## STICHTING

# MATHEMATISCH CENTRUM 

2e BOERHAAVESTRAAT 49
AMSTERDAM

DR 14 r


## A REMARK ON FERMAT'S LAST THEOREM

BY

## H. J. A. DUPARC and A. VAN WIJNGAARDEN <br> (Mathematical Centre, Amsterdam)

1. In a recent paper by R. Oblath ${ }^{1}$ ) lower bounds for $z^{p}$, satisfying

$$
\begin{equation*}
x^{p}+y^{p}=z^{p}(x, y, z \text { positive integers } ; p>2, \text { prime }) \tag{1.1}
\end{equation*}
$$

are given. As usual two cases are distinguished, viz.
Case I: $x y z \neq 0(\bmod p)$;
Case II: xyz $\equiv 0(\bmod p)$.
In either case certain congruences are combined with numerical lower bounds of $p$ to the following results

Case I: $z^{p}>10^{4.5 \times 10^{9}}$;
Case II: $z^{p}>10^{3.2 \times 10^{6}}$.
In this note it is shown that in case I by using the same lower bound $p \geq 253747889$ of D. H. and Emma Lehmer ${ }^{2}$ ) the following sharper result can be derived:

Case I: $z>10^{6 \times 10^{9}} ; z^{p}>10^{1.5 \times 10^{18}}$.
2. In the following sections $p$ denotes a prime $>7$.

For sake of symmetry in (1.1) put $X=x, Y=y, Z=-z$, hence

$$
\begin{equation*}
X^{p}+Y^{p}+Z^{p}=0 \tag{2.1}
\end{equation*}
$$

With the restriction of case I ( $p \nmid x y z$ ) one has:

$$
X, Y, Z \text { are integers, } p+X Y Z .
$$

Landau ${ }^{3}$ ) proves
$2 X=-A^{p}+B^{p}+C^{p}, 2 Y=A^{p}-B^{p}+C^{p}, 2 Z=A^{p}+B^{p}-C^{p}$,
where $A, B$ and $C$ are integers and

$$
\begin{gathered}
X+A \equiv Y+B \equiv Z+C \equiv 0\left(\bmod p^{2}\right) \\
X^{p-1} \equiv Y^{p-1} \equiv Z^{p-1} \equiv 1\left(\bmod p^{3}\right)
\end{gathered}
$$

Hence

$$
A+B+C \equiv-(X+Y+Z) \equiv-\left(X^{p}+Y^{p}+Z^{p}\right)=0\left(\bmod p^{2}\right) .
$$

Further ${ }^{4}$ )

$$
-2 C C^{\prime}=A^{p}+B^{p}-C^{p} ;\left(C, C^{\prime}\right)=1 ; C^{\prime} \equiv 1\left(\bmod p^{2}\right)
$$

There are two kinds of prime factors of $C$, viz.
i) $q_{1} \mid C, q_{1}+A+B$. From $q_{1} \mid A^{p}+B^{p}$ a simple argument learns $q_{1} \equiv 1(\bmod p)$, hence $q_{1}^{p} \equiv 1\left(\bmod p^{2}\right)$. Moreover using the first theorem of Furtwangler ${ }^{5}$ ) the prime factor $q_{1}$ of $C$, hence of $Z$ satisfies

$$
q_{1} \equiv q_{1}^{p} \equiv 1\left(\bmod p^{2}\right) .
$$

ii) $q_{2}\left|C, q_{2}\right| A+B$. If $q_{2}^{u} \mid C, q_{2}^{u+1}+C$, then $q_{2}^{u} \mid A^{p}+B^{p}$. Since $\left(A+B, \frac{A^{p}+B^{p}}{A+B}\right)=\left(A+B, p A^{p-1}\right)=1$ (for otherwise either $p|A B| X Y$ or $(A, B) \neq 1)$ one has $q_{2}^{u} \mid A+B$, hence $q_{2}^{u} \mid A+B+C$.
Then putting $C=C_{1} C_{2}$, where $C_{1}$ only contains prime factors of the first kind $\left(q_{1}\right)$ and $C_{2}$ only prime factors of the second kind $\left(q_{2}\right)$. one has

$$
\begin{equation*}
C_{1} \equiv 1\left(\bmod p^{2}\right), C \equiv C_{2}\left(\bmod p^{2}\right), C_{2} \mid A+B+C \tag{2.2}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
A \equiv A_{2}\left(\bmod p^{2}\right), B \equiv B_{2}\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}\left|A+B+C, B_{2}\right| A+B+C \tag{2.4}
\end{equation*}
$$

