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1. Introduction. The advent of high speed digital computers and the consequent 
intensification of interest in the study of numerical analysis has caused considerable 
attention to be paid to the problem of obtaining approximation formulas for func­
tions which occur in the theory of mathematical physics. It is the purpose of this 
note to describe the theory underlying various methods of obtaining rational ap­
proximations to functions which are formally defined by a power series expansion; 
it is assumed that the power series concerned are quite general in character, and 
that the functions with which they are associated do not satisfy a particular func­
tional equation which would permit the use of any special method. The theory 
is then subjected to a detailed analysis in terms of the computational steps in­
volved, and a comparison, with regard to computational efficiency, of the various 
methods which may be devised for obtaining rational approximations is given. 

2. The Pade Table and the E-Array. The approximation to the function defined 
by the power series 

(2.1) 

by a rational function of the form 

(2.2) U,,,,(x) a,,,o + a,,,1x + · · · + a,,,,x' 
V,,,,(x) = /30,, + /31,,x + · · · + /3,,,,x,, 

can be systematized [1], [2, p. 420], [3, 377] by imposing the condition, where this 
is possible, that the expansion of (2.2) in ascending powers of x should agree with 
the power series (2.1) as far as the term in x,,+v, i.e., that the power series expansions 
of ,B(x)V,,,,(x) - U,,,,(x) should commence with a term in x,,+,+i_ This leads im­
mediately to the set of linear equations. 

Co/3o,v = a,,,o 

(2.3) 

C,+,,/30,, + C,+µ-1/31,, + · · · + C,/3µ,, = 0 

which serves uniquely to define the coefficients in (2.2) if the restriction ,Bo,, = 1 
is imposed. The rational functions (2.2), determined by equations (2.3), may be 
placed in an array in which the quotient U,,,,(x)/V,,,,(x) is at the intersection of 
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the (11 + l)th column and the(µ + l)th row. Such an array is referred to as the Pade 
table of the function /3( x), and the condition that it may be constructed from the 
systems of equations (2.3) is that all the Hankel determinants 

(2.4) 

should be non-zero. 
Since the successive convergents of the continued fraction 

(2.5) 
Cm q1(mJX e/m)X ••. q,<m>X e/mlX ••. 

1-1-1- 1-1-

are rational functions of x, it is to be expected that there is a connection between 
the theory of continued fractions and the Pade table. In fact, if (2.5) is the con­
tinued fraction expansion, which may be derived by a number of methods one of 
which will explicitly be described in a later section, of the power series 

(2.6) 

then [2, p. 447] the quotients 

(2_7) Uo,k(x) Uo,k+1(x) 
Vo,k(x) ' Vo,k+1(x) ' 

Ul,k+1(x) 
Vu+1Cx) ' 

Uu+2Cx) 

V1,k+2(x) ' 

are the successive convergents of the continued fraction 

Uu+2(x) 
V2,k+2(x) ' 

k+l (k+l) (k+I) (k+l) (k+l) 
( ) k + Ck+IX <f!__.!:_~~~ ... 2.8 Co + C1 X + · · • + Ck X 1 _ 1 _ 1 _ 1 _ 1 _ 

while the quotients 

(2.9) Uk,o(x) 
Vk,o(x) ' 

UH1,1(x) 

Vk+1,1(x) ' 
Uk+1,ix) 
Vk+1,2(x)' 

Uk+2,2(x) 
Vk+2,2(x) ' 

are the successive convergents of the continued fraction 

l d k+I (k+I), (k+J), (k+I)' (k+J), 

(2 10) ---------- k+!X qi X e1 X q2 X e2 X 
· do + d1x + • • • + dkxk + l - 1 - 1 - 1 - 1 -

where, formally 

(2.11) 
00 d (k), (k), (k), (k), 

L dk+ x" = _k_ ~ ~ ~ ~ .•• 
r=O r 1 - 1 - 1 - 1 - 1 -

and 

(2.12) 

Before proceeding further it will be stated that rational approximations will be 
derived which relate to the series 
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{3(x) 
00 

L c,x' 
r=O 

and others which relate to the series 
00 

(2.14) ,F(z) = LC,Z-r-l_ 
r=O 

149 

Since these series may be transformed into each other by means of the simple 
relationships 

(2.15) 

(2.16) 

{3(x) = x-1F(x-1
) 

F(z) = z-1{3(z-1
), 

it seems to be most economical to refer all the working to one of the series and 
further, it would seem to be a cause for surprise that this should be a matter for 
discussion. However, if the series (2.14) is rewritten as a power series in x = z-1 it 
will be observed that the constant term is missing, i.e., that the condition that all 
the Hankel determinants (2.4) should be non-zero is violated. If on the other hand 
the series (2.13) is treated with methods to be described, there results such a wilful 
perversion of certain classical results, such as occur, for example, in the theory of 
orthogonal polynomials, as would encourage some other course of action to be 
adopted. A yet more decisive reason for difficulty is contained in the observation 
that the Pade table is essentially a symmetric structure in the sense that the power 
series expansion of {{3(x)}-1 has the same form as that of {3(x), whereas the power 
series expansion of {F(z)}-1 has not the same form as that of F(z). 

Accordingly, the rational expressions En <m1( z) of the form 

(m)( ) 
(2.17) En(m)(z) = rn Z 

Pn<m\z) 

where Pn<m\z) is the polynomial of the nth degree 

(2.18) 

r n <m> ( z) is a function of the form 

(2.19) 
m+n-1 

(m)( ) -m '""' •(m) • rn z = z ~ in,s z' 
s=O 

and the series expansion of En<m>(z) in inverse powers of z agree with that of F(z) 
as far as the term containing z-m-2n, will be arranged in the following array: 

Eo <0\z) 

Eo0 J(z) E/0\z) 

E/2>(z) E/1>(z) E/oJ(z) 

Eo<3\z) E/2\z) E/ll(z) E/0J(z) 

E/m>(z) E/m-1\z) E/m-2)(z) E/m-3)(z) · · · Em<
0
1(z) 
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in which the quantity En <m\z) occurs at the intersection of the (n + l)th column 
and the ( m + 1) th diagonal. This array will be referred to throughout this paper 
as the E-array. Clearly the constituents Pn<ml(z), rn<m\z) of the function En<m\z) 
may also be displayed in the same array. If, in the notation of equation (2.18), 
the restriction 

(2.20) 

is imposed, it is clear that 

(2.21) 

and that 

(2.22) 

If, as is convenient from the point of view of numerical computation, the Pade 
table is regarded as an array of vector pairs 

(2.23) 

so that 

(2.24) 

and 

(2.25) 

(aµ,o, aµ,I , · · · , aµ,11), (f3o,, , /31., , · · · , /3,,,,,), 

U,,,,,(x) (a,,,,o, a,,,,1, · · ·, a,,,,,)(1, x, · · ·, x')T 

V,,,,,(x) = (f3o,,, /31.,, · · · , /3,,,,,)(1, x, · · · , ~f, 
and the E-array is regarded as an array of vector pairs 

(k (m) k(m) k(m)) 
n,O , n,1 , • • • , n,n , 

so that 

and 
(m) ( ) -me ,(m) •(m) •(m) ) ( l m+n+l) T rn Z = Z Zn,O , Zn,l , · · • , Zn,m+n-l , z, · · · , Z 

it is seen that the whole E-array may be obtained from the Pade table by trans­
posing the Pade table, deleting these terms lying above the diagonal beginning 
with the second term of the first row, and placing the quantity E 0 <ol ( z) = 0 at the 
peak of the array; conversely, part of the Pade table may be obtained from the 
E-array by removing the entry E 0 <

0\z) and transposing the E-array about the 
diagonalE/1\z), n = 0, 1, • · ·. 

Approximations relating to both series (2.13) and (2.14) will be derived, the 
series chosen for treatment in a particular case being selected according to the 
dictates of convenience. The variable used will indicate the series under considera­
tion. Methods for deriving rational approximation formulas will now be discussed. 

3. The E-Array. 

3.1 Orthogonal Polynomials 

The various questions associated with the central problem of obtaining rational 
functions from power series expansions are unified and greatly clarified by an appeal 
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to the classical theory of orthogonal polynomials. This is usually introduced [4, 
p. 153] by focusing attention upon the integral formula 

(3.1.1) fb p,(t)p.(t) d<fJ(t) = {0 
a Ws 

r ~ s 
r = s 

which serves uniquely to define a sequence of polynomials p,(t) r = 0, 1, · · · , and 
it is then noted at some later stage that if 

(3.1.2) 

then formally 

(3.1.3) 

t t8 dcp(l) = Cs 

t z ~ t dcp(t) 
00 '°" -r-1 = 6 c,z . 

r=O 

Since, however, the moments c. are the central feature of the problem in hand, 
and the introduction of the integral and weight function cp(t) ( in view of the 
difficulty of envisaging an appropriate form for cp(t)) may even serve as an im­
pediment to understanding, the present treatment will slightly be varied. 

Accordingly, define a process I by 

(3.1.4) J(l') = Cs s = 0, 1, · · · 

and construct a sequence of orthogonal polynomials p/ml(z) n = 0, 1, · · ·, m = 0, 
1, · · · , from the relations 

(3.1.5) 

where wn is so chosen that in the representation 

(3.1.6) 

(3.1.7) 

n 

Pn(m\z) = L k~":;z• 
8=0 

Construct a second sequence of polynomials 
n-1 

(3.1.8) On (m\ Z) = L j\,":; z• 
s=O 

(3.1.9) n = 1, z, · · ·; m = 0, 1, · · · 

These are the classical associated polynomials occurring in the theory of orthogonal 
polynomials [4, p. 162]. 

Note in passing that formally 

(3.1.10) I -- = Lcm+sZ . { r } 00 

-s-1 

_z - t s=o 

Consider the quotient On(m)(z)/pn<m)(z), there follows 
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(3.1.11) 

00 

= L Cm+sZ-s-l + P2n+1(z) 
s=O 

where P2n+1(z) is a power series beginning with a term in z-2n-i_ Define a third 
sequence of functions r n <m\ z), where 

m+n-1 
(3.1.12) '°"' i(mlz• .L..J n,s 

S=O 

by means of the relation 

(3.1.13) 

and note that 

rn<m\z) 
(3.1.14) p/ml(z) 

m-1 (m) ( ) 00 

" -s-1 + -m On Z " s 1 ( ) .L., C8 Z Z ( ) = .L., CsZ- - + Pm+2n+l Z 
•=o Pn m (z) •=o 

Thus it can be seen that the construction of the E-array may be greatly facilitated 
if the functions On(m\z), Pn<m\z) and rn(m)(z) may be constructed with moderate 
ease. Results which enable this to be done, and others which will be of later interest, 
are now given. 

Eliminating the coefficients k~":; s = 0, 1, · • • , n, between n equations of the 
form (3.1.5) with s = 0, 1, · · · , n - I, (3.1.6) amd (3.1.7) there follows the 
determinantal formula (4, p. 158] for the polynomial Pn<m\z) 

1 z z n 

Cm Cm+l Cm+n 
Cm+l Cm+2 Cm+n+l 

(3.1.15) p/ml(z) (-Ir Cm+n-1 Cm+n Cm+2n-l 

Cm Cm+l Cm+n-1 
Cm+l Cm+2 Cm+n 

Cm+n-1 Cm+n Cm+2n-2 

Further it may be shown [4, p. 158] that the polynomials satisfy a recursion of the 
form 

(3.1.16) 
p~'.;'.l(z) = (z - a~m))p,Cm\z) - ,B~'.'.'.fp~'.'.'.l(z) 

Po(m)(z) = 1, p/m)(z) = Z - a/m>, 

and, from the definitions (3.1.9) and (3.1.13) 
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(3.1.17) 
o;'.;'.l(z) = (z - a,<m>)o,'m\z) - (3;".'..io;".'..i(z) 

o/m\z) = 0, o/ml(z) = Cm 

and 

(3.1.18) m-1 
(m)( ) '""" -s-1 ro Z = L., C8 Z , s=O 

These recursions, in conjunction with equations (3.1.11) and (3.1.14) serve to 
identify the quotient On<m>(z)/pn<m>(z) as the nth convergent of the continued 
fraction 

(3.1.19) 
Cm {3/m) 

Z - ao(m)_ Z - a
1
<m)_ 

where formally 
00 

(3.1.20) F m(z) = L Cm+rZ-r-1, 
r=O 

and the quotient rn<m\z)/pn<m>(z) as the nth convergent of the continued fraction 
m-1 

F(z) = L c,z-s-t 
(3.1.21) 8=0 

Z - ar(m)_ .. ·} 
Multiplying equation (3.1.16) through by tm+r-i and replacing z by t, it follows, by 
virtue of equation (3.12), that 

