O for the second STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

l I

DR 14r

A remark on Fermat's last theorem.

uw Archief voor Miskunde, 3e Serie, 1)1953), p 123-128).

H.J.A.Duparc en A.van Wijngaarden.

Nieuw Archief voor Wiskunde (3) I, 123-128 (1953)

14

A REMARK ON FERMAT'S LAST THEOREM

BY

H. J. A. DUPARC and A. VAN WIJNGAARDEN (Mathematical Centre, Amsterdam)

1. In a recent paper by R. OBLATH ¹) lower bounds for z^p , satisfying

 $x^{p} + y^{p} = z^{p}$ (x, y, z positive integers; p > 2, prime) (1.1)

are given. As usual two cases are distinguished, viz.

Case I: $xyz \not\equiv 0 \pmod{p}$;

Case II: $xyz \equiv 0 \pmod{p}$.

In either case certain congruences are combined with numerical lower bounds of p to the following results

Case I: $z^p > 10^{4.5 \times 10^9}$; Case II: $z^p > 10^{3.2 \times 10^6}$.

In this note it is shown that in case I by using the same lower bound $p \ge 253747889$ of D. H. and EMMA LEHMER²) the following sharper result can be derived:

Case I: $z > 10^{6 \times 10^9}$; $z^p > 10^{1.5 \times 10^{18}}$.

2. In the following sections p denotes a prime > 7. For sake of symmetry in (1.1) put X = x, Y = y, Z = -z, hence $X^{p} + Y^{p} + Z^{p} = 0.$ (2.1)

With the restriction of case I (p + xyz) one has:

X, Y, Z are integers, $p \neq XYZ$.

LANDAU 3) proves

$$2X = -A^{p} + B^{p} + C^{p}, \ 2Y = A^{p} - B^{p} + C^{p}, \ 2Z = A^{p} + B^{p} - C^{p},$$

where A, B and C are integers and

$$\begin{aligned} X+A &\equiv Y+B \equiv Z+C \equiv 0 \pmod{p^2}; \\ X^{p-1} &\equiv Y^{p-1} \equiv Z^{p-1} \equiv 1 \pmod{p^3}. \end{aligned}$$

Hence

$$A+B+C \equiv -(X+Y+Z) \equiv -(X^p+Y^p+Z^p) = 0 \pmod{p^2}.$$

Further 4)

Further 4)

 $-2CC' = A^{p} + B^{p} - C^{p}$; (C, C') = 1; $C' \equiv 1 \pmod{p^{2}}$.

There are two kinds of prime factors of C, viz.

i) $q_1 | C$, $q_1 + A + B$. From $q_1 | A^p + B^p$ a simple argument learns $q_1 \equiv 1 \pmod{p}$, hence $q_1^p \equiv 1 \pmod{p^2}$. Moreover using the first theorem of FURTWANGLER ⁵) the prime factor q_1 of C, hence of Z satisfies

$$q_1 \equiv q_1^p \equiv 1 \pmod{p^2}.$$

ii) $q_2 | C, q_2 | A + B$. If $q_2^u | C, q_2^{u+1} \neq C$, then $q_2^u | A^p + B^p$. Since $\left(A + B, \frac{A^p + B^p}{A + B}\right) = (A + B, p A^{p-1}) = 1$ (for otherwise either p | AB | XY or $(A, B) \neq 1$ one has $q_2^u | A + B$, hence $q_2^u \mid A + B + C.$

Then putting $C = C_1 C_2$, where C_1 only contains prime factors of the first kind (q_1) and C_2 only prime factors of the second kind (q_2) one has

$$C_1 \equiv 1 \pmod{p^2}, C \equiv C_2 \pmod{p^2}, C_2 \mid A + B + C.$$
 (2.2)

Similarly

$$A \equiv A_2 \pmod{p^2}, B \equiv B_2 \pmod{p^2}$$
(2.3)

and

$$A_2 \mid A + B + C, B_2 \mid A + B + C.$$
 (2.4)

