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I. Introduction

- 1D this paper we shall consider methods of obtainine the interral

JQ¢ (a+t)dt where a is in general complex valued. It is assumed that the

function ¢(a+t) i)s indefinitely differentiable over the range 0O {t oo
+
of the argument.

The principle underlying themethq%g is as follows:
. =y
The'terms'h¢(a+rh) of the Riemann sum ELA h@(a+rh) are regarded as

coefficients of the power series f h&?aﬂ-h) 7 V1
r=0
1s transformed unto an associated continued fraction, the variable z is

;s this power series

made to tend to unity, the interval h is made to tend to zero. Here we
examine the conditions under which this continued fraction either

terminates or converges.

In certain cases the methods developed provide a way of ascr bing a value

to the integral L%(a+t)dt vhen the series f h¢>(a+rh) diverges, i.e.
| r=0
when the Riemann definition bresks down. In all cases in which convergence

¢ teria are established it is showvn that if the function of 2z
oo 'e
f;& (at+t)e™ “at

1s meromorphi¢ in some do-main, then the process described yields the wvalue

of the Borel integral

oo
lim St?(a-t-t)e : tdt,,

z'=»0 ©

Moy
This limiting value of course be infinite, 1n which case the continued

fraction described above diverges inessentially, i.e. the reciprocals of
its successive convergents tend to zero.

It should be emphasised that we are concerned here with an entirely
new and constructive definition of an integral; it is shown how the value
of the (possibly divergent) integral may be determined. The Borel definition
of an integral is formal, it is assumed that F(z') is analytic in a certain

domalin; the definition does not contain a prescription for computing the

value of F(z').

+ . : ca e .
) In point of fact the formulae of this naper are valid if ¢ (a+t) is

replaced by @ (a+ela‘t) where 00 ¢2W, but since this is not a seneralisation
productive of any essentially new results and entails a considerable compli-

cation in the formulae used, it will not be ‘taken into adcount.
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II. The Becond Confluent Form of the & <Aleorithm.
A formal process for computing the successive convergents of the

above continued fraction has already been derived. It was established

as follows. We are considering continued fractions of the form

€O ﬂgo L Agr“ﬂ \ e (1)
z - O, ~ z - X, - z -0l -

Under certain conditions the coefficients O(S; ﬁs(s=0,1 oo 80 ) éccurring

in this continued fraction may uniquelv be determined by imposing the

th

condition that the power series expansion of the r ~ convergent of (1)

agrees with a given power series as far as the (2+1 )th term, c:p‘
00
C | r
= - po CIE ' rﬂe - Z CSZ S“‘l'.' O(Z )- (2)
Z e N = Z=H o /.| s=0
o 1 r
th

Now 1t may be shown [1] that the r convergent of (1), namely the left
hand side of (2), is given in terms of the coefficients C (s=0,1,¢.0)

by means of the determinantal expression

= cSmt -~ - ~S=4
O Z ¢ m z c 2z oo Z cs‘b :

s=0 s=0 s=0 ‘

i
-4 -2 -3 - -

? Gon 915 C2a e 0 0 Lr!;
;
i e o B c z"h vee € a7 Tc
: A 2 3 r+1

(3)




Let us introduce the notation

__ ¢(m)(a) é(mdﬂ)(a) e o e é(m-'.k“q)(a |

’

¢(m+t‘1 )(a) ¢(m+2)(a) o @(nﬁk)(a)

(5)

C. = h#(a&sh) (5=0,1,040)

Let & tend to unity, let h tend to zero, and denote the resultant value of

(3) by egi(a) . Then 1t i1s easy to show that +)
¥ I—‘_r.(“”
€, (a)= — XL - (r=0,1,...) (6)

(1)
H
»

¥
The sequence of functions Em‘(a) (r=0,1,...) may be constructed by means
o the second confluent form of the &-algorithm [_2]

Theorem II.1. From the initial values

- N
(a)= € (a)=0 (7)
. ...
)’I‘he effect of introducing the factor of el9 mentioned in the foot-note

,. : 18 ¥
to Page 1 1s merely to replace the expression Eﬁr(a) by e:LB £,.(2).
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0§ .-__I ; . - i . | LB
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(8)

(9)

nerty of the functions a) of

this paper. Consider the integral

rmally be transformed intc an associated continued

V1Z.

