds 3 billion. 
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1.5. co:rilnient Assume K[1], ••• ,K[r] > 0 and r > O; 

integer J; 

for j:= 1 step 1 until r do k[j]:= O; 

compute: begin comment Use k 1, ..• ,kr; end; 

j:= r; 

loop: k[j]:= k[j] + 1; 

if k[ j J .::_ K[ j J then goto compute ; 

k[j]:= O; j:= j-1; 

if j > 0 then goto loop; 

As a further exercise, the reader is asked to rewrite the above in a 

goto-less form. 
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2. An exa.mple: E-v-aluation·or·powers 

In this section we shall program and analyze the "binary method" for 

computing yn, given y and n, where n is a positive integer. Many ALGOL 

(ytn) and FORTRAN (y**n) compilers obtain the answer with successive inline 
. . . 1 13 . . multiplications. For examp e, to compute y' · we could simply start with y 

and multiply by y twelve times. But is is possible to obtain the same answer 

with only five multiplications, if we again start with y and then "square, 

multi ply by y, square, square, and multi ply by y". In other words, we obtain 

2 3 6 12 13 by successively computing y, y, y, y ,y 

The same idea applies to any value of n in the following wey: Given 

the exponent n in binary representation (e.g., n = 1310 = 1101 2 ), replace 

each "1" by "SX" and each 11 011 by "S" (e.g., 1101 ➔ SXSXSSX), Cancel the "SX" 

at the left end and then interpret the resulting string as ordered instruc

tions, where "s" = "Square" and "X" = "Multiply". This general algorithm 

for evaluation of powers is known as the "binary method". 

Since we have specified the binary method in the English language, 

there is the possibility the reader might not understand exactly what the 

author intended. We must therefore be more "definite"; that is, each step 

of our algorithm must be precisely defined so that the actions to be carried 

out are rigorously and unambiguously specified for each case. Consider the 

following expression of the binary method: 

Algorithm B. (Binary method for exponentiation). This algorithm evaluates 
n y, where n is a positive integer. Functions f and g are defined below. 

B1. [Initialize.] Set Z + y and i + f(n) - 1. 

B2. [Done?] If i < O, the algorithm terminates, with Z as the answer. 

B3. [Square.] Set Z + Z times Z. 

B4. [Bit= 1?] If g(n,i) ~ 1, skip to step B6. 

B5. [Multiply.] Set Z + Z times y. 
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B6. [Next bit.] Decrease i by one and return to step B2. 

Definition: Let <\_<\._1 •.. d1d0 be the binary notation for n. 

Then f(n) = k and g{n,i) = d. for O < i < k. 
1 

Figure 2.1. Flowchart for Algorithm B, with the arrows between boxes 

labelled by the number of times that path will be followed 

during one run of the Algorithm. 

B1. Initialize ~---B6. Locate next bit----
k 

NO k-b+1 
b-1 

k 

YES 

Before we render Algorithm Bin a progra.tnm.lng language such as 

ALGOL 60, a "local" analysis of the amount of work it does will be given. 

"Work" is usually measured in terms of the number of times each step is 

performed, or how much memory the algorithm needs: 

Storage analysis. The S-and-X binary method (Algorithm B) for obtaining yn 

requires variable storage only for the inputs y and n, for the current 

partial result Z, and for the bit index i. This assumes that the functions 

f and g require no temporary storage; that is, f(n) and g{n,i) must be 

computable directly from their arguments, without using temporary storage. 

Henc~ Algorithm B needs a small, fixed amount of storage for variables. 
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Frequency analysis. The "profile" (collection of frequency counts) of 

Algorithm Bis easily deduced from Figure 2.1, where each pathway in the 

algorithm was labelled with the frequency it is traversed. 

Figure 2.2. Profile of Algorithm B. 

Step Number of times executed 

B1 1 

B2 k+1 

B3 k 

B4 k 

B5 b-1 

B6 k 

This profile gives us information necessary to determine the running time 

of the algorithm on a particular computer. To complete the analysis we must 

interpret the quantities k and b. Clearly, k equals llog2nJ, one less than 

the total number of bits in the binary notation for n. (LXJ denotes the 

greatest integer..::_ X.) The quantity b equals v(n), the number of ones in 

the binary representation of n. 

We were at the start of this section interested in computing yn with 

fewer multiplications than the n-1 required by the serial method. Now we 

know that the number, M(n), of multiplications required by Algorithm Bis 

precisely M(n) = .Llog2nJ +v(n)-1. Thus the execution time in applications 

with large exponents n can be reduced from order n (serial method) to order 

log n (binary method). For small values of n, sey n ..::_ 10, the bookkeeping 

time required to evaluate f and g values in Algorithm B exceeds the time 

saved by fewer multiplications, unless the time for a multiplication is 

comparatively large. Multiplication would require a significant amount of 

time if, for example, y was a matrix or polynomial or multiple-precision 

number, instead of a simple variable. 

Several authors asserted that the binary method has "absolute" 

efficiency, i.e. gives the minimum possible number of multiplications in all 

cases. The smallest counterexample is n = 15, when M(15) = 6 and yet we can 

calculate 
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15 (( 2 ·)2)2( 2 ·) Y = YY YY 

. . . . . . . . 2 . with only five multiplications by using the intermediate result y y. This 

leads us to do a "global" analysis of the entire family of algorithms to 

evaluate yn. In particular, we could investigate the "best possible" proce

dures in this class from the point of view of minimal multiplications re

quired. This has been done by Knuth (1968, section 4.6.3). An optimal proce

dure for all n is not known. Nevertheless, Figure 2.3 ta.ken from Knuth gives 

a systematic method to compute yn in the minimum number of multiplications 

for every value of n .::_ 100. Computer tests have shown that this "tree method" 

is indeed optimal for all n.::. 100. In summary, a global analysis of evalua

tion of powers algorithms shows that the binary method excels the serial 

method in minimizing multiplications, but the tree method (Figure 2.3) is 

optimal for most n which occur in practical applications. 

To render Algorithm Bin ALGOL causes problems because of the functions 

f and g. This S-and-X binary method requires that the binary representation 

of n be scanned from left-to-right, while it is more convenient in ALGOL to 

deduce the binary representation from right-to-left by successively dividing 

by 2 until zero is reached. That is, if n .in binary notation equals 

<\<\_1 •.• d1d0 , then we use the fact that for O < i < k: 

g(n,i) = d. = 1 iff n. 21 is odd. 
l 

Therefore the following Algorithm R, based on a right-to-left scan of n, can 

be easily translated into ALGOL: 

Algorithm R. (Right-to-left binary method for exponentiation.) This algo

rithm avaluates yn, where n is a nonnegative integer. 

R1. [Initialize.] Set N + n, Y + y, and Z + 1. 

R2. [Done?] If N = O, the algorithm terminates with Z as the answer. 

R3. [Bit = 1?] If N is even, skip to step R5. 

R4. [Multiply.] Set Z + Z times Y. 



15 

R5. [HalveN.] SetN+ LN/2J. 

R6. [Square.] Set Y + Y times Y, and return to step R2. 

Figure Flowchart for Algorithm R, with paths labeled by the frequency 

of their traversal. 

R 1. Initialize 

YES 1 
YES b 

R4. Multiply 
b 

R6. Square 
k+1 k+1 



~ 

1 
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Figure 2.3. A tree which minimizes the number of multiplications, for n .::_ 100. To calculate 

yn, find n in this tree, and the path from the root ton indicates the sequence 

of exponents which occur in the optimal evaluation of yn. 

..... 
O'\ 
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Figure 2. 4. Program to tabulate M( n) = llog2nJ + v( n) - 1 

versus n-1 for various values of n. See exercise 2.1. 

begin integer Mn, n, nMIN, nMAX; 

end 

procedure output(text,variable); string text; 

begin nlcr; printtext(text); printtext( 11=11
); print(variable) 

real procedure log 2(x); value x; integer x; 

log 2:= ln(x)/ln(2.0); 

integer procedure v(n); value n; integer n; 

begin comment v(n) = Number of ones in the binary 

end· __ , 

representation of n; 

integer .Answer; .Answer:= O; 

for n:= n, n+2 while nfO do 

if odd (n) then .Answer:= .Answer+1; 

v:= Answer 

Boolean procedure odd(n); value n; integer n; 

odd:= (n+2)x2:;ifn; 

for nMIN:= read while true do ---
begin output ( "nMIN", nMIN); 

end 

nMAX:= read; output ("nMAX", nMAX); 

for n:= nMIN step 1 until nMAX do 

begin Mn:= log 2(n) + v(n) - 1; 

end 

nlcr; output ( "n", n) ; output ("Mn", Mn) ; 

output ( "n-1", N-1 ) 

end· __ , 
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Figure 2.5. Profile of Algorithm R. 

Number of times 

1 

k+2 

k+1 

b 

Step 

R1 

R2 

R3 

R4 

R5 

R6 

k+1 

k+1 

executed 

From the profile of Algorithm R (Figure 2.5), we find that it requires 

k + b + 1 = llog2nJ + v(n) + 1 multiplications. This is two more than 

Algorithm B, due to the multiplication by unity in the first execution of 

step R4 and to the redundant execution of step R6 when N = O. We next give 

an ALGOL program for Algorithm Rand prove its correctness. 

Figure 2.6. Program in an ALGOL dialect for Algorithm R. 

n comment Evaluate y for integral n ~ 0; 

[1] N:= n; Y:= y; Z:= 1 . 
' 

[2] while N :j:. 0 do 

[3] begin if odd(N) do Z:= Z * Y· , 
[4] N:= N f 2; 

[5] if N :j:. 0 do Y:= y * y 

[6] end· __ , 
As an ex8:Il!Ple of this program, consider the steps in the evaluation of y23 : 

N y z 
After line 1 23 y 1 

After line 3 23 y y 

After line 5 11 2 y y 

After line 3 11 2 3 y y 

After line 5 5 
4 y3 y 

After line 3 5 
4 y7 y 
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N y z 
After line 5 2 8 y7 y 

After line 3 2 8 y7 y 

After line 5 1 
16 y7 y 

After line 3 1 
16 23 y y 

After step 5 0 
16 23 y y 

An informal but rigorous correctness proof for this program has to show 

that all variable keep integer values and that the 11 inducti ve assertion11
: 

always holds before and after execution of the while clause (line 2). Our 

approach is to show that if this assertion is true before execution of lines 

3-6, then it is also true after execution of these four lines. 

Correctness proof. After line 1 is executed, the assertion is trivially true 
_ _.N n n 

because N = n > 0 and Z * r· = 1 * y = y. Suppose next that it holds for 

fixed values of Z, Y, and N before execution of lines 3-6. If N = O, then 

the test in the while clause will successfully avoid execution of these 

three lines and will end the program with yn = Z *? = Z *YO= z. Other

wise, N > 0 and we have two cases depending upon the parity of N: 

Case 1. N is odd. Then line 3 multiplies Z by Y, line 4 replaces N with 

LN/2j, and (assuming N~1 before line 4) line 5 squares Y so that the 

net effect is to assign the value 

to Z *?.Had N equaled 1, the test in line 5 would have prevented 

the squaring of Y so that 

Z * yN = Z * Y, as required. 
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Case 2. N is even. Then line 4 halves N and line 5 squares Y so that the 

net effect is to assign the value 

to Z * ~-

Thus, in both cases, yn = Z *~remains invariant after execution of 

lines 3-6. 

Clearly, the only change in value to N occurs in line 4 and alweys 

results in a new, nonnegative integral value since N is initialized in 

line 1 ton> 0. The reason we restricted all variables to integers in our 

proof was to avoid the complication of accuracy considerations. 

Termination. This program terminates because the initial value n ~ 0 for N 

will be repeatedly halved in line 4 until N = 0 in a finite number of steps 

and then the while clause ends the execution. 
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EXERCISES 

2.1. Tabulate and graph M(n) versus n-1 for n = 1(1)100. 

n 2.2. Construct and analyze an algorithm which computes y in a serial manner 

(multiplying repeatedly by y). Make comparisons with Algorithm B. 

2.3. How is y975 calculated by the (i) binary method? (ii) method of 

Figure 2.3? Can you do it in fewer multiplications? 

2.4. (Knuth 1969, 4.6.3.10) Figure 2.3. shows a tree that indicates one way 

to compute yn with the fewest number of multiplications, for all 

n < 100. How can this tree be conveniently represented within a com

puter, in just 100 memory locations? 

2.5. Let e be a fraction, 0 < e < 1, ex.pressed in the binary number system 

as 

e Design and analyze an algorithm to compute y using the operations of 

multiplication and square-root extraction. 

2. 6. The "factor method11 is a recursive procedure for evaluating yn based on 
n a factorization of n: If n=1, we have y trivially. If n is prime, we 

n-1 calculate y and multiply by y. If n = pg, where g > 1 and pis the 

smallest prime factor of n, we calculate yn by first calculating yp and 

then raising this quantity to the g-th power. 

For example, to calculate y55 by the factor method, we first evaluate 

4 = y y = 

and then form 11 z = z 

2 2 (y ) y, 

10 = (z2)5z. z 

Prove that there are infinitely many values of n 

a) for which the factor method is better than the 

b) for which the binary method is better than th~ 

binary method; 

factor method; 
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c) for which some other method is better than both the binary and 

factor· methods. (Here "better" means using fewer multiplications:) 

2.7. Construct and analyze an MC-ALGOL procedure to find d(n) = the number 

of decimal digits in the integer n ~ 0. 

8 . 31 t 31 . 2 •. How does the Binary Method compute y ? Can you compu e y with 

fewer arithmetic operations if division is allowed? In general, the 

serial method for evaluating yn requires about n multiplications; 

what is the order of magnitude for the number of multiplications 

required by the Binary Method for a large exponent n? (For example, 
. . 6?) p . about how many multiplies when n = 10 . rove that the Binary Method 

does not minimize the number of multiplications required in all cases. 

2.9. Construct a recursive version of the binary method for computing yn. 
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SOLUTIONS 

2.1. See ALGOL program and plotter output on next pages. 

2.7. Here are three different solutions (assume integer d, k, D;): 

2.8. 

(i) d:= O; for D:= O, D+1 while mod(n,10tD) # n do d:= d + 1; 

(ii) d:= ln(n)/ln(10.0) + 1; 

(iii) k:= 1; d:= O; for D:= O, D+1 while n ¾ k # 0 do begin 

k:= 10xk; d:= d+1 end; 

31 2 2 2 2 
(8 multiplications) y = ( ( (y y) y) y) y 

= ( ( ( (y2 )2 )2 )2 )2 /y ( 6 operations ) 

= (([y2y]2y)2)2[y2y] (7 multiplications) 

The smallest counter-example is: 

y15 = ((y2y)2y)2y 

= ([y2yJ2)2[y2y] 

(binary method; 6 multiplies) 

(5 multiplies) 

or log
2

106 = 6 log21o ~ 6 * 3.3 ~ 20. 

6 6 Furthermore, v(10 ) .:::_log21o so that 

6 6 6 6 M(10) = llog2 1o J + v(10) - 1 ~ 2 log2 10 ~ 40. 

2.9. In ALGOL 68 we have: 

.2£_ t = (int y, n) int: 

if n = 0 then 1 

else if n = 1 then y 

else ( if odd(n) then y else 1 fi) * {y*y) t (n¾2) fi fi; 
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022~oV,Q06,r G WULDER,T1Ll0,P1000 

'f'E(;I\• 'IN'!"EGE:R' MN,N,Nr11N,NMAX,MAXMN; 
1 eoc1.EAN 1 •P.J~OCEDl!RE 1 ODD(N); 'VALUE' Nl 1 1NTEGER 1 NJ 
OCD:=(Nl2l•i. N; 
1 PRCCEDURE I OUTPUT (TEXT, VAR I AE!LE); 'STRING• TEXT! 
'f!E:GIN' PR1NTTEXT(TEXT}; PRINTTEXT(":")i PR1NT(VARIA8L.E) 'ENOt; 
'REAL' •PROCEDURE' LOG2(X)l 'VALUE' Xl 'INTEGER 1 Xl 
•eEGiN' 1 REAL 1 w; w:=x; LOG2:=LN(W)/LN(2,0) 'EN0 1 ; 
1 1NTEGER 1 •PROCEDURE• V(N}l. 'VALUE• N; 'INTEGER' NI 

1 
2 
3 
4 
5 
6 
7 
5 
9 

\ ) 0 
1 EEG1Nt 'COMMENT• V(N): NUf,\6F.R OF' ONES IN THE BINAR~ REPRESENTATION.OP NI 

' I NT EGER ' ANSWER ; ANS W.E R : : 0 ; 
~ l 
12 
:'.3 
H 
, 5 
:! 6 
-.. 7 
.. 8 
19 
2Ll 
21 
Z2 
23 
24 
?5 
26 
27 
28 
~~ 9 
30 
~1 
z.2 
33 
:'4 
;t!;) 

'F'OR' N:: N,N,:.2 'WHILE' N:j:Q '00 1 

'If' CDD(N) 'THEN' ANSWER::ANSWER+1l 
V::ANSWER 

'ENC 1 ; 

OUTPUT( 11 LN(2)",LN(2))l NLCRl 
•FOR' Nr,IN::READ 1 Wi'i1LE 1 'TRUE' 1 00' 
'cEGIN' OUTPUT("NMIN",NMIN)l 

N~AXl:READl OUTPUT("NMAX",NWAX)l 
NL.CR; NLCRJ 
'E!EGIN' •INTEGER• •ARRAY' GRAPH[NMIN:NMAX]I 

MAXMN::Q; 
1 FOR 1 N:: NMIN •STEP• 1 'UNTIL' NMAX 'DO' 
1 E!EGIN• MN::LOG2(N)+V(Nl•ll 

NL.CR; OUTPUT("N",N); OUTPUT("M(N)",MN)l 
ouTPJT("N•1",N-1)l 
0UTP~t("LOG2(N)",LOG2(N))J OUTPUT("V(N)",V(N))J 
1 IF• MN>MAXMN •THEN' MAXMN::MN; 
GRAPH[N]::MNJ 

'ENO'; 
PLOTPICTURE(N,GRAPH[N],N,NMAX,9,0,0066, 

N~IN,NMAX,1, 3800, 
It~ -----> 

'END• 
I END' 

0,MAXMN,1,2300,"M(N) •-•-•>",PLOTLINE) 

~6 'ENO' 

H G MULDER; ,i, 

, 
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f\) 
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LN\?):+,693147180560111• 0 
N1' IN: +l NMAX: +100 

~ 

N: +1 ii' ( N): -o N-1: -o LOG2(N)11 -o V(Nl• •1 
N: +2 MCN): +1 N-1= +1 LOG2(N)~ +1 V(N)c •1 
N: +3 MCN): +3 N-1= +2 LOG21 NI- ♦ ,.158496250072111+ 1 V(N)a +2 
N: +4 M(N): +2 N•1= +3 LOG2(N)s+,200000000000411+ 1 V(N)II +1 
Ne +5 M(N): +3 N•1: •4 LOG2(N) ■ +,232192809488711+ 1 V(N): +2 
N: +6 f,l(N): +4 N-1: •5 LOG2(N)a+,2584962?0072511+ 1 V(N)11 +2 
N: +7 ii' C N l = +5 N~1: •6 LOG2(N)a+,280735492206111+ 1 V(N)II +3 
N: +8 I" ( N): +3 N-1= +7 LOG2(N)•+,299999999999611+ 1 V(N): +1 
N= +9 l\'{N): •4 N-1: +8 LOGIIN):+,316992500144311+ 1 V(N)D +2 
N: +10 M(N): +4 Jll-1= +9 LOG2(N):+,332192809488711+ 1 V(N)a +2 
N: +11 f,I (N): +5 N-1: +10 LOG2(N) ■ +,345943161863811+ 1 V(N)II +3 
N: +12 r,,(N): +5 N-1: +11 LOG2(N):+,J58496250072111+ 1 V(N): +2 
N: +13 l"(N): +6 N-1= +12 LOG2(N)a+,J7004J9718137u• 1 V(N): +3 
Ne +14 r, IN l: +6 N-1:: +13 LOG2(N)c+,3807354922057u+ 1 V(N)11 +3 
N: +15 f,I ( N): +7 N•1= ,.14 LOG2(N)a+,3906890595605u+ 1 V(N)II +4 
N: +16 I' ( N): +4 N-1: +15 LOG2(N)I: +4 V(N): +1 
NII +17 ii' ( N ): +5 N•1: +16 LOG2(N):+,4087462841257 .. + 1 V(N)11 •2 
N= +18 ii'( N): +5· N-1: +17 LOG2(N)D+,416992500144311+ 1 V(N)II +2 
N• +19 il'(N): +6 N-1= •18 LOG2(N):+,424792751344611+ 1 V(N)D +3 
N= +20 r, ( N): +5 N-1: +19 LOG2(N)a+,432192809489111+ 1 V(Nl= +2 
N: +21 M(N): +6 N-1: +20 LOG2(N)c+,4392317422782u+ 1 VCN): +3 I\) 
N: +22 r,t( NI: +6 N•l: +21 LOG2(N)a+,4459431618641w+ 1 V(N): +3 \.n 