Since A, B and C are pairwise coprime, so are A_2 , B_2 and C_2 hence

$$A_2 B_2 C_2 \mid A + B + C. \tag{2.5}$$

From z > x, z > y it follows A < 0, B < 0 and from x + y > 0it follows C > 0. Assuming without loss of generality x < y one has B < A. Hence defining positive integers a, b, c and integers a_2, b_2, c_2 by

$$a + A = b + B = c - C = a_2 + A_2 = b_2 + B_2 = c_2 - C_2 = 0$$

one has

$$2x = a^{p} - b^{p} + c^{p}, \ 2y = -a^{p} + b^{p} + c^{p}, \ 2z = a^{p} + b^{p} + c^{p}. \ (2.6)$$

Since $(x + y)^p > x^p + y^p = z^p$ one has x + y > z, $c^p > a^p + b^p$. Hence c > b > a > 0. Further the following congruences hold

$$a + b - c \equiv a_2 + b_2 - c_2 \equiv 0 \pmod{p^2}$$

and

$$0 = x^{p} + y^{p} - z^{p} \equiv x + y - z = c^{p} - a^{p} - b^{p} \equiv c - a - b \pmod{6}.$$

Thus

$$a + b - c \equiv 0 \pmod{6p^2}$$
. (2.7)

Finally in virtue of (2.2) and (2.3) one obtains

$$a = a_2 + a_3 p^2, \ b = b_2 + b_3 p^2, \ c = c_2 + c_3 p^2,$$
 (2.8)

where a_3 , b_3 and c_3 are integers and in virtue of (2.5) one has

$$a_2 b_2 c_2 \mid a + b - c.$$
 (2.9)

3. Putting
$$\frac{a}{c} = a$$
, $\frac{b}{c} = \beta$ from (1.1) and (2.6) one obtains
 $(-a^{p} + \beta^{p} + 1)^{p} + (a^{p} - \beta^{p} + 1)^{p} = (a^{p} + \beta^{p} + 1)^{p};$
 $0 < a < \beta < 1; a^{p} + \beta^{p} < 1.$ (3.1)

Using after a suggestion of C. G. LEKKERKERKER for 0 < u < v the relation

$$p(v - u)u^{p-1} < v^p - u^p < p(v - u)v^{p-1}$$

one has

$$2pa^{p}(1-a^{p}+\beta^{p})^{p-1} < (a^{p}-\beta^{p}+1)^{p} < 2pa^{p}(a^{p}+\beta^{p}+1)^{p-1},$$
 hence

$$a^{p} < (a^{p} - \beta^{p} + 1)^{p} < 2pa^{p}(1 + 2\beta^{p})^{p},$$

thus

$$a < \alpha^p - \beta^p + 1 < (1 + 2\beta^p) \sqrt[p]{2p}.$$

Consequently one finds the result

$$1 - \beta^p < a(1 + 2\beta^p) \sqrt[p]{2p} \tag{3.2}$$

and

$$2(1-\beta^p) > \alpha - \alpha^p + 1 - \beta^p > a,$$

thus

$$1 - \beta^p > \frac{1}{2}\alpha. \tag{3.3}$$

Now from (3.2) it follows

$$\beta > 1 - \frac{\log 2pe}{p}.$$
(3.4)

In fact the supposition $\beta \leq 1 - \frac{\log 2pe}{p}$ leads to

125

$$\beta^{\mathfrak{p}} < \left(1 - \frac{\log 2\mathfrak{p}e}{\mathfrak{p}}\right)^{\mathfrak{p}} < \frac{1}{2\mathfrak{p}e},$$

thus

$$e^{-\frac{2}{pe}} < \frac{1}{1+\frac{2}{pe}} < \frac{1-\frac{1}{2pe}}{1+\frac{1}{pe}} < \frac{1-\beta^{p}}{1+2\beta^{p}} < a^{\frac{p}{\sqrt{2p}}} < \beta^{\frac{p}{\sqrt{2p}}} < e^{-\frac{1}{p}},$$

which is impossible since e > 2.

Since $p \ge 8$ one obtains from (3.4) the relation $\beta > \frac{1}{2}$.