W*iCh

(s=0,1,...) (12)

we let z' tend to zero in this expression

and 2 1s replaced by
(%fter suitable manipul.

mnare the result with expressions
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Theorem II.2. In the notation of equation (10)

& (a)“‘ llm{é(t) 1(t) EE:-J—-(-E-?-—-} (13)
-0, (t)- -0 5(t)- -0 (t)

Y

Note: In equations (10),(11) and (13) and subsecuentlvy we use the
desirnation lim rather than revlace t by a in the relevant expressions;

in this waytZET convergents of the continued fractions of the rather snecial
class being considered are determinate. In more general cases this 1s not

always true; for example the value of the convergent

l_ o 1
1

1= 1

.tzi .
1s determinate.

We conclude this section on the formal properties of the second
confluent é&-algorithm process by remarkine that 1f we replace ¢>(a+t)
by e"Zt‘# (a+t) in expressions (4) and (6) and compare the result with

(3) in which the substitution (12) has been made, then we obtain the

followine consistency result

Theorem II.3. The successive converrsents of the continued fraction (10)

may be obtained from the relationships

when

Coz) = 1inm E(2]t).

t ~Pa

IIT. Continued Fraction Inteecration

L W 2

Definition 1: If the functions &,.(a) (r=0,1,...) produced ty means

of the relationships (7) (8) and (9) terminate (in the sense that E;;+4( )

becomes infinite for all a), or converge to a flnlte lxmlt, or diverge
properly (in the sense that the sequence {6,2_,.(a)} (r=0,1 ——
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converges to zero) then the function C?)(a-!—t) 1s said to be continued -{:md:'im

integrable (c.f.i.).

A A Certain Class of Functions ¢ (a+t)

The coefficient Es(a) . Qs(a) of (10) may be constructed in & number

of ways [3], [hj, :5} They are eiven by the determinantal formulae

4

(0) (0) 1(0) 10 ;(0) (1)

Er(a)z ....:.r...tl......f_:l.. o Q’\(a):. “ + “ .
H(0) 2 H(0) H(1) H(0) H(1)
r r+1 4 r

Let us dismiss, once and for all, the case in which the function

@(a) satisfies a linear differential equation with constant coefficients

n!

2o b

s=0

(S)(a)=0

in vhich n' cannot be replaced by a smaller integer.=

(N’WPWWW‘M O e PR RSV ——

e shall agree to call this class of functions 1.

Lemma III. 1. The equations

H(O) # O r:0,1,§¢a,n“1

r = 0 r=n

hold for all values of a if and only if c}:e M,

: . : . . th
Lemma IITI. 2. The continued fraction (10) terminates with its n

cenvergent for all values of a if and only if (’p(m)ﬂif .
In this case F(a:z') is a rational function of z' +whose denominator

1S a polynomial of the nJch dergree.

Theorem III. 1. The second confluent & -alsorithm process terminates 1if

w -
and only 1if ¢(a}€}1. If the Riemann intercral J ¢(a+t)dt exists then
@

(2) 3 \G(mm.

o0
. : : - =2t
If ¢(a+t) is not Riemann integrable then the Riemann integral \r e ¢( a+t )dt

O 0
certainly exists for sufficiently laree Re(z') and the integral J; #( a+t )dt
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is derived by analytic continuation of this function of z'; in this case

* {a3 ,
Szn(a)= lim Joe"Z k ¢)( a+t )dt.
z'->0

Corollary. All constants, polynomials, exponential functions, sines,
cosines, hyperbolic sines, hyperbolic cosines, and any finite linear

combination of products of these functions are c.f.1.