(3.1.22) 

Similarly, by multiplying the same equation through by tm+r, it follows that 

( 3.1.23) [ ( tm+r+lp/ m\ t)) = cmf3o ( m) (3/ m) ••• (3;".'..i ( a/ m) + a/ m) + ... + a/ m)) 

Equations (3.1.16), (3.1.22), and (3.1.23), taken in conjunction are now sufficient 
to determine in succession the quantities k;":;> , (3;".'..i , ar < ml for any preassigned value 
of m [3, p. 196]. The coefficients i;:> may be recovered by means of the recursion 
(3.1.18), or from the condition (3.1.14), or from the recursion (3.1.17) in con­
junction with the condition 

m-1 

(3.1.24) (m) ( ) (m) ( ) '""" -s-1 + -m (m) ( ) rn Z = Pn Z L., CsZ Z On Z . 
s=O 

3.2 Stieltjes' Algorithm [5); [2, p. 326]; [3, p. 203). 

An algorithm for obtaining the quantities a/m>, (3;".'..i and hence, by virtue of 
equations (3.1.16) and (3.1.18), the quotients rn<m\z)/pn<m>(z), is implicit in the 
followng theorem due to Stieltjes: If the bilinear form I:;,q=O Cm+p+qXpyq is decom­
posed into 

00 

L Cm+P+qXpyq = Cm(h~:;;>xo + hf:;;>x1 + · · ·) (h~:;;>yo + M:;;>y1 + · · ·) 
p,q=O 

+ Cm f3o<m\hi:;'.lx1 + h~:;'.)x2 + · · · )(hi:;'.>y1 + h~:;'.)y2 + · · ·) 
+ Cmf3o(ml(3/m)(h~:;>x2 + h~3)xa + · · · )(h~3)Y2 + h~3)Ya + · · ·) + · · · 
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then the quantities h~';/ satisfy recursions involving quantities a~m>, /3~~i expressible 
by the matrix equation 

(3.2.2) 

in which 

(3.2.3) 

(m) 
-ao 

/3o (m) 

0 

1 

r = 0, 1, · · ·, 

hi~> hi'.'{> 0 

h~~> h~1J 

h~~J h~1J 

furthermore, by equating the coefficients of Xpyq on the right and left hand sides of 
equation (3.2.1) 

(3 2 4 ) i,(m)h(m) + r.i (m)h(m)h(m) + r.i (m)r.i (m)h(m)h(m) + 
• • Cm+p+q = Cm!bp,0 q,O Cm/JO p,l q,l Cm/JO /Jl p,2 q,2 • • • 

the series in (3.2.4) being terminated by observing that h;'.:J = 0 ifs > r. Finally, 
from equation (3.2.2) 

(3.2.5) r = 1, 2, · · · 

The significance of this result is revealed by denoting the triangular matrix in 
equation (3.2.2) by H<m>, the matrix 

(3.2.6) 

by c<m>, the diagonal matrix 

(3.2.7) 

by n<m>, the vector (xo, X1, X2, • · •) by x, the vector (yo , Yi , Y2, . • · f by Y, and 
rewriting equation (3.2.1) as 

(3.2.8) 

Thus it is seen immediately that the process of determining the triangular array 
H<m> is equivalent to the familiar Gauss-Banachiewicz decomposition for solving 
linear systems, in which the matrix n<ml is so chosen that the diagonal elements of 
the matrix H<mJ are unity (see the remark contained upon page 278 of [6]). The 
relationship between the matrix H<mJ and the matrix 
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(k<m> 0 I o.o 