N: +23 f,I ( N):: +8 N•l= +22 LOG2(N):+,4523~6195605511+ 1 V(N): +4 
N: +24 M ( N): +6 N-1: +23 LOG2(N)a+,4584 6250072511+ 1 V(N):: +2 
Ne +25 r,, ( N): +7 N-1= +24 LOG2(N):+,464385618977411+ 1 V(N):: +3 
N: +26 f,I (NI: +7 N-1: +25 LOG2(N)::+,4700439718137u+ 1 VCN): •3 
N: +27 f,I ( N l: +8 N-1: +26 LOG2(N)m+,475488750216811+ 1 V(N): +4 
N=· +28 r,, (NI: +7 N•l= +27 LOG2(N)m+,4807354922057u+· 1 V(N)II +3 
N: +29 f,l(Nl= +8 N•l= +28 LOG2(N)a+,485798099513311+ 1 V(N): •4 
N: +30 II' ( N): !8 N-1= +29 LOG2(N):+,4906890595608w+ 1 V(N): +4 
N: +31 II' (N): +9 N-1= +30 LOG2(N):+,4954196310391u+ 1 V(N): +5 
N:: '+32 l"(N):: +5 N-1= +31 LOG2(N): +5 V(N): +1 
Ne +33 r, ( N ): +6 N-1= +32 LOG2(N):+,504439411936611+ 1 V(N): •2 
N= +34 f,l(N):: +6 N-1: •33 LOG2<N):+,5087462841~57u+ 1 V(N)II +2 
N:: +35 r,, ( N l: +7 N-1= +34 LOG2CN)m+,5129283016948u+ 1 V(N)= •3 
N: +36 f,I( NI: +6 N•1: •35 LOG2(N)a+,5169925001450u+ 1 V(N): +2 
N: •37 M(N): +7 N-1= +36 .LOG2(N)::+,5209453365635u+ 1 V(N): +3 
N= •38 I'- ( N): +7 N-1: +37 LOG2(N):+,5247927513446w+ 1 V(N): +3 
N: +39 r,, ( N >= +8 N-1= +38 LOG2(N):+,5285402218869u+ 1 V(Nl= +4 
N: +40 f,I ( N): +6 N-1= •39 LOG2(N):+,5321928094891w+ 1 V(N): •2 
N: +41 M(N):: +7 N-1= +40 LOG2(N)c+,535755200462911+ 1 V(N)D +3 
N: +42 f,I ( Nl: +7 N-1: +41 LOG2(N)=+,539231742278211+ 1 V(N): +3 
N• +43 f,I C N l: +8 N•l= +42 LOG2(N)a+,542626475470811+ 1 V(N): +4 
Ne +44 ii' (NI: +7 N•l: +43 LOG2(N):+,5459431618641u+ 1 V(N):: +3 
Ne +45 f,I ( N ): +8 N-1= +44 LOG2(N)::+,5491853096333w+ 1 V(N):s +4 
Ne +46 f,I ( N l: +9 N-1= +45 LOG2(N):+,5523561956063w+ 1 V(N):: +4 
N= +47 f,l(N): +10 N-1: +46 LOG2(N)c+,5554588851686u+ 1 V(N): +5 
N: +48 ii' (N): +7 N-1: +47 LOG2(N)::+,5584962500725u+ 1 V(N): ·+2 
Ne +49 ii' (N): +8 N-1= +48 LOG2(N)s+,561470984412211+ 1 V(N): +3 
N: +50 f,I( N): +8 N-1: •49 LOG2(N)c+,564385618978111+ 1 VCN)• +3 
N: +51 M ( N >: +9 111•1= +50 LOG2(N)s+,5672425341974u+ 1 V(N): +4 
N= +52 f,l(N): +8 N-1= +51 LOG2(N)a+,5700439718144u+ 1 V(N)~ ♦ 3 
Ne +53. I" (NI= +9 N•1: +52 LOG21N)~+.5727920454570u+ 1 V(N)a •4 
Ne +54 r,, (NI: +9 N-1= +53 LOG2(N) ■ +,5754887502168u+ 1 V(N): +4 
Ne +55 f,I( N 1= +10 N-1= +54 LOG2(Nl••.5781359713532u+ 1 V(N)a· +5 
N: +56 M(Nl= +8 N•1: •55 LOG2(N)•+,580735492206411+ 1 V(N)a +3 
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N= 
~ 

+57 II' ( N): +9 N-1: +56 LOG2(N):+,5832890014164a+ 1 V(N): •4 
N: +58 fl' C N): +9 N .. 1:: +57 LOG2(N):+,5857980Q95133a+ 1 V ( N) II +4 
N: +59 r, ( N): +10 N-1= +58 LOG2(N):+,5882643~49365"+ 1 V(N): +5 
N= +60 M(N): +9 N-1: +59 LOG2(N):+,5906890595608w+ 1 V(N)II +4 
N= +61 M(N): +10 N-1= +60 LOG2(N):+,5930737337570"+ 1 V(Nl= +5 
N= +62 f',\ ( N l: +10 N-1= +61 LOG2(N):+,5954196310398w+ 1 V(N)= +5 
Ne •63 M(N): +11 N-1= ♦ 62 LOG2(N):+,5977279Q23500q+ 1 V(N)= ♦ 6 
N: +64 M(N): +6 N-1: +63 LOG2(N):+,6000000000007"+ 1 V(N): +1 
N: +65 Ill ( N): +7 N-1= +64 LOG2(N):+,6022367813035"+ 1 V(N): +2 
I',: +66 MCN): +7 N-1= +65 LOG2(N): ♦ ,6044394119359w+ 1 V(N): ♦ 2 
N: +67 Ill (N) = +8 N-1: +66 LOG2iN):+,6066089190463"+ 1 V(N): ♦ 3 
N: +68 II'( N): +7 N-1: ♦ 67 LOG2<N):+,6087462A41?57w ♦ 1 V(Nl= +2 
N: +69 Ill (N ): +8 N-1: +68 LOG2(N)s+,6108524456780w+ 1 V(N): +3 
N:: +70 M(N): +8 N•l: +69 LOG2(N)::+,6129283016940u+ 1 V(N)= +3 
N: +71 Ill ( N):: +9 N-1= +7.0 LOG2(N):+,6149747119503w+ 1 V(N>= +4 
N: +72 I-' ( N):: +7 N-1= •71 LOG2(N):+,6169925001443w+ 1 V(N): +2 
N: .. 73 M ( N):: +8 N-1= •72 LOG2(N):+,6189824558882u+ 1 V(N): +3 
NC +74 MCN): +6 N•l: +73 LOG2(N):+,6209453365635w+ 1 V(N)= +3 
N= •75 M(N): +9 N-1= +74 LOG2(N):+,6228818690499w+ 1 V(N): +4 
N= +76 M(N): +8 N-1= •75 LOG2CN):+,6247927513446w+ 1 V(N): +3 
N= +77 M ( N) :s +9 N-1: +76 LOG2(N):+,6266786540698w+ 1 V(Nl= +4 
N: +78 M(NJ: +9. N-1= +77 LOG2(N):+,6285402218869w+ 1 V(N): +4 
N= +79 M ( N): +10 N-1: +78 LOG2(Nl=•.6303780748181w+ 1 V(N) 11 +5 
N= +80 Ill C N l = +7 N-1= +79 LOG2(N):+,6321928094883w+ 1 V(Nl= +2 
N: +31 MCN): +8 N-1= +80 LOG2(N):+,6339850002885w+ 1 VCN)= +3 I\) 

0\ 
N: +82 M(N): +8 N-1: +81 LOG2(N):+,6357552004614u+ 1 V(N):s +3 
N:: •83 M(N): +9 N-1= +82 LOG2(N):+,6375039431347w+ 1 V(N): +4 
N:: +84 M ( N): +8 N-1= +83 LOG2(N)=+,6392317422789u+ 1 V(Nl= +3 
N= +85 r,, ( N) = +9 N-1: +84 LOG2(N):s+,6409390936133u+ 1 V( N) ::a +4 
N= +86 M(N): +9 N-1= +85 LOG2(N):+,6426264754700w+ 1 V(N>= +4 
N: +87 M ( N)" +10 N-1: +86 LOG2(N):+,6442943495844w+ 1 V(N):s +5 
N= +88 JI' ( N): . +8 N-1= +87 LOG2(N):+,6459431618641"+ 1 V(Nl= +3 
N: +89 r,; ( N): +9 N-1: +88 LOG2(N)=+,647573343Q969~• 1 V(N):s •4 
N: +90 M(N): +Q N-1: +ti9 LOG2(N):+,6491853096333w+ 1 V(N)= -+4 
N: +91 M(N): +11 N-1= +90 LOG2(N)=+,6507794640202~• 1 V(N)= •5 
N: +92 M(N): +10 N-1= +91 LOG2(N):+,6523561956063M+ 1 VC N) ::a +4 
N: •93 M(N): •11 N-1= +92 LOG2(N)=+,6539158811109w+ 1 V(N)II +5 
N: +94 M(N): +11 N-1= +93 LOG2(Nl=•.6554588A51679w+ 1 V(N):a +5 
N: +95 M (Ni:: +12 N-1= +94 LOG2CN)s+,656985560833Qq+ 1 V(N)= +6 
N= +96 r,; C N l: +8 N-1: +95 LOG2(Nl•+,6584962500725w+ 1 V(N)= •2 
N: +97 M(N): +9 N-1: +96 LOG2(N)=+.6599912a4219oq+ 1 V(N)= +3 
N= +98 M(N): +9 N•l: +97 LOG2(N):s+,6614709844114w+ 1 V(N)= +3 
N= +99 M(N): +10 N-1= +98 LOG2<N):+,6629356620077w+ 1 V(N):s +4 
N: +100 M(N): +9 N•l= +99 LOG2(N)s+,6643856189774w+ 1 V(N):z +3 

ER 998 16 +100 
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3. Correctness proofs 

A program (or algorithm) ought to be accompanied by a proof of 

correctness. 

Advantages. The discipline of proof has the advantages: 

1. Provides a systematic search for errors. 

2. Gives sufficient reasons why the program must be correct. 

3. Mey lead to ways by which the program can be improved. 

4. Makes explicit the assumptions on which correctness rests. 

Hence an attempt to satisfy yourself as to the correctness of a program is 

the first and most basic part of the analysis of any computer algorithm. 

Feasibility. What is a "correctness proof?" It is not reading a program 

closely and then announcing that it works. Nor is it using the standard 

debugging technique of testing "representative" input and checking the 

resultant output. As Dijkstra says (in Burton and Randell 1970), "Testing 

shows the presence, not the absence of bugs". By correctness proof we will 

mean a rigorous mathematical proof which verifies that a program which 

appears to be intuitively adequate is in fact correct. It is hardly easier 

to prove the correctness of programs than to establish proofs of theorems. 

However, a correctness proof expressed completely formally in, say, 

predicate calculus notation will not be our goal. Indeed, we will emphasize 

informal, but rigorous, demonstrations given as standard mathematical argu

ments in prose form. The detail and precision used will depend in part on 

the particular program to be proved, on the programming language used, and 

on the audience to whom the proof is directed. Preliminary work has been 

done on automated verification of correct programs (let the computer do 

it!), but current techniques fall short of producing such proofs automati

cally in all (or even most) cases. 

Saddle point program proof. To provide an example correctness proof, we 

consider the problem of finding a saddle point of an m x n matrix A. 

Element A[i,j] is a saddle point if 



( 3. 1 ) A[i,j] = min 
1<k<n 
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A[i,k] = max A[k,j]. 
· 1<k<m 

Figure 3. 1. specifies an ALGOL program to output a saddle point of A if 

there is at least one, or a zero if there is no saddle point. We now show 

that this program works properly for all matrices A. Our method is to label 

each key step of the program with an assertion about the current state of 

affairs at the time the computation reaches that step. These "key inductive 

assertions" are given as comments in the program text. 

Assertion A 1 always hold by virtue of the initialization of the row 

index i to zero and the while clause controlling the for statement on i. 

Similarly, assertion A2 is always true when control reaches that 

point. 

Assertion A3 follows from the fact that the for statement preceding it 

sets SP to false iff 

( 3. 2) A[i,k] < A[i,j] for some 1 < k < n. 

Clearly, equation (3.2) holds iff 

A[i,j] # min A[i,k], 
1<k<n 

that is, element A[i,j] is not a saddle point of A because there is a 

smaller element in its row. 

Assertion A4 has two parts which follow from the two cases: 

(1) SP is true after assertion A3. 

(3.3) 

Then the for statement preceding assertion A4 sets SP to false iff 

A[k,j] > A[i,j] for some 1 < k < m. 

Clearly, equation (3.3) holds iff 

A[i,j] # max A[k,j], 
1<k<m 

that is, element A[i,j] is not a saddle point of A because there is a 

larger element in its column. 
,. 
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(2) SP is false after assertion A3. 

Then A[i,j] is not a saddle point of A and the statements between 

assertions A3 and A4 have no effect on SP. 

Assertion A5 is obvious from the block structure of the program. 

Finally, assertion A6 holds because both for statements on i and j ter-

minate only when either: (1) SP= true, and hence A[I,J] is a saddle point 

by virtue of assertions A3 and A4 along with definition (3.1); or (2) SP= 

false, with I = m and J = n, so that all possible values of I and J have 

been tried without finding a saddle point. 

The author readily confesses that constructing the above proof demon

strated to him the need for the variables I and J; in other words, my first 

incorrect version of the program printed out A[i,j] as a saddle point. Note 

it is also not possible to print A[i-1,j-1] if SP is true, because ALGOL 60 

leaves the controlled variables i and j "undefined" after exit from the for 

clauses. 

Termination. There remains one important point: We never showed that the 

program terminates! Indeed, proofs of termination are usually handled sepa

rately from the verification of correct results. Termination of the saddle 

point program is easily established because the program does not use trans

fers of control by means of goto statements. We need only remark that each 

of the four for statements starts with controlled variable equal to 0, in

crementing it by 1 for a finite number of times since it cannot exceed 

max{m,n}, by virtue of the while clauses. Thus control always reaches the 

print procedure call after executing each line of code at most 

(m+1)(n+1)(max{m,n}+1) 

times. 

Key inductive assertions. This method of algorithm-proving in terms of key 

inductive assertions is essentially due to Floyd (1967) and Naur (1966), who 

called them "general snapshots". In general, the method places assertions 

concerning the progress of the computation between lines of code. Next, it 
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is demonstrated that each assertion is true every time control reaches that 

assertion, under the assumption that the previously encountered assertions 

hold. Using induction on the number of lines of code, it follows (Knuth 

1968) that this yields a valid proof. Termination of the program is then 

shown separately. 

Square root example. That a program terminates can be more difficult to show 

than that the correct result is achieved. This is the case for program ROOT 

in Figure 3.2 which computes the square root of a real positive argument x, 

by the Newton-Raphson method. In the Newton-Raphson method (see Hamming 

1971, section 2.8: "Newton's method (another method to avoid)"), an initial 

guess y
0 

for Ix is iteratively improved by 

(3.4) for i = 0, 1 ,2,. . • • 

We take y0 = 1 and stop the guessing when 

for£ 

From equations (3.4) and (3,5) it is easy to see that we stop guessing when 

( 3.6) 
1Yi+1-Yil 

2 y. - X 
10-6 . l 

= < £ = 
Yi+1 2 + X y. 

l 

In our program (Figure 3.2), z and y correspond toy. 1 and y., respectively. 
l+ l 

Thus the while clause correctly stops the guessing when equation (3.6) is 

satisfied. 

But is (3.6) ever satisfied? To show that this program does indeed 

terminate, we note that (except for y
0 

and assuming exact arithmetic) each 

guess Yi+ 1 is.:::_ Ix. and is< yi. (x=1 is a trivial special case.) Therefore, 

we have a bounded monotone sequence of guesses which, of course, must 

eventually produce successive guesses which differ in relative error by less 

then any £ > 0. 

A mathematician would now be satisfied that program ROOT terminates. 
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A numerical analyst or programmer should continue to worry about the precise 

number of iterations needed. We could set an upper limit to the number of 

iterations, so that ROOT stops if it does not converge rapidly enough. In 

fact, it is good programming practise to set an upper limit to the number of 

iterations used in any iterative algorithm. But we can do better; for 

assuming exact arithmetic, the maximum number of times that procedure ROOT 

will execute the statement "y: = z;" 1s 

Formula (3.7) 1s based upon two facts: (i) The first guesses y. are approx-
1 

imately equal to x/21 ; (ii) When ROOT gets close to ✓x, it tends on each 

step almost to double the number of decimal places that are accurate. 

Before the author supplied the above correctness proof for procedure 

ROOT, he felt that he understood the Newton-Raphson method. But after 

struggling to prove correctness, especially termination, he had a greatly 

increased understanding of programming the Newton-Raphson method for square 

roots. We often fail to realize how little we know about an algorithm until 

we attempt to prove it works! 

Because some programmers believe correctness proofs to be impossible, 

too difficult, trivial, and/or not worth the effort, let us seek to clarify 

what is meant by "increased understanding" and at the same time discuss com

plaints made against proving correctness. (See Smith 1972,) 

Levels of understanding. E. de Bono (1971) distinguishes between five levels 

of understanding in practical thinking: 

1 • Simple description. (Just describe what ROOT seems to do.) 

"It computes Ix for positive x". 

2. Porridge words. (Use vague words like approximation, iteratively, 

accuracy.) 

"It approximates Ix, for positive x, by iteratively improving guesses 

until the desired accuracy is attained". 
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3. Give it a name. (Identify and name the process.) 

4. 

"It approximates rx, for x > 0, by the Newton-Raphson method." 

The way it works. (Describe process in broad terms.) 

"It approximates /x, for x > 0, by y in the following steps: Guess a 

value of 1 for y; find the average of y and the quotient x/y; this is 

a better guess; repeat until the relative error between successive 

guesses is less than 10-6. 11 

5. Full details. (Full details of what is happening.). 

"Refer to the ALGOL 60 program text (Figure 3.2) and to the correctness 

proof for it given above." 

It is not uncommon for programmers to use level 1 (Simple descrip~ion) 

understanding to provide the basis for action and for decision in their com

puter work. For example, if they need a logarithm program, then a simple 

description such as 

"Library procedure ln(x) computes the natural logarithm of real 

positive x." 

can satisfy them. 

Level 2 (Porridge words) understanding is more specific than level 1 

because it is based upon useable explanations instead of just a simple des

cription. For example, although 

"Library procedure CURVEFIT outputs the parameter values of that 

particular curve of best fit at· the input points." 

is a vague explanation of CURVEFIT ("curve" and "best fit" are clearly 

Porridge words), it offers a useable explanation. The author knows computer 

users who often used programs·. which 

"perform a significance test for independence in a two-way contigency 

table", 

without worrying about the Porridge word "significance test", which includes 

the cases: Chi-square (x2 ), x2 with Yate's correction for continuity, and 

an exact test (such as Fisher's for 2 x 2 tables) based on a multinomial 
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distribution. Differences in significance can arise depending upon which 

test is used. 

Level 3 (Give it a name) understanding is a very big step forward from 

levels 1 and 2, because as soon as an algorithm is named (Newton-Raphson 

method, Least squares straight line, Binary sort), you can look it up or 

otherwise identify it to your satisfaction. Even a cautions numerical ana

lyst will frequently settle for level 3 understanding since a name like 

"Fast Fourier trans form algorithm" can convey so much information to him. 

Level 4 (The way it works) understanding is based upon a general des

cription of the way the program works. Consider the following level 4 des

cription of a binary search in a sorted list: 

"Comparison is made with the element at the center of the list: 

whichever wa;y the comparison goes, the item being searched for is 

now known to lie in some list which is one half as long as the ori

ginal list. Comparison is now made with the element at the center of 

this list, and the process continues. At every stage, it is possible 

to identify a list half as long as one previously identified, as the 

one containing the item. Hence at most n + 1 tests are necessary to 

find the item if there are 2n elements in the list." 

Textbook authors will specify computer algorithms in this wa;y to avoid 

painful details and yet explain the way it works. They strive to stop at 

that fullness of detail which makes it unnecessary for anyone to ask why or 

how. 

Level 5 (Full details) understanding is the most detailed although it 

is obviously impossible to give complete details in any absolute sense. For 

example, "complete details" for an ALGOL 60 program would have to include 

the correctness of its compiler and the hardware of the computer used! But 

as de Bono says, 11if you go beyond the practical detail to further detail 

the situation may become unfamiliar again". 

In this syllabus full details of an algorithm should alwa;ys include 

an annotated program text accompanied by an correctness proof. 

Arguments against correctness proofs. Viewed from the above five levels of 

understanding, whether or not you require program correctness to be shown 
"· 



35 

depends on what level of detail you desire. As an illustration of this, 

there was a recent essa;y contest (McCracken 1971) on the topic "Would you 

trust the lives of your children to a highly complicated computer system 

that cannot be checked out?" The computer system is the Safeguard Anti 

Ballistic Missile system (ABM) in America. Essays in this contest argue at 

all levels from 1 to 5. A level 1 point is that the mere description of an 

ABM system should prevent its ever being used. (Like the "Doomsday machine" 

in Dr. Strangelove.) A level 5 point is that the ABM cannot be "fully" 

checked out without testing under actual operating conditions. One program

mer (Glass 1971) with 15 years experience in the aerospace industry claimed 

in his essay, "And I have never yet written a checked out program". 

Arguments against level 5 understanding are based upon expediency; that 

is, "Practical man has to be right as soon as possible because he has things 

to do (de Bono 1971 )". Yet the practical explanation of a program which is 

more useful under certain circumstances is not necessarily better than a 

deeper explanation. Surely one has increased confidence whenever a program 

is accompanied by a correctness proof, even though proofs of correctness 

share problems with more usual mathematical proofs (e.g., communication of 

the proof to the reader, level of detail, finding the proof). 