Since $A, B$ and $C$ are pairwise coprime, so are $A_{2}, B_{2}$ and $C_{2}$ hence

$$
\begin{equation*}
A_{2} B_{2} C_{2} \mid A+B+C \tag{2.5}
\end{equation*}
$$

From $z>x, z>y$ it follows $A<0, B<0$ and from $x+y>0$ it follows $C>0$. Assuming without loss of generality $x<y$ one has $B<A$. Hence defining positive integers $a, b, c$ and integers $a_{2}, b_{2}, c_{2}$ by

$$
a+A=b+B=c-C=a_{2}+A_{2}=b_{2}+B_{2}=c_{2}-C_{2}=0
$$

one has

$$
2 x=a^{p}-b^{p}+c^{p}, 2 y=-a^{p}+b^{p}+c^{p}, 2 z=a^{p}+b^{p}+c^{p} . \text { (2.6) }
$$

Since $(x+y)^{p}>x^{p}+y^{p}=z^{p}$ one has $x+y>z, c^{p}>a^{p}+b^{p}$ : Hence $c>b>a>0$. Further the following congruences hold

$$
a+b-c \equiv a_{2}+b_{2}-c_{2} \equiv 0\left(\bmod p^{2}\right)
$$

and

$$
0=x^{p}+y^{p}-z^{p} \equiv x+y-z=c^{p}-a^{p}-b^{p} \equiv c-a-b(\bmod 6)
$$

Thus

$$
\begin{equation*}
a+b-c \equiv 0\left(\bmod 6 p^{2}\right) \tag{2.7}
\end{equation*}
$$

Finally in virtue of (2.2) and (2.3) one obtains

$$
\begin{equation*}
a=a_{2}+a_{3} p^{2}, b=b_{2}+b_{3} p^{2}, c=c_{2}+c_{3} p^{2} \tag{2.8}
\end{equation*}
$$

where $a_{3}, b_{3}$ and $c_{3}$ are integers and in virtue of (2.5) one has

$$
\begin{equation*}
a_{2} b_{2} c_{2} \mid a+b-c \tag{2.9}
\end{equation*}
$$

3. Putting $\frac{a}{c}=\alpha, \frac{b}{c}=\beta$ from (1.1) and (2.6) one obtains

$$
\begin{gather*}
\left(-\alpha^{p}+\beta^{p}+1\right)^{p}+\left(\alpha^{p}-\beta^{p}+1\right)^{p}=\left(\alpha^{p}+\beta^{p}+1\right)^{p} ; \\
0<\alpha<\beta<1 ; \alpha^{p}+\beta^{p}<1 \tag{3.1}
\end{gather*}
$$

Using after a suggestion of C. G. Lekmerkerker for $0<u<v$ the relation

$$
p(v-u) u^{p-1}<v^{p}-u^{p}<p(v-u) v^{p-1}
$$

one has
$2 p \alpha^{p}\left(1-\alpha^{p}+\beta^{p}\right)^{p-1}<\left(\alpha^{p}-\beta^{p}+1\right)^{p}<2 p \alpha^{p}\left(\alpha^{p}+\beta^{p}+1\right)^{p-1}$, hence

$$
\alpha^{p}<\left(\alpha^{p}-\beta^{p}+1\right)^{p}<2 p \alpha^{p}\left(1+2 \beta^{p}\right)^{p}
$$

thus

$$
a<\alpha^{p}-\beta^{p}+1<\left(1+2 \beta^{p}\right) \sqrt[p]{2 p}
$$

Consequently one finds the result

$$
\begin{equation*}
1-\beta^{p}<\alpha\left(1+2 \beta^{p}\right) \sqrt[n]{2 p} \tag{3.2}
\end{equation*}
$$

and

$$
2\left(1-\beta^{p}\right)>\alpha-\alpha^{p}+1-\beta^{p}>\alpha
$$

thus

$$
\begin{equation*}
1-\beta^{p}>\frac{1}{2} \alpha \tag{3.3}
\end{equation*}
$$

Now from (3.2) it follows

$$
\begin{equation*}
\beta>1-\frac{\log 2 p e}{p} \tag{3.4}
\end{equation*}
$$

In fact the supposition $\beta \leq 1-\frac{\log 2 p e}{p}$ leads to

$$
\beta^{p}<\left(1-\frac{\log 2 p e}{p}\right)^{p}<\frac{1}{2 p e}
$$

thus
$e^{-\frac{2}{p e}}<\frac{1}{1+\frac{2}{p e}}<\frac{1-\frac{1}{2 p e}}{1+\frac{1}{p e}}<\frac{1-\rho^{p}}{1+2 \beta^{p}}<\alpha \sqrt[p]{2 p}<\beta \sqrt[p]{2 p}<e^{-\frac{1}{p}}$,
which is impossible since $e>2$.
Since $p \geq 8$ one obtains from (3.4) the relation $\beta>\frac{1}{2}$.
Then using (3.2) one finds