l
kf:;;l ki'.;'> 0 

~~~)-. ~-~?. -'~~? .. ::: 

0 

(3.2.9) 

of coefficients in the orthogonal polynomials Pn <m> (z) n = 0, 1, · · · is revealed by 
noting that a consequence of equations (3.1.7) and (3.1.22) taken in conjunction 
is that 

(3.2.10) r = 0, 1, · · ·, s - 1, 
r = s 

or in matrix notation 

(3.2.11) 

Using the result (3.2.8) it follows that 

(3.2.12) 

or 

(3.2.13) 

The author is indebted to Professors F. L. Bauer and H. Rutishauser for remarks 
upon this section. 

3.3 The Quotient Difference Algorithm 

If the substitutions 

with 

are made, the continued fraction (3.1.19) becomes 

{3.3.2) 
Cm e/ml q/ml 

(m) (m) (m) z - q1 - z - q2 - e1 -

(m) (m) 
er qr 
(m) (m) 

Z - qr+l - er -

and may be recognized as the even part (2, p. 197], (3, p. 20], 

{3.3.3) 
(m) (m) (m) (m) 

Cm <J!__~'E__~ ... 
z-l-z-1-z-

The odd part of (3.3.3) is 

However 

00 00 

(3.3.5) "'"' -r-1 Cm + -I "'"' -r-l 
L..., Cm+r Z = - Z L..., Cm+r+I Z 
r=0 Z r=0 

s = 0, 1, · · · 

.. ·}. 
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and hence 

(3.3.6) 

00 

L Cm,-,-+iZ-r-l 
r=O 

P. WYNN 

(m) (m) 
z - q,-+1 - e,+1 -

Substituting m + 1 form in (3.3.2) and equating the coefficients in the resulting 
continued fraction with those of (3.3.6) there follows the two systems of equations 

(3.3.7) 

(3.3.8) 

q,<m> + e,<m> = q,Cm+I) + e~~l) 

(m) (m) (m+l) (m+l) 
q,+ie, = q, e, 

which may progressively be used to derive the coefficients in the continued fraction 
(3.3.2) from those of the infinite series L~o Cm+rZ-r-i 
The quantities q, < m), e, < m) may be arranged in the following scheme: 

(1) 
eo 

qi 
(0) 

e1 co> 

the various quantities occurring in equations (3.3.7) and (3.3.8) are then seen to 
be located at the corners of a system of lozenges, two of which have been sketched. 
The computations are started with the initial conditions 

(3.3.9) 

The system of equations (3.3.7) and (3.3.8) is the Quotient-Difference (q-d) 
algorithm. Formulas relating to it have been given by a number of authors [7], [8], 
(3, p. 382], [9], [10], (11]. Properties of this algorithm which are of critical interest 
in the theory of numerical analysis have been exploited by Rutishauser in his 
expository study [10]. An interesting generalization of the algorithm has recently 
been given by Bauer [12]. Once the quantities q,<m>, e,<mls = 1, 2, · · · have been de­
rived, the system of polynomials o,<m'(z), p.<m'(z) and the functions for a fixed value 
of m, may be constructed by use of equations (3.3.1), (3.1.16), (3.1.17), and 
(3.1.18). 
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3.4 Further Polynomial Recursion Systems 

Two further results which relate the quantities q. <m>, e. Cm> and the polynomials 
Pr(m)(z) are [IO, p. ll] 

(3.4.1) 

and 

(3.4.2) 

It follows trivially from the definitions (3.1.9) and (3.1.13) that 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

ZOrCm\z) - Or(m+ll(z) - e,<m>o;".'.t0(z) = Cmp,<m>(z) 

Or(m>(z) + q,<m>Or~>(z) - o;".'.t1\z) = Cmp;".'.t1\z) 

rr(m+ll(z) = r,<m>(z) - e,<m>r;".'.t1\z) 

r,<m\z) = zr;".'.t0 (z) - q,<m>r;".'.i(z) 

and after some manipulation, that 

(3.4.7) 

( 3.4.8) 

(3.4.9) 

(3.4.10) 

(3.4.ll) 

(3.4.12) 

e,Cmlzp;".'.t1\z) + (q;+i - e;+i"1
l - z)p,<m)(z) + p;+1°(z) = 0 

(m-1) (m-1) ( ) + ( (m). (m-1) ) (m) ( ) + (m+l) ( ) 0 
q,+1 Pr Z er - qn+l - Z Pr Z ZPr Z = 

e,<m>zr;".'.t1\z) + (q;+i - e;+t1
> - z)r,<m\z) + r;+i"0 (z) = 0 

(m-1) (m-1)( ) + ( (m) (m-1) ) (m)( ) + (m+I)( ) 0 qr+i rr z e, - q,+1 - z ~r z zrr z = 

er (m) o;".'.t0 (z) + ( q;+i - e;+11
) - z )o/m\z) + zo;+i"1\z) 

+ Cme,<m>p;".'.t0 (z) - Cm-1P;+11)(z) = 0 

q,<m-l)zo,<m-l\z) + (e,<m> - q,<m-I)z)o/m\z) + o,<m+O(z) 

+ Cmp/"l)(z) - Cm-lq,<m-l)p,<m-l\z) = 0. 

The transcribed recursions (3.1.16) and (3.1.18), namely 

(3.4.13) 

(3.4.14) 

p;+i(z) 
r;+i(z) 

{z - q;+i - e,<m>}p,<m>(z) - e,<m>q,<m>p;'.'.'.i(z) 

{z - q;+i - e,<m>)r/m\z) - e}m>q,<m>r;".'.l(z) 

are recursions involving quantities lying upon diagonals of the E-array, (3.4.7) 
and (3.4.9) and (3.4.10) involve quantities lying upon rows and columns of the 
E-array respectively. Both pairs of recursions (3.4.7) and (3.4.9), and (3.4.8) and 
(3.4.10) could be used to construct continued fraction expansions whose con­
vergents lie upon a row or a column of the E-array, and indeed, by suitable use of 
the recursions (3.4.1), (3.4.2), (3.4.5) and (3.4.6), continued fractions may be 
constructed whose convergents lie upon arbitrary paths in the E-array, but numeri­
cal evidence shows that practical interest attaches only to the continued fractions 
of the form (3.3.2). 

3.5 The Euler-Minding Relations 

Eliminating the quantity z - ar <ml between the recursions 
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(3.5.1) 

(3.5.2) 

there follows 

P. WYNN 

p;:i(z) = (z - a/m>)p/ml(z) - (3;'.'.:ip;'.'.:'.i(z) 

r~i(z) = (z - ar(m>)rr(m\z) - (3;'.'.:'.ir;'.'.'.i(z) 

r;'.;'.i(z)p,<m>(z) - p;'.;'.i(z)rr<m\z) = (3;'.'.'.i{r/m\z)p;'.'.'.i(z) 

(3.5.3) - r;'.'.'.i (z )p/m\z)) 

= cmf3/m>13/m) · · · (3;'.'.'.i 

or, dividing equation (3.5.3) through by p;:i(z)pr<m\z) writing, 1, 2 • • • n for 
r + 1, and adding the resulting equations 

(m) ( ) r=n /3 (m) fJ(m) 

(3_5_4) rn < ) Z = ro(m) (z) + L Cm( ~ • ·<·) r-2 

Pn m (z) r=l p,'.'.:'.1(z)p, m (z) 

the Euler-Minding relations [2, p. 16], [3, p. 17], for the continued fraction (3.1.21). 

3.6 A Non-linear Recursion 

The rational function En <m> (z) may also be computed by using a further result 
in the theory of continued fractions, namely that nth convergent 

(3.6.1) 

of the continued fraction 

a1 a2 an 
bi+ b2 + bn + (3.6.1) 

may be computed by evaluating the sequence 

(3.6.3) 

when 

Writing 

(3.6.4) 

r = I, 2, · · · , n - 1, 

d;'.'2o + d;;\ z + · · · + d;;\_1 z•- 1 

d~;!~ + d;~\ z + · · · + d;;:: z• 
it is seen that the rational function Ov < ml ( z) / Pv < ml ( z) may be constructed by evalu­
ating the sequence 

13;'.'.:'.~ 

(3.6.5) 
z - a~'.'.:'.i 

/3;'.'.:'.!-2 

when 

D~'::,l(z) = o}m\z) /p/ml (z). 

The quotient En <m\z) may then be constructed by means of equation (3.1.24). 
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It will be observed however, that whereas the evaluation of the sequences 
(3.1.16), (3.1.18) and (3.5.4) are progressive in the sense that at each stage there 
results the evaluation of a newfunctionpr<ml(z), r/m'(z) or E/m'(z), the evaluation 
of the whole sequence D;'.';\z) s = 1, · · · , 11 results in the computation of but one 
quotient E/m\z). 

3.7 The em(Sn) Transformation [13] [14] 

If the partial sums Sm of the infinite series L~o CrZ -r-I are defined by 
m-1 

(3.7.1) Sm = L CrZ-r-I 
r=O 

r = 1, 2, · · · , So = 0 

then 

(3.7.2) 
-m-l = CmZ 

Equation (2.17), by means of suitable operations upon rows and columns of the 
determinantal expressions which arise from the application of equation (3.1.13) 
to the expression (3.1.15), may be manipulated into the form 

Sm Sm+I Sm+n 
6.Sm 6.Sm+I 6.Sm+n 
6.Sm+l 6.Sm+2 6.Sm+n+l 

(3.7.3) En(m)(z) 6.Sm+n-1 6.Sm+n 6.Sm+2n-1 
1 1 1 

6.Sm 6.Sm+l 6.Sm+n 
6.Sm+l 6.Sm+2 6.Sm+n+l 

6.Sm+n-1 6.Sm+n 6.Sm+2n-1 

The determinantal quotient (3.7.3) was denoted by Shanks [14] as en(Sm+n) and 
was investigated, primarily as a non-linear sequence to sequence transformation, 
by him. 

3.8 The E-Algorithm 

The various quantities En< ml ( z) m = C, 1, · · · ; n = 0, 1, · · · , may be constructed 
by means of a simple recursive algorithm due to Wynn [15]. According to this, 
quantities E~":;112(z) n = - l, 0, 1, · · · are introduced, and using as boundary 
values E~"I~2(z) = 0, E/m\z) = Sm, m = 0, 1, ···further quantities E/m\z) 
s = ½, 1, I, · · · ; m = 0, 1, · · · are constructed by means of the recursion 

(3.8.1) E (m)( ) E(m+l)( ) + s Z = s-1 Z E-(m_+_l_) _( _) ___ (_) -~ 
s-112 z - E.~112(z) 

1 

(In the original exposition of this algorithm, [15], the right side of (3.7.3) was re­
garded as the result of a non-linear transformation of the quantities Sr , and the 
notation E~".;:112(z) = E2n+1(Sm), En(m)(z) = E2n(Sm), was used.) 

Since all the quantities E, <m> (z) are rational functions of z, and equation (3.8.1) 
may be manipulated into such a form as would require only the multiplication, 
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addition, and subtraction of polynomial expressions, the E -algorithm provides a 
method for computing the constituents of the E-array. 

A certain measure of economy in the use of the E -algorithm for this purpose 
may however be effected by writing down explicit formulas for some of the quanti­
ties occurring in equation (3.8.1). Accordingly, as may easily be verified 

1 

Cm Cm+l . . . Cm+n Cm+l Cm+2 ... Cm+n+l 

Cm+l Cm+2 . . . Cm+n+l Cm+2 Cm+3 ... Cm+n+2 . 
Cm+n Cm+n+l . . . Cm+2n Cm+n+l Cm+n+2 ... 

Cm+2n+l 

1 z . . . n+l 1 ... z 
n 

z z 

(3.8.2) Cm Cni1-1 . . . Cm+n+l Cm+l Cm+2 ... Cm+n+l 

. . 
Cm+n Cm+n+l . . . Cm+2n+l Cm+n Cm+n+l ... Cm+2n 

n 

II (m+l) (m+l) 
Cm+! e,,. q,,. 

µ=l 

p~".;!1(z)p~m+l) (z) 

1-1(m+l) /.l(m+l) /.l(m+l) 
Cm+I JJO /Jl • .• JJn-1 

p~".;!1(z)p~m+ll(z) 

1 

1 z 1 z 

Cm+n-I Cm+n Cm+2n-l Cm+n Cm+n+I 

(3.8.3) Cm Cm+! Cm+n Cm+l Cm+2 

Cm+I Cm+2 Cm+n+l Cm+2 Cm+3 

Cm+n Cm+n+I Cm+2n Cm+n Cm+n+l 

p~m\z )p~m+I) (z) p~m) (z)p~m+l) (z) 

n 
Cm {3~m) /3im) • • · /3~~1 

Cm II e~m) q~m) 
µ=0 

0 1 z Zn 

1 Cm Cm+i Cm+n 

z Cm+l Cm+2 Cm+n+l 

(3.8.4) z 
n 

Cm+n Cm+n+l 
E~".;!112(z) 

Cm+2n zm+l = 
Cm Cm+1 Cm+n 

Cm+l Cm+2 Cm+n+l 

Cm+n Cm+n+l Cm+2n 
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It is immediately seen that the quantities E~~1;2(z) are, apart from a factor of 
zm+i, polynomials of the 2nth degree in z, and may be written 

(3.8.5) 
s=2n 

E (m) ( ) m+l """°' (m) s 
n+l/2 Z = Z L.J En,s Z • 

s=O 

In this instance a large part of the computational effort which, upon the assumption 
that E,<m>(z) s = ½, 1, ·•·is a general rational function of z, would go into the 
computation of coefficients which are known to be zero, may be avoided. 