Proof techniques. That concludes our definitions and justifications for 

program correctness proofs. We next examine some useful techniques, however 

imprecisely defined, for constructing convincing program proofs: 

Variable change table. A cross reference table of the identifiers declared, 

changed, and/or used in an ALGOL 60 block is useful in: 

(i) showing variables are unchanged between two points. 

(ii) detecting undeclared or multiply declared identifiers. 

(iii) finding variables used before they are changed. 

(iv) locating control statements, variable usages, etc. 

To illustrate these uses for a variable change table, we consider the 

meaningless "nonsense program" in Figure 3. 5. Corresponding to the one 

procedure (SORT) and the outer block (exclusive of SORT), there are two 
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variables change tables as given in Figures 3.3 and 3.4. These tables are 

clear from inspection of the program and could be produced almost entirely 

automatically. 

Information provided by the table in Figure 3.3 follows. Firstly, we 

see that the label "loop" is defined at line number 20 and there exists two 

jumps to loop, one at line 13 and one at line 24. Whenever goto's are used, 

the labels should be included in a variable change table. If there is no 

line number in the "declared" column, then obviously the program is trans

ferring control to a nonexistent label. Similarly, if there are no line 

numbers in the "used" column, then the program contains a redundant label. 

There are precisely two procedure statements and they both invoke pro

cedure SORT whose declaration appears in lines 4 to 8 inclusive. From the 

procedure names which have no line numbers in the "declared" column, you can 

determine which library procedures the program requires. 

Arrey Dis referenced in lines 20 and 21 but was never declared. Of 

course, ALGOL demands that all variables be declared so that the compiler 

should catch this error. Languages such as FORTRAN and PL/1, however, permit 

declaration by default and then knowledge of a missing explicit declaration 

ma;y be useful. Multiple declarations are easily detected by looking for two 

or more line numbers in the "declared" column. 

The simple variable alpha, although properly delcared and assigned a 

value, is never used in an arithmetic expression. On the other hand, the 

array element B[3] is undefined when it is used at line 15. In general, when 

a variable is used at line number U, changed at line number C, and U < C, 

then beware for an undefined (not undeclared) variable. 

Note that array A is both used and changed in line 14 where it appears 

as a parameter to procedure SORT. You must trace procedure parameters to 

check if their values are changed by the activated procedure. Naturally, 

when a formal parameter of the procedure is a value parameter, then the 

corresponding parameter in the procedure call can be used but not changed. 

A call by name parameter must ultimately appear on the left hand side of 

the assignment operator(:=) in order to be changed. 

Besides locating errors a variables change table permits you to make 

assertions like: 
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"Except for Y _and D[ ] , nothing else is changed in lines 21 through 25. 11 

"Formal parameter n in procedure SORT is used only in an arithmetic expres

sion after an until (line 6)." 

Such assertions that a variable value is changed only in a specified wey, 

are useful in program correctness proofs. A variable change table is a 

precise verification of such assertions. 

Debugging syntax errors. Errors in grammar should be uncovered before a 

correctness proof is attempted. Much confusion and frustration is caused by 

spelling mistakes in mathematics texts and, technically, any formula is just 

not correct when it contains a grammatical error. Of course, ALGOL 60 com

pilers often will not translate a program until its syntax agrees with the 

Revised Report. For example, the code 

y:= 6. X w; 

is illegal because a zero is missing after the decimal point. 

Because FORTRAN and PL/ 1 have default options and their syntax was ill

defined until recently, debugging syntax errors in these languages is more 

difficult. It even happens that a legal FORTRAN statement such as 

FORMAT(6H)=(A+B) 

often stops compilers. Explicit and mandatory declarations in ALGOL avoid 

most spelling errors in identifiers from going unnoticed. 

Certainly the clerical exercise of detecting syntax errors is "work 

unfit for a Christian" and should be automated. Both compile- and runtime 

diagnostics are desirable. In the program 

begin array A[1:5]; print {A[read]) end 

only a run-time check will detect an illegal subscript. Warning messages are 

also desirable. It can be helpful to be warned that an identifier was de

clared but never used in an ALGOL program. 
" 
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A common error in ALGOL programming is to omit a semicolon after ari · end 

which thereby turns the text following the end into a comment. A warning can 

be provided when this comment contains a delimiter ( : =, +, _gQ_ to, etc. ) • 

Automated error detection can even be coupled with automatic correction 

schemes to convert the illegal ALGOL text into a legal program. 

Testing for semantical and logical errors. It is not reasonable to "prove" 

correctness details before we have good reasons to believe that the program 

works. The classical testing techni~ues are not only easier to carry out, 

they also provide timing data end extensive empirical evidence for algo

rithmic analyses. Consideration of the cost for certification of a program 

often leads to the experimental (testing) rather than the analytic (correct

ness proof) approach. However, no matter how many experiments are conducted, 

a program can never be shown to be correct by testing alone. A tested pro

gram may be considered "empirically O.K. 11 and testing can establish mile

stones for the measurement of programming progress, but only a correctness 

proof can precisely and sufficiently demonstrate that the program achieves 

the desired results. 

We want to distinguish between testing for semantic errors and for 

logic errors. An example of a semantics error in ALGOL is 

begin integer a,b; 

end 

procedure one(x); two(x) 

procedure two(x); x:= 4; 
a:= b:= 1; one (a+b) 

where the meaning of "a+b := 4" is undefined. Note that the above program is 

syntactically valid ALGOL; it is semantically invalid. Explanations of the 

semantics of ALGOL 60 are considered too well-known to be stated explicitly 

in a correctness proof. Nevertheless, details of rarely used (e.g., Jensen's 

device) ALGOL features should be spelled out when they are incorporated 

within a program. It is surprising that many ALGOL programmers fail to take 

into account that the controlled variable in a for loop is undefined upon 

exit from the loop. They rely upon their particular hardware representation 
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for an exit value, rather than adhere to the semantics in the reference 

language. 

Logical errors are mistakes in program construction where the text has 

both valid syntax and semantics, but it does not have the intended effect. 

When "i:= i+1" is written erroneously for "i:= i-1", when an array is sorted 

erroneously in ascending rather than descending order, when the relational 
11

>11 is used erroneously instead of 11 <" --- these are logical errors in the 

program. 

Testing for semantical and logical errors involves the classical tech

niques of dumps, snapshots, traces, etc. The idea is to run the program with 

a test case for input and to verify the output or else trace the route to 

failure. The testing is best done in an incremental fashion so that only one 

procedure or block is being tested at one time. A good strategy is to re

place untested program sections with simplified working sections, and then 

substitute the tested sections for their simplified versions in steps. 

Test input may consist of actual data or constructed data. The data may 

be stereotyped or a statistically generated random sample. A program to gen

erate the test data may help. For example, to test a matrix inversion proce

dure the ill-conditioned Hilbert matrix 

A[i,j] = 1/(i+j-1) for 1 < i, j < n 

may be input. These matrices probably represent an extreme case relative to 

what the inversion procedure will usually handle. But extreme and excep

tional conditions should be tested when possible. Often library procedures 

are undocumented with respect to division by zero, square root of negative 

argument, subscript out of range, overflow, and so forth. You may have to 

test these situations to learn what to expect. 

Solutions for test data may be obtained from: (1) books, journals, 

etc.; (2) hand calculation; (3) a program which has been proved correct and 

which solves the problem in another way. It pays to always perform an order 

of magnitude check on final results. When the sample variance of a set of 

observations seems large, for example,a mispunched data value should be 

suspect. 
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Redundant output. Every program o_ught to produce lists of intermediate 

results for examination. This output will allow you to measure program pro

gress should your time limit be exceeded or a machine failure occur or a 

programming error prevent successful completion. Such output should also 

be planned to provide interesting statistics of long successful runs. For 

example, when the program is sorting a large file, there are numerous 

questions which might be answered upon termination: How unsorted was the 

original file? (Perhaps measured by the total number of interchanges re

quired.) Which step in the sort algorithm consumed the most time? (An empir

ical profile - see section 4 - would answer this.) Was the sort input/output 

bound? 

When the output of a program is basically negative in value, there are 

still possibilities for useful statistics and/or further work. For example, 

if a number theory calculation fails to show that n = 2P-1 is a Mersenne 

prime for some large prime p, then the factors of n should be output both 

for human verification and for possible interesting properties. 

The need for well-labeled output is obvious, for when you cannot 

identify an answer you must examine perhaps the entire program to learn its 

meaning. Output should include every input value that was read in; other

wise, you may not know which problem was solved. When the program has 

options (like more than one sorting or matrix inversion procedure), the 

alternative actually used should be identified. 

Indeed, an alternate algorithm to double-check results may be advanta

geous. In any case, you should compare the output with a commonsense esti

mate of the answer. Check the output. Look at it. Be shocked by unlikely 

results. Does the sum of some computed probabilities equal one? Does the 
-1 ( ) . product of A and A as computed equal I? If not, how much do they differ? 

Perform a difference table analysis to detect errors in a table of computed 

values. Although a final printout or postmortem dump of global variables 

may be redundant output, many bugs and other useful information have been 

gleaned from such output by observant programmers. 

Enumeration proof. Why doesn't exhaustive testing prove correctness? After 

all, if your n ! procedure accepts only the ten values 1 2.. n ~ 10, then by 
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successively calling this procedure with each bf these ten values and then 

checking the answers, have you not proved correctness of the procedure by 

enumeration? No, because there are programs which work on "day 111 but fail 

on "day 2". Figure 3.6 displays three versions of an n factorial procedure, 

each one of which could work properly for the first ten calls (day 1) and 

then fail miserably (day 2). Version 1 depends on a loop counter, version 2 

tests a random number, and version 3 relies on special initialization. When

ever a new version of the library (compiler, sqrt procedure, overflow 

handler, etc.) is installed, some users usually complain because their 

correct program no longer works. There is an authentic case where physicists 

had been "successfully" running their lengthy, complicated ALGOL programs 

for a year. Then one day run-time subscript checking was introduced into the 

system. Their programs immediately terminated with 11subscript out of bounds" 

error messages. They demanded that subscript checking be made optional and 

then chose to supress it! 

The "It-works-if-a-test-case-does" school of programming also ignores 

compiler and language specifications. To determine the exit value of a con

trolled variable in ALGOL, they run a test case instead of reading the 

Revised Report. Furthermore, the "Change-it-until-it-works" school of pro

gramming ignores compiler errors, documentation ambiguities, and so on. When 

their program doesn't work, they make changes until "it does". 

There exists one situation where testing can indeed prove correctness. 

That is the case where the program output can be checked by hand or by 

another correct program. If the output yields the correct answer, then it 

can be asserted that the program worked for that specific~- For example, 

a matrix inversion procedure which computes B, the supposed inverse to A, 

can be verified correct for a specific input A by testing that AB= I. But 

if it is run again, you must test the output each time. 

Using the problem domain. When developing a program correctness proof, it 

should be expected that relations or properties from the problem domain will 

be used. For example, in the exponentiation programs of Section 2 we needed 

the law of exponents 
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a b a+b y xy =y·, 

which was assumed as obvious. A relation such as 

( x+y) mod n = x mod n + y mod n, 

mey have to be proven explicitly for some readers while others will accept 

it as an obvious fact from modular arithmetic. 

Besides relations peculiar to the problem domain, the proof mey follow 

and depend on general principles unrelated to the problem domain or to pro

gramming. Much of the discrete mathematics found in (Knuth 1968) can be 

applied in correctness proofs as well as in frequency and storage analyses. 

Recall the correctness proof for square root by Newton-Raphson iteration was 

based upon a theorem in calculus on bounded monotone series. Your ability to 

exploit mathematics (combinatorial, statistics, probability, logic, etc.) 

will determine the ease with which a correctness proof is established. As 

usual, the more math you know, the better off you usually are. 

Well-defined generalized input. There is a computing cliche: "Garbage in, 

garbage out". And it is true that numerical mistakes can arise from bad in

put. Only by printing out the input values read in will you be sure to 

eliminate keypunching and format errors. In addition, the program should 

check that certain conditions are satisfied. For example, while reading in 

a probability distribution p. (i=1,2, ••• ,n) the program should check n > 0 
i 

and each O < p. < 1, while printing the values input. The sum I p. should 
- i - i 

also be verified equal to 1. 

To avoid clerical errors, free format helps. Instead of demanding 

that n be pun~hed right-justified in columns 6 to 10, it is helpful to allow 

n to appear anywhere (including after blank cards) as the first data item. 

Even better would be to use unordered input: 

n = 3; p[3]:= 0.5; 
p[1]:= 0.25; 

p[2] := 0 .25; 
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The advantages are that a shuf'fled data deck is not an error and that a 

specific input value such as p[3] can be changed by simply adding its new 

value to the end of the input deck. Also, such labeled input is self

documenting. Additional comments can be placed between, say, "cj:11 signs: 

n = 3 q:Number of probabilitiesq:; p[3]:= 0.5; 

Backus-Naur notation can be used to define what input syntax is legal 

in order to avoid misunderstandings. Questions like "Are leading zeroes 

permitted {0.61 )? 11
, "Do plus signs have to be punched?", and "Is there a 

power-of-ten notation?", can be easily answered by referring to the well

defined input specifications. 

A library program with sizable input should be designed around an 
11 input language". For instance, the self-explanatory input to a linear pro

gramming procedure might look like: 

begin comment Problem 1 input; 

number of equations = 4· , 
number of variables = 3; 

initial guess x = (1,1,0); 

no objective function; 

3x[1] + 4x[2] - x[3] < 1 ; 

5x[2] 7x[3] = 3; 

x[ 1 J + x[2] > O· - ' 
x[3] > O• - , 

end 

The difficulty with input languages is the task of programming compiler-like 

procedures to translate them. Nevertheless, some of the most popular library 

procedures are and should be based upon a well-defined, generalized input 

language for the user. 

Flowcharts. Understanding both a program and its correctness proof can be 

facilitated by introducing suitable notation and drawing a figure (flow-
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chart). Flowcharts are easy to produce, easy to recognize·,· and easy to 

remember. They are a pregnant notation for expressing more at a glance than 

the program text. Do not give too much detail in your flowcharts; otherwise, 

you might as well simply read the program text directly. See the sample 

flowchart in Figure 3.7. 
Flowchart notation for for loops should consists of a single box. 

Figure 3.8 gives possible notations for the three kinds of for statements. 

Flowchart standards (diamond-shaped box for decisions, square box for com

putations, etc.) exist and should be adhered to if you seek a wider audience 

for your flowcharts. The notation used within the flowchart boxes should be 

two-dimensional (like the ALGOL publication language) rather than linear 

(like the ALGOL reference language). For example, 

versus 

Type analysis. In science there is a simple but powerful technique named 
11 dimensional analysis" which consists of substituting the units of each 

variable into a formula and then canceling to check for consistency of the 

uni ts. In ALGOL there are chances to perform a somewhat similar "type anal

ysis". For example, when calling the procedure sin ( x), you should always 

check that x has the right type (real or integer) and the right units 

(radians or degrees). Some compilers do not check type compatibilities, so 

it will be the programmer's responsibility to call ln(x) with a real or 

integer or either, depending upon local library conventions. Type compati

bility of actual and formal parameters of a procedure should be made any

ways to avoid an embarassing error message after the program: is supposedly 

correct. 

Mixed modes are useful but must be checked for the desired effect. Most 

language manuals provide a table of mode possibilities for the left- and 

right,;..hand variables in substitution statements. Thus, whether 

real y; Boolean b; 

y:= b; 
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is allowed and what it means is specified. Substituting a real into an in

teger variable usually has the result of applying the greatest integer 

function to the real. Allowable input data types should also be carefully 

defined and checked. 

By using or assuming all numeric variables to be of type integer, the 

correctness proof need not consider round-off error. 

Lastly, a word about array references being within bounds. Sometimes 

checking of subscripts is an optional feature at run-time. This is analogous 

to a man who always keeps a fire-extinguisher in his car whenever it is not 

being used, and takes the fire-extinguisher out whenever he goes on a trip. 

That is, a program in production needs subscript error checking because that 

is when money or life depends on it. It is not disastrous, on the other 

hand, when a subscript error occurs while testing your program. 

Documentation. Communicating the correctness proof is an art because it 

re qui res ingenuity and creativity. Reading a convincing proof should be 

easier than reading the program. The need for documentation of the correct

ness proof is clear, for 11If it isn't written down, it doesn't exist". Con

sequently, the user will not know the program is well-tested if it isn't 

well documented. 

In the documentation there should be an informal statement of the 

problem in a natural language followed by explicit identification of all 

assumptions including accuracy, round-off err9r, input ranges, overflow, 

and so forth. Crossre·ferencing in both directions should exist between 

documentation and program text. Hence the program must be highly readable 

with meaningful line identification numbers and indentations (don't be 

afraid to insert blank line between, for example, procedures and blocks). 

Furthermore, the key inductive assertions of the correctness proof should 

appear in the program as connn.ents. Where the documentation is lacking or 

incomplete with respect to these points, the program itself must be con

sidered to be defective. 

A documented correctness proof ma;y be checked for error-freeness by 

the various program users, and it serves to set forth the best method for 

program certification known. 
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Program equivalence. One approach to showing program Q is correct, is to 

show that Q is equivalent to a correct program P •. Thus you reduce the pro

blem to one previously solved. 

For example, the two traversal programs in Figures 5.5 and 5.6 both 

visit a tree in postorder. The recursive version (Figure 5.5) is easy to 

write, elegant, and trivial to prove. The iterative version is portable to 

languages which have no recursion. To prove the iterative version (Q) one 

can simply show it is equivalent to the correct recursive version (P). 

Equivalence is shown by proving that any tree input to Q produces the same 

output as P does, and vice-versa. Output here means the same sequence of 

calls to procedure VISIT; 

Induction. A general method applicable to proving the validity of any al

gorithm uses mathematical induction. After labeling each of the arrows in 

the flowchart of the algorithm with an assertion about the current state of 

af:fairs at the time the computation reaches that arrow, induction is used to 

show that all these assertions are true during any execution of the algo

rithm. Consider the example of computing the sum: 

( 3. 8) 
I 

SUM= I 
i=1 

x .. 
i 

Figure 3.9 gives the flowchart along with the "key inductive assertions". 

It is easy to prove that each key inductive assertion leading into a box 

implies each assertion leading out, for this particular example. By induc

tion if :follows that (3.8) holds upon exit from this algorithm. 

Thus this proof technique consists mostly of inventing the key asser

tions to put in the :flowchart. In loops we require an assertion describing 

the processing accomplished by the i-th execution o:f the loop. In recursive 

calls of a procedure we require an assertion describing the result o:f in

voking the procedure for the i-th time. The well-known change problem (how 

many ways can you change one guilder?) can be stated as a recursive algo

rithm and then proved correct by recursive induction (see Polya 1957). 



Case analysis. The old strategy "Divide and conq_uer" can be employed in 

correctness proofs. We have already mentioned that the checkout of assem

blages of program components is best accomplished in an incremental fashion. 

Further, input possibilities can be sectioned so that, for example, the 

cases n < O, n = O, and n > 0 are treated separately. 

When labeling the flowchart with inductive assertions, the key steps 

can be chosen to be procedures, blocks, and starting or ending points of 

loops. This breaks the program up into managable pieces. Complex decision 

choices (if-then-else structures) can also be broken up into cases. The con

ditions with their resulting actions to be ta.ken should be displayed in a 

table such as : 

Income-tax calculation 

Condition Action 

line 10 < line 11 Pay refund 

line 10 = line 11 Close account 

line 10 > line 11 Bill taxpayer 

This table is used as an intermediate representation or notation. Hence, 

first you need to show that this table follows from the code and, secondly, 

you show that the table is implemented properly. One complicated step is 

thereby replaced by two simpler steps. This is merely the techniq_ue mathe

maticians use when they develop the proof of a main theorem through a series 

of lemmas. 

Nevertheless, before decomposing the problem into cases and working at 

details, you should understand the program as a whole so that you don't lose 

yourself in details. A common fault of programmers is that they rush into 

constructing their program before they have thoroughly understood the pro

blem and have devised a general plan for its solution. 

It is obvious that a program which uses library procedure or well-known 

algorithms is partly proved correct since these parts have already been 

certified or otherwise shown correct. 
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Figure 3.1. Program to print a saddle point (i.e. an element which is the 

smallest value in its row and the largest value in its column) 

of matrix A if one exists; otherwise, it prints zero. Key steps 

are labeled with assertions which prove the validity of the 

program. 

