A method to investigate primality.

(Mathematical tables and other aids to computation, 11(1957), p 195-196).

E.W. Dijkstra.)
A Method to Investigate Primality

The method determines the smallest odd prime factor of a number \(N\) by testing the remainders left after division by the successive odd numbers 3, 5, \(\ldots\) \(f_m - 2, f_m\): here, \(f_m\) is the largest odd number not exceeding \(N\). If none of these remainders vanishes, \(N\) is a prime number.

Let \(f\) be one of the odd trial divisors. Remainder \(r_0\) and quotient \(q_0\) are defined by the relations

\[
N = r_0 + f q_0, \quad 0 \leq r_0 < f.
\]

Now \(q_0\) is divided by \(f + 2\), giving

\[
q_0 = r_1 + (f + 2) q_1, \quad 0 \leq r_1 < f + 2.
\]

Then \(q_1\) is divided by \((f + 4)\), etc., and this process is continued till a quotient \((q_n, \text{say})\) equal to zero is found; \(r_n\) is the last remainder in the sequence unequal to zero. After elimination of the \(q_i\) we get the relations

\[
(1) \quad N = r_0 + f r_1 + f (f + 2) r_2 + f (f + 2) (f + 4) r_3 + \cdots
\]

\[
+ f (f + 2) \cdots (f + 2n - 2) r_n
\]

and

\[
(2) \quad 0 \leq r_i < f + 2i.
\]

Once the sequence \(r_i\) is known for a given value of \(f\), it is easy to compute the corresponding sequence \(r_i^*\), defined by the relations (1) and (2) with respect to \(f^* = f + 2\), as they are expressed in terms of the \(r_i\) by the recurrence relations

\[
(3) \quad b_0 = 0, \quad r_i^* = r_i - 2(i + 1) r_{i+1} - b_i + (f^* + 2i) b_{i+1}, \quad (i = 0, 1, \cdots, n).
\]

The relation corresponding to (1) is satisfied for arbitrary values of the numbers \(b_i\) with \(i \geq 1\); they are fixed, however, by the relations corresponding to (2)

\[
(2^*) \quad 0 \leq r_i^* < f^* + 2i.
\]

On account of the inequalities (2) and (2*)—and \(b_0 = 0\)—the \(b_i\) satisfy the inequalities

\[
(4) \quad 0 \leq b_i \leq 2i.
\]

We have chosen \(b_0 = 0\). Then the relations (3) and (2*) with \(i = 0\) determine \(r_0^*\) and \(b_1\); once \(b_1\) is known, (3) and (2*) with \(i = 1\) determine \(r_1^*\) and \(b_2\), etc. The process is easily programmed.

As \(r_{n+1} = 0\), and the inequalities (2*) with \(i = n\) are always satisfied with \(b_{n+1} = 0\), the process terminates with

\[
\begin{align*}
 r_n^* & = r_n - b_n. \\
\end{align*}
\]
As soon as \(r^*_n = 0 \) is found—in that case it can be proved that \(r^*_{n-1} \neq 0 \)—the index \(n \), marking the last \(r_i \neq 0 \) in the sequence, is lowered by 1.

In order to find the smallest odd prime factor of \(N \), the \(r_i \) defined by (2) and (3) and \(f = 3 \) are computed. Here the only divisions in the process are carried out. At the same time the initial value of \(n \) is found. If \(N \) is large, this value may be considerable: for instance \(n = 11 \) is found for \(N = 10^{10} \). The amount of work involved in each step is roughly proportional to \(n^2 \). Fortunately large initial values of \(n \) decrease very rapidly. As soon as \(f \cdot (f + 2) \cdot (f + 4) > N \), \(n \) takes the value 2. This is its minimum value: when \(r^*_n = 0 \) with \(n = 2 \) is found, \((f^* + 2)^2 > N \) holds and \(N \) is a prime number. (If not, we should have found an \(r_0 = 0 \) earlier and should have stopped there.)

The process still may be speeded up. Let \(b_n' \) be the minimum of \(b_n \) for fixed \(n \) up till a certain moment: then it can be shown that the next \(b_n \) satisfies

\[
b_n \leq b_n' + 1.
\]

Let us apply this to the last stage \(n = 2 \). According to (4) \(b_2 \) satisfies \(0 \leq b_2 \leq 4 \). According to (5), however, the only possible values for \(b_2 \) are 0 and 1 as soon as a value \(b_2 = 0 \) once has been found. This is bound to happen for \(f \) ranging (roughly) from \((4N)^{1/4} \) to \((8N)^{1/4} \). In the case \(b_2 = 0 \) it is apparently unnecessary to test whether \(r_2 = 0 \) is reached. (If \(N \geq 144 \), the case \(b_2 = 0 \) with \(n = 2 \) occurs, before \(r^*_n = 0 \) with \(n = 2 \) is found; prime numbers are then always detected in this last stage.)

The less efficient steps of the process for large \(n \) (i.e., small \(f \)) could be avoided by carrying out divisions for small values of \(f \) (see Alway [1]). However we strongly advise against doing this.

If the process described above is started at \(f = 3 \), the whole computation can be checked at the end by inserting the final values of \(f \) and \(r_i \) into (1). As all the intermediate results are used in the computation, this check seems satisfactory.

If a double-length number \(N \) is to be investigated, another argument can be added: division of \(N \) by small \(f \) may give a double-length quotient, i.e., two divisions (and two multiplications to check) are needed for each \(f \). In our case only part of the initial \(n \) divisions are double-length divisions.

The process described above has been programmed for the ARMAC (Automatische Rekenmachine van het Mathematisch Centrum). The speed of this machine is about 2400 operations per second. A twelve decimal number was identified as the square of a prime in less than 23 minutes.

E. W. Dijkstra

Mathematical Centre
Computation Department
Amsterdam, The Netherlands