3.9 Example: The Incomplete Gamma Function of Large Argument 

Certain aspects of the preceding theory are illustrated by the integral 

(3.9.1) 

Here 

(3.9.2) 

{r(a) 1-1 1"' t"-1e-t dt ,..._, ! + ~ + a(a + 1) + ... 
o z-t z z2 z3 

1 l·a = --- -,,------
z - a - 2 + a - z -

r(a + m) 
Cm = r(a) 

r(a + r - 1) 
2r + a - z -

and as is easily verified, the quantities q; ml, e; ml of the q-d algorithm, are given in 
this case by 

(3.9.3) 

further in the notation of equation ( 3 .1.6) 

(3.9.4) 

where L;"l ( z), the Laguerre polynomial of order a and degree n satisfies the re­
cursion 

(3.9.5) (n + l)L~11(z) - (2n + 1 + a - z)L~"\z) + (n + a)L~~1(z) = 0. 

Replacing z by -z, (3.9.1) gives the expansion, suitable for large values of the 
argument, for the incomplete gamma function 

r(l - a, z) ,..._, ! - ~ + a(a + 1) 
z z2 z3 

(3.9.6) 
r(a + r - 1) 
z +a+ 2r -

The initial members of the E-array for this function are given in Table 1. 
When a = 1, (3.9.6) becomes 

(3.9.7) 
1

00 -t OC 

e• ~ dt ,..._, - L r!(-z)-r-l 
z t r=O 

z + 2r + 1 

Numerical values of the entries in Table I when a = z = 1 are displayed in Table 2. 



TABLE 1 

0 

0 1 
- ~ a(a + 1)· ··(a+ r - 1)(-z)r+I --

r=O z+a 

I z-1 {z + 1} z+a+2 
- ~ a(a + 1)· •·(a+ r - 1)(-z)r+l 

z +a +1 z2 + 2(a + l)z + a(a + 1) r=O 

2 z-2 {z2 + 2z - a} z-1 {z2 +(a+ 4)z + 2} z2 + (2a + 6)z + (a2 + 4a + 6) 
- ~ a(a + 1) · ·, l,a + r - 1) (-z)r+t 

z+a+2 z2 + 2(a + 2)z +(a+ l)(a + 2) z'l + 3(a + 2)z2 + 3(a + l)(a + 2)z r=O 
+ a(a + 1) (a + 2) 

I-' 

\?s 
3 z-3 { z3 + 3z2 - 2az + a(a + 1)} z-2 {z3 +(a+ 6)z2 + 6z - 2a} z-1{z8 + (2a + 9)z2 + (a2 + 7a + IS)z + 6} 

- ~ a(a + 1) ••·(a+ r - 1) (-z)r+t 
z+a+3 z2 + 2(a + 3)z + (a + 2) (a + 3) z3 + 3(a + 3)z2 + 3(a + 2)(a + 3)z r=O 

+ (a + 1) (a + 2) (a + 3) 

z-4 {z4 + 4z3 - 3az2 z-3 {z4 + (a+ 8)z3 + 12z2 z-2 {z4 + (2a + 12)z3 + (a2 + 10a + 36)z2 

4 + 2a(a + l)z - a(a + l)(a + 2)} - fuz + 2a(a + 1)} +24z-6a} - ~ a(a + 1) · · • (a + r - 1) (-z)r+I 
r=O z+a+4 z2 + 2(a + 4)z + (a + 3) (a + 4) z3 + 3(a + 4)z2 + 3(a + 3)(a + 4)z 

+ (a + 2) (a + 3) (a + 4) 

z3 + (3a + 12)z2 + (3a2 + 19a + 36)z + (a3 + 7a2 + 18"' + 24) 

z4 + 4(a + 3)z3 + 6(a + 2)(a + 3)z2 + 4(a + l)(a + 2)(a + 3)z + a(a + l)(a + 2)(a + 3) 

z-1{z4 + (3a + 16)z3 + (3a2 + 27a + 72)z3 + (a3 + lla2 + 46a + 96)z + 24 

z4 + 4(a + 4)z3 + 6(a + 3)(a + 4)z2 + 4(a + 2)(a + 3)(a + 4)z +(a+ l)(a + 2)(a + 3)(a + 4) 
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TABLE 2 

0 
e1 [' e-t dt = 0.5963 4786 1 0.5 

0.6 0.5714 2857 
l t 

0 
+2 0.5 0.6153 8462 0.5882 3529 
-4 0.8 0.5714 2857 0.6027 3973 0.5933 0144 

+20 0.0 0.7096 7742 0.5882 3529 0.5988 0240 

Some further particular cases of (3.9.6) are the Complementary Error Function 

) 
z2j'""-12 { 1 1·2 r(r+l) } 

(3.9.3 e . z e dt = z 2z2 + 1 - 2z2 + 5 - · · · 2z2 + 4r + 1 - · · · 

and Dawson's Integral 

e -z2 1"" e12 dt 

(3.9.9) 
-z2 1/2· f 2 e 1r i + 1 1· 

,....., - 2 z l 2z2 - 1 - 2z2 - 5 -

(This continued fraction is of course divergent, since its convergents are all real 
and the integral is real. However there remains an uncancelled imaginary con­
stituent upon the right hand side of (3.9.9). Nevertheless the continued fraction 
(3.9.9) exhibits a sort of semi-convergent behavior. It is to be preferred for the 
computation of Dawson's integral for large values of the argument to the expansion 
( 4.1.12) which is convergent. Indeed the expansion 

(:3.9.10) 
1 2 4 6 -- -- -- -- ... 

2z - 2z - 2z - 2z -

the even part of which is the expansion (3.9.9), was used by Barkley Rosser for 
the tabulation of the Error Function for complex argument [16].) The Sine and 
Cosine Integrals are given by 

Ci(z) + isi(z) = -(cos z - i sin z) 

(3.9.11) j I I2 
· liz + 1 - iz + 2 - i _z_+_r_r_~-1--- · · ·}. 

The Fresnel Integrals 

(3.9.12) C(z) = (21r)-
1

'
2 f c 1

'
2 

cost dt, S(z) 

may be computed by writing 

(3.9.13) C(z) = ½ - (21r)-112C(z, ½) 

where 

C(z, ½) - iS(z, ½) 

( 
• • ) 1/2 2 

sin z - i cos z z 21,.z + 1 - 2iz + 5 -
1 ·2 r(r+l) ... l 

2iz + 4r + 1 - f" 
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4. The Pade Table. The remarks contained in §2 indicate that the upper half 
of the Pade Table may be constructed by methods described for the construction 
of the E-array. 

It would appear, since the system of orthogonal polynomials p~m>(z) does not 
exist for negative values of m, that the use of the results in the theory of orthogonal 
polynomials as described, for the purpose of constructing the lower half of the 
Pade table, is not possible. Nevertheless, if the first three polynomials can be de­
termined in some other way, the sequence may be continued by use of the results 
as described, since the unknown quantities {3~m>, /3im>, · · · , 13:_~_1 , a~mJ, aim>, • • • , 
a~ where m is negative, disappear from the resulting computations. 

In terms of q-d scheme, as defined by equations (3.3.7), (3.3.8), the rational 
expressions 

Uo,m-1(x) 
Vo,m-1(x) ' 

Uo,m(x) 
Vo,m(X) ' 

U1,m+1(x) 
V1,m+1(x) ' 

are the successive convergents of the continued fraction 

(4.1) 
m-l 

8 
CmXm qim)X eim)X q~m)X e~m)X 2o c.x + 1 - 1 - 1 - T=- 1 - ... 

while the rational expressions 

Uo,m-1(x) 
Vo,m-1(x) ' 

U2,m+1(x) 
V2,m+1(x)' 

are the successive convergents of the even part of expansion ( 4.1), namely, 

(4.2) (m) (m) 2 e, q, X 

1 - (q~+{ + e~m))x -

If the series L~=o d,x• is derived by means of the relation 

(4.3) 

and the quantities derived by applying the relationships of the q-d algorithm to 
the quantities d,, s 0, 1, · · · , are denoted by q~m>', e~m>', then the 
rational functions 

Um-1,o(x) 
V m-1,o(x) ' 

Um,o(x) 
V m,o(x) ' 

Um,1(x) 
Vm,1(x)' 

Um+1,1(x) 
V m+1,1(x) ' 

are the successive convergents of the continued fraction 

(4.4) 

If the quantities d, , s = 0, 1, · · · , defined by equation ( 4.3) are required in isola­
tion, they are most efficiently derived by solving the scheme 

•=r {1 L d,Cr-s = O 
s=O 

r = 0 
r -;zf 0 
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If, however, the quantities q/ml', e,<mJ' are also required, some economy in the 
computation may be achieved by use of a result in the theory of continued fractions 
[16], [2, p. 332], namely that if 

(4.5) 

and 

(4.6) 

then 

( 4.7) 

(0) (0) (0) 
f3(x) _ Co qi X ei X q2 X ••• 

1-1-1-1-

3:.!>._ qi
0
''x ei°l'x q~oJ'x e~0''x ••• 

1- 1- 1- 1- 1-

e1 <o>' = qi <oJ + e1 coi, 

e (0) 'q(O)' _ e (O)q(O) 
r r+l - r r+l, r ~ 1 

In the determination of the quantities q, <ml, e, <ml the q-d scheme is built up from 
left to right by means of the q-d relationships (3.3.7) and (3.3.8), while in the 
determinationofthequantitiesq/m>', e,<ml', the diagonal q/0

'', /
0>', q/0

l', ~<oi', ... 

is determined by equations ( 4.7), and the q-d relationships are used to build up the 
q-d .scheme from right to left. 

It is to be expected that the recursion formulas between the systems of func­
tions rn<m'(z), Pn<m'(z) are complemented by recursions between the polynomials 
U,..,v(x), V,..,v(x) occurring in the Pade table. Indeed Frobenius [17] has given such 
a system of recursion formulas. Adopting his notation, write 

(4.8) 

(4.9) 

( 4.10) 

so that 

(4.11) 

( 4.12) 

( 4.13) 

(4.14) 

Cµ,v = 

Tµ,v = 

Sµ,v = 

Cµ-v+l Cµ-v+2 c,.. 
Cµ-v+2 Cµ-v+3 Cµ+l 

Cµ Cµ+l Cµ+v-1 

Cµ-v+l Cµ-v+2 Cµ Cµ-vX + Cµ-v-1X-l + 
Cµ-v+2 Cµ-v+a Cµ+i Cµ-v+1Xµ + Cµ-vXµ-l + 

Cµ+1 Cµ+2 Cµ+v CµXµ + Cµ-lXµ-l + 
V 

Cµ-v+l Cµ-v+2 Cµ X 

Cµ-v+2 Cµ-v+3 Cµ+l 
v-1 

X 

Cµ+I Cµ+2 Cµ+v 1 

f3(x)Sµ., - Tµ,v = Cµ+l,v+I x+v+I + 
Tµ,v = Uµ,v{X)Cµ+I.v 

Sµ.v = Vµ,v(X)Cµ+l,v. 

He then gives the following system of homogeneous recursion formulas, where 
Rµ,v is taken to mean either Sµ,v or T,..,v 
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(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

( 4.20) 

( 4.21) 

P. WYNN 

Cµ,,Cµ,v+1Rµ+1,, - ( Cµ,v+lCµ+l.• + Cµ,,Cµ+l.•+lX) 

• Rµ,, + Cµ+1,,Cµ+1,,+1XRµ-l,, = 0 

Cµ,,Cµ+1,,Rµ,,+l - ( Cµ,,+1Cµ+l,, - Cµ,,Cµ+l.•+lX) 

• Rµ,, + Cµ,v+1Cµ+l,v+1XRµ,,-l = 0 

c!,,Rµ+1,,+1 - { Cµ,,Cµ+1.,+1 + ( Cµ+1·.,+2Cµ,,-1 - Cµ+2.,+2Cµ--1,, )x} 

· Rµ,, + c!+1,,+1x
2
Rµ-1.,-1 = 0. 

Equation ( 4.19) is a three term linear homogeneous recursion between the numera­
tors and denominators of constituents of the Pade table lying in the same row, 
equation ( 4.20) another such relating to a column. Equation ( 4.21) relates numera­
tors and denominators of constituents in the Pade table lying along a diagonal. 

It will immediately be realized that the triplets of equations (3.4.1), (3.4.5) 
and (4.17); (3.4.2), (3.4.6) and (4.18); (3.4.8), (3.4.10) and (4.19); (3.4.7), (3.4.9) 
and (4.20); (3.1.16), (3.1.18), and (4.21) are identical. Frobenius also gives a 
further system of inhomogeneous recursions, which do not seem to have immediate 
practical application. The function 

Uo,m-1(x) 

Vo,m-1(x)' 

U1,m(x) 

V1,m(x) ' 

may also be formed by applying the Euler-Minding relations to the continued 
fraction 

(4.22) 

in direct analogy to the process preceding equation (3.5.4): further, the functions 

(4.23) 

and 

(4.24) 

U,,m-l+r(X) = 'I: CsXs + CmXm qim)X ei"')X ... q~m)X 

V,,m-l+r(x) s-0 1 - 1 - 1 - 1 

U,.m+,(x) 

Vr,m+r(X) 

may be built up from the non-linear recursions 

(4.25) 

(4.26) D = b + an-r+l 
r n-r D,-1 ' 

The same remarks apply, of course, to the continued fraction 



THE RATIONAL APPROXIMATION OF FUNCTIONS 167 

m-1 d m (m)1 (m)' (m)1 (m)1 L d. x· + m X qi X e1 X • • • q, X e, X ••• 

s=O 1- 1- 1- 1- 1-
(4.27) 

the functions computed from ( 4.27) being the sequence 

V m-1,o(x) 
Um-1,o(x) ' 

V m,o(x) 
Um,o(x)' 

Vm,i(x) 
Um,i(x)' 

The E -algorithm may also be used to construct the Pade table: the partial sums 
L;=0 c.x• r = 0, I, · · · are placed in the leading column, the quantities (crx")-1 

r = 1, 2, · · · in the second, and the E-algorithm relationships (3.8.1) applied. 
The functions 

Uo,.(x) 
Vo,.(x) ' 

U1,.(x) 
Vi,.(x) ' 

U2,.(x) 
V2,.,(x) ' 