Boolean SP; integer 1, J, k, I, J; array A[1:m,1:n]; 

SP:= false; i:= Q:; 

for i:= i+1 while ,SP Ai< m do 

begin comment A1: 1 < i < m and SP= false; 

I:= i; j := 0; 

for j := j+1 while ,sP A j .::_ n do 

begin comment A2: 1 < i < m and 1 < j < n and SP= false; 

SP:= true; k:= O; J:= j; 

fork:= k+1 while SP A k < n do 

if A[i,k] < A[i,j] then SP:= false; 

comment A3: SP= true iff A[I,J] = min A[I,k]; 
1<k<n 

k:= O; 

fork:= k+1 while SP A k < m do 

if A[k,j] > A[i,j] then SP:= false; 

comment A4: SP= true implies A[I,J] = max A[k,J]; 
1<k<;;m 

SP= false implies A[I,JJ # saddle point of A; 

end· __ , 
comment A5 : Same as A4 ; 

end; 

comment A6: SP= true implies A[I,JJ = min A[I,k] = 
1<k<n 

SP= false implies A has no saddle point; 

print (if SP then A[I,J] else O); 

max A[k,J]; 
1<k<m 



Figure 3.2. Procedure to find an approximate square root of a positive real 

argument x by Newton's method. 

real procedure ROOT(x); value x; real x; 

begin real y, z, error; 

end 

if x > 0 then begin 

error:= 0.000001; 

for z:= 1, (z+x/z)/2 while abs(y-z)/z .::_ error do y:= z; 

ROOT:= (y+x/y)/2 

end 

else if x = 0 then ROOT:= 0 

else begin 

print text ( "Procedure ROOT entered with negative argument 

equal to") ; 

print(x); ROOT:= 0 

end 

comment Test of ROOT with x = 10 10 on the X-8 computer. The successive 

variable values are: 

z 

1 

5000000000.5 

2500000001.3 

1250000002.6 

625000005.3 

312500010.7 

156250021.3 

78125042.7 

39062585.3 

19531420.7 

9765966,3 

4883495.1 

x=10000000000.0 error=0.000001 

1 

5000000000.5 

ETC. 



z x=10000000000.0 

2442771.4 

1223432 .6 

615803.1 

316021. 1 

173832 .3 

101062.62 

100005.586 

100000.0001560 

100000.0000000 

50 

error=0.000001 



• 
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Figure 3,3. Variables change table for outer block in the program of 

Figure 3.5. 

Identifier Declared at line Changed at line Used at line 

l 2 12,20 15,16,17,20 

alpha 10 12 --
y 3 12,23 13,22 

B[3] (array) 9 18 15 

A[ J (array) 9 14, 17 14 

loop (label) 20 -- 13,24 

D[ J (array) -- 20,21 21 

SORT (proc.) 4-8 -- 14,21 

Figure 3.4. Variables change table for procedure SORT in the program of 

Figure 3.5. 

Identifier Declared at line Changed at line Used at line 

SORT (proc.) 4 -- --
C[ J (array) 4 4,7 7 

n 4 4 6 

l 5 6 7 

sqrt (proc.) -- -- 7 
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Figure 3.5~ Nonsense program. to illustrate possibilities in a variables 

change table. See Figure 3.3 and 3.4. 

[ 1] begin comment Nonsense program; 

[ 2] 

[ 3] 

[ 4] 
[ 5] 

[ 6] 

[ 7] 

[ 8] 

[ 9] 

[10] 

[ 11] 

[ 12] 

[13] 

[14] 

[15] 

[16] 

[17] 

integer 1; 

real Y; 

procedure SORT (C,n); integer array C[1:n]; integer n; 

begin integer 1; 

for i:= 1 step 1 until n-1 do 

if C[i] < C[i+1] then C[i]:= sqrt (C[i+1]) 

end· --' 
integer array B[1:10], A[1:50]; 

Boolean alpha; 

Y:= read; alpha:= true; i:= O; 

if Y ~ 0 then@ to loop; 

SORT (A,25); 

if B[3] = i then begin 

for i:= 1 step 1 until 10 do 

A[i]:= 1; 

B[3]:= 0 

end· --' 
loop: for i:= 1 step 1 until 10 do D[i]:= O; 

SORT ( D, 10) ; 

[ 18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] end 

if Y = 6. 3 then begin 

Y:= O; 

@ to loop 

end; 
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Figure 3.6. Three versions of an n factorial procedure (nfac) which work 

correctly only sometimes. 

comment Version 1 works (assume i is initially zero) for the first ten 

calls only; 

i:= i+1; 

nfac:= if i < 10 then n! else -1; 

comment Version 2 works if and only if a random number is in the interval 

[o,!J; 

nfac:= if random.::_ 0.5 then n! else -1; 

comment Version 3 works if and only if i is initially zero or one while 

n > 0, or else i is initially> 0 and n=0; 

answer:= 1; 

for i := i+1 while i < n do answer:= answer x i; 

nfac: = answer; 
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Figure 3.7~ Possible flowchart for the saddle point program of Figure 3.1. 

begi~ 

NO 

-,SPtd<m 

YES 

i+i+1 -,SPAj<n 

j+j+1 

check 
A .. maximum 
lJ 

its column 

end 

YES 

NO 

Set switch 

SP to true 

check 
Aij minimum 
in its row 

Set switch 

SP to false 
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Figure 3.8~ Possible flowchart notations for the list, increment·(step -

until), and while types of for statements. 

enter 

for p = 2,3,5,7,11,13, and 17 exit 

enter NO 
exit 

YES 

enter 
NO 

exit 
i+j2_n YES 
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Figure 3.9~ Flowchart labeled with key inductive assertions for computing 

the sum: 

I 

I 
i=1 

x. 
1 

begin ~ 1 i + 1 ; SUM + 0 

I 
NO 

YES 

SUM+ SUM+ x[i] 

i+i+1 

i-1 
2 < 1 < I+1 A SUM= I 

j=1 
x. 

J 

1 = 1 A SUM= 0 

I 
end with SUM= l 

i=1 
x. 

1 

i-1 
1 < i <IA SUM= l 

j=1 

l 

x. 
J 

SUM= I 
j=1 

x. A 1 < i < I 
J 
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EXERCISES 

3.1. The saddle point program in Figure 3.1 is clearly inefficient with 

respect to comparisons made (see exercise 4.1). Write and prove 

correct a more efficient version. 

3.2. It is desired to construct and prove correctness of an algorithm 

which will help prevent accidents between railroad trains. Suppose 

n = Number of trains on a particular track. 

m. 
1 

= Identification number of train 1 (1<i<n). 

P. = 
1 

Position of front of engine of train i, measured from end of 

the track. 

L. = Length of train i. 
1 

D = Minimum allowable free distance between trains. 

Construct and verify an algorithm which checks the spacing of the 

trains and output a message if two trains are too close to each other. 

3.3. In the following ALGOL: 

real x; 

for x:= 0.3, x+0.3 while x :/= 1.8 do begin 

end 

use of the rational:/= is bad programming practice for at least two 

reasons. Explain. 

3.4. (Newton's method for square root) Prove that successive guesses, 

equation (3.4), for Ix satisfy: 

rx < y. 1 < y. 
- 1+ - 1 

for every i > O. 

Derive formula (3.7) for the maximum number of steps before procedure 

ROOT (Figure 3.2) terminates. Prove that each application of Newton's 

rule squares the relative error under appropriate conditions. 
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3.5. Construct and prove correctness of a progran:i for a binary search. 

Assume the element y being searched for is in the vector A[1:n] which 

is stored in ascending order. 

3. 6. The approximate cube root y of a number x > 0 may be calculated by 

Newton's method as: 

y = 1 
0 

1 = 0,1,2, ••. 

Construct and verify a program for this calculation. 

3.7. Once an algorithm has been programmed, the question arises as to 

whether or not this program terminates for given input. For example, 

consider the "simple" program: 

integer procedure f(n); integer n; 

f:= if n = 1 then 0 - --
else if EVEN(n) then f(n..-2) 

else f( 3*n+1 ) ; 

Find the largest N such that the above procedure terminates for all 

n = 1,2,3, ••• ,N. You are allowed only one minute of computer time to 

find this N! 

3.8. There is a theoretical result on the subject of testing termination 

of a program which denies the existence of a general Boolean procedure 

T whose input is any program R such that T operates on R to yield: 

T(R) = 
{ 

true, 

false, 

if R terminates when run 

if R does not terminate. 

Here is an informal proof that no such procedure T can be programmed: 
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Assulile, contrariwise, that T does exist and terminates for every input 

program R. Then consider program P defined by 

program P. 

loop: if T(P) then _g£ to loop else stop. 

and which uses procedure T as a subroutine. Hence if T(P) = true, 

then program P will loop forever. If T(P) = false, then P terminates. 

In each case T has exactly the wrong value. 

This contradiction shows that T cannot exist. 

This result means, roughly, that nobody can write a general program 

which would successfully check everyone elses program for termination. 

However, special programs can be written which verify termination 

sometimes. It is a termination checking program which works every time 

that is impossible. 

Determine whether or not the function f defined below terminates for 

all positive input (n>0). 

integer procedure f(n); integer n; 

f:= if n > 100 then n-10 else f(f(n+11)); 

comment For example, the computation sequence of f(99) is: 

f(99) + f(f(110)) + f(100) + f(f(111)) + f(101) + 91. 

In this case (n=99) we say that f(99) is defined and f(99) = 91. When 

the computation sequence is infinite, we say that f(n) is undefined 

for that value of n; 

3.9. Find an argument n for which the following recursive f'unction g does 

not terminate : 

integer procedure g(n); integer n; 

g:= if n > 100 then n-11 else g(g(n+11)); 
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3.10. What is your personal opinion about program correctness proofs? 

3.11. Describe errors in the ALGOL program whose variables change table is 

given by: 

Identifier Declared at 

i 2 

alpha 5 

y 5 

start (label) 2 

stop (label) 100 

A[ J (array) 4 

B[ J (arrey) 5 

C[ J (array) 

D[3] (array) 2,5 

sort (procedure) 8-13 

log 2 (procedure) 

line Changed at line 

7, 19 

40 

15 

16 

25 

7 

Used at line 

9,35 

35 

6,25 

45,55 

18,23 

30 ,31 

30 

50,55 

60 
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SOLUTIONS 

3.1. Beware of' equal elements in a given row or column. 

3.2. Did you assume trains are arranged in the order i = 1,2, .•• ,n along 

the length of' the track? 

3.3. (i) Because of' precision problems, x may never equal 1.8 exactly. 

On many machines, the real integer 3 is represented internally 
1 as O. 3*·10 ; theref'ore the f'ollowing code is just as bad: 

real x, y; 

f'or y:= 3, y+3 while y f: 18 do 

begin x:= y/10; 

end· __ , 
(ii) If x accidently "skips" the value 1.8 (say, by a machine error 

or by an improper assignment between begin - end or by a jump 

into the for loop), then the for statement again may loop 

forever. 

(iii) The f: relational means that the correctness proof must consider 

x > 1.8. Also, understanding the program becomes more dif'f'icult: 

Will x ever exceed 1 • 8? 

3.4. Yi+ 1 - Ix=½ (yi-2v'x+x/yi) 

1 2 r = 2 (y.-2vxy.+x) 
y i i ]. 

1 C\2 = - (y.-vx1 > 0 2y. ]. - , 
]. 

:. y i + 1 > Ix for all i > 0. 

i > 0 implies: 

= 

since Yo= 1 > o. 

y. - Ix 
]. < 1 

2y. , 
i 

since y. > Ix if' i > 0. 
i 



3.5. array A[1:n]; integer i,j,k,n; 

i:= 1; k:= n; 
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for j:= (i+k)¾2 while y :/: A[j] do 

if y < A[j] then k:= j-1 else i:= j+1; 

comment J is the index of the element selected for comparison. 

1 and k are the indices of the terminal elements of the 
m remaining subset. If n = 2 , then for a uniform distribution 

of arguments, the expected number of comparisons required in 

a binary search is 

which is approximately (m-1). For general n, the number is 

approximately r1og2ri7 - 1, which differs only slightly from 

the worst case of r1og2(n+1 n; 
3,8. There is a known, but difficult, termination proof for this 

"famous 91-f'unction". Its output value is always 91. 

3.9. The computation sequence of g(99) is: 

g(99) + g(g(110)) + g(99) + g(g(110)) + g(99) + 

i.e., the computation sequence is infinite and hence g(99) is un

defined (g(99) does not terminate). 

3.10. Remarks on correctness proofs: 

I suppose a "good" test case is one which uncovers at least one error. 

Therefore,. if your program is correct, there are no "good" test cases, 

by this definition! Test cases may be "sufficient" for some program

mers, but they are never "rigorous" for proving correctness. 

Program correctness proofs are difficult. Mathematicians and machines 

mey be better at proving correctness, but then they are also better 

programmers! 

A correctness proof for a program which calculates the mean is not so 

trivial when you worry about accuracy. 
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You can learn about and concentrate on a program while discovering the 

inductive assertions for a correctness proof. 

It is impossible to test for all cases 

3. 11. The identifiers sort, B, and i seem O. K. Label "start" is. declared 

before the declaration for procedure "sort"; hence a possible error. 

Variable "Y" is never used, but perhaps it is a counter like in: 

for Y:= 1 step 1 until n do w:= w+u; 

Variable "alpha" is probably undefined because it is used in a line 

above where it is changed. 

Array "D" is probably multiply declared, although the two declarations 

could be in different blocks. Label "stop" appears to be redundant 

(not necessary), but maybe it is being used as a comment. 

Procedure "log2" must be in the library; otherwise it is undeclared. 

There are only two certain errors: Array "A" is undefined (its elements 

are never given values) and arrey "c" is undeclared. 
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4. Frequency analysis 

A common and obvious measure of' perf'ormance f'or a computer program is 

running time. We can consider the execution time f'or a program in terms of': 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

the worst case (maximum time used under the last f'avorable choice 

of' inputs ) • 

the best case (minimum time used under the most f'avorable choice of' 

inputs). 

an average case (expected time under a given input distribution). 

the exact amount (the analytic f'ormula f'or running time as a f'unction 

of' arbitrary input). 

an empirical estimate ( an empirical f'ormula f'i tted to certain input 

parameters ) • 

However, rather than give the running time in seconds f'or a particular 

computer, we will count the number of' times each step is executed. Clearly, 

the time required to perf'orm an algorithm can always be determined when you 

know the number of times each step is executed. These counts, then, give us 

an essentially machine-independent method f'or the determination of' running 

time. 

Example. We illustrate the five above possibilities by a simple example. 

See Figures 4.1 and 4.2. The prof'ile (collection of' frequency counts) f'or 

program Mis: 

Step number 

M1 

M2 

M3 

M4 

Number of times 

n 

n-1 

A 

The value of' n is given, but we do not know the quantity A, which is the 

number of times we must change the value of' the current maximum m. We thus 

study the possibilities f'or A: 
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(i) the worst case (for pessimistic people) is A= n-1 when 

y[1] > y[2] > ••• > y[n]. 

(ii) the best case (for optimistic people) is A= 0 when y[n] is a maximum 

element of array y. 

(iii) an average value (for probabilistic people) for A lies between 0 and 

n-1. In particular, based on the assumptions that then input values 

y[1],y[2], •.. ,y[n] are distinct and that each of then! permutations 

of these values are equally likely, the average value of A is approx

imately ln(n) when n is large (Knuth, section 1.2.10, 1968). 

(iv) the exact value of A does not depend on what the precise values of the 

y[k] are; only the relative order is involved. However, no simple 

formula for the exact value of A as a function of n and the relative 

order of they values is available. Particular cases, such as n = 3 

and y[3] > y[2] > y[1] for which A= 2, must be treated separately. 

(v) an empirical estimate, n/3, for the value of A could be based upon, 

say, five samples 

Sample n A 

1 5 2 

2 10 3 

3 50 16 

4 100 30 

5 500 170 

by fitting a straight line using the least squares criteria. 

General principles. The following are general principles of attack for 

performing a frequency analysis: 

1. Label a flowchart of the algorithm and apply "Kirchhoff's" conservation 

law for flowcharts (the amount of flow into each node must equal the 

amount of flow going out) • 

2. Reduce and identify the flowchart variables by using important charac

teristics of the problem. 
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3. Explore the behavior of the final profile parameters (worst case, 

average case, asymptotic, etc.). 

Example. Let us now do a frequency analysis to illustrate these principles. 

Figure 4.3 is the flowchart of an algorithm, called T, found in (Alanen 

1972). The first step is to label this flowchart; we have labeled the arrows 

with a
1
,a2 , ••• ,a11 and use the notation that step Ti is executed xi times. 

Kirchhoff's law is 

"sum of a' s into box Ti = x. = sum of a' s leaving box". 
]. 

It yields the equations: 

x, = 1 

x2 = 1 + a9 + a12 = a1 

X3 = a1 + a4 = a2 + a3 

X4 = a2 = a10 + a11 

x5 = a11 = a12 

x6 = a7 + a10 = a6 

x7 = a8 = a9 

x8 = a5 = a4 

a6 = a5 + a8 

a3 = a7 + 1 

We next reduce the number of unknowns by elimination of x
3

, x
5

, and x6 
using the above equations: 

x1 = 1 

x2 = a1 

x3 = x2 + x8 

X4 = a2 



x5 = X - X - 1 2 7 

x6 = x7 + xa 

x7 = a8 

xa = a5 

Kirchhoff's law does not completely determine the number of times each 

step is executed. More exactly, if there are n boxes and marrows, then 

Kirchhoff's law allows us to eliminate n-1 unknowns among the arrows (not 

the boxes). In our example, n = 10 boxes and m = 15 arrows; we eliminated 

n-1 = 9 arrows (namely, a
3
,a4,a6,a

7
,a8,a

9
,a10 ,a11 ,a12 ) which left us with 

the six unknowns a 1,a2 ,a
5

,a8 ,1 (into T1), and 1 (the "done" exit). Related 

to the boxes we are left with five unknowns (x
1

,x
2

,x4,x
7

, and x
8

). Clearly 

x
1 

= 1 and we can further eliminate xS because k is initialized to zero (at 

step T1) and then the algorithm terminates only when k = 0. Thus for every 

time k is increased by one in step T5, k must be decreased by one in step 

TS; that is, xS = x
5 

= x2 - x
7 

- 1. 

There remain three unknowns (x2 ,x4,x
7

) and to inte+pret them by re

lating them to pertinent characteristics of the data requires knowledge of 

what Algorithm T does. Since Algorithm Tis rather complicated, we simply 

state the final answer in Figure 4.4. It turns out that the profile for 

Algorithm T (Figure 4.4) depends on three unknowns (a, S, and y) which can 

be related to the input n. 

Lastly, we remark on the behavior of the quantities a, S, and y as n 

increases. The quantity y can easily (if you understand Algorithm T) be 

shown to be small; indeed, when n-1 is prime, y = 2. The quantity a-S seems 
0.815 . . . . . % to grow as n , which predicts observed values within relative error 3~. 

This is strictly an empirical result arrived at by fitting the curve 

a-S = na (a unknown) to the profile date in Figure 4.4. Similarly, Sin

creases a little faster than 0.2 n 1· 6• These empirical estimates for a-S 

and S were derived because it was not possible to deduce an exact (or even 

worst or average case) formula for their behavior in terms of n. Using 

these empirical estimates, Algorithm T would perform about 107 steps to 

handle the case n = 50000. 

In summary, to derive the profile in Figure 4.4 we labeled the arrows ,, 
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and boxes in the flowchart for Algorithm T. Then we applied Kirchhoff's law 

to relate and eliminate these unknowns. Next we eliminated or identified the 

remaining unknowns by applying our knowledge of this particular algorithm. 

We were left with three parameters (a,8,y) which depend upon the input n in 

complicated ways. Finally, we did an empirical study of the behavior of 

these final profile parameters. Our conclusion was that Algorithm T has a 
. . . 2 

total running time proportional ton. 

Local and global analyses. There are generally two kinds of frequency 

analyses, "local" and II global". A local frequency analysis investigates the 

running time requirements of some particular algorithm; a global frequency 

analysis, on the other hand, considers an entire family of algorithms and 

attempts to identify one that is "optimal", in the sense of using the least 

computer time. 

Recall Algorithm M (Figure 4.1 and 4.2) which is a straightforward 

procedure for finding the maximum (or minimum if you change the inequality 

to< in step M3) of a list of n numbers. 

In terms of comparisons among the elements of array x, our local 

frequency analysis showed that algorithm M always requires n-1 comparisons. 

If you had some special knowledge of the x-values, you might be able to 

avoid some of these n-1 comparisons. Clearly, you could write an (ineffi

cient) program which took more than n-1 comparisons. 

A global analysis will show that the worst case optimal algorithm with 

respect to comparisons is also Algorithm M; that is, in its worst case 

(which is every case) it requires n-1 comparisons. No other algorithm 

requires fewer than n-1 comparisons in its worst ™· 
The proof that Algorithm M is "the best" algorithm for computing a 

maximum (minimum) is difficult. See exercise 4.3 for a related problem. 



Figure 4. 1 • Program M to find the maximum 

m = max y[k] = y[j] 
1<k<n 

such that J is as large as possible. 

integer k, J, n; array y[1:n]; 

M1: j:= k:= n; m:= y[n]; 

M2: fork:= k-1 while k > 0 do 

M3: if y[k] > m then M4: begin j:= k; 

m:= y[k] 

end· --' 

Figure 4.2. Flowchart for program Min Figure 4.1. Labels on the arrows 

indicate the number of times each path is taken. 

begin 

M1. Initialize 

YES 
M2. Decrease k end 

n 

m>y[k] 
M3. Compare 

n-1-A 

A 

M4. Change m 
A 
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start 

1 

T1. k + I + 0 
0 

A + 
0 1 

1 

T2. Visit ~ 
i + Ik+1 

a12 
a1 

T5. 
T3. YES T4. YES k + k+1 

a2 a11 
I + i 
k 

• ~ + ~-1pi 

YES a10 
done 

NO NO 
a7 

T6. i + I 
k 

a6 

YES T7. 

a8 
~+~pi 

a9 

a5 NO 

T8. k + k-1 

a4 i + i+1 

Figure 4.3. Flowchart of Algorithm T. 
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Figure 4.4. Profile of Algorithm T. 

Step Times each step is executed for given n 

n=.1]_ 50 500 5000 general 

T1 1 1 1 1 1 

T2 19 i 14 3157 134550 a. 

T3 30 203 6160 268077 a+8 

T4 27 198 6157 268074 a+8-y-1 

T5 11 89 3003 133527 8 

T6 18 113 3156 134549 a.-1 

T7 7 24 153 1022 a.-8-1 

T8 11 89 3003 133527 8 
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EXERCISES 

4.1. Perform best and worst case analyses for the number of comparisons 

required by the saddle point program in Figure 3.1. 