$$
\begin{gathered}
\frac{1-\beta^{p}}{1-\beta} \geq 1+\beta+\beta^{2}+\beta^{3}+\beta^{1}> \\
>1 \frac{1}{2}+3 \beta^{p}>\sqrt{2}\left(1+2 \beta^{p}\right)>\sqrt[p]{2 p}\left(1+2 \beta^{p}\right)>\frac{1-\beta^{p}}{\alpha}
\end{gathered}
$$

hence

$$
\begin{equation*}
\alpha+\beta>1 \tag{3.5}
\end{equation*}
$$

4. From (2.7) and (3.5) one has

$$
a+b=c+m p^{2}, \text { where } 6 \mid m, m>0
$$

Now two cases are distinguished
i. $m \geq p$. Then

$$
\begin{equation*}
c>a=c-b+m p^{2}>m p^{2} \geq p^{3} \tag{4.1}
\end{equation*}
$$

ii. $6 \leq m<p$. Using (2.9) one has $a_{2} b_{2} c_{2} \mid m$, hence

$$
\left|a_{2}\right| \leq m<p,\left|b_{2}\right|<p,\left|c_{2}\right|<p
$$

Further $0<b_{2}+b_{3} p^{2}$, hence $b_{3} p^{2}>-b_{2}>-p$, thus $b_{3} \geq 0$ and

$$
c_{2}-b_{2}+p^{2}\left(c_{3}-b_{3}\right)=c-b>0
$$

hence

$$
c_{3}-b_{3}>\frac{b_{2}-c_{2}}{p^{2}}>\frac{-2}{p}, c_{3} \geq b_{3} \geq 0
$$

The case $c_{3}=b_{3}$ is excluded.
In fact suppose $c_{3}=b_{3}$. Then $c_{2}-b_{2}=c-b>0$, hence

$$
\beta=\frac{b_{2}+b_{3} p^{2}}{c_{2}+c_{3} p^{2}}=1-\frac{c_{2}-b_{2}}{c_{2}+c_{3} p^{2}},
$$

thus using (3.3)

$$
1-\frac{1}{2} \alpha>\beta^{p}>1-\frac{p\left(c_{2}-b_{2}\right)}{c_{2}+c_{3} p^{2}}
$$

hence

$$
a<\frac{2 p\left(c_{2}-b_{2}\right)}{c_{2}+c_{3} p}, a<2\left(c_{2}-b_{2}\right) p<4 p^{2}
$$

which contradicts

$$
a=c-b+m p^{2}>6 p^{2}
$$

Consequently $c_{3}>b_{3}$. Using (3.4) one has

$$
1-\frac{\log 2 p e}{p}<\beta=\frac{b_{3}}{c_{3}}\left(1+\frac{b_{2}}{b_{3} p^{2}}\right)\left(1+\frac{c_{2}}{c_{3} p^{2}}\right)^{-1}
$$

Thus

$$
\begin{array}{r}
\frac{b_{3}}{c_{3}}>\left(1-\frac{\log 2 p e}{p}\right)\left(1-\frac{\left|c_{2}\right|}{c_{3} p^{2}}\right)\left(1-\frac{\left|b_{2}\right|}{b_{3} p^{2}}\right)> \\
>\left(1-\frac{\log 2 p e}{p}\right)\left(1-\frac{1}{c_{3} p}\right)\left(1-\frac{1}{b_{3} p}\right)>1-\frac{\log 2 p e+\frac{1}{c_{3}}+\frac{1}{b_{3}}}{p} \\
>1-\frac{3+\log 2 p}{p} .
\end{array}
$$

Since $c_{3} \geq b_{3}+1$ one has

$$
c_{3}>\frac{p}{3+\log 2 p}
$$

hence

$$
c=c_{2}+c_{3} p^{2}>\frac{p^{3}}{3+\log 2 p}-p
$$

Consequently comparing (4.1) and (4.2) in both cases i and ii the result (4.2) holds.
5. Using (2.6) and (4.2) one finds

$$
z>\frac{1}{2} c^{p}, c>\frac{p^{3}}{3+\log 2 p}-p .
$$

From $p \geq 253747889$ one finds
$z>10^{6 \times 10^{9}}, z^{p}>10^{1.5 \times 10^{18}}$.

## REFERENCES

1) R. Onlath, Untere Schranken für Lösungen der Fermatschen Gleichung, Portugaliae Mathematica 11, 3 (1953), 129-132.
2) D. H. and Emma Lehmer, On the first case of Fermat's last theorem, Bull. Amer. Math. Soc. 47 (1941), 139-142.
3) E. Landat, Vorlesungen über Zahlentheorie (1927), Band 3, 324.
4) E. Landav, ibidem, 324, formulae (1126), (1127), (1128) and (1129).
5) E Lasday, ibidem, 315, theorem 1038.
(Recelved 13.5.53)