then appear in the first, third, fifth and further columns respectively; the array 
must thus be transposed about the leading diagonal if the notation employed in 
the description of the Pade table is correctly to be observed. The remainder of the 
Pade table may be computed by applying the same process to the series I::=o d.x• 
it being necessary subsequently to invert the entries in the first, third, fifth and 
further columns which remain however in their correct position. The entries in the 
principal diagonal will in this way have been computed twice, the two sets of results 
should of course agree. 

It is not necessary to compute the partial sums of the inverse series I:.:0 d.x•, 
defined by (2.12), in order to construct the whole Pade table by means of the 
E -algorithm. In the notation of the E -array one adds the boundary values E 2• <-s-i) = 
0, and this enables both halves of the Pade table to be constructed. (See P. WYNN, 

"L'e-algoritmo e la tavola Pade," to appear.) 

4.1 Example: The Incomplete Beta Function 

An example which may be used to illustrate the theory relating to the Pade 
table is provided by the series 

a a(a + l)x2 

(4.1.1) 2F1(1, a; c; x) = I + c x + c(c + l) + · · ·. 
The initial members of the Pade table for this function are given in Table 3. 

1 

1 

1- ~x 
C 

1 + l(a - c) x 
c(c + 1) 

l (a+ 1) 
- (c + 1) X 

TABLE 3 

1 + {(a - c)(c + 2) - (a+ l)c2
} x 

1 c(c + l)(c + 2) 
a a(a - c) 

2 
2(a + 1) a(a + 1) 2 

l-cx+c2(c+l)xj l- (c+2) x+(c+l)(c+2)x 
I 

1 + I!- x + a(a + 1) x2 
c c(c+l) 

1 + 2(a - c) x + la(a - c) x2 

c(c + 2) c(c + l)(c + 2) 
l <a+ 2) 

- (C + 2) X 

l + {~ _ 2(a + 2)} X 
C (c + 3) 

2(a - c)(a - c - l)x2_ 

+ c(c + l)(c + 2)(c + 3) 
--~---'---'- . 

1 _ 2(a + 2) + la+ l)(a + 2) 2 
(c + 3) x (c + 2)(c + 3) x 
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As is easily verifi~cl, the iJ.-d tableau relating to the series ( 4.1.1) is given in Table 4. 

a 
C 

l(c - a) 
c(c + 1) 

(a + 1) (a + l)c 
(c + 2) (c + l)(c + 2) 

l(c - a) 
(c + l)(c + 2) 

(a+ 2) . (a+ 2)(c + 1) 
(c + 2) (c + 2)(c + 3) 

TABLE 4 

(a+ r - l)(c + r - 2) 
(c + 2r - 3)(c + 2r - 2) 

tm) 
er 

l(c - a) r(c - a+ r - 1) 
(c + 2)(c + 3) 

(a+3) : (a+3)(c+2) (a + r)(c + r - 1) 
(c + 2r - 2)(c + 2r - 1) · • . 

(c + 3) · (c + 3)(c + 4) (c + 2r - 2)(c + 2r - 1) . . r(c - a+ r - 1) 
(c + 2r - l)(c + 2r) 

. . . . 

More generally 

(4.1.2) 

(ml (a+ r + m - l)(c + r + m - 2) 
qr = -(c_+_2_r -+-m---3)_(_c _+_2_r_+_m ___ 2_) ' 

(m) 
er 

r(c - a+ r - 1) 
(c + 2r + m - 2)(c + 2r + m - 1) 

from which follows the continued fraction expansion 

1 + f, a(a + 1)- ··(a+ r - 1) xr = 1 + f a(a + 1) ···(a+ r - 1) xr 
r=l c(c + 1) · · · (c + r - 1) r=l c(c + 1) · · · (c + r - 1) 

(4.1.3) +a(a+l)···(a+m)xm+r{_l_(a+m)x l(c-a)x 
c(c + 1)"- • • (c + m) 1 - c + m - c + m + 1 -

... (a+ m + r)(c + m + r - l)x (r + l)(c - a+ r)x ... } 
c + m + 2r - c + m + 2r + 1 - · 

The continued fraction 

1 ax l(c - a)x (a+ l)cx 2(c - a+ l)x 
--

( 4.1.4) 
1-c- c+l- c+2- c+3-

(a + r)(c + r - l)x (r + l)(c - a+ r)x 
c + 2r + 2 - c + 2r + 2 -

which corresponds to ( 4.1.3) with m = 0, was used by Miiller [18] in the prepara­
tion of a short table of the Incomplete Beta Function. When a = 1, c = 2, and xis 
replaced by - x, ( 4.1.4) reduces to the well known expansion 

x l 2x 12x 22x r2x r2x 
(4.l.5) log (1 + x) - 1+ 2+ 3+ 4+ · · · 2r+ 2r + 1+ 
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Table 3 becomes in this case ( numerical values for x = I are appended) as shown 
in Table 5. 

TABLE 5 

1 1 - ½x 1 - ½x + ¼x2 1.0 0.5 0.833333 

1 1 + ¼x 1 + ¼x - .j4x2 
0.6 0.7 0.690476 --

1 + ix 1 + !x 1 + ½x 

1 1 + ½x 1 + ,7-0x + ,/0 x2 
0.705882 0.692308 0.693333 1 + ½x +-l.x2 1 + X + ¼x2 1 + £x + ,\x2 

log, 2 = 0.693147 · · · 

When a = ½, c = ¾ and x is replaced by -x2
, there follows 

(2r + 1 ) 2x2 4(r + 1 )2x2 

4r+3+ 4r+5+ 

Replacing x by x/a in ( 4.1.4) and letting a tend to infinity, there follows the con­
tinued fraction expansion. 

I x Ix ex 2x rx (c + r - l)x 
(4.1.7) 1 - c + c + 1 - c + 2 + c + 3 - ... c + 2r - 1 - c + 2r + 

of the incomplete gamma function 

suitable for small values of x. The initial members of the Pade table for this series 
are shown in Table 6. 

TABLE 6 

1 1 

X 
1 + (c+1) 

2 x2 
1 + c(c+2} x + c(c + l)(c + 2) 

X 
1 - (c + 1) 

X 
1 

- (c + 2) 

1 
(c - 2) 

1 - c(c + 2) x 
1 - (c - 3) x + 2 x2 

c(c + 3) c(c + l)(c + 2)(c + 3) 
2 x2 

1 
- (c + 2) x + (c + l)(c + 2) 

2 x2 
1 

- (c + 3) x + (c + 2)(c + 3) 

When c =¾,and xis replaced by x2 in (4.1.7), there follows the continued fraction 
expansion 

(4.1.8) -x2 { 1 2x
2 

4x
2 

6x
2 

'\ 

xe 1 - 3 + 5 - 7 + · · · J 
of the error function 
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erf ( x) = f e -
12 

dt 

due to Laplace [19], which was used by Sheppard for the computation of the British 
Association tables [20] of the error function. When c = 1, ( 4.1.7) gives the well 
known expansion of the exponential function 

· x x x 2x 2x rx rx 
(4.1.9) exp (x) - 1 + 1 - 2 + 3 - 4 + 5 - · · · 2r + 2r + 1 -

and Table 6 is replaced by (numerical values for x = 1 being appended) Table 6a. 

1 

1 
1 - X 

1 
x2 

1-x+-
2 

l+x 

x2 
1 - ¼x + 6 

TABLE 6a 

2 

1 + jx + I2 
X 

1 - -
3 

1.0 2.0 2.5 

00 3.0 2.75 

2.0 2.6 2.714 286 

exp (1) = 2.718 282 

By replacing -i by ix in (4.1.8) the Fresnel integrals 

(4.1.10) C(x) = (21r)-112 f t-112 cost dt and S(x) = (21r)-1
'
2 f C112 sin t dt 

may be computed at one blow by evaluating the real and imaginary parts of the 
expansion 

(4.1.11) C(x) + iS(x) = (~)
112 

x112 (cos x + i sin x) /-1
-

2
ix 

4
ix 5ix .. ·} 

1r ll+3-5+7-

Further, by writing x2 for -x2 in ( 4.1.8) there follows the expansion of Dawson's 
integral 

(4.1.12) 

Explicit formulas for the rational approximations corresponding to the functions 
(3.9.6), (4.1.4) and (4.1.7) are given by Luke [21]. 

5. Series with Hadamard Gaps. It has been tacitly assumed throughout that 
none of the Hankel determinants H/kl, defined by equation (2-4), involving the 
coefficients in the power series 

00 00 

{3(x) = L c.x• and F(z) """" -s-1 = L.., CsZ , 
s-0 s=O 
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vanishes. If this condition is not fulfilled, certain formal difficulties exist in the 
methods described in this paper, though straight-forward appeal to the set of equa­
tions (2.3) may be sufficient to determine certain of the rational quotients. A feature 
of the Pade table derived for series of this kind is that there are blocks containing 
the rational functions lying in and upon the rectangle at whose corners stand the 
quotients 

Uµ,,,(x) 
Vµ,,(x) ' 

Uµ+m,v(x) 
Vµ+m,,(x) ' 

Uµ,v+n(x) 
Vµ,v+n(x) ' 

Uµ+m,v+n(x) 
Vµ+m,v+n(x) 

which, due to cancellation of polynomial factors, contain only the quotient 
Uµ,,(x)/Vµ,,(x). The continued fractions whose successive convergents are the 
distinct quotients lying upon a diagonal in the Pade table are of the form 

(4.5.1) 

where a 1 , a 2 , • • • are positive integers. A general theory of such continued frac­
tions and of the resulting rational approximations is not yet available, though 
Wall [3, p. 399] gives a comprehensive survey of work which has been done upon 
this problem, and makes a number of interesting conjectures. 

It is to be expected that numerical experience obtained in the use of rational 
approximation formulas will point the way to further theoretical developments. 

6. The Efficiency of Various Methods of Obtaining Rational Approximations. 
The process of obtaining rational approximations to a function formally defined 
by a power series expansion may be regarded as one solution to the problem of ob­
taining information about the functions 

00 00 

f3(x) = L CsX
8 or F(z) = L C8 Z-s-I 

s=O s=O 

from the finite set of coefficients Cs s = 0, 1, · · · , v, where, for convenience in the 
ensuing discussion, v is taken to be 2n - I. Numerical experience supports the 
assertion, as does reference to Tables 3, 5 and 7 in the case of particular examples, 
that in general, of those rational expressions Uµ,,(x)/Vµ,,(x) or E/m\z) which 
may be obtained from the set of coefficients Cs s = 0, 1, · · · , 2n - 1, (namely 
those entries in the Pade table lying upon and in the triangle 

Uo,Jx) 
Vo,,(x) ' 

µ = 0, I, · · ·, 2n - 1, 

v = 0, I, · · • , 2n - I, 

U2n-v-1,,(x) 
V2n-v-1,,(x) 

v = 0, 1, · · · , 2n - 1, 

and those entries in the E-array which lie in and upon the triangle whose vertices 
coincide with the functions Eo<0J(z), En<0\z), Eo<2n\z),) the expressions which 
contain the most information about the function f3(x) or F(z), or more precisely, 
for prescribed x or z the expressions for which 

) Uµ,,(x) - f3(x) I or I F(z) - Er<m\z) I 
Vµ,,(x) 
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are a minimum, are given byµ + 1 = 11 = n or µ = 11 + 1 = n, or by m = 0, 
r = n. 

A comparison of the methods devised from results contained in the theoretical 
part of this paper, which is meaningful in a practical context, may thus be made 
by contrasting the numbers and types of arithmetic operations needed to compute 
( versing the discussion in terms of the E-array for convenience) 

. o;0> (z) 
I. the funct10n ~() 

Pr z 
o<0\z) 

II. the sequence of functions r<o>( ) r = 1, · · · , n 
Pr z 

. r;m>(z) 
III. the complete array of funct10ns p~ml(z) r = 1, 2, · · · , n; 

m = 0, · · · , 2n - 2r 

The remarks contained in sections 2 and 3 indicate that in general any conclusions 
arrived at relating to methods for the construction of the E-array apply with equal 
force to the construction of the Pade table. 

In this comparison, which is about to be made, a further distinction will be 
drawn between the processes of deriving explicit formulas for the rational functions, 
and that of computing the values of these functions for some prescribed values of 
the argument, as would be required, for example, in an initial exploratory study. 