4.2. An improved I/0 subroutine was written in one man-year (!20000) using 

three hours of X8 time (!1000/hour). It is 10% faster than the old 

version, which was used twice each day for 36 seconds per run. How long 

before the improved version "pays its way"? 

4.3. Find the worst case optimal algorithm, with respect to comparisons, 

which computes both the maximum and the minimum of a list of n numbers 

x1 ,x2, ••• ,xn. Note that this "best" algorithm executes r¾ nl - 2 

comparisons and is somewhat wasteful of storage. 

4.4. Use Kirchhoff's law to analyze the flowchart below so that boxes 

n
1

, ••• ,n6 are expressed completely in terms of the five arrow unknowns 

E1,E3,E6,E9,E10" 

E1 

n1 

E EB 
2 

E3 
n6 

E4 
E9 

E5 

E6 E10 

E7 
n4 
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4.5. Find the worst case optimal algorithm with respect to comparisons for 

computing the median. 

4.6. Time and memory are often used to measure the performance of a program. 

Describe three more things to look at in order to see if a program is 

"good". 

4.7. The following flowchart is for procedure ROOT {Algorithm R) in 

Section 3. Fill in the profile below for this algorithm, assuming exact 

arithmetic. For the average case assume the three input possibilities 

(x<O, x=O and x>O) are equally likely. 

Flowchart for Algorithm R 

begin 

YES 

NO 

R2 

X=O 
YES 

NO 

R3 

ROOT+ 0 
Print error 

R4 

R5 

error+ 
z + 

ROOT+ 0 

R6 R7 

y + z z + Hz+x/z) 

YES 

NO 
R9 

end -..------ROOT+ ~(y+x/y) 
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Profile for Algorithm R 

Time executed 

Step Minimum Maximum Average Exact 

R1 1 1 1 1 

R2 

R3 

R4 

R5 

R6 

R7 

RB 
R9 0 1 1/3 C 

where c = Hsign(x) + sign(lxl)J and sign(x) = 1,0,-1 

if X > 0, = o, < o. 
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SOLUTIONS 

4. 1. Worst case 

mn(m+n) comparisons 

A= 

1 1 

2 2 

m m 

1 0 

2 1 

m m-1 

saddle point= A[m,n] = m-1 

Best case 

m+n comparisons 

A= 

1 2 

0 

0 

* 

2 

saddle point= A[1,1] = 1 

4.2. !20000 + !3000 = f 23000 (Cost) 

2x36ox.01x.1x1000 = f 720/year (Saved) 

32 years later! 

4.3. comment Minimum and maximum calculation using r¾ nl - 2 comparisons 

(worst case optimal); 

integer i ,k,n; array X[ 1 :n] ,A,B[ 1: r~l]; 
k:=· 1; 

for i := 1 step 2 until n-1 do 

if X[i] < X[i+1] then begin A[k] := X[i]; 

B[k] := X[i+1]; 

k:= k+1 

end 

else begin A[k] := X[i+1 J; 

B[k] := X[i]; 

k:= k+1 

end· __ , 
if odd (n) then begin ifA[1] < X[n] then B[k]:= X[n] 

else A[ 1 J := X[n]; 

end• --' 
comment Now find the minimum element in array A and the maximum element 

in array B using the usual optimal algorithms (Algorithm M in 

Figure 4.1); 
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From Kirchhoff's law we have the equations: 

n1 = E1 + Ea = E2 

n2 = E2 + E7 = E3 + E4 

n3 = E4 = E5 + E6 

n4 = E6 + E10 = E7 

n5 = E5 = E9 + E10 

n6 = E3 + E9 = Ea 

We can easily eliminate E2 , E4 , E
5

, E
7

, and Ea as follows: 

E5 = E9 + E10 

E4 = E5 + E6 = E9 + E10 + E6 

E7 = E6 + E10 

Ea = E3 + E9 

The final equations for the boxes are: 

n1 = E1 + E3 + E9 = E3 + E9 

n2 = E1 + E3 + E6 + E + E10 = E3 + E6 + E9 + E10 9 

n3 = E6 + E9 + E10 

n4 = E6 + E10 

n5 = E9 + E10 

n6 = E3 + E9 

But this implies that E1 = 0 or Ej = 00 for some j, because there is 

no exit arrow in the flowchart (i.e., an infinite loop exists iff you 

enter at E1) ! 

4.5. No algorithm for computing medians is known which takes less than 

n log(n) comparisons in the worst case. And no proof that n log(n) 
" comparisons are necessary has been found. 
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4.6. Ease of expression. (For example, a recursive program is often easier 

to read than the iterative version.) 

Accuracy. (What is the precision of the output?) 

Adaptability.· ( Can you change the program easily? For examples, are 

constants parameterized and how can you vary the precision?) 

Reliability. (Are your data structures protected from illegal use? 

Is there subscript checking?) 

Economy of representation. (For example, a transfer of control 

statement is ";goto label;" (ALGOL 60) or ";label;" (ALGOL 68) 

or 11-+ label" (APL\360)). 

Portability ( Can you easily run your program on another computer or 

even on the same computer somewhere else?) 

Robustness. (Does the program give good results even when the input is 

approximate? ) 

4.7. Profile for Algorithm R 

Times executed 

Step Minimum Maximum Average Exact 

R1 1 1 1 

R2 0 2/3 1-c 

R3 0 1 1/3 c-sign(x) 

R4 0 1 1/3 C 

R5 0 1 1/3 1-1 sign(x) I 
R6 * 5+l log2/xl 

{ ½< 5+1101,/XI l 
c( 5+ I log2/x I) 0 

R7 0 5+llog2/xl II II 

RB 0 5+llog2/xl II II 

R9 0 1 1/3 C 

where c - ~[sign(x) + sign( lxl)J and sign(x) = 1,0,-1 

if X > 0, = 0, < 0. 

* 628 
~ 1000 when x = 10 • 
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5. Storage analysis 

In this section we consider storage analyses of computer algorithms, 

i.e. how much memory they are likely to need. It is important to acknowledge 

that "storage analysis" in this section will refer solely to the analysis of 

memory requirements for data structures; we will not examine the amount of 

memory needed for the program itself, that is, for the instructions stored 

in the computer memory. Furthermore, the data structures of an algorithm may 

best be chosen with consideration of the class of operations to be done on 

the data. If you repeatedly insert into the middle of a list, for instance, 

then a linked list data structure is preferrable to a sequential list, in 

order to minimize the steps executed in doing the many insertion operations. 

But linked lists usually require more memory than sequential lists, so there 

are tradeoffs here between storage and running time. Because we want to 

focus on data storage used, in this section we will not worry about running 

time. We thus postpone to later the important interrelations between a 

frequency analysis and a storage analysis. 

Computers have both internal ( usually core storage) and external 

(tapes, disk, drums) memory for storing data structures. Internal memory 

tends to have rapid (random) access time but is limited in size (64K for the 

X8) • External memory has orders of magnitude greater capacity but a slower 

access time (usually due to its serial nature). To simplify the storage 

analyses in this section, we will ignore external memory and hence attempt 

to fit our data structures into internal memory alone. Analysis of algorithms 

which segment the data between internal and external memory will not be dis

cussed. 

Just as in the case of a frequency analysis (section 4), there are 

generally two kinds of storage analysis, "local" and "global". A local 

storage analysis investigates the memory requirements of some particular 

algorithm; a global storage analysis, on the other hand, considers an entire 

family of algorithms and attempts to identify one that is "optimal", in the 

sense of using least memory. In both kinds of storage analysis we can con

sider the amount of memory needed in terms of: 
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(i) the worst case (maximum storage used under the least favorable choice 

of inputs). 

(ii) the best case (minimum storage used under the most favorable choice 

of inputs). 

(iii) an average case (expected storage used under a given input distribu

tion). 

(iv) the exact amount (the analytic formula for storage used as a function 

of arbitrary input) . 

(v) an empirical estimate (an empirical formula fitted to certain input 

parameters ) . 

Example. We illustrate these five possibilities by a simple example. Suppose 

we have n+1 inputs: 

n,X[1],X[2], .•• ,X[n] 

and we wish to save only those values of X[i] > 0 (1<i<n) in an array T. 

Figure 5.1. specifies a program to accomplish this. For a local storage 

analysis of this program, we investigate how large the variable k gets: 

(i) the worst case is clearly when X[i] > 0 for all 1 < i < n. Then the 

program saves n elements in T. 

(ii) the best case corresponds ton= 0 or to X[i] < 0 for all 1 < i < n. 

Then no locations are used in array T. 

(iii) An average value for the upper subscript bound of array T is n/2, 

based on the assumption that positive and nonpositive inputs X[i] are 

equally likely (Prob{X[i]>O~ = ¾ = Prob{X[i]<O} for 1..:. i ..::.n). 

(iv) the exact value of k a:fter execution of the program is always 

where 

n 1 l (sign(X[i]) + sign(abs(X[iJ))), 
2 i=1 
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{ 

1, if E > O. 

sign(E) = O, if E = O. 

-1, if E < 0. 

(v) .An empirical estimate, n/3, of the final value of k could be based 

upon, sey, five samples 

Sample n Final k 

1 5 2 

2 10 3 

3 50 16 

4 100 30 

5 500 170 

by fitting a straight line using the least square criteria. 

Which of these five estimates for the final value of k is the most 

"meaningful"? Only the exact expression given in (iv) holds for every input 

combination, yet it mey not be possible to evaluate it easily without an 

extra pass over the input values. The zero estimate of (ii) is clearly for 

optimists and not very useful in this particular problem. The pessimistic 

estimate (i), however, is the one most frequently used because programmers 

usually want their program to work for all inputs and thus use the maximum 

possible value of n for the upper subscript bound on array T. The average 

value (iii) is a statistical estimate and further straightforward analysis 

could be done to determine, for example, the value N such that: 

Prob{k .::_N} = 0,90 for fixed n, 

so that given n, an upper subscript bound of N for arrey T would imply 90% 

certainty of enough space being available. These statistical estimates are 

based on a specified input distribution whose appropriateness mey be 

questionable. Lastly, the empirical estimate (v) provides a rough guess 

based upon some (hopefully) representative input samples. 

Thus our local storage analysis of the program in Figure 5. 1 reveals 

that anywhere from Oto n locations are needed for storage into the T array, 
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depending upon whether you prefer a best case, average case, exact, empir

ical, or worst case estimate of the final value of k. 

Preliminary approximations. Will the input data and temporary results fit 

into memory? For a first approximate answer to this question, one should 

attempt an order of magnitude estimate of storage requirements. For example, 

40000 locations of memory may handle the 200 by 200 matrix A, but where will 

you then put its computed inverse A- 1? One solution is to design a matrix 
-1 inversion algorithm which stores A on top of A. Another example: Suppose 

you need all permutations of seven numbers in an algorithm. This means 

storing 7! = 5040 seven-tuples, or 7 * 5040 = 35280 numbers if the permuta

tions are generated "all at once". A solution to minimize memory would use 

a permutation algorithm which systematically generates every permutation 

given only its latest result. Lastly, if an algorithm requires all the prime 

numbers below X, then an asymptotic estimate for the number of such primes 1.s 
6 well - known to be _X/ln X. Hence X = 10 means storing approximately 

primes. 

Too much input. Next, we ar).alyse several statistical problems with too much 

input data for memory. Such large volumes of input data are often produced 

by, for example, physicists in their experiments or companies in their 

management files. The need to "reduce" these data to summary statistics 

(means, medians, variances, correlations, etc.) is widespread. 

Sample variance. Suppose there are N data values X[1],X[2], ••• ,X[N] and it 

is required to compute their sample variance: 

( 5. 1 ) 
N 

= 1 I (X[i]-X)2, 
N . 1 1.= 

where X 
N 

= 1 I X[i]. 
N . 1 1.= 

When N is large, memory capacity may be exceeded by inputing and saving the 
2 N values X[1], •.• ,X[N]. To compute sX according to the above formula, we 

first need the value of X. But Xis a function of all the N input values, 
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so that the terms X[i] - X in the sum are not computable until after every 

value X[i] has been read in and X computed. Then it is too late, for we 

cannot save the N values read in. One solution is to make a second pass over 

the input. Another solution is to employ the identity: 

N 
I (X[iJ-x)2 = 

N 
I 

i=1 i=1 

which clearly allows us to evaluate si in one pass over the input (See 

Figure 5,2). The tecbnique of partitioning sums of squares (such as in 

equation (5.2)) is used frequently in statistical calculations. 

Sample median. A simple algorithm to find the sample median x
0

_
5 

of the 

distinct numbers X[1],X[2], ••• ,X[2n+1] is to sort these 2n+1 numbers so that 

X[n+1] becomes the median (half of the numbers are less than.x
0

_
5 

and half 

exceed x0 _
5

). When 2n+1 is large or when our goal is to compute x
0

_
5 

using 

minimal storage, the algorithm of Figure 5.3 is recommended; it inputs the 

numbers X[1],X[2], ..• one at a time and saves as few as possible on its way 

to finding the median. This algorithm can be shown (see exercise 5,3) to be 

worst case optimal with respect to memory used, for computing the median of 

2n+1 distinct numbers. 

Fitting straight lines. The well-known least squares estimates 

E(X.-X)(Y.-Y) 
i i and 

for the slope and intercept of a straight line Y = a
0 

+ a 1X can be rearranged 

to 

nEX.Y. - EX.EY. i i i i 
2 2 nEX. - (EX.) 
i i 

and 

This allows the computations to be performed with only one reading of the 

input data 
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instead of the two passes ordinarily required when n is too large to save 

the input in storage. However, the input values must clearly be arranged 

in ordered pairs: 

n 

X ,Y 
n n 

to minimize storage. Ordering of input values in statistical programming to 

minimize storage requirements is a common and important technique. 

We now turn our attention to the optimal allocation of storage for 

arrays, orthogonal lists, and tables. 

Sparse matrices A commonly occurring matrix form is one in which many of the 

elements are zero. Such a matrix is called sparse. One scheme for storing 

the sparse matrix A[1:N,1:N] uses three vectors I,J,S[1:K] so that every 

nonzero element A[i,j] corresponds uniquely to some k (1<k<K) for which 

I[k] = l A J[k] = J A S[k] = A[i,j]. 

For example , 

0 1 0 -3 

0 0 0 0 
A = 2 0 0 0 

0 0 4 0 

could correspond to 

k I[k] J[k] S[k] 

1 1 2 1 

2 1 4 -3 

3 4 3 4 

4 3 1 2 
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3K = 4
2 

- 3 x 4 = 4 locations. 

If the size N of the sparse matrix A is not large, then the storage 

saved by the above scheme is not a compelling reason to treat A differently 

from full matrices. But for large N and .Q.(N) nonzero entries (typically, say 
. ) . 2 2 to 10 nonzero entries per row, the usual storage requirement of N can be 

reduced by a factor of N in many instances. Such a savings mey dictate 

whether or not some problems can be attempted. 

Pointer indexing. An arrey declaration 11 array J[ 1 :NJ; 11 in ALGOL causes 

storage to be reserved for N elements J[1],J[2], ..• ,J[N] of vector J. If 

only selected elements 

are stored, then it may save memory to use (index, element) pairs: 

.J.. 

2 

3 

n 

arrey i,Y[1:n]; 

i[j J 

3 

47 

51 

300 

Y[j] = J[i[j]J 

J[3] 

J[47J 

J[51 J 

J[300] 

More explicitly, when 2n < N the above "pointer indexing" scheme conserves 

memory. We have already discussed pointer indexing as applied to sparse 

matrices. Contingency tables with impossible or empty entries can also be 

stored efficiently using pointer indexing. For example, a contingency table 

for the three variables 

AGE = 1,2,~ .. ,100 years 

SEX = O(male), 1(female), 2(unknown) 

INCOME = o, 1,2, ..• , 1000000 dollars per year 
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based upon a population of 10000 persons is best stored in the form of three 

sequential vectors 

i 

1 

2 

3 

10000 

AGE[i] 

30 

10 

40 

16 

SEX[i] 

1 

0 

0 

0 

INCOME[i] 

7500 

150 

15000 

6000 

because many of the 3 x 100 x 1000001 = 300000003 combinations of sex, age, 

and income are either impossible (a two-year old earning one million 

dollars) or unlikely (women with annual incomes above$ 10000). 

Tables shari~g memory.Two tables A[1],A[2], •.. ,A[m] and B[1],B[2J, .•• ,B[n] 

can be arranged to coexist in memory by growing toward each other 

I A[ 1 ] I A[ 2] I I B[n] I ... I B[2]. B[ 1] 

rather than having them kept in separate independently bounded areas. This 

means replacing the ALGOL declarations and references 

array A[ 1 :m] ,B[ 1 :n]; 

A[i] 1 < i 

B[j J 1 .::_ j 

with the following 

array C[ 1 :NJ; 

A[i] = C[i] 

B[j] = C[N-j+1] 

< m 

< n 

C "overflows" when m+n > N. 
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Such table sharing has great storage advantages when the subscript bounds m 

and n fluctuate, but their sum m+n never exceeds N. 

Symmetric matrices of order n 

G 
0 n A= 1 , B = 

4 

can be made to share memory 

X n 

0 
such as 

5 

7 

6 n 
B[1,1] 

A[2,2] 

A[ 3,2] 

and thereby reduce storage requirements by 

2 
2n - n(n+1) = n(n-1) 

elements. In general, we replace 

array A,B[ 1 :n, 1 :n]; 

with 

array C[1:n,1:n+1]; 

and use the definitions 

{ C[i,j J if l > j 

A[i,j] = 

A[j,i] if l < j 

{ C[i,j+l] if l 2.. j 

B[i ,j] = 

B[j,i] if l > j 

,, 

, n = 3 

B[ 1 ,2] 

B[2,2] 

A[3,3] 

B[ 1,3]) 
B[2,3] 

B[3,3] 
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Recursion depth. A "recursive solution" to a problem can offer clarity and 

conciseness over the corresponding iterative solution. For example, compare 

the recursive (Figure 5.5) versus iterative (Figure 5.6) solutions for tra

versing a binary tree in postorder. With respect to a storage analysis, how

ever, the recursive solution may be more difficult to analyze, because the 

"depth of recursion 11 must be determined. In the iterative program (Figure 

5. 6), stack A saves a maximum of n elements, whereas the recursive program 

(Figure 5.5) has a maximum recursion depth of' n, the maximum level of the 

tree. Thus the iterative solution makes you explicitly save values in a 

stack, while the recursive solution stacks automatically through recursive 

procedure calls. 

Packing. The packing of data into computer words is a standard machine/ 

assembly language technique. Because bit and/or byte manipulation is not 

machine independent, ALGOL 60 is not an ideal language for expressing these 

packing operations. However, it is possible to pack in ALGOL 60 by multi

plying and dividing by appropriate powers of 2 or 10, thus saving storage. 

It should be realized that X-8 ALGOL automatically packs Boolean arrays 

so ±hat 27 elements occupy one X-8 word (each truth value requires one bit). 
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Figure 5.1. Program to save those input values (among n values·read in) 

which are positive in an array T. 

real array T[1:?J; 

integer i,k,n; real X; 

i:= k:= O; n:= read; printtext ("n="); print (n); 

for i:= i+1 while i < n do 

begin X:= read; 

end· __ , 

if X > 0 then begin k:= k+1; 

T[k] := X 

end 

Figure 5. 2. Program to compute the sample variance 

N N 
1 ( l X[i]2 - l ( l X[i])2) 
N i=1 N i=1 

from the N+1 input values 

N,X[1],X[2], .•• ,X[N] 

using minimal storage. 

integer i ,N; 

N:= read; printtext ("N="); print (N); 

Squares:= Sum:= O; i:= O; 

for i:= i+1 while i < N do 

begin X:= read; 

Sum:= Sum+ X; 

Squares:= Squares+ Xx X 

end· __ , 
Variance:= if N < 0 then O else (Squares-(SumxSum)/N)/N; 



Figure 5,3. Program to compute the sample inedian of 2n+1 distinct input 

values, using minimal storage in a worst case analysis. 

comment procedure "sort" arranges the N elements of array X in increasing 

order: X[1] < X[2] < ••• < X[N]; 

integer n,N,i; real array X[1:?]; real J; 

n := read; printtext ( "n="); print (n); 

if n > 0 then begin 

i:= N:= 1; X[1]:= read; 

for i:= i+1 while 1 < 2 x n + 1 do 

begin J:= read; 

. 

if J < X[N] V N < n then 

begin if N < n then N:= N+1; 

X[N]:= J; 

sort 

end 

Median:= X[N] 

end· __ , 
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Figure 5 .5. Recilrsi ve procedure for traversing a tree in postorder. 

procedure TRAVERSE(P); value P; integer P; 

if P 'F O then begin TRAVERSE(LLINK(P)); 

VISIT(P); 

TRAVERSE(RLINK(P)) 

Figure 5.6. Iterative procedure for traversing a binary tree in postorder, 

making use of an auxiliary stack A. 

procedure TBTREE(T); value T; integer T; 

begin integer P,i; integer array A[1:n]; Boolean B; 

P:= T; i:= O; B:= true; 

end· __ , 

while B do if P 'F O then begin 1:= i+1; A[i]:= P; 

P:= LLINK(P) 

end 

else if i 'f O then begin P:= A[i]; 

end 

else B := false ; 

1:= i-1; VISIT(P); 

P:= RLINK(P) 



91 

EXERCISES 

5.1. Discuss input possibilities for sparse matrices and how to handle them 

in MC-ALGOL 60. 