2. Two Examples.

At this point it is instructive to consider how the method of integration

works i1n two simple cases.

ty\~-1 : . :
When ¢( a+t) s (e’) ', the centinued fraction (10) terminates with its first con-

vergent. In this case a=0, and we have

o ,
J (97 at = E(a)

~t
lim <z ) _ 1,
T O “(e*t)

When (})(a&t) = et

with 1ts first convergent, a=0, and we have

0

then again the continued fraction (10) terminates

w
Setdt = &€ (a)
O 2
T
= 1im (e )t = ~]
t 0 (")

R
thus the value -1 1s assignede¢to the divergent integral XO etdt for which
the Riemann definition breaks down.

The Borel definition yields the same values, of course. In the first

case
0 t - 't t
Jetat = 1im J; e” %7 eTrat
Z w0
= lim 1 = 1
{ Z"}'a Zl+1

in the second

o0 o9
' R
elat = 1lim S e™? Tetat
o O
z'>0
1 N




3. General Convergence Criteria

Now let us proceed to the case in whichm#?}l. Since we have
established that the functions Ej; (a) are successive convergents of
the continued fraction (13) then we can base the convergenceé theory of
the second confluent & -alporithm process upon the convergence theory
of infinite continued fractions. For example we may use the following

result [63 which includes a number of celebrated theorems as special

CcCasesSs

Theorem III. 2. Write

ft(a) 2

c, = = .
o' () ‘
L E._qla) (r=2,3,...)
= - : .
r Q,r”fa')'ﬂ,rzas

Then if sequenses 2 h'o (p=1,2,...) can be found such that

i(h +h _+1)

c. -Re (c,e P P*' ') ¢ 2cos(h )cos(h
N\ T p——p+

b 5 ) )£

le=g
l———p-1——p—
(1 +Ssec(ht)) (1 +Ssec(h,o+ 11)

>0, Osg _,

and the senes
o0 s 1

- Y l (1+Ssec(hp))(1+ﬁsecé'xp+ﬂ)}

diverges, then (3) (a) is c.f.1.

The disadvantace of thilis theorem and =f a number similar to 1t 1is
that in general it i1s difficult to deduce the behaviour of ¢ (a) from

the conditions which are imposed upon OCr(a) . ﬁr(a) (r=0,1,0c4)
L , Application of the Problem of Moments

The most natural way in which to relate the convergence of continued
fractions of the form (13) to the behaviour of thHe function 4?‘( a+t), is

' by exploiting the function theoretic aspects of the convercence theory
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of continued fractions.

In order to do this we shall be concerned with the moment problems

W]
S B _
j:: ay(t) = c_, (s=0.1,...) (1)
and o0
S —
fo 52 §(t)= c_, (520.1,...) (15)

that is, of determining certain functions Y (t), & (t) satisfying (14) and

(15) when cs(s--O 1,...) are prescribed constants.~

Now a cons:.derable theory has been built up concerning the case in which

P o W g gy i S R e i I i e Mg b

the constants cs( s=0,1,...) are real,

! s ot
. S~ W e T e R e ettt et s et

We can make use of this theory immediately by puttinge

mcp(’s’(a) (520.1,...)

and hence we shall now impose the condition that ¢ (a+t) should be real

for 0t {® .+

S Application of the Hamburger Moment Problem

Definition 2. We say that @(a)eﬂ if An(a), ’6\“ (a) (r=0,15004)
(and therefore ¢> (a)) are real and ﬁv(a) >0 (r=0,1,¢04)

Lemma III. 3. ¢> (a)€ H if the Hamburger moment problem is soluble, i.e.
1f a positive non-decreasinge function 4: (t) with an infinite number of

voints of increase can be found such that the equation

+ @
Stsdqa(t) = qs(S)(a) (s=0,1,.0.)
-0g

holds [7].
A criterion which may frequently be used to determine whether 4) (2)€ H
1s provided by [S]

i X 2 ¥ _F ¥ F _FOF Y W W F PR

' Actually 1t would be permissible to assume that ¢(a+t) = AB (a+t)

here A 1s some complex constant and §&(a+t) is real for real values of

dealing

a+t, but this 1s hardly a generalisation worth Avith.