It is quite clear that in many cases the techniques employed in these two processes 
will differ, and that considerable saving of computational effort may follow from 
the foreknowledge that numerical values of the various expressions for a single 
value of the argument are to be required. For example, assuming ar <m>, ,S;~t to be 
given, the computation of the coefficients in the polynomial p;+t ( z) from the re­
cursion 

(6.1) (m)( ) ( (m)) (m)( ) ,q(m)( ) Pr+l Z = Z - ar Pr Z - /Jr-1 Z 

requires 2r - 1 multiplications and 2r - 1 subtractions, whereas if the polynomials 
p,Cm\z) are regarded as numerical quantities, the recursion (6.1) involves merely 
2 subtractions and 2 multiplications. A distinction of a more subtle kind is indi­
cated by the two recursions 

(6.2) p,Cm\z) = zp;~t1> - q,<m>p;~~(z) 

( 6.3) p/m+l) (z) = p,Cm\z) - e}m> p;~tl) (z). 

For numerical values of z, the second is to be preferred to the first for the computa­
tion of the polynomials Pr<m\z) since only one multiplication is required (the 
polynomials p/0\z) r = 1, 2, · · · , n must, of course, be computed previously to 
the computation of Pr<m)(z), either by use of (6.1) with m = 0, or by judiciously 
timed application of (6.2) with m = 0). With regard to the computation of the 
coefficients in the polynomial however, the first is to be preferred, since multiplica­
tion by z corresponds only to the shift of the coefficients vector 

( k;~t~>_l , k;~t~>_2 , . • • , k;~t~)) 
and the recursion itself is applicable throughout the whole range of m and r under 
consideration. 
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Any feasible method for constructing the rational functions E,<m>(z) directly 
from the coefficients c. s = 0, 1, • · • may be regarded as proceeding in a number 
of stages, each of which incorporates a result described earlier in this paper. A 
systematic study of feasible methods for deriving rational approximations may 
thus be conducted by describing each of these stages in terms of the numbers and 
types of arithmetic operations involved and, subsequently, designing the methods 
by combining suitable steps. The arithmetic operations involved in each method 
may be assessed by adding together those involved in the composite stages, and a 
comparison of the methods thus be made. 

The following notations will be used: 

for the vectors: 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

for the matrices: 

(6.12) 

(6.13) 

(6.14) 

The matrix 

(6.15) 

(m) ( •(m) •(m) •(m)) 
Or = Jr,r-1 , Jr,r-2 , · • • , Jr,0 

(m) ( •(m) •(m) •(m)) r, = i,,m+r-1 , ir,m+r-2 , " • " , i,,o 

C,(m) = (Cm, Cm+l, ·" · , Cm+r) 

d)'.'.:l = (d\'.'.::s-1, d\'.'.::,-2, · · · , d\'.'.::o) 
d~'.'.:l , = ( d;'.'.::: , d\'.'.:::-1 , · · · , d;'.'.:::) 

(m) ( (m) (m) (m)) 
E.r = €r,2r , Er,2r-1 , • • • , Er,0 

C 
Cm+l ~) c;m) = C~+l Cm+2 Cm~r+l . . 

Cm+r Cm+r+l Cm+2r 

(h/., 0 

r) H;ml 1 = 1,0 

h<ml h<ml 
r,O r,1 

C 
0 

r) 
(m) 1 K;m) = k~,o 

k<ml k<ml 
r,O r,1 

C ~ a, ---) 0 a1 a2 • • · 

? .. -~-. ~~-.::: 
possessing i rows and j columns, derived from the vector ak = (a1, ll2, • • • , ak) 
where a, = 0, s > k, will be denoted by [ak]i,i. The extended vectors (0, · · ·, 
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a1 , a2 , · · · , ak) and ( a1 , a2 , · · · , ak , 0, · · · , 0) each possessing t elements, will 
be denoted by (0, · · · , 0, ak)t and (ak, 0, · · · , O)t respectively. 
The stages are as follows: 

I. Formation of the quantities q/m> r = 1, 2, · · · , n; m = 0, 1, • • • , 
2n - 2r, e,<m> r = 0, 1, · · · , n - 1; m = 0, 1, · · · , 2n - 2r - 1, 
by means of the relations 

eo(m) = 0 

qr(m) + e,<m> 

q/m) = Cm+1/Cm 

q,<m+l> + e;'.'.':tl) 
(m) (m) (m+l) (m+l) 

qr+1Cr qr Cr 

II. Formation of the quantities ar Cm>, {3;'.'.':i m = 0, · · · , 2n - 2r from 
the relations 

r = 0, 1, · · · , n - 1 

{3r(m) (m) (m) r = 0, 1, · · · , n - 2 = e,-+1qr+1 

III. Generation of the quantities z -1, z - 2
, • • • , z - 2

n 

IV. Generation of the quantities CrZ-r r = 0, • · · , 2n - 1 
V. Generation of the quantities CrZ -r-1, I::'~1 c.z -s-l 

r, m = 0, · · · , 2n - 1 
VI. From the boundary conditions Eo<m>(z) ~m-1 -s-1 

.L.,s-0 CsZ 
m = 1, ... '2n; Eo(O) = 0, Eiii(z) = zm+lCm-l m = 0, ... '2n - 1, 
the formation of the quantities E}m\z) m = 0, • • • , 2n - 2r and 
the quantities E;'.;'.L2(z) m = 0, · · · , 2n - 2r - 1, by means of 
the recursions 

s = ½, 1, · · · , n - ½ 

VII. Generation of the quantities z - a/0
> r = 0, · · · , n - l 

VIII. Generation of the quantities z - ar <ml 

m = 0, · · ·, 2n 

IX. Generation of the quantities p/0
> ( z) from 

p;%(z) = (z - a/0>)p/0\z) - {3;~_\p;~1(z) 

r = 1, · · · , n - l, Po co> ( z) = 1, 

X. Generation of the quantities Or<0\z) from 

o;%(z) = (z - a/0l)Orco1(z) - {3;~10;~1(z) 

2r; r = 0, · · · , n - 1 

r = 1, · · ·, n - 1, Ooroi(z) = 0, o/0
> c0 

XI. Generation of the quantities p/0\z) r = 2, · · · , n from 

p/0\z) = zp;~1(z) - q/0>p;~1(z) 

XII. Generation of the quantities Pr<m+i\z) from 

Pr(m+l)(z) = p/ml(z) - e,<m>p;'.'.':tl)(z) 

r = l, · · ·, n - 1; m = 0, · · · , 2n - 2r - 1 
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XIII. Generation of the quantities r / 0
'( z) from 

r/0>(z) = zr;~1(z) - q/0lr;~1(z) r 

XIV. Generation of the quantities rr<m+i'(z) from 

r/m+l'(z) = r/m\z) - er<m>r;'.'.'..t1\z) 

r = 1, · · · , n - 1; n 

XV. The single di vision On co'( z) / Pn <
0'( z) . 

XVI. The divisions o/0>(z)/p/0l(z) r = 1, • • • , n 

2, ·· ·, n 

0, · · · , 2n - 2r - 1 

XVII. The divisions rr<m'(z)/p/m'(z) r = 1, · · · , n; m = 0, · · · , 2n - 2r 
• Or (O\z) U1 Ur 

XVIII. Computat10n of Pr<O>(z) = bi+ · · · br, where a1 = co; as = - {3,_/
0
> ; 

s = 2, · · · , r; b.+1 = z - a/0>; s 0, · · · , r - 1, from 

D a,-s 
s+l = b + D , 

r-s s 

when r = n. 

Or <O\z) 
Dr=~() Pr z 

XIX. The use of XVIII. when r 1, · · ·, n 
XX. Computation of 

(m) ( ) m-1 -m {3 (m) {3;'.'.'..~ r, Z "' -s-1 + Cm Z o --- = L.., c, z ------,---,---
p/m>(z) s=O Z - ao<m)_ Z - a1<m)_ z - a~~l 

h b "'m-1 -s-1 -m {3(m) 2 W ere o = L..,s=O C,Z ; U1 = CmZ i Us = s-2 ; S = , · · • , r; 
b. = z -a\'.'.'..i ; s = 1, · · · , r by 

r, (m)(z) 
Dr+l = (m)() p, z 

for r = 1, · • • , n - 1; m = 1, · · · , 2n - 2r. 
XXI. Computation of the products Co/3o co> • • · /3;~1 r = 1, · · · , n - 1. 

XXII. Computation of the products z-m Cm/3o(m) • • • {3;'.'.'..{ r = 1, · · ·, n - 1; 
m = 1, · · · , 2n - 2r. 

XXIII. Computation of the convergents 

Or <OJ (z) •=r Co f3o <O> · · • /3~~2 

p,(Ol(z) = 2i pi~\(z)p,<O>(z) r = 1, • · · ,n 

XXIV. Computation of the convergents 
(m) ( ) m-1 s=r {3 (m) {3(m) 1 

rr c\ L c.z-s-1 + LZ-mCm(m~() ... c7 r = , ... ,n -1 
Pr(m) z s=O s=I Ps-1 z p,<m) z m = 1, ... , 2n - 2r 

XXV. Computation of p,CmJ from Po(ml = (l); p1(m) (1, Cm+1/cm); 
(m) ( (m) 0) (m)(O (m)) {3(m)(0 0 (m)) 

Pr+l = Pr , r+2 - ar , Pr r+2 - r-1 , , Pr-1 r+2 
r = 1, · · ·, n - 1 

form 0 

(m) 
ar 

{3
(m) 
r-1 

(m) (m+r+I) T 
Pr Cr 
p;'.'.'..k;'.'.'..t+l)T 

Pr (m)Cr (m+r+l)T 

p;'.'.'._i c;'.'.'._tr+l) T 

p;'.'.'._i c;'.'.'._f"+l) 7' 
p;'.'.'._~ c;'.'.'._f+l) T 

r = 1, · · ·, n - 1 
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XXVI. XX:Vform = 0,2, • • · ,2n - 2;r = 1,2, · • · ,n - (m/2): m = 1,3, • • •, 
2n - 3; r = 1, 2, · · · , n - ( m + 1) /2 

XXVII. Computation of o/0l from 0o<0
> = 0; o/0l = (co) 

(0) ( (O) 0) (0) (0 (O)) (0) (0 0 (0) ) 
Or+i = Or , r+i - <Xr , Or r+i - f3r-1 , , Or-i r+i 

r = 1, · · • , n - 1 

XXVIII. Computation of p/0> r = 1, · · · , n from p/0l = ( 1) ; Pi <o> = ( 1, - c1/ co) 

<oJ ( co> 0) col (0 co>) <Ol (0 0 co> ) 
Pr+i = Pr , r+2 - <Xr , Pr r+2 - f3r-l , , Pr-i r+2 

XXIX. Gauss-Banachiewicz decomposition of the matrix Cnco> 

Cn (O) = Hn (O)Dn (O)Hn (O) T 

XXX. Decomposition of the matrices C/ml m = 0, · · · , 2n - 4; 
r = n - 2m, n - 2m + 1 

XXXI. Recovery of the quantities /3;~1 r = 1, · · · , n - 1 from Dn co> by 
means of the relations 

/3
(0/ 
r-1 

XXXII. Recovery of the quantities ar co> 
of the relations 

Co /3o (O) • · · /3;~1 

Co f3o<0> • • -{3~~2 

r = 0, , n - 1 from Hn co> by means 

XXXIII. Computation of the quantities ar <m> r = 0, · · · , n - 1; m = 0, · · · , 
2n - 2r; 13,<m> r = 0, · · · , n - 2; m = 0, · · · , 2n - 2r - 1 from 
H/ml and n,<m> by means of the relationships 

{3 (m) {3(m) 
{3

(m) _ Cm O • • • r-i 

r-1 - C f3o(m) .•. 13<mJ 
m r-2 

XXXIV. Computation of the quantities qr <m> r = 1, · · · , n; m = 0, · · · , 
2n - 2r; e/ml r = 1, · · · , n - l; m = 0, · · · , 2n - 2r - 1 from 

er (m) = {3;'.'.:1/ qr (m) 

XXXV. Computation of the matrix Kn co> by inversion of Hn co> 

Hn (O)Kn (O) = I 

XXXVI. Computation of the matrices Kr <m> by inversion of the matrices Hr <m> 

Hr cmJKr <m> = I r = 2, · · · , n; m = 2n - 2r, 2n - 2r - 1 

in conjunction with the independent formation of p1 <
2
n-

2
> and Pi <2

n-
3
> 

XXXVII. Computation of the quantities q,<m> r = 1, · · · , n; m = 0, · · · , 
2n - 2r from the relations 

(m) k(m) k(m) 
qr = r-l,r-2 - r,r-i 

XXXVIII. Computation of p,<m> r = I, · · · , n; m = 0, · · · , 2n - 2r from the 
recursion 

(m) ( (m+l) 0) (m) (0 (m)) 
Pr = Pr-i , r+i - qr , Pr-1 r+i 
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XXXIX. Computation of fr<m> r = 1, · · ·, n; m = 0, · · ·, 2n 
recursion 

2r from the 

<ml f<m+i> <m> (O <ml) fr = r-1 - qr , fr-1 r+m-1 
(m) 

fo 
(0) 

Cm-1 m = 1 · · · 2n - 2r · fo<o> = 0 , , , 

XL. Computation of o,<m> r = 1, · · · , n; m = 0, • • •, 2n - 2r from the 
recursion 

(m) (m+l) + (O (m+l)) (m) (0 (m)) Or = CmPr-1 , Or-1 r - qr , Or-1 r Ot(m) = Cm 

XLI. Computation of fr <ml r = 1, · · · , n; m = 0, · · · , 2n - 2r from 

(m) (m)[ (0)] + (O O (m)) fr = Pr Cm-1 r+l,m+r , • " " , , Or m+r 

XLII. Computation of On <0> from 

On (O) = p,. (O)[c;.02iln+l,n 

XLIII. Computation of Or co> r = 1, · · · , n from 

Or (O) = Pr (O)[c;~1lr+l,r 

XLIV. Computation of fr<ml r = 1, · · · , n - 1; m = 1, · · · , 2n - 2r from 