5.2. Find a suitable small (F4) sample such that equations (5.1) and (5.2) 

give dramatically different results on a machine which uses only, say, 

six significant digit arithmetic. 

5.3. Analyze the storage requirements for the median program of Figure 5.3. 

5,4. Find an algorithm to compute the sample correlation coefficient 

N 
l (X[i]-X)(Y[i]-Y) 

i=1 r = 

.which is optimal in storage needed. 

5.5. Modify the median program (Figure 5.3) so that it will also handle 

samples of even size (2n) for which the median x
0

_
5 

equals the average 

of the two middle observations. 

5,6. A bank has computerized its savings accounts; in the computer program, 

an array B[ 1 :NJ contains the balance of account number i ( 1<i<n) in 

element B[i]. Initially, there were n = 1000 savings accounts; 

experience predicts an 8% increase in the number of accounts each 

year. If each array element requires one memory location and there 

are N total memory locations available, how many years before the 

bank's program overflows memory? In particular, how many years before 

n > N = 20000? 

5.7. Using the storage scheme described in this section, how sparse must 

an N x N matrix be to save storage? 
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5.8. Give the explicit function evaluated by the recursive procedure: 

integer procedure f(x); value x; integer x; 

f:= if x = 1 then 1 else x t 2 + f(x~1); 

What is. the maximum recursion depth of this procedure for given x > 1? 

Write a nonrecursive version of this procedure and compare storage 

analyses. 

5.9. Design general purpose MC ALGOL procedures to handle packing/unpacking 

of a Boolean vector B[1:n] stored 26 elements to an X-8 word, with 

1 +-+- true and 0 +-+- false. 

5.10. How can you estimate n(x), the number of primes.::_ x, without computing 

the primes up to x? Approximate n(105 ). Code the primes to 105 so that 

they occupy less than 400 words of X-8 memory. 

5.11. Write and storage analyze two ALGOL programs, one recursive and the 

other non-recursive, to evaluate the highest _(greatest) common divisor 

of two positive integers, m and n. Use the test cases: 

(m,n) = (10,30), (60,14), (50,231), (261,0), (0,27), (38,57). 

5.12. Analyze an efficient storage scheme for handling double precision 

symmetric matrices in ALGOL. 

Same problem for hermitian matrices. 
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SOLUTIONS 

5,1. Have program initialize all elements to zero and then read in only 

nonzero elements. 

5,3. 

5.6. 

5,7. 

5.8. 

n+1 elements are saved in all cases. 

k 1n N/n ln 20 
nk = 1.08 n; nk > N ==:> k > 

ln 1 .08 = .0334 

3K < N2 ~ > 33 1 /3% zero elements. -
X 

f(x) = I 
i=1 

.2 = x(x+1)(2x+1) 
i 6 

Maximum recursion depth= x. 

integer procedure f(X); value X; integer X; 

f:= (Xx(X+1) x (2xX+1))/6; 

Storage re~uirements: 

~ ~ 39. 

(i) Recursive - X locations for procedure arguments. 

(ii) Nonrecursive - 1 location for variable X. 

5.10. n(x) x/ln x as x + oo 

n( 105 ) = 9592 

Use packing or Boolean arr¥ B[1:9592] with 

B[i] = true iff i prime. 

5.11. integer procedure HCD(n,m); value n,m; integer m,n; 

HCD:= if m > n then HCD(m,n) 

else if m = 0 then n --- --
else HCD(m, remainder(n,m)); 

comment remainder(n,m) = remainder of n/m; 

integer procedure Euclid(n,m); value n,m; integer n,m; 

begin integer r; 

end· __ , 

if m > n then begin r:= m; m:= n; n := r end; 

for r:= remainder(n,m) while r 'f O do 

be_gin m:= n; n:= rend; 

Euclid:= n 
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(Note :first i:f is not necessary. ) 

HCD(10,30) = HCD(30,10) = HCD(10,0) - 10. 

A(double prec1.s1.on symmetric ) = (most s1.g. 

H(complex) hermitian¢::::=> (HT)* = H 

H = (real part \ complex part ) 

* T H .. a+ ib, H .. H = H ==::> H .. = real, = l.l. l.J Jl. 

\ least sig.) 

= a - ib. 
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6. Measures of program performance 

The aim of software engineering is, according to F.L. Bauer, "to obtain 

economically software that is reliable and works efficiently on real 

machines". In section 3 we considered software to be "reliable" when 

accompanied by a correctness proof. In sections 4 (Frequency analysis) and 

5 (Storage _an~lysis) we investigated the two most important and common 

aspects of software efficiency: running time and memory. However, there are 

numerous other aspects (such as robustness, portability, ease of expression, 

accuracy, and adaptability) of software which serve as measures of 11 good

ness" or performance. 

In order to provide some indication of an algorithm's merits relative 

to existing algorithms in the field, in this section we will define (if only 

through examples) some of these measures of performance and we will exhibit 

the kinds of questions you should ask to evaluate them and to make compari

sons between them. Clearly, a program is "improved" when one aspect (time, 

memory, portability, accuracy, etc.) is done better while nothing ~lse 

deteriorates. The trouble is that there are usually tradeoffs between these 

performance aspects. When you use double-precision arithmetic to increase 

precision, for instance, then running time increases. If you program in a 

high-level language in order to improve the portability of your programs, 

then you may lose the time efficiency of machine-dependent procedures. 

Nevertheless, it is worthwhile to ask whether an algorithm offers 

possibilities for improvement. Such a question usually leads to the ques

tion "What is best under what circumstances?" A library procedure should 

surely meet high standards of performance, whereas with a novel, one-shot 

problem one is more likely to settle for any program that works. Recall the 

situation in section 2 where "best" for computing yn depended upon whether 

division was allowed. In sorting, the number of comparisons is often used 

to measure performance; but when records are large you may be concerned 

more with minimizing interchanges than comparisons. 

Absolute measures of performance are fine when available ( "procedure 

sqrt computes the square root correctly to six significant digits") but 

comparative (benchmark) measures of performance are more common ("with a 

sample of student jobs, QUICKTR.AN compiled an average of 60% faster than 
re 



FORTRAN version 6"). Indeed, strict theoretical bounds on performance may 

be over-pessimistic compared to actual practical performance. That theore

ticians are always constructing weird counterexamples to prove that some 

algorithm is either not constructable or else not efficient in the general 

case has led Van der Poel to exclaim: · "nearly all interesting problems of 

practical value are unsolvable!" 

Before some measures of program performance are defined and discussed, 

I want to make several disclaimers: The following list of performance 

aspects is not complete nor detailed. For example, Sammet (1971) and 

Van der Poel (1972) stuay- the problems of measuring and comparing program

ming languages in far more depth than I would even attempt here. Further, 

my condensed descriptions such as "robustness" and "ease of expression" are 

not necessarily standard terminology and are difficult to define rigorously. 

Robustness. This is a measure of program stability, i.e. "how does the 

program behave under different data?" Suppose that a library procedure is 

advertised to solve a quadratic equation. Then it would be robust if it 

could handle the case of complex (imaginary) roots. Perhaps the procedure 

only complains (with an error message) rather than processes an equation 

with complex roots, but even this complaining is better than trying to 

divide by zero or outputting nonsense. 

A statistical program (such as an analysis of variance procedure) that 

can cope with missing data ( unbalanced ANOVA designs) would be termed 

"robust". A least squares procedure which handles nonlinear equations and 

a regression analysis program that will seek "the best stepwise fit" are 

also robust programs. 

"Adaptability" is another measure of program performance to be covered 

later; it is mentioned here because it is closely related to robustness. 

Whether, for example, a program that permits transformation of the data 

should be called more robust (stable) or more adaptable (general) is an 

open, but rather academic, question. 

Once again, by "robustness" we mean the stability of an algorithm. The 

question to ask is: How does this algorithm perform on problems harder or 

different than those for which the results are guaranteed good? A numerical 
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integration technique with "graceful degradation" on problems containing 

singularities would qualify as robust. 

Portability. This is a measure of the transferability of a program, i.e. 

"Will the program run on another machine?" Suppose a program is written in 

COBOL, a relatively machine-independent language. Can you then "easily11 

transport that program from a CDC 6000 computer to an IBM 360/65 computer? 

If the answer is yes, than that program would be called portable. 

A language which is precisely defined, and for which translators exist 

that conform to the language specifications, is a great asset for producing 

portable software. Until recently, "FORTRAN" stood for a variety of languages 

on a variety of machines. Hence portability was a serious problem for 

FORTRAN users. Kahan (1971) documents the silly variability between FORTRAN 

compilers; for example, the two statements 

X = 1 .O + 3/2 

Y = 1. 0 + ( 3/2) 

sometimes yield two different results (namely X becomes 2.50, while Y equals 

2. 00). 

The precision of a language's definition (ALGOL 68 and PL/ 1 are "well

defined" languages in my opinion) and. the conformity of a language compiler 

to its specifications greatly influence portability. The United States Navy 

has a COBOL certifier; any compiler that successfully compiles and runs 

this collection of test programs is certified as a "COBOL compiler". 

Portability has obvious tradeoffs with running time. That is why 

random number generators are usually coded in machine language, i.e. for 

the sake of speed, portability is ignored. When portability is not ignored, 

language and/or machine dependence must be avoided. Identical plot proce

dures for the printer, pen plotter, and cathode ray tube permit portability 

between plotting devices. 

To discuss repeating a program on the same machine leads to related 

considerations of "reliability" (mentioned later). 

In review, by "portability" we mean the transferability of a program. 

Questions are: Is this program machine dependent? Can I easily repeat the ,, 



program using the same computer, a different machine, a different program 

library, another compiler, etc.? 

Ease of expression. When stating an algorithm in a programming language, the 

economy and clarity of representation are relevant. Questions are: Are long 

mnemonic identifiers possible? Is recursion available? Can I define new 

operators? Does the language include graphical output and generalized input? 

For array arithmetic must I program loops or is explicit evaluation (as in 

APL\360) permitted? And so on. 

Whether a certain notation is "clearer" can be debatable. Take recur

sion for example. A procedure in ALGOL 60 

real procedure SUM(A,n); array A; integer n; 

n 
to compute l 

i=1 
A. can be written iteratively 

i 

begin integer i; real S; 

S:= A[1]; 

end· __ , 

for i := 2 step 1 until n do 

S:= S + A[i]; 

SUM:= S 

or else recursively 

SUM:= if n=1 then A[n] else A[n] + SUM(A,n-1); 

and until you learn to "think recursively", the iterative statement may seem 

clearer. Because FORTRAN does not allow recursion, FORTRAN programmers often 

fail to realize the elegant possibilities in a recursive algorithm. The lack 

of compound statements in FORTRAN means that the FORTRAN programmer must 

constantly use goto's, an undesirable statement for structured programming. 

See the solution to exercise 2.9 for a recursive definition of an 

operator in ALGOL 68. 

There exist programming languages which permit easier expression of a 

certain class of problems. For examples, SNOBOL for string manipulation, ,, 
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LISP for list processing, APL for array operations, and COGO for plane 

geometry computations in surveying. 

Default options can help you to write fewer marks. PL/1 is designed 

around default options and although ALGOL 68 is the opposite of a typeless 

language, it also includes default options in, for example, the for state

ment ("~ 1", "while true", etc. can be omitted). 

Good documentation as well as custom designed punched-cards/printer

paper make program preparation easier. 

We mention the possibility of replacing a difficult analytic solution 

to a problem with a simulation (Monte Carlo) study. The birthday problem in 

exercise 6.6 is easier to simulate than to derive and compute the analytic 

formula. 

In conclusion, "ease of expression" is often a debatable performance 

aspect in programming. Some people think English (such as used in COBOL) 

allows clearest expression of computer algorithms, while the other extreme 

is (perhaps) the APL\360 programmer who delights in producing the "one

liner": 

to evaluate by quadrature the integral: 

00 

f 
-x e dx 

1+x2 
0 

Accuracy. Rounding and/or truncation, coupled with the finite representation 

of real numbers, in a computer lead to accuracy questions. For on a computer 

it is possible to have A+B = A even though B does not equal zero. Nor does 

the associative law, (A+B) + C =A+ (B+C), always hold. When one computes 

30! as 

30 * 29 * 28 * . . . * 3 * 2 * 1 

or as 

1 * 2 * 3 * 4 * . . . * 28 * 29 * 30 
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on a computer, the answers differ (assuming eight-significant digit arith

metic with rounding after multiplication) by 1024 •. 

Another source of accuracy problems is error introduced by using 

approximate rather than exact data. In some problems a very slight change 

in the data produces a major shift in the output. For example, the system 

of simultaneous linear equations 

2x - y = 1 

2.001x - y = 2 

has exact solution x = 1000, y = 1999. But a 0.05% change in the x coeffi

cient. of equation two (2.0010 becomes 2.0000) makes the system insolvable! 

And a 0.1% change (2.0010 becomes 1.9990) produces the solution x = -1000, 

y = -2001. Thus input must be accurate to avoid such instability. 

Kahan ( 1971 ) gives numerous examples of serious troubles with existing 

FORTRAN and PL/1 dialects that stem from round-off, real number represen

tations, overflow, and so forth. 

An error message such as "Negative argument for square root" often 

actually means "To machine accuracy, matrix A at line 96 is not positive 

definite". The latter message is preferred because it pinpoints the real 

problem in the matrix inversion procedure. 

Besides being aware of pitfalls in computation (Forsythe 1970) in order 

to select the best algorithm (See, for instance, the paper by Young and 

Cramer on choosing sum and sum-of-product algorithms), one must constantly 

be alert to accuracy situations that are potentially dangerous. As an 

example, when writing a foreign currency conversion program you should ask 

what would happen if there were a "small accuracy bug" in it. Big troubles 

can grow from little errors. 

To be safer, multiple precision or interval arithmetic can be employed. 

They give more accurate results at the expense of time and memory. 

If you never question the accuracy of your computer output, you de

serve the nonsense you will sometimes get ..• 

Reliability. This is a measure of the protection a program has against 

operatgr, machine, program, and user failures. As always, __ a program is as 
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reliable as its input, so input should always be verified. Similarly, cal

culations may be purposely duplicated to insure reliability (e.g. af'ter 

computing c:= a..-b, the product cxb can be compared to a). Elaborate internal 

checks are mandatory in critical situations such as real-time space flights 

controlled by computers. 

Maintaining the integrity of data structures is a key problem nowadays. 

Consider the typical newspaper report (Co;mputerworld, vol. V, no. 52, 

page 11): 

"Computer tampering was said to have been necessary in the 

thef't of 217 Penn. Central Railroad boxcars. The cars were 

discovered on the tracks and yards of a tiny Illinois rail

road. According to attorneys, someone 'had to put the fix' 

on the Penn Central's computers to shuttle the boxcars to 

the railroad and to 'make them disappear'." 

Security against run-time errors will be provided by a good programming 

system in the forms of subscript range checking, mismatched parameter

argument values checking, exceptional arithmetic conditions checking, parity 

checking, and more. 

When evaluating the reliability of a software system, always assume the 

worst will happen: operator drops program deck, card reader shuffles input, 

user submits wrong input tape (header labels help eliminate this error), 

control cards ~ispunched, etc. 

Adaptability. This measures the generality of a program, i.e. "what is the 

effect of a slight problem change?" 

Changes in data types (real to complex, vector to matrix, single 

precision to multiple precision) after the initial program is running, 

happen so frequently that it should be anticipated. Use parameters for 

array bounds, constants, etc. instead of fixed constants that are suitable 

only to the current situation. Use a language which allows complex arith

metic, multiple precision, etc. without great changes to the program. 

A good programmer appreciates how problem statements tend to change 

drastically each time the program appears to be '·'near completion". A general 

MA'T~!iMA'fl&,iiH 
,.._MS!il"El~.CM,R 
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program will be more easily adapted to such changes. 

Closing remarks. We have now completed our considerations of the important 

questions of' performance for a computer program. Through measurements of' 

performance and computational efficiency, signi;f'icant savi1:1-gs in computa

tional eff'ort can be achieved. However, for the user who will not take the 

time and trouble to search out the "best" program, the above techniques for 

evaluating performance characteristics of proposed computer algorithms will 

be of no value. Only a responsible user who questions the validity of' the 

output and the efficiency of the processing will demand and compare ana

lyzed computer programs. Quality scientific sof'tware will only become 

available when both programmers and users begin to worry about the analysis 

of computer programs. 
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EXERCISES 

6 .1. Construct and analyse a program which reads in temperatures in either 

degrees Fahrenheit or degrees Centigrade and outputs the temperature 

in the opposite scale. 

6.2. In many matrix applications, such as the solution of simultaneous 

equations, it is required to check whether or not the matrix is sym

metric, i.e. whether or not A[i,j] = A[j,i] for all i and j. Construct 

and analyse an algorithm to check an nxn matrix A for symmetry. 

6. 3. A program uses G + M storage locations and runs in approximately 

A/M + B time units. Choose M which gives the optimum product of space 

times time. 

6.4. Suppose that airplane P. has identifying number i and coordinates 
l 

(x.,y. ,z.) for i = 1,2, •.. ,n. Construct and analyze a program which 
l l l 

checks for a specified safe minimum distance, Dmin, between planes. 

6.5. An output procedure used 2989 digits to number the pages of printed 

output. How many pages were output? 

6.6. In a room containing n persons let Qn be the probability that there 

are two or more persons with the same birthday. It can be shown that 

Qn = 365! 
1 - -----"'------

( 365-n) ! 365n 
for n = o,1,2,.,.,365. 

Compute and tabulate (or plot) Qn versus n for n = 0(1)100. 

6. 7. Estimation of the size of an animal population from recapture data. 

Suppose that n 1 fish caught in a lake are marked by red spots and 

released. After a while a new catch of r fish is made, and it is found 

that k among them have red spots. We are interested in estimating the 

number n of fish in the lake. If qk(n) equals the probability that the 

second catch contains exactly k red fish, then 
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(r) (n-r ) 
k n

1
-k a! 

(n) 
n1 

=----b ~ (a-b) ! 

For n 1 = r = 1000 and k = 100 find the particular value of n for 

which qk(n) attains its largest value, since for that n our observa

tions (100 red fish among the second sample of 1000 fish) would have 

the greatest probability. 

This value is called the maximum likelihood estimate of n. 

6.8. An asymptotic approximation (for large n) ton! is given by Stirling's 

fOrIJlula: 

How accurate is Stirling's formula? 

6.9. A programmer claims that the birthday probability Qn in problem 6.6 

above seems to be approximately equal to 

Q ~ n( n-1) 
n 730 

Do you agree? 

6.10. How many different bridge hands can a bridge player obtain? How many 

ways can a bridge deck be dealt into four hands (North, West, South, 

and East)? (Hint: Use logarithms). 

6.11. An accident assurance company :rinds that 0.001 of the population of 

Amsterdam auto owners drive their car into a canal each year. Assuming 

that the company has insured 10,000 Amsterdammers who own autos and who 

were selected at random, compute the probability that not more than 3 

of the company's policyholders will drive into some canal in a given 

year: 

where p 
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6. 12. KLM airline finds that 4 percent of the persons making reservations 

on the Amsterdam-to-London flight will not show up for the flight. If 

their policy is to sell to 75 persons reserved seats on a plane that 

has exactly 73 seats, then compute the probability that there will be 

a seat to London for every person who shows up: 

-where p = 0.96 and n = 75. 

n 
(Hint: Use the binomial formula, (a+b)n = l (~) a¾n-k .) 

k=0 

6.13. Let~ be the probability that in a group of 500 people (chosen at 

random) exactly k will have birthday on April 25. Clearly 

where n 1 = 500 and p = 
365 

. 

The Poisson approximation to the binomial probability~ is 

where A= np. 

Compute and compare these formulas fork= 0(1)n. 

6.14. Consider a Guilder-tossing situation with constant probability p 

(0<p<1) for Queen Juliana's head. Let x. = 1 (0) indicate that the 
l. 

Queen's head did (did not) occur on the i-th toss. Thus the probabil~ 

ity (likelihood) for·an ordered sample of size 100 is: 

100 
If I 

i=1 
of p. 

x100 1-x100 
p ( 1-p) 

for x. = 0 or 1 ( 1<i.::_100). 
l. 

x. = 47 was observed, compute the maximum likelihood estimate 
l. 

6.15. Same problem as 6.14, except now order is not important but you 

are interested in: 
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H
100 

= total number of heads in 100 tosses. 

Prob{H100 = h} = 
0, otherwise. 

Compute the maximum likelihood estimate of p when h = 47 is observed. 

6. 16. Two persons, "You11 and "Me", have initial (prior) opinions about the 

parameter: 

t = Average temperature in Centigrade at the exact North Pole. 

These prior probabilities are: 

You: tis Normal (mean -9, precision 1/36) 

Me : tis Normal (mean 3, precision 1/4) 

Remember that 11x is Normal (meanµ, precision p) 11 means x has the 

probability density function 

_l(x-µ)2 
1 2 cr 

crl21i-" e 

1 when the precision p equals - , the reciprocal of the variance. 
2 

CJ 

Four different normally distributed samples of size n are drawn to 

better determine t: 

Sample 

2 

3 

4 

n 

1 

4 

9 

16 

sample mean 

0, 1 

0,06 

0,001 

0 

- sample 1 
X precision 

2 s 

1/4 

1 

9/4 

4 
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It can be shown (by Beyes' theorem) that after such a sample is drawn, 

"You" must have a normally distributed posterior opinion with: 

posterior mean = weighted mean of the datum value and the prior mean, 

weighted with their precisions. 

posterior precision= prior precision+ datum precision 

Similarly for "Me". 