Then using (3.2) one finds

$$\frac{1-\beta^p}{1-\beta} \ge 1+\beta+\beta^2+\beta^3+\beta^4 >$$
$$> 1\frac{1}{2}+3\beta^p > \sqrt{2}(1+2\beta^p) > \sqrt[p']{2p}(1+2\beta^p) > \frac{1-\beta^p}{\alpha},$$

hence

i.

$$\alpha + \beta > 1. \tag{3.5}$$

(4.1)

4. From (2.7) and (3.5) one has

$$a + b = c + mp^2$$
, where $6 | m, m > 0$.

Now two cases are distinguished

$$m \ge p$$
. Then
 $c > a = c - b + mp^2 > mp^2 \ge p^3$.

ii. $6 \le m < p$. Using (2.9) one has $a_2b_2c_2 \mid m$, hence

$$|a_2| \leq m < p, |b_2| < p, |c_2| < p.$$

Further $0 < b_2 + b_3 p^2$, hence $b_3 p^2 > -b_2 > -p$, thus $b_3 \ge 0$ and

 $c_2 - b_2 + p^2(c_3 - b_3) = c - b > 0,$

$$c_3 - b_3 > \frac{b_2 - c_2}{p^2} > \frac{-2}{p}, \ c_3 \ge b_3 \ge 0.$$

The case $c_3 = b_3$ is excluded. In fact suppose $c_3 = b_3$. Then $c_2 - b_2 = c - b > 0$, hence

$$\beta = \frac{b_2 + b_3 p^2}{c_2 + c_3 p^2} = 1 - \frac{c_2 - b_2}{c_2 + c_3 p^2},$$

thus using (3.3)

$$1 - \frac{1}{2}a > \beta^{p} > 1 - \frac{p(c_{2} - b_{2})}{c_{2} + c_{3}p^{2}},$$

hence

$$a < \frac{2p(c_2 - b_2)}{c_2 + c_3 p}, \ a < 2(c_2 - b_2)p < 4p^2,$$

which contradicts

$$a=c-b+mp^2>6p^2.$$

Consequently $c_3 > b_3$. Using (3.4) one has

$$1 - \frac{\log 2pe}{p} < \beta = \frac{b_3}{c_3} \left(1 + \frac{b_2}{b_3 p^2} \right) \left(1 + \frac{c_2}{c_3 p^2} \right)^{-1}.$$

Thus

$$\frac{b_{3}}{c_{3}} > \left(1 - \frac{\log 2pe}{p}\right) \left(1 - \frac{|c_{2}|}{c_{3}p^{2}}\right) \left(1 - \frac{|b_{2}|}{b_{3}p^{2}}\right) > \\> \left(1 - \frac{\log 2pe}{p}\right) \left(1 - \frac{1}{c_{3}p}\right) \left(1 - \frac{1}{b_{3}p}\right) > 1 - \frac{\log 2pe + \frac{1}{c_{3}} + \frac{1}{b_{3}}}{p} \\> 1 - \frac{3 + \log 2p}{p}.$$

Since $c_3 \ge b_3 + 1$ one has

$$c_3 > \frac{p}{3 + \log 2p},$$

hence

$$c = c_2 + c_3 p^2 > \frac{p^3}{3 + \log 2p} - p$$

Consequently comparing (4.1) and (4.2) in both cases i and ii the result (4.2) holds.

5. Using (2.6) and (4.2) one finds

$$z > \frac{1}{2}c^{p}, \ c > \frac{p^{3}}{3 + \log 2p} - p.$$

From $p \ge 253747889$ one finds

 $z > 10^{6 \times 10^9}$, $z^p > 10^{1.5 \times 10^{18}}$.

REFERENCES

- R. Obláth, Untere Schranken für Lösungen der Fermatschen Gleichung, Portugaliae Mathematica 11, 3 (1953), 129-132.
- D. H. and EMMA LEHMER, On the first case of Fermat's last theorem, Bull. Amer. Math. Soc. 47 (1941), 139-142.
- 3) E. LANDAU, Vorlesungen über Zahlentheorie (1927), Band 3, 324.
- 4) E. LANDAU, ibidem, 324, formulae (1126), (1127), (1128) and (1129).
- 5) E. LANDAU, ibidem, 315, theorem 1038.

(Received 13.5.'53)

128