XLV. Computation of fr <o> r = 1, · · · , n from 

(O)[ (0) j (0) [ (O)l 
Pr fr-1 r+t.r = P,-1 f, r,, 

XLVI. Determination off/ml r = 1, · · · , n - 1; m = 1, · · ·, 2n - 2r from 
(m)[ (m)] (m)[ (m)] 

Pr fr-1 r+l,m+r = Pr-1 fr r,m+r 

XL VIL The determination of the vectors d;.~~ = On <O>, d;.~~, = Pn <oJ from the 
recursions 

d;.~1 = ({3;.
022 ) d (O)' ( (0) ) n,l = 1, -an-1 d

(O) (0) d(O)' 
n,s = f3n-s-l n,s-1 , 

(0)' (0)' (0) ( d(O)' ) (0) 
dn,s = (dn,s-1, O)s+l - an-s 0, n,s-l s+I + (0, 0, dn,s-l)s+l 

s = 2, · · · , n; /3~{ = Co 

XLVIII. The determination of the vectors d;.~,.n = o;~, , d;.~;,n = p;~, 
r = 0, · · ·, n - 1 from the recursions 

d;~; = ({3;.
02,-2) d;~,!' = ( 1, -a;.02,_1) d;~;+• = {3;.02,_,_2d;~;~•-I, 

d (O)' (d(0)' ) (0) ( d(0)' ) ( d(0) ) 
r,r+, = r,r+s-1 , 0 s+2 - an-r-s-1 0, r,r+s-l s+2 + 0, 0, r,r+,-I s+2 

r = 0, · · · , n - 1; s = 1, · · · , n - r; {3:...01 = co 

XLIX. The determination of the vectors d;;> = o, <m>, d;:i;>' = Pr (ml from the 
recursions 

d (m)' (l (m) ) 
r,r = , -a,-r-1 d (m) {3(m) d(m)' 

r,r+s = v-r-s-2 r,r+s-1 , 

d (m)' (d(m)' 0) (m) (0 d(m)' ) (0 0 d(m) ) 
r,r+s = r,r+s-1 , s+2 - a,-r-s-1 , r,r+s-1 •+2 + , , r,r+s-1 •+2 
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m = 0, 2, · · · , 2n - 2, 

m = 1, 3, · · · , 2n - 1, V =n - (m + 1) 
2 

r = 0, · · ·, V - 1, 

r = 0, · · ·, v - 1, 

8 = 1, · · ·, V - r 

L. Determination of p;+i r = 0, · · · , n - 1; m = 0, · • · , 2n - 2r - 2, 
from 

(m+l)[ (m)] ( (m+l))-1{( (m+l) O) (O (m)) } 
Pr-1 Pr+! r,r+2 = Er,2r t'.r , r+3 - , t'.r r+3 

and of t:r <m> r = 0, · · · , n - 1; m = 0, · · · , 2n - 2r - 1 from 

t'.r (m) = (0, t:;~t1>, 0)2r+l + (k;::;) i;::;+I) )-1p/m+l)[p/m)Jr+l,2r+l 

with p/m) = (1, Cm+i/Cm), t:/m) = (Cm-1). 
LI. Construction of the vector Zn <o) 

LIi. Computation of Pn <0\z) from Pn <0\z) = Pn (O)Zn (O)T 

LIII. Computation of o/0
) ( z) from On <0\ z) = o/0

) z~02.~ 
LIV• Computation of Pr (O'( Z) r = 1, • • • , n from Pr (O) ( Z) = Pr (O) Zr (O) T 
LV. Computationofo/0\z) r= 1, •·· ,nfromo/0)(z) = o/0>z,<o) 

LVI. Construction of the vector z~-;;-n) 
LVII. Computation of p,<m'(z) r = 1, • • · , n; m 0, · · · , 2n - 2r from 

p,<m'( z) = p,<m) z/Ol T 

LVIII. Computation of r/m\z) r I, · · · , n; m 0, · · · , 2n - 2r from 
(m)( ) (m) (-m)T 

rr Z = Tr Zm+r-1 

The types and numbers of arithmetic operations required in the performance of each 
of the stages described are given in Table 7. 

TABLE 7 

Multiplication Division Addition Subtraction Add.+ Sub. 

I. n 2 - 2n + 1 n2 n 2 - 3n + 2 n 2 - n 2n2 - 4n + 2 
IL n - I n - I n - I 

III. 2n - 1 1 
IV. 2n - I 1 
V. 2n 2n - 1 2n - 1 

VI. 2n2 + n 2n2 - n 2n2 - n 4n2 - 2n 
VII. n n 

VIII. n2 n2 
IX. 2n - 3 n - I n - I 
X. 2n - 3 n - 2 n - 2 

XL 2n - 2 n-2 n - 2 
XII. n2 - 3n + 2 n 2 - n + I n 2 - n + I 

XIII. 2n - 2 n - I n - I 
XIV. n 2 - n n 2 - n n2 - n 
xv. 1 

XVI. n 
XVII. 2n2 - n 

XVIII. n - I n n 
XIX. ½(n2 - n) ½(n2 + n) ½(n2 + n) 
xx. ¼(n3 - n) ¼(n3 - n) ¼(n3 - n) 

XXL n - I 
XXII. n2 - 3n + 2 

XXIII. n - I n n - I n - l 
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TABLE 7-Continued 

Multiplication Division Addition Subtraction Add.+ Sub. 

XXIV. n2 - 2n + 1 n2 n2 n2 
XXV. 2n2 - 3n + 1 2n - 1 n2 - n 2n2 - 3n + 1 3n2 - 4n + 1 

XXVI. ¼(4n3 - 9n2 2n2 - 2n ¼(2n3 - 3n2 ½(4n3 - 9n2 2n3 - 4n2 

+ 8n - 3) + 1 + n) + 8n - 3) + 3n - 1 
XXVII. n2 - 2n + 1 n - 1 n2 - 3n + 2 n2 - 2n + 1 

XXVIII. n2 - 2n + 1 1 n - 1 n 2 - 2n + 1 n2 - n 
XXIX. ¼(n3 + 6n2 ½(n2 + n) ¼(n3 + 3n2 ¼(n3 + 3n2 

+ 5n) + 2n) + 2n) 
XXX. l-.-(n4 + 8na ¼(2n3 + 3n2 l-.-(n4 ,".(n4 

+ lln2 + 4n) + n) + 4n3 + 5n2 + 4n3 + 5n2 

+ 2n) + 2n) 
XXXI. n - 1 

XXXII. n - 1 n - 1 
XXXIII. n2 n2 - 2n + 1 n2 - 2n + 1 

- 2n + 1 
XXXIV. n 2 - n n 2 - 2n + 1 n 2 - 2n + 1 
XXXV. /;(n3 - n) ¼(n3 - n) ¼(n3 - n) 

XXXVI. l-.-(n4 - n2) 2 t'-.-(n4 - n2) t'-.-(n4 - n2) 
XXXVII. n2 - 2n + 1 n 2 - 2n + 1 

XXXVIII. ¼(2n3 - 3n2 ¼(2n3 - 3n2 ¼(2n3 - 3n2 

+ n) + n) + n) 
XXXIX. ½(n3 - n) ½(ni - n) ½(n3 - n) 

XL. ¼(2n3 - 3n2 ¼(2n3 + 3n2 ¼(2n3 - 3n2 ¼(2n3 - 3n2 

+n) + n) + n) + n) 
XLI. ¼(n4 + na ¼(n• + n 3 ¼(n4 + n 3 

- n2 -n) -n2 - n - n 2 - n) 
XLII. ½(n2 - n) ½(n2 - n) ½(n2 - n) 

XLIII. ¼(n3 - n) ¼(n3 - n) ¼(n3 - n) 
XLIV. t(n4 + n 3 ¼(n4 - 3na ¼(n4 - 3n2 

- n2 - n) + 2n2) + 2n2 ) 

XLV. ¼(n3 - n) ¼(n3 - 7n ¼(n3 - n) ¼(n3 - 4n 
+ 6) + 3) 

XLVI. i(2n4 + n 3 f-.-(3n4 + 2na ,'2 (3n4 + 2n3 i(3n4 + 2n3 

+ n 2 - 4n) - 9n2 + 16n + 3n2 - 8n) - 3n2 + 4n 
- 12) - 6) 

XLVII. n 2 - n ½(n2 - 3n ½(n2 + n - 2) n2 - n 
+ 2) 

XLVIII. ¼(n3 - n) ¼(n3 - 3n2 ¼(n3 + 3n2 ½(n3 - n) 
+ 2n) - 4n) 

XLIX. ¼(n4 - n2) l-.-(n4 - 8na ,'2 (n4 + 4n3 ¼(n4 - 2n3 

+ 23n2 - 28n - 7n2 + 2n) +8n2 

+ 12) -13n + 6) 
L. t'-.-(3n4 + 8n3 2n2 - n l-.- (n4 + 4na ¼(n• ,'2 (3n4 

+ 15n2 - 50n - 7n2 + 2n) + 6n3 - 4n2 + 16n3 - 15n2 

+ 24) - 9n + 6) - 16n + 12) 
LI. n - 1 

LII. n - 1 n n 
LIII. n - 1 n - 1 n - 1 
LIV. ½(n2 - n) ½(n2 + n) ½(n2 + n) 

LV. ½(n2 - n) ½(n2 - n) ½(n2 - n) 
LVI. 3n - 2 1 

LVII. ¼(2n3 - 3n2 ¼(2n3 + 3n2 ¼(2n3 + 3n2 

+ n) + n) + n) 
LVIII. ¼(2n3 - 3n2 ¼(2n3 - 3n2 ¼(2n3 - 3n2 

+ n) + n) + n) 

Since addition and subtraction may be performed with quantities of either sign, 
the distinction between these two operations is somewhat artificial, and in this 
instance a column denoting the joint number of additions and subtractions has been 
added to Table 7. It is assumed that multiplications by zero or unity do not occur, 
and that divisions in which the quotient or divisor is unity also do not occur. The 
sign reversal of a number is also not taken into account. It is further assumed that 
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each of the computations takes place in the most efficient manner possible. For 
example it is assumed that the quantities 

(6.16) 
r = 0, · · · , n - 1; m = 1, · · · , 2n - 2r 

are computed in the process of forming the quantities e, (ml r = 1, · · · , n - 1; 
m = 0, · · · , 2n - 2r - 1, q,<ml r = 1, · · · , n; m = 0, · · · , 2n - 2r by means 
of the q - d algorithm relationships 

(6.17) 

so that the formation of the quantities a, <ml r = 0, · · · , n - 1 (3, (ml r = 0, 
· · · , n - 2; m = 0, · · · , 2n - 2r - 4 from the quantities e, <ml, q, <ml requires only 
a further n - 1 additions and n - 1 multiplications. 

· Formulas, the use of which would clearly result in inferior computational 
practice without the existence of compensatory factors, have not been examined. 
For example the vectors r/ml r = 1 · · · , n; m = 0, · · · , 2n - 2r should clearly 
be derived from the recursion 

(6.18) r,<m) 

rather than from the recursion 

(6.19 (m) ( (m) O) (m) (O (m)) /.!(m) (O O (m)) 
fr+l = fr > m+r - ar 1 fr m+r - /JT-1 ) 1 fr-1 m+r 

since the first involves only one scalar multiplication and the second two. If the 
quantities a, <ml, (3~~t are available the quantities q, <ml may recursively be deter­
mined from them ( viz. XXXIV) and if the vectors p, <ml are already to hand, the 
quantities q,<m> may be derived by (XXXVII). 

Feasible methods of obtaining rational approximations, together with the num­
ber and type of arithmetic operators involved, now follow (Tables 8-13). 

TABLE 8 

Single Value E\,0l(z) 
A: III, V, VI; 
B: I, II, VII, XVIII; 
C: I" II, VII, IX, X, XV; 
D: I, II, VII, IX, XXI, XXIII; 
E: XXIX, XXXV, XLII, LI, LII, LIII, XV: 

Multiplications Divisions Additions 

--
A 4n - 1 2n2 + n + I 2n2 + n - I 
B n2 - n n2 - n - I n• - n + I 
C n 2 + n - 3 n 2 + 1 n2 - 2n + 1 
I) n 2 + n - 2 n2 + n n 2 - n 
E ¼(2n3 + 9n2 ½(n2 + n + 2) ¼(n3 + 6n2 - n) 

+ 19n-18) 

Subtractions Add.+ Subs. 

2n2 - n 4n2 - 1 
n2 2n2 - n + I 
n2 + 2n - 3 2n2 - 2 
n2 + n - I 2n2 - 1 
¼(2n3 ½(n3 + 3n2 

+ 3n2 + n) + 5n - 3) 
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TABLE 9 

Diagonal of Values E~01(z) r = 1, · · · , n 
A: 
F: I, II, VII, XIX; 
G: I, II, VII, IX, X, XVI; 
D: 
H: XXIX, XXXV, XLIII, LI, LIV, LV, XVI: 

Multiplications Divisions Additions 

A 4n - 1 2n2 + n + 1 2n2 + n - 1 

Subtractions 

2n2 - n 
F n2 - n ½(3n2 - 1) ½(3n2 - 3n + 2) n2 
G n2 + 3n - 6 n 2 + n n 2 - 2n + 1 n 2 + 2n - 3 
D n 2 + 3n - 5 n2 + n n 2 - n n 2 + n - 1 
H ½(n3 + 4n2 + n ½(n2 + 3n) i(n3 + 6n2 - n) i(n3 + 3n2 + n) 

- 2) 

TABLE 10 

Array of Values E~m>(z) r = 0, · · · , n; m = 0, · · · , 2n - 2r 
A: 
I: I, II, IV, V, VIII, XX; 
J: I, III, V, VIII, XI, XII, XXI, XXII, XXIII, XXIV; 
K: I, III, V, XI, XII, XIII, XIV, XVII; 
L: XXX, XXXVI, XLIV, LVI, LVII, LVIII, XVII; 

Multiplications Divisions Additions 

A 4n - 1 2n2 + n + 1 2n2 + n - 1 
I n2 + 2n - 1 ¼(n3 + 3n2 ¼(n3 + 3n2 

- n + 3) - n) 
J 3n2 - 2n + 1 2n2 + n + 1 2n2 

K 3n2 + 2n - 2 3n2 
- n + 1 n 2 - n + 1 

L ,'tr(4n4 t(2n3 + 2ln2 ,/2 (2n4 

+ 20n3 + 5n2 - 5n + 24) + 4n3 + 13n2 

+ 67n - 24) - 7n + 24) 

TABLE 11 
Single Rational Function On <0l: Pn <0l 
A': XXV, XXVII; 
B': XXV, XLII; 
C': I, II, XXVII, XXVIII; 
D': XXIX, XXXI, XXXII, XXVII, XXVIII; 
E': XXIX, XXXI, XXXII, XXXV, XXVII; 
F': XXIX, XXXV, XLII; 
G': I, II, XXVIII, XLII; 
H': I, II, XXVIII, XLV; 
I': I, II, XLVII; 

Multiplications Divisions Additions 

--
A' 3n2 - 5n + 2 2n - 1 n 2 - 1 
B' ½(5n2 - 7n + 2) 2n - 1 ¾(n2 - n) 
C' 3n2 - 5n + 2 n2 + 1 n2 - 1 
D' i(n3 + 18n2 ½(n2 + 3n) 2n - 2 

- 19n + 12) 
E' ¼(n3 + 6n2 - 4n ½(n2 + 3n - 2) n - 1 

+ 3) 
F' H2n3 + 9n2 + n) ½(n2 + n) ½(n2 - n) 
G' ½(5n2 - 7n + 2) n 2 + 1 ¾(n2 - n) 
ti' ½(n3 + 6n2 n 2 + 1 i(n3 + 6n2 

- 10n + 3) - 13n + 6) 
I' 2n2 - 2n n• ½(3n2 - 7n + 4) 

Subtractions 

2n2 - n 
2n2 - n 

3n2 - n - 1 
3n2 - n - 2 
Hn• 
+ 2n3 + 8n2 

- 5n) 

Subtractions 

3n2 - 6n + 3 
2n2 - 3n + 1 
3n2 - 6n + 3 
i(n3 + 15n2 

- 22n + 12) 
i(2n3 + 9n2 

- lln + 6) 
¼(2n3 + 3n2 + n) 
2n2 - 3n + 1 
i{n3 + 12n2 

- 19n + 6) 
½(3n2 - n - 2) 

181 

Adds. + Subs. 

4n2 - 1 
½(5n2 - 3n + 2) 
2n2 - 2 
2n2 - 1. 
½(n3 + 3n2) 

Adds. + Subs. 

4n2 - 1 
¼(n3 + 9n2 

- 4n) 
5n2 - n - 1 
4n2 - 2n - 1 
H4n4 

+ 8n3 + 29n2 

- 17n + 12) 

Adds. + Subs. 

4n2 - 6n + 2 
½(7n2 - 9n + 2) 
4n2 - 6n + 2 
i(n3 + 15n2 

- 10n) 
!(2n3 + 9n2 