Compute and plot the four posterior opinions (corresponding to each of 

the 4 samples) for both You and Me. For example, before the first 

sample is observed, the plot would be: 

.3 

.2 Me 

• 1 You 

t 

-20 -9 0 3 8 
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6.17. The least squares straight lin~, y = mx + b, which fits the data: 

]_ y. x. 
]_ ]_ 

1 9. 12 2000 

2 20.44 4000 

3 32.47 6000 

4 46.15 8000 

5 55.82 10000 

6 70.40 12000 

consists of that slope m and intercept b which minimize the quantity: 

10 
I 

i=1 

2 
[y. - (mx.+b)]. 

]_ ]_ 

Compute and plot this least squares line. How good does it fit the 

data? 

6.18. A soccer star's picture is enclosed in each packet of cigarettes you 

buy. How many packets must you buy before you complete a set of ten 

pictures? Do a simulation first; then try to derive an analytic 

formula. 



SOLUTIONS 

6.3. Time t = A/M + B 

Space s = G + M 
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Minimise f =ts= AC/M +A+ BG+ BM with respect to M. 

fM = B - AG/if= 0 ~if= AG/B. 

6.5. Preliminary estimate: 999 pages needs 

6.6. 

6.8. 

99 + 2 x 90 + 3 x 900 = 2889 pages. 

Thus, for y pages, 

2889 + 4 X (y-999) = 2989 

."..Y = 1024. 

See ALGOL program and plotter output on following pages. 

n
1
r 

The largest integer less thank. In this case, 9999. 

The percentage error decreases steadily and Stirling's approximation 

is remarkably accurate even for small n: 

n n! Stirling's formula % error 

1 1 0.9221 8 

2 2 1. 919 4 

5 120 118.019 2 

10 3628800 3598600 o.8 

100 * * 0.08 

6.9. Yes, for n = 0,1, •.. ,20. 

6 (52) 6 6 .10. 12 = 35,013,559, 00. 



110 

6. 11. 0.010 

75 
6. 12. Compute 1 - I (75) 0.96k 0.0475-k 

k=74 k 

6.13. k ~ Poisson approximation 

0 0.2537 0.2541 

1 0.3484 0.3481 

2 0.2388 0.2385 

3 0. 1089 0. 1089 

4 0.0372 0.0373 

5 0.0101 0.0102 

6 0.0023 0.0023 

All errors are in the fourth decimal place. 

6.14. o.47 

6.15. Same as 6.14, that is h/100 = o.47. 

6.16. See ALGOL program and plotter output on following pages. 

6.17. m = 0.006089 and b = 3,556. 

6.18. integer procedure random; 

comment Produces a pseudo-random digit from Oto 9; 

for i:= 0 step 1 until 9 do A[i]:= O; 

r:= O; comment r = number of different cards so far; 

for c:= 1, c+1 while r _:::. 9 do 

begin i:= random; 

if A[i] = 0 then begin r:= r+1; 

A[i]:= 1 

end 

end· __ , 
print(c); comment c = total number of cards; 

You may also compute the waiting time, w, for each card. Then 
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E[w.J = 10/(11-i) 
1 

Var[w.] = 10(i-1)/(11-i)2 . 
1 

Total mean waiting time~ 29.3 (variance 125.7). 

The analytic formula involves the negative binomial distribution. 
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:tu a2 
l.lJ 

COMPUTE OK! :'COMMEhT' ~1=0:1•(1•(1•11/~~5)_ 
~2=11J65=1-(1•1/J65) 
~a=1.<l-1/365>•i1•2/j65l ... 
YK:1.(l•l/365l•tl•2/J65l•,,,•(l•(K•l)/365)J 

PLOT ~ROeA~iLITIES: 

TERM::11 
'FOR' ~:=1 'STEP• 1 'Ur>!TIL' ·~ '00 1 •BEGIN' 

P'l!NT K TH LINEl 

1 1:.NO' I 

TERM:=TERM•tl•(K~l)/365)1 QK[KJ1=1•TERMI 
ABSF!~T(J,O,K)l 
SPACE(3); 
ABSF!XT(2,11,QK[K])I 
SPACl:'.(15) I 
AeSF!XT(?.,11,K*(K•ll/730)1 
SPACE:(3) l 
FIXT(2,11,100•(QK[Kl•K•(K•1)/73Q)/QK[K])I 
NLCRI 

:•cOMMENT• PLOT XII] = I VERSUS V[I] = 0K[I] FOR 1:1<1>~. SEE PLOT PROCEDURE WRITEUP IN LR1,1, ·secTICN J,6,2,2, 
PAG!S 4•!9 ANO ~•2", APRIL 1971; 

'ENLl' 
tt.NL>, 

MARK::51 •COMMENT' SVMB,L <•I NUMBE~ 139 IN TABLE 6,5,21 
Of;L TA•1ARK I =1 I 
MODE::1)0661 
x,,, I~: =O; 
X'~AX: =100 I 
Ox::1J: 
r,,~xx:=300:JI 
v•~1~:=o.~1 
VMAx::1,01 
Dv:=0,2i. 
MAxv:=250~; 

P~OTP!CTU~E( 1,0<[1], l,N, 
~ARK,OELTA~A~K,M10E, 
XMIN 1 X~AX,DX,MAXX, 
•••••> NUM~E~ OF PERSONS PROGRAM OF JACK AI.ANEN 
VMIN 1 V~AX,OV,MAXY, 
•PROBABIL.ITV 1 --->.!139! 0EPINEO av !53!N=1-(365PAC/(365-N)PAC•J65!69!N)•, 
PLOTL.INE); 

1 COM~!NT 1 PLCT (ON TOP O• PR~VIOUS GRAPH) X[1l ■ I VERSUS Vltl : 1•(1•1)/730 POR 1 ■ 1(1)NJ 

"1ARi<::{,I 1 COf>IMENT 1 SVM!JUL 140 (VJ IN TABI.E 6,5,2J 
M.JOe:::2C66I .. 
r>1.0TPICT1JRE(l, 1 1F'' 1•(1•1J/7JO > 1 ITHEN' 1 'ELS!' l•(l•ll/?:50,1,N, 

~AR<,OELTAMA'IK,M10E, 
XMIN,XMAX,DX,MAXX, 
1111 , 
y~IN,YMAX,DV,MAXV, 
•PROBABILITV ~ --•> !140! bEFINp;o ev !53!N ,122, N•(N-1)/jJo•, 
PLCTLINE); 

w 

21 APRIi. 19?;•, 
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MAX Nu~bE~ 0F·pfQPLE IN ROO~ :N: 
~ QK=1-~o5FAC/((36,•KIFAC*36j••Kl 

~ l • v 1 0:, •Jr 'In On 0 
~ ,0U2l3~725J3 
J ,J18~0~163H9 
4 .016~~591~•7 
:, ,U,i71J!l:i7370 
o .Uqj4J?43Z65 
7 .u5~;3,7Q309 
8 ,Jj4J,~2Q~3~ 
Y .U~462S~33e9 

'.IJ ,:,~HL•:!.7771 
.il ,l·•ll 1137'i32 
li ,lo?0<479883 
.a .19441r27523 
i4 .22J1J~s12no 

, .2~?.YJ131~76 
:a .2d3~)400525 
il ,Jl5JJ756529 
1tt ,J46Y1141787 
'"' • 5i 111~326113 
2U ,4ll43t333j" 
21 ,441QJ~13~16 
22 .415~~,3r7o~ 
2J -~~,~~72343? 
~4 -~~il1~25791 
~, -~~~c?~703q7 
~~n , :.,9:3,;.4l','l2Jl3 
21 .62~bJ928226 
2~ .6~44il47234 
2-J . oil:)%~3,;74~ 
JIJ , 7•Jf,~1_C ~4;-!7<, 
3L .7JJ4j4~3~73 
SJ ./~1~4)12,~5 
Jl ,774~7)85417 
J4 ,795Jt6364b2 
31 ,814533~3~87 
3, ,6321d~10~3R 
3/· ,d4dt1~003~i 
31 ,ilo1u'>73;>::_(JK 
31 ,B7121S66437 
•1 ,a91211no9h2 
41 ,\10115163148 
4J ,':114J~U4715t 
4J , 92,;~.z::::1556t> 
44 ,':1~2•Q~36855 
4, ,94097:,~9947 
46 ,':145?~234~37 
47 ·.Y~477•4G2BJ 
4d , 96:1~97CJ72t-f\ 
4':I ,\lo<;/746(1932 
5U ,Y1uJ735795? 
~1 ,97;411?9333 
5~ ,97d~~450~33 
53 . 93U 3811348 
~4 .9d387bS6~76 
~:; , 98626.?:!Btlt\2 
!>o • \18113323541'6 
51 , Y'i012.:45934 

+10(1 

C:K=?='<* ( K•l) /i'30 
,oorntooDo~uo 
, 00273',72'>u3 
,008219173uB 
, 01l-43clJ5·h6 
, 027397l6'J..!7 
, 04109:it:19')-+1 
.057534<!4~:,fl 
,07c712J2'l"/7 
,09663C13.-,Y9 
, l?.32!.\7b71.!3 
, 1:iC,6eii93t!>l 
, ill0821917ul 
• 21369!:.b3 ·1:,,4 
,24931;it;6q'i9 
,287671?.3~u8 
,32P767121~9 
,37260,U3"1"/3 
,41917ou8;i19 
• 4ot49315·Jo8 
,52r547945::!1 
, 57534:,.46';/5 
.632~7~71'.!J3 
,693150684\/3 
, 756H.4383t,6 
,62191780~~2 
,69041U\15'1YO 
, 9i'i164;;;835o, 

1, 035f.1~4311Jb . 
:!. , 11~32.:d67:i.2 
1,1il:76ull21.Y?. 
i.2n9·,;:002"/4 
1. ;s:.e90,;10°!:i9 
1,446575J4247 
l ,5.S69!'t.J0U7 
1,63C13(,Q6,~;;o 
1,726027397~6 
1.fl2~6:ii,34.:~ 
1.~26u27,\97c6 
2,O3O13"981iJU 
2,:t3t98C,..SGtJ7 
2, 24l,57!;i.~4'.!<t7 
2, 35890410'J!,9 
2.~7397,:0(12"/4 
~.59'..78~tl21Y2 
2,7123.!b/67:..?. 
2, E35n1t-4311J!> 
2,96164;;.H3'iu2 
3, (l904H95"1Yll 
3,;:!219178Ofl.!2 
3, 356164,58'5~1\ 
3,49315ull81<;J 
3,632B7i.7l.~;;3 
3,77534246'i"/5 
3, 92C54 7',14'3.!1 
4, 06849,)15'Ju8 
4,219178U82:.,9 
4. 37260;?739"/3 

.3 

RELATIVE PERCENT ERROR 
•,1776646197514M•629 

-.oocooooo143 
-,111298262236 
•,5U40605271,9 
•, 9b436721133 

•1,5654174l.016 
•2,3U910864437 
-3,19772256608 
-4.233925994313 
-5,4~077153257 
-6.76169759899 
-8,2bC52771595 
-9, 9,,!146885536 

•11, 7~910863G01 
-13,74841109909 
•15,9i!4'.'1093532 
•18,21l3705t:9256 
•20,8.1144589639 
•23, 5l432267716 
•?.6,5l9C5266536 
-29,67265987306 
•33,04245430551 
•36,6M,00706542 
•40,46112175367 
•44,5«580201533 
•48.83821513614 
•53,4U665167250 
•58,2..S94811A015 
•63.34510420199 
•(>8,73:l,90078696 
•74,4U8175938t8 
-eo,3ll21024632B 
-86,60166192677 
•93,2:;458439835 
-.10016!.\2879126"+ 3 
•,1074D981A5998w+ 3 
-.114~e57925551w+ 3 
•,1229C23405650w+ 3 
•,13116505683S7w+ 3 
•,1391789528866w+ 3 
•,1487484176415w+ 3 
•,158U771848401w+ 3 
•,1671683085331w+ 3 
•,177t1241474559w• 3 
•,188~463587711w+ 3 
•,199U359014675w+ 3 
•,2101930494604w+ 3 
•,2211174141684w+ 3 
~,2330Q7976Q971M+ 3 
•,245~631246965w+ 3 
•,2584807055625w+ 3 
•,271q580738284w+ 3 
•,284l921524072w+ 3 
•,2984794942462M• 3 
•,312'163454809w+ 3 
•,326b987108772w• 3 
~•,3410224173559N ♦ 3 

07 
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o..su,7.:~..i~4 D i'2,;lt.V, 1 JACKAL.A"ll::IJ 4 07 

:>, , :19106.;97<,39 4,526 76 712"1,!9 •,356b831760136w+ 3 
j•, • 90 2•,>ac. 4.<1 p4?, 4,68767l~3:u7 •,372U766409291u+ 3 
6J ~ . o 9 4 ~- 2 ,2 6 6 ri ~ 7 4, 8 4031:;;, 1)6 11!:.i !) •,3877984638512u+ 3 
6.1, , 995c•,,F.79U::1. 5. 01309..;~3·1:;i,4 •,403d443439575u+ 3 
6<! , 9959('•95749li 5, 1ACS2;..'il17ti:l. •,420.:10 □ 721197u+ 3 
!) s . y9r,6 1J.l~8c,ci;'. 5,3;r~84<J31:>1 •,436d91569234Qu+ 3 
6~ • ?9 71%47.?,07 5 , 5 2 3 2 8 71> 7 :t c! ,3 •,453d849184500u+ 3 
6) , <1 9 7 b 3 3 1 0 7 :i 1 5,69863Qt3i\18 •,4711P63912712u+ 3 
t,.;i , 94-'309!;,7[14t•4 5 , 8 H 7 1 Z ,5 2 'I i'7 •,488/924676407w+ 3 
bi • 99"44i104~9,, 6, 057!'\,34.:4i;!,i7 -,5066998503483»+ 3 
I:" ,993i'263911i~ 6 , 2 4 j_Q 9 ~ d 9 ·1 <+ 1 -,524YQ547411BO"• 3 
l:Y • \/':1"\9(,3f•66~~1 6. 427307.:611,18 •,5434Q650987 □ 7u+ 3 
7u . '799:; 5',:',7~:96 6, 61643d.S5,i:i.lS •,562~003647191u+ 3 • 
7 J. , •N'M2l 7B3;.fl 6, 8D-'l219l71u8 •,581~846782617u+ 3 
i' '2 ,\1·;94~;-AP.(IH'- 7, 00273\/72-'lu;s •,60G6573157832a+ 3 
"/j , Y9·,~6Pf·O:-:il- 7 ,20f1(10J00'JUO •,620J163!:i89425w+ 3 I,, , 99 ~t'-4! (,4,:.1,~ 7,40000u001UO •,640~600944964w+ 3 
; :, ,999i:!.H7n:1.7 7,60~73972~U3 •,6604870016100w+ 3 
ib , y99·, 7; t,37.:11; 7, 901'21917:,us •,68Q9957382083w+ 3 
'/7 , 99Ji:2::.77(l?4 8, 01l-43::d%:i,6 •,701185:!.267988a+ 3 
;· I: , 999 t: (,I' 9~,i :' f. 6, 2;?739726 '1,!7 •,722b5414G:i.261w+ 3 
7') , 9C;9c.9i,t,( li••O 8 , 4 41 il 9;;, d 9 ·1 4 U -,744~C:13869864w+ 3 
t'. (; . 997,1433; 9~ 8,657:i34246~8 •,765d275964200w• 3 
r J. • 9\19<.,3~:;_rli~,. 8,876 71.-:.S2"i'/7 •,787/306145020w+ 3 
~: ~ , 9',9l 479:,;•~;: 9,098':3;.13~\18 •,809Y103718745a+ 3 ..... ..... 
t,,.5 , 999',-!:i'.,1'>4;.:69 9,323?8767ll!3 •,8323663921254u+ 3 V1 
H4 • Y 9 9 ~- 6 Cl i~ ( ~~ :L ~ 9,5•;c684<J31!..1 •,855U982710626w+ 3 
ii:, • 9 '> Q S 7 = '1 ~• :· ,S ~; 9,7R[lfl2l917o1 •,8781056689322w+ 3 
(le, , 9,.Q(. 8~ ~•6(i{J9 10. 01:'\69i;,63'J:i.4 •,901J883015858u+ 3 
c.\ l • 9.,,9c,,i.):,<'l~:i,,;11 10,249 .! 1~ IJb 'l.;9 •,924~459325550w+ 3 
!II:'. , 9 s, 9 < ll ',;; f i) ~- 7 10,46:f.7:.~3:.!L'?. •,9487783660162w+ 3 
1-,l• , 99gr.<1j ht ,\o'.l 10, 7.?f.76712·5~9 •,972b854406020u+ 3 
9(; • 9~ 9'·9l b4~:H, . 10, 972t-C1Z;'/39i'3 •,9972670239685u+ 3 
9l , 9',-9' 9t·:S/•:i20 U ,21917t,L18?.:i,9 -,102!9~30081091f+ 4 
C) ,' , 9 (,,Q l· ') /, !_'i 2 ~\ 7 3 11, 46849;.j15')o8 __ •,104b8~3305286w+ 4 
'.I,.) • 9<,9·.,9; :1971io 11.,2r5.a794n1 ~,107~057844575w+ 4· 
9-. • \i ·:9,,91: rt ti'.l 7:i 11, 97::3-';,;465i'5 -,109/5365689021f+ 4 
~ ~"I • 9\.9-·?c'.'.i6,)17 12,23?67"7l;~;,;s --,112J~89432559u+ 4 
9t , 9 ~ 9 ~ 9 !'. ,_·, 3 ·I ~I :~ 1.2, 4931%664'ii2 •,114',i316399:!.14u+ 4 
(.)"' . I • 9S·9 ~9'<2l.:;ll5 12,7!;6164.56:S:,7 .• , 117!)6174396501f• 4 
Llt; • :1,,9,.9.,,.423;,5 13,02191780!3<!2 -.120~19253:!.334"+ 4 
Q9 • 9,.9 ✓ 99:37.,,io l.3, 29041Q958Ytt -,12290416562151f+ 4 

lfllJ , 9< 9,:,9c;,69;'!75 1.3,56,64383?5u2 •,1256164800242u+ 4 
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022Yov,U14, OE JONG, T1000, R250, P1000 

1 
2 
3 
4 
5 
6 
7 
ll 
9 

1.0 
t1 
t2 
13 
14 
.l.~ 
16 
17 
lll 
lY · 
,!l) 

?.l 
22 
23 
,!4 
<!5 
26 
'c. 7 
e.8 
29 
30 
.ii 
J2 
J3 
.14 
.l:i 
.16 
J7 
31l 
.19 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
?l 
52 
53 
54 
55 

•BEGIN• •CO~MENT• ~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

<PROBLEM 3 1N STATISTIC, THRE~ Of JACK ALANEN, > 
<D,O, 4 MAY 1972 . > 
<COMPUTE BY BENJAMIN OE JONG > 
<THE PROBLEM: > 
<TWO PERSONS, •YOU' AND 'ME' ~AVE INITAL(PR1QR)> 
cOPINIONS ABOUT THE PARAMEYER: > 
<T: AVERAGE TEMPERATURE IN CENTIGRADE AT THE > 
<EXACT NORTH POLE. . > 
cTHE TWO PRIOR PROBA61~1Tl~S 4RE: > 
<Vou: T IS NDRMAL(MEAN -9,~RE~ISION 1/36) > 
<ME: T 1S NORMAL(MEAN 3,PRECISiON 1/4 ) > 
cTHEN WE HAD FOUR TESTING ~AMPLES >· 
<ANO WE CHANCH1NG AFTER EA~H ~AMPLE THE MEAN > 
<ANO THE PRECISION (BV BAY~S• THEOREM) - ► 
<FOR THE 'EAN WE NEED THE FOR~ULA: > 
<(CLO MEA~•OLO PRECISION•S~MPI.E MEAN*SAMPLE > 
<PRECISION)/(OLD PKECISIONoSA~PLE PRECISION) > 
<FOR THE PRECISION WE NEEn THE FORMULA: > 
<OLD PRECISION* SAMPL~ PRECl~ION > 
<IE PLOT THESE FIVE OPINIONS WHICH NEEDING THE> 
<fORMULA:PLOTPiCTURE WHICH PRnCEDURE IS DESCRI•> 
<BED IN LR 1,1 SECTION 4,6,2,Q, . > 
<FOR THE FUNCTION WE NEED: > 
<DENSITY rUNCT10N: SQRT(PHECISION/(2•Pl))o > 
<ExP(•(PRECISION/2)*(X•MEAN) ** 2) > 
vvvvvyyyYyyyYyyyyyyyyyvyvvvvyvvvVVYYYYYYYYYVyYYY 

1 REAL 1 YOUMEAN, YOUPRECISION, MEMEAN, MEPR~CISION, SAMPLEMEAN, 
SAMPLEPREC1SION, CLQMEAN, OLOPRECISION, Pl,Nl 
1 INTEGER• NUMBER, X, Z, Kl 
•REAL' 1 ARRAY• NN,SAMPLE~,,SAMPLEP(114ll, 
1 BOOLEAN 1 CHECK! 

'COMMENT' AT FIRST WE READ THE PRIOR PROBA~ILITIESJ 

YOUMEAN::: READ; 
YOUPRECISloN:: REAOl 
M~MEA~:= READl 
M~PRECISIONl: READ; 
PI : = 3, 14:!.5926535808; 
CHECK:= 1 TRUE 1 I 

1 BEGIN 1 

'PROCEDURE' OUTPUT(MEAN, 
•REAL' MEAN, PRECISION; 
1 BEGIN' 

PRECISION)! 1 V,-LUE 1 MEAN, PRECISIONl 

I I, I z 
•BEGIN.• 

'01V 1 2 * 2: Z 'THEN' 
SPACE(l) ABSFIXT(2,0,N)l 
SPACE(3) flXT(1,6,MEAN); 
SPACE(2) fiXT(2,10,PRECISION)I 
SPACE(BO•PRINTPOS)I FIXT(l,6,MEAN • OLOMEAN)J 
sPACE(2); FIXT(2,10,PRECIS10N • OLOPRECISION); 

'cARRIAGE(Q)I Zls Z + 1 . 

62 
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?6 
'57 
?ll 
?9 
60 
61 
62 
63, 
t,4 
65 
66 
67 
68 
69 
70 
/1 
12 
73 
/4 
75 
76 
77 
/8 
/9 
80 
lil 
d2 
83 
84 

,85 
86 
l:'7 
llo 
89 
\10 
91 
92 
\1-3 
94 
95 
96 
97 
\18 
99 

1UU 
tul 
:02 
1u;s 
.lU4 
1 U':J 
106 
~ u 7 
J.U8 
.109 
, 10 
111 
112 
1.13 
114 
115 

D 2296V,014 DEJONG 2 

'END• 
•EL.SE' 
1 8EG1N 1 SPACE(37); FIXT(l,6,MEAN)I 

SPACE(2)l F1xr<2,10,PRECISION)l 
SPACE(113 • PRINTPOSll FIXT(1,6.MEAN • OLDMEAN)J 
SPACE(2)l FtXT(2,10,PRECISION • OL.DPRECISION); 
NL.CR; Z:: Z .+ l 

'END t; 
•ENDI OUTPUTl 

'PROCEDURE' ORAlll(X,Y, I) l 1 VALUE 1 X, Y, 11 •REAL.• X, VJ • INTEGER' 1 I 

1 8EGIN 1 'COMMENT• FOR THE PROCEDURES NEED IN THIS PROCEDURE LOOKED 
AT L.R 1,1 .SECTION 4,6,1,t, 4,6,1,3, 4,6,1,4, 
4, 6, 2, 4 l 

'IF'' I< 2 'THEN• 
1 BEGtN 1 pLOT(YOUMEAN, 0, 2)1 

PLOT(VOUMEAN,1,5,4); 

'END•; 

sHAPE(O, 42, Ol; . 
C00RD(VCUMEAN•1,5,, 75, •TRUE•) l 
pL.OTTEXT(•YOU")l . 
PLOT(MEr,E,AN, 0, 2) l 
PLOT(MEM~AN,1,5,4)1 
COORD(MEMEAN+0,5,,75, 1 TRUE 1 )l 
PLOiTEXT .(•ME") l 
coORof-18,1,35, •TRUE')l 
pL.OTTEXT(•PRGGAAM OF A,M,B, OE .JONG, 0,0, 25 MAY 1972")1 
SHAPE(.Q, 28, Ul l 
COORD(-15, •,0625, 'TRUE'); 
FIXPLCT(J,5,YOUMEAN)l 
C00ROC•15, •,09375, ITRUE 1 )J 
FIXPLOT(3,5,MEMEAN); 
COOR0(-7,5, •,0625, 1 TRU~')I 
ABSFIXPLOT(1,5,VOUPRECISION); 
COOR0(-7,5, -.09375, 'TRUE 1 )1 
A8SFIXPLOT(1,5,MEPRECISION)l 
, I F • I< > O I THEN• 
•BEGIN' C00R0(16,•,06250, 1 TRUE 1 )l 

FIXPLOT(3,5,SAMPL.EM[l<]ll 
COORD(16,•,09375, 'TRUE'); 
FIXPLOT(3,5,SAMPL.EP[K]l; 
SHAPE(0,28,0)J 
COORD(l0,1,35,'TRUE•); 
PLOTTEXT(•CHANGING AFTER SAMPLE"); 
SHAPE(0,28,0); 
COORD(16,1,35,'TRuE•); 
ABSFIXPLOT(2,0,K); 

COORD( 4, •0,06250 , 'TRUE'll 
ABSFlxPLOT(2,0,l<)J 
C00RD(4,•,09375, 1 TRUE 1 )1 
AB5FIXPLOT(2,0,N)i 
t ENO•; 

Pt.OTCURVE ( X, Y, I )l 
1 END' DRAW; 

'REAL' •PROCEDURE' NORMALF'UNCTIONJ 
1 BEGIN• 1 REAL' HULPP,HULPM; 

1 1F' CHECK 1 THEN' 

62 
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116 
117 
1 lll 
11 \I 
120 
1<'1 
122 
12s 
1~4 
125 
126 
Pl 
1~8 
129 
po 
151 
132 
133 
1J4 
1J5 
1.)6 
1,17 
lJB 
1.19 
14ll 
l•l 
142 
14J 
144 
J 4!) 
l,4-6 
147 
146 
l 49' 
I5'u 
151 
1,t! 
15.l 
154 
1::,:, 
1:i!l 
1.,7 
1,e 
159 
l6U 
161 
1b2 
163 
l 64 
16:> 
166 
167 
:1.btl 
169 
170 
171 
172 
1,73 
:114 
175 

D 229DV,0f4 ~EJONG 3 

1 BEG1N 1 ~ULPP:: YOUPRECISION; HULPM:= YOUMEAN •END' 
'ELSE' 
'BEGIN' HULPP:: MEPR£CIS~ON; HULPM:= ME~EAN 'ENO'J 
NORMA~FUNCTION:: SQRT(HULPP / C2*PI)) * EXP(.( HULPP / 2) • ( 1/40 * X •20,025 • HULPMl ·••2)1 

'END' NORMALFUNCTICN; 

'COMMENT' HEADING OF OUTPUTJ 

SPACE(1Q3)l PRINTTEXT("CHANGING • TABLE"ll NLCR; 
NLtRJ SPACEC3); PRINTTEXT("N"); 
SPACE(6)l PRINTTEXT(•YOuMEAN"l; 
SPACE(fi)l PRINTTEXT(•YOUPRECISION•); 
SPACE(5)l PRINTTEXT(•MEMEAN•)l 
SPAC~(5); PRINTTEXT(;MtPRECiSION"); 
SPACE(RQ • pRINTPOS); PRINTTEXT("VOUMEAN"); 
SPACE(6)1 PRINTTEXT(•YOUPRECISION")l 
SPACE(10)1 PRINTTEXT("MEMEAN"); 
SPACE(5)l PRINTfEXT(•MEPRECiSION")I 
NLCRJ 
SPACE(3); PRINTTEXT(•O•); 
SPACE(4)l F1XT(l,6,YOU~EAN); 
SPACE(?.)l F1XT<2,10,voupRECISION)I 
SPACE(2); F1XT(l,6,MEMEAN); 
SPACE(2)l F1XT(2,10,MEPRECiSIONll 
NLCR; 
z:= 2; 

1 COMMENT 1 WE PLOT TME FIRST PROBABILITY WITH PROCEDURE PLOTPICTURE: 

PLOTPICTURE(1/4Q•X•20,025, NORMALfUNCTIUN, 
X ,1601, 1,0 , 0066,•20, 

"NORMAL ( VoU MEAN 
I . MF MEAN 

o,1,5,r,i,2400, 

20, 1, 3600, . 
, YOU PRECISION 

ME PREC l,S I O"l 

hAVERAGE TEMPERATURE IN CENTIGRADE AT THE ~XACT NORTH POLE", 
CRAW); 
CHE.cl<::~ CHECK; 
PLOTPICTURE(1/40•X•20,025, NORMALFUNCTION, 

X ,16r.1, 1, 0, 2077, •20, 20, 1, 3600, 
ti fl, 

0,1,5,0.1,2400, 
1111 

PLOTCURVE); 
CHECK::~ CHECK; 

'COMMENT' WE READ THE TEST SAMPLES, 
AT FIRST HOW MUCH SAMPLES 
THEN FOR EACH SA~PLE: 
FIRST : HOW ~UCH OBSERVANCES, 
SECOND: SAMPLE MEAN, 
THIRD : SAMPLE PRECISION; 

NUMBER:: READ; 
•FOR' K:= 1 'STEP' 1 'UNTIL' NUMBER •Do• 
'BEGIN' NN[K]:: N:: REAOI 

SAMPLEM(K]:: SAMPLEMEAN:: READI 
SAMPLEP[K]:: SAMPLEPRECISION:: REAOI 

OLOMEAN:: YOUMEANJ 
OLOPRECISION:: YOUPRECISJONJ 
YOUMEAN:: (YOUMEAN * YOUPRECISION + SAMPLEMEAN • SAMPLEPREtlSION 

N " 0", 

/ (VOUPRECISION + SAMPLtPRECISiON)J 

62 
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1206 72-154 

'1 lb 

= 

177 
178 
179 
lt!O 
ltll 
lb~ 
l.t13 
1tl4 
1b5 
11:16 
1 ti 7 
Itl8 
189 
190 
191 
192 
t93 
1 94 

19::> 
1\16 
197 
l,98 
199 
2UO 
2U1 
202 
203 
2U4 
iu5 
206 
2u7 
2·oa 
209 
210 
211 
212 
2-13 
2:t4 
2-15 
216 
21.7 
218 
2J.9 
220 
221 
222 
?23 
224 
225 
226 
2.17 
228 
229 
230 
231 
232 
233 
234 

D 2296V,014 DEJONG 4 

YOUPRECISION:= YOUPRECISION'+ SAMPLEPREr.lSIONJ 

•BEGIN 1 1 COMMENT' \VE PR I NT 'l'H IS PART l I ENO·• l 

OUTPUT(YoUMEAN, YOUPRECISION); • 
OLDMEAN:: MEMEAN; 
OLDPRf.CISION:: ~EPRECISiONl 
MEMEANl: (M~MEAN * ~EPRECISiON + SAMPLEMEAN * ~AMPLEPRECISION)/ (MEPRECISION + SAMPLEPRECISION)J 
MEPRECIS10NI: MEPRECISION + SAMPL.EPR~CISIONJ' 

1 8EG1.N• •COMMENT• \VE PRINT THIS PART; •END' l 

OUTPUT(MEMEAN, MEPRECISION); 

'8EG1N• •COMMENT• \VE PLOT CHANGING M~AN AND PRECISION OF YOU_ANO MEI 'END'J 

PL.OTplCTuRE(1/40•x-20.02s, NORMALFUNCTlnN, 
X ,160:t, 1, 0, 0066, •20, 20, 1, 3600,. 

"NORMA~ ( YOU MEAN , YOU PRECISION 

( •ME MEAN , ME PREC·ISION 
0,1.5,0,t,?400, 

>. 

"AVfRAGE TEMPERATURE IN CENTIGRADE AT THE EXACT NORTH POLE", 
ORA,,); 
Ct-lECI:: = . ~ Ct-lECK l 
PL.OTp1CTuRE(1/40•X•20,025, NORMAL.FUNCTlnN, 
x ,1601, 1, ·o, 2077, -20, 20, 1; 3600. 

1111 ' ,. 
0,1.5,0,1,2400, 
1111 

PL.OTCURVE)l 
CHECK:=~ Ct-lECKI 

'END' 
•ENDt; 

'COMMENT' PRINTING OF TESTRESULTS; 

CARRIAGE(J.2)l 
'FOR' NUMAER:=.1 'STEP• 1 •uNTIL 1 48 •po• 
1 tlEGIN' PR1rnTEXT("!!ll SPACE(l) 'END'l NI.CH; 
P~1NT1EXT(•T); SPACE(2); PRINTTEXT("SAMPLE•); SPACE(1); 
PRINTTEXTC•T)l SPACE(3); PRINTTEXTl"N"): SPAC~(1)J 
PR1NTTEXT(•T); SPACE(2)1 ?RINTTEXT(•S~MPLE MEAN"); SPACE(1); 
PRINTTEXT(•T)l SPACEl2): PRINTTEXT(•SAMPL.E PRECISION•); SPACE(1)l 
PRINTTEXT(•!)l NI.CR; 
•FOR• NUMBi:;Rl: 1 'STEP• 1. 1 UNTll. 1 48 'DO' 
•6EGIN 1 PRiNTTEXT("!!)l SPACE(l); •.END•; NLCRI 
•FOR• NUMBER:: 1 'STEP• 1 •UNTIL' 4 •Do• 
1 BEG1i'o 1 PRiNTTEXT("Tll SPACE(l);. 

ABSFIXT(3,0,NUMBER); 5PACE(3)J 
PRINTTEXT("t): SPACE(l); 
ABSFIXT(2,0,NN[NUMEER]); 
PRINTTEXT("t)l SPACE(3); 
FI XT(1,4,SAMPLEM[NUMBER] l l SPAce:-(3); 
PRINTTEXT("t)l SPACE(5); 
FIXT(2,4,SAMPLEP[NUMBER])l SPACE(5); 
PRINTTEXT("f)l NL.CR 

•END•; 
'FOR• NUMBER:= 1 1 STEP 1 1 ~UNT1k 1 48 'DO~_ 
'BEGIN' PRiNTTEXT("!!ll SPACE(i) 'END•; NL.CHI 

N "' 

SAMPLE• 

62 . 

SAt,PLE 111'E:AN 

SAMPLE PRE~ISICN: "• 

..... 
I\) 
0 
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2J5 1 FOR 1 NUMBER:= 1 1 STEP 1 1 1 UNTIL. 1 48 '00 1 

236 1 6EGIN 1 PR1NTTEXT( 11 :,:); SPACE(1) 1 ENC> 1 i NL.Cfn 
2:17 
2.58 'EN0 1 ; 

.... 
I\) .... 
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N YOUMEAN YOUPRECIS10N MEMEAN 
0 -9.'100000 +,0277777778 +3,000000 
1 -.t11oono +,27?7777778 +1,550000 
4 -.i29130 +1, 2777777778 +,556667 
9 -,J46134 +3, 5277777778 +,223267 

16 - • 1121620 +7, 5277777778 +,108032 

i SAMPL~ I N ,-SAMPLE MEAN-, SAMPLE PREc1sioN f 

I ·1 I ·1·1···•.1000-- -,- --- +,2500 - - I 
I 2 I 4 I +,0600 I •1.0000 I 
I 3 I 9 I +. 0010 I +2. 2500 I 
I 4 J l6 I +,0000 I +4,0000 I 

6 

•~t:PRF'C IS I ON YCUMEA"l 
•.2500000000 
+,50110000000 •8,190000 

+1,5onoooooo0 ·+,680870 
+3,75nooooooo +,082997 
+7,75rt0000000 +,024!J14 

62 

CHANCilNG • TABI.E 

VOUPRECISION MEMEAN 

•,2500000000 •1,450000 
+1,00000onooo •,993333 
+2,2s0ooonooo •,333400 
+4,0000000000 •,115234 

li'EPREC1S10N 

+.2500000000 
+1,0000000000 
+2 ,.2500000000 
·+4, 0000000000 

I\) 
I\) 



1. 5 . I i 
I I 
I I 

1.4r I I 

program of a.m.b. de Jcing, d.d. 25 may 1972 : 
I I 

1.3r I I 
I I 
I I 
I I 

1.2r I : 

I 
I 

1,Jr I I 
I 
I 
I 

1.0~ I I 
I 
I 
I 

.9 I I 
m I I 
o I I 
ll. I I 
.C .8 I I 
[ I I 
o you 1 1 me I I\:> 
c: I I W 

~ .7 I I 
C I I 
~ I I 
m I I 

:5 .6 : : 
-' I I 
c I I 

{l .5 I I 
~ I I 
ai I I 
~ I I 
~ .4 I I 
o I I 
c: I I 
- I I 
m 3 I I 5 • I I 
cl I I 
'- I I m 
~ .2 
m ., 
m 
gi .1 
'm 
~ 

~20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 
normal I you mean -9.00000 , you precision .02778 l 

ms mean +3.00000 , ms precision .25000 l n = 0 



~ 

(I) 

0 
a. 

.c ..., 
'-0 
C 

·-' 
() 
a 
X 
Cl>, 

(I) 
..c ..., 
..., 
o· 
(I) 

"O a 
'-en -..., 
C 
(I) 
() 

C -
(I) 

'-::, ..., 
0 
'-(I) 
a. 
e 
(I) ..., 
(I) 
0) 
0 
'-.a, 
> 
0 

1.5.--,--,--,--,--,--,--,--,---,,---,---r--,r--,---r--ir-,----.---;-,----.---,-,---,---,-,---,---,-..---,---,-..---,--,.-..---,--,.-..--,-~--, 

1.4 

1.3 

1.2 

1.1 

1.0 

.9 

.a 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

P20 

I 
I 
I 
I 

program of a.m.b. de Jong, d.d. 25 may 1972: 

-18 -16 
normal C you mean 

'!18 mean 

-14 -12 -10 -8 
-.81000 , you precls1on 

+1.55000 , me prec1s1on 

-6 
.27778 
.50000 

you 

-4 -2 

I 
I 
J 
I 
I 
I 
I 
I 
I 

·1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
1 me 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 2 
sample= 

n = 

4 6 8 

chan9ln9 afler sample 

10 12 14 
sample mean = 
sample prec1s1on = 

16 18 
+. 10000 
+.25000 

20 

I\) 
.i:-



II) 

0 
Cl. 

..c ..., 
L 
0 
C ...,, 
(1 

0 
X 
a, 

a, 
.t: ..., 
..., 
0 

a, 
-0 
0 
L 
Q) -_, 
C: a, ,, 
.!: 
a, 
L :, ..., 
0 
L 
a, 
a. 
E a, ..., 
a, 
Q) 
0 
L a, 

~ 

1.5--r---r-~-.---..--~.----.--r--.----r---,r---r--,---,r---r--,--,,-,..,--,---,r--r--r--ir--r--r---i-,---,----,-,---,-----.--,---,----.-,---,----.--, 
I I 
I 

1.4 

1.3 

1.2 

1.1 

1.0 

.9 

.a 

.7 

.6 

:.5 

,4 

.3 

.2 

.1 

P20 

program of a.m.b.· de Jong, d.d. 25 may 1972 

-18 -16 
normai ( you mean 

( me.mean 

-14 -12 -10 -8 
-,12913 , you precision 
+.55667 , me precision 

-6 
1 .27778 
1 .50000 

-4 
) 
) 

you 

-2 

I 
I 
I 

0 

me 

2 
sample= 

n = 

4 
2 
4 

6 8 

chan9in9 afler sample 

10 12 14 
sample mean 
sample precision= 

2 

16 18 
+.06000 

+1 .00000 

20 

I\) 
\.J1 



1 .5r---,---r--,~---r--T""""""--r--r---r--r--,---,---r--r--+---,--,--,-~~-,--,--,---.---,---r-~~ 
I 
I 
I 

1.4 
program of a.m.b. de Jong, d.d. 25 may 1972 

1.3 

1.2 

I.I 

1.0 

.9 
G> 

i 
:5 .8 
g 
.., 
g .7 
~ 

:5 .6 
.., 
0 

Cl) 

1): .5 
a, 

-':! r, .4 

~ 

~ .3 
::, .., 
0 
L 
Cl) 

~ .2 
Cl) .., 
8i 
0 .1 
L 

f 
0 

0 -20 -18 -16 
normal ( you mean 

( me mean 

-14 -12 -10 -8 -6 
-.04613 
+.22327 

you prec1s1an 3.52778 
, me prec1s1on 3.75000 

-4 
I 
) 

I 

you J../'.\ me 
I 

sample= 
n = 

4 
3 
9 

6 8 

chan9l_n9 af't.er sample 

10 12 14 
sample mean = 
sample preclslon = 

3 

16 18 
+,00100 

+2.25000 

20 

I\) 
0\ 



~ 

1 .5 ,---,---,---,-,--,----,----,r---,---,---r-...---r---,---,-,--,----,--,r---,---,---r-...---r---,---,-,--,----,----,r---.--r---r-r---,---,---,-..--'"T'""-,---. 

1.4 
program of a.m.bi de Jong, d.d. 25 may 1972 

1.3 

1.2 

1.1 

1.0 

.9 
Cl) 

0 
0.. 

.c. .a .., 
t. 
0 
C 

you 
..,_ 

.7 0 
0 
)( 
Cl) 

Cl) 
..c .6 ... .., 
0 

CD 
.5 "O 

0 
t. 
Cf) 

.:; 
C ,4 Cl) 
0 

C .. 
II) .3 t. 
::, ... 
0 
t. .. 

• 2 0.. 
E 
CD .., 
Cl) 

g, .1 
t. ~-
0 

I i I 
~20 -18 -16 

I I I I 

-14 -12 -10 -8 

)) 
i I I 

-6 -4 -2 
normal ( you mean -.02162 , you preolslon 7.52778 ) 

I me mean +,10803 , me preclelon 7.75000 ) 

II 
II 
II 
II 
II 
11 
II 
II 
11 
II 
II 
11 
11 
II 
II 
I 

:1 

I 
II 
I 

I 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
ii 
0 

me 

l I I 
2 4 

sample= 4 
n = 16 

I I 
6 8 

ohangln~ afler sample 

_i _i _i 

10 12 14 
sainple mean = 
sample preclelan = 

4 

_i I 

16 18 
+,00000 

+4.00000 

20 

I\) 
...;i 
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