-5n) 
¼(n3 + 3n2 - n) 
½(7n2 - 9n + 2) 
½(n3 + 9n2 

- 16n + 6) 
3n2 - 4n + 1 
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TABLE 12 

Diagonal of Rational Functions or<0>: pr<0> r = 1, • • · , n 
A': 
J': XXV, XLIII; 
D': 
E': 
K': XXIX, XXXV, XLIII; 
L': I, II, XXVIII, XLIII; 
H': 
M': I, II, XLVIII; 

Multiplications 

I 
Divisions 

--
A' 3n2 - 5n + 2 2n - 1 
J' ¼(n3 + 12n2 2n - 1 

- 19n + 6) 
D' ½(n3 + 1Sn2 ½(n2 + 3n) 

- 19n + 12) 
E' ¼(n3 + 6n2 - 4n 

+ 3) 
½(n2 + 3n - 2) 

K' ½(n3 + 2n2 + n) ½(n2 + n) 
L' ½(n3 + 12n2 n 2 + 1 

- 19n + 6) 
H' ¼(n3 + 6n2 n 2 + 1 

- 10n + 3) 
M' ¼(n3 + 3n2 - 4n) n• 

Additions 

n 2 - 1 
¼(n3 + 6n2 

- 7n) 
2n - 2 

n - 1 

½(n3 - n) 
½(n3 + 6n2 

- 13n + 6) 
i(n3 + 6n2 

- 13n + 6) 
¼(n3 + 3n2 

- 16n + 12) 

TABLE 13 

Subtractions Adds. + Subs. 

3n2 - 6n + 3 4n2 - 6n + 2 
2n2 - 3n + 1 Hn3 + 1Sn2 

¼(n3 + 15n2 
- 25n + 6) 

Hn3 + 15n2 

- 22n + 12) - 10n) 
¼(2n3 + 9n2 ½(2n3 + 9n2 

- lln + 6) - 5n) 
i(2n3 + 3n2 + n) ½(n3 + n 2 ) 

2n2 - 3n + 1 ¼(n3 + 1Sn2 

- 31n + 12) 
½(n3 + 12n2 ½(n3 + 9n2 

- 19n + 6) - 16n + 6) 
¼(n3 + 9n2 ½(n3 + 6n2 

- 10n) - 13n + 6) 

Complete Array of Rational Functions r/"'>:p,<m> r = 0, · · · , n; m = 0, • · · , 2n - 2r 
N': XXVI, XXXVII, XXXIX; 
0': XXVI, XXXVII, XL, XLI; 
P': I, XXXVIII, XXXIX; 
Q': I, XXXVIII, XL, XLI; 
R': XXX, XXXIII, XXXIV, XXXVIII, XXXIX; 
S': XXX, XXXIII, XXXIV, XXXVIII, XL, XLI; 
T': XXX, XXXVI, XXXVII, XXXIX; 
U': XXX, XXXVI, XXXVII, XL, XLI; 
V': XXX, XXXVI, XLIV; 
W': XXX, XXXVI, XLVI; 
X': I, II, XLIX; 
Y': XXXVII, L, XXXIX; 
Z': XXXVII, L, XL, XLI; 

Multiplications Divisions 

-
N' ¼(lln3 - 1Sn2 2n2 - 2n + 1 

+ 13n - 6) 
0' ¼(n4 + 9n3 - 19n2 2n2 - 2n + 1 

+ 15n - 6) 
P' ¼(5n3 + 3n2 n• 

- 14n + 6) 
Q' i(n' + 7n3 n• 

- 4n2 - 10n 
+ 6) 

R' t'2(n4 + 1Sn3 i(2n3 + 15n2 

+ 5n2
) - l7n + 6) 

S' l 2 (3n' + 22n3 ¼(2n3 + l5n2 

- 9n2 + Sn) - I7n 
+ 12) 

T' ! (n' + 7n3 + 5n2 i(2n3 + 3n2 

- n) + n + 12) 

Additions 

¼(2n3 - 3n2 

+ n) 
¼(n4 + 7n3 

- 10n2 + 2n) 
n 2 - 3n + 2 

¼(n4 + 3n3 

+ 2n2 - lSn 
+ 12) 

¼(n4 + 3n3 

- 4n2) 

Subtractions Adds. + Subs. 

½(lln3 - 12n2 ½(5n3 - 6n 2 + n) 
+ n) 

¼(10n3 - 15n2 ½(n4 + 17n3 

+ 5n) - 25n2 + 7n) 
¼(5n3 + 3n2 - Sn) ¼(5n3 + 9n2 

- 26n + 12) 
¾(n3 - n) Hn' + 7n3 

+ 2n2 - 22n 
+ 12) 

.'2(n4 + 14n3 ,\(n' + 14n3 

+ 23n2 - 50n + 23n2 - 50n 
+ 24) + 24) 

,'2 (n4 + 12n3 ,'2(3n' + 1Sn3 

+ 5n2 
- lSn - 3n2 - ISn 

+ 12) + 12) 
¼(n4 + 5n3 ¼(n' + 5n 3 

+ Sn2 
- 14n + Sn2 - 14n 

+ 6) + 6) 
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TABLE 13-Continued 

Multiplications Divisions Additions Subtractions Adds. + Subs. 

-
U' ¼(2n4 + 9n3 i(2n3 + 3n2 ¼(n• + 3n3 i(n• + 7n3 + 5n2 ¼(2n4 + 10n3 

- 2n2 + 3n) + n + 12) - 4n2) - 13n + 6) + n 2 - 13n 
+ 6) 

V' ¼(2n4 + 5n3 i(2n3 + 3n2 ¼(n• - 3n3 ¼(n• + 2n3 ¼(2n4 - n3 

+ 4n2 + n) + n + 12) + 2n2) + 2n2 + n) + 4n2 + n) 
W' ¼(3n4 + 5n3 ¼(2n3 + 3n2 ,1:l"(3n4 + 2n3 

/ 2 (5n4 + 6n3 / 2 (5n4 + 6n3 

+ 6n2 - 2n) + n + 12) - 9n2 + 16n + 7n2 - 6n) + n2 + 6n - 6) 
- 12) 

X' ¼(n4 + 5n2 - 6n) n2 / 2 (n4 - 8n3 / 2 (n4 + 4n3 ¼(n• - 2n3 

+ 35n2 - 64n + 5n2 - 10n) + 20n2 - 37n 
+ 36) + 18) 

Y' / 2 (3n4 + 14n3 2n2 - n ,';,(n• + 4n3 ¼(n• + 9n3 + 8n2 / 2 (3n4 + 22n3 

+ 15n2 - 56n - 7n2 + 2n) - 24n + 12) - 9n2 - 46n 
+ 24) + 24) 

Z' / 2 (5n4 + 18n3 + n 2 2n2 - n 1
1
2 (3n4 + 10n3 ¼(n• + 8n3 - n2 

/ 2 (5n4 + 26n3 

- 48n + 24) - 15n2 + 2n) - 20n + 12) - 17n2 - 38n 
+ 24) 

It appears from Tables 8 to 10 that, in terms of computational effort alone, a single 
entry in the E-array for a fixed value of the argument is most economically com­
puted by means of the non-linear recursion 

{3~
022 

z - a~0_:-;: 
D an-8 

s-1 = b + D 
n-s .s 

in conjunction with the q-d algorithm 

( 6.21) (m) + (m) (m+l) + (m+I) q, er = q, er+l 
(m+l) (m+I) qr e, 

and the numerical formation of the quantities 

(6.22) r = 1, · · ·, n - 1; 

that a diagonal of quantities E,(Ol(z) r = 1, · · · , n is best computed by use of the 
q-d algorithm, the formation of the quantities (6.22), the twin recursions 

(6.23) 
P~-%(z) = (z - a/0lp/01(z) - /3~~1P~~-\(z), r = 1, · · · , n 

(6.24) 

and the n divisions 

(6.25) 

Po <oJ ( z) = 1, p/01( z) = z - q/0l 

(z - a,<oJ)or<oJ(z) - /3~~10;~1(z), r = 1, · · · , n 

o/01( z) = 0, o/01( z) = Co 

o/oJ(z) 
p,(O) (z) r = 1, · · ·, n, 

while the complete E-array of numerical values is best computed by evaluating the 
partial sums E 0<m1(z) = I:;~1 c.z-•-1 m = 1, · • • , 2n, the quantities Efii(z) 
= ZmCm-l and applying the E-algorithm 

1 
r 
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Tables 11 to 13 show, again in terms of computational effort alone, that the single 
rational expression E,,. <O> ( z) be best constructed by determining the quantities 
a~

0>, /3~~1 by means of the relationships 

I{ t' p/0
> ( t)} = Co/3o (OJ • • • /3~~1 

(6.27) 
I{(+1Po(Ol(t)} = Co/3o(Ol · • · /3~~dao<o) + · · · + a/0>} 

in conjunction with the recursion ( 6.23), and of the vector o,,. co> from 

(6.28) 

that the sequence of rational expressions E/0\z) r = 1, · · · , n is best constructed 
by use of relationships (6.27), in conjunction with the recursion (6.23), determining 
the polynomials Or co> ( z) by means of the second recursion ( 6.24) ; while the complete 
E-array of rational expressions is most efficiently constructed by use of the q-d 
algorithm (6.22), in conjunction with the relationships 

(6.29) 
m-1 

(m)() '°' -s-1 ro z = L.., c,z , 
8=0 

Many electronic digital computers are equipped with highly flexible interpretive 
codes which are designed for carrying out standard matrix operations upon arrays 
of numbers. Many of the methods described may be susceptible to the use of such 
a code, and this consideration may cause the preceding judgements to be modified. 
The most suitable method is then largely determined by the exigencies of the par­
ticular code used. (This explains the presence, in the inquiry, of such methods as 
E, H, and L which would otherwise be rejected outright.) The time taken for the 
operation of such a program may be estimated from the data given in the table, 
and a knowledge of the threshold time of each instruction. 

Table 7 does not contain data relating to the direct solution of the equations 

(6.31) 

lc~'":~co = i~'":~+n-1 

lc~'":~-1Co + lc~"':~c1 = i~'":~+n-2 

lc~"¼co + lc~'":iC1 + · · · + lc~'":~cn = i~'":~-1 

le~"¼ Ci + le~'":{ C2 + • · · + /c~m~Cn+l = i~'":~-2 

k~":d Cm-1 + le~'":{ Cm + · · · + k~'":~Cn+m-1 = i~":d 

/c~":d Cm + le~'":{ Cm+l + · • • + k~'":~Cn+m = 0 

k~"':d Cn+m-1 + kt/ Cn+m + · · · + k~'":~C2n+m-l = 0 

k~"':~ = l; 

the details, of course, depend upon the method chosen for the solution of the 
equations. The solution of the set ( 6.31) is equivalent to the Gauss-Banachiewicz 
decomposition of the matrix 

(6.32) 
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the inversion of the matrix Hn <m> to give Kn <m> 

(6.33) 

and the determination of the vector r n <;,.> from 

(6.34) (m) (m) [ (0) ] 
rn = Pn Cm+n-1 n+l,m+n • 

This method (method V' above), if the steps involved are already incorporated in 
the interpretive code, is probably the one requiring the fewest instructions, and 
doubtless that consuming the most machine time. 

(It may at first seem a little curious that the set of equations (6.31) does 1;tot 
involve the quantity Cm+2n , whereas the matrix Cn (ml does. The quantity Cm+2n , 

however, only enters into the determination of Hn <ml as a scaling factor of the la~t 
row, and this is removed by imposing the condition that the diagonal elements of 
Hn (ml are all unity. The quantity Cm+2n does not therefore enter into the determi­
nation of the matrix Kn <ml.) 

Apart from the considerations mentioned above, only those methods are d-e­
scribed which might genuinely be suggested as the most economical. Many of the 
conclusions which may be deduced from a survey of Tables 8 to 13 might also have 
been arrived at after a preliminary discussion of the steps listed as I) to L VIII) 
but this discussion would have been so beset by qualification and modification 
that the most effective method of comparison was thought to be the straight forward 
enumeration of all feasible possibilities. 

7. Checking and Correction of the Approximations. Since all the methods de­
scribed in the last section are capable of producing the same final result, the com­
putations produced by the use of one may be checked by application of any of the 
others, supplemented if necessary, by use of any of the theoretical results given in 
the text. In particular, attention is drawn to the strength of the use of the system 
of equations (6.31) as a final check. 

Many of the methods entailed the computation of a sequence of polynomials 
p,<m\z) r = 0, 1, · · • . The computation of the coefficients of these polynomials 
may be checked and corrected by a direct appeal to the orthogonality properties. 
Assuming the vectors p, <ml s = 0, 1, · · · , r - 1, to have been correctly computed, 
a corrected version p~:!,. of the vector p, <m> may be produced from the formula 

r-1 

(7.1) (m) (m) ~ (m) 
Prcorr = Pr - L.., 'Yr,s Ps 

s-0 

where 

(7.2) 

If the computation of the vector p,<m> has been performed without error, then it will 
transpire that 

(7.3) 'Yr,s = 0 s = 0, 1, · · · , r - 1. 

The corrected vector Pr <m> may now be used to check to computation of the vector 
p~'.;'.{ and so on. 

Readers familiar with the computational finesses of Lanczos' [22] biortho-
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gonalization algorithm for determining the characteristic polynomial of a matrix 
will readily perceive that the use of equations (7.1) and (7.2) is a straightforward 
adaptation of a similar technique which relates to the use of this algorithm. Details 
of connections between this algorithm, the q-d algorithm and certain others, which 
are significant in a theoretical context, are to be found in [10]. 
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