~11~

Lemma III. L. If there exists a function f£(z') such that
Im {f(zf )j- €0 for Im (z') },6 » 0, and havin~ the asymntotic renresentation

O
f(z')ey 7. 53’*(8)(8.) g 18]
s=0

in € Sarg(z')sW~-€, 0K¢& ﬁlg, then ¢(a) & H.

The connection between the Hamburger moment problem and the continued

fraction (13) is provided by

TLerma III. 5 The continued fraction (13) converges if the moment problenm
is determinate, 1.e. 1f only one function 4J (t) satisfying the conditions
of Lemma III. 3 can be found { TJ‘

Ve are thus interested in obtainineg conditions under which the

Hamburgeger moment problem i1s determinate. One such 1s mrovided by a result

of Carleman ({9] v. T8)

Lemma III.6., If ¢ (a)& H and the series Z {' (S) a)} 1s divergent

then the Hamburger moment problem 1s determinate.
COM MmN L@mwaqa IE o and. . & we nave j‘

wr? !
Thaorem W, If the Laplace transform F(z')= Jj e 27t ¢ (at+t)dt
satisfies the 1neq_uality Im \'F Z )} £ 0 for Im (2')> 0 and has the asymptotic

representation

o0

o0

F(Z')NZ ¢(S)(a)z'“s”‘

for & arg(z )Q‘IT--G where (O <E<§’ and the series Z { (S) a)} 25

diverges, then @ (a) 1s c.f.1.

A further condition for the Hamburecer moment problem to be determinate

was given by F. Riesz [1 O}; 1t 1s exnloited in the following

Theorem III. 4 If F(z') satisfies the conditions imposed upon it in
Theorem III.3 and

lim imf {

then C%) (a) is c.f.1.

The 1nequality (16) may also be deduced from the behaviour of '¢ (a)

1n the large. We are concerned with integral functions, 1.e. functions

(2s)!
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oy
f(x) such that the power series f(X) = Z a g X ® converges for all finite
=0

values of X. Denote [‘H] by M(r) the maximum value of M(r) on the circle
‘X“—-:r, The relation M(r){ g(r) means that there exists some finite R
such that for all r » R we have M(r)<L g(r). Then the lower limit of k

]
r

k
ar

such that M(r)«< e  is the order of f(X). Suppose in addition that M(r)<X e

(2> 0) and that © is the lower limit of a for which this relationship 1s
valid. Then £(X) is of minimum type if & =0; f(%) 1is of normal typred if &

1s finite and non-zero. We have the following

Lemma III. 7. The necessary and sufficient condition that f(X) should

belong at most to the minimum type of the orderf) is that

and that that f(X) should belong to the normal type & of order ﬁ is that

—e . by
limnpi\n/;; P)jo

= (ge') . | (18)
Comparing formulae (16)’(17) and (18), and bearinsg in mind the expansion

&0
. (s)
4>(a+t)mz é—z—,—(—a-'—)- t°
s=0

W
lim n P
n —3.00

®

we have

Theorem III. 5. If F(z') satisfies the conditions 1mposed upon 1t in
Theorem III, 3 and ¢ (a) is an integral function of any order and of
minimum or normal type. then ¢ (a) is c.f.1.
Note: Theorem III.5 1s in a certaln sense a complement to Theorers III.1.
Theorem IIT.1 states that if ¢ (t) is an integral function of a very
specifesort then the second confluent & -algorithm process terminates
Theoxrem III. S5 states that if ¢ (t) is an intesral function of a less
restricted type then the second confluent € -algorithm process converces.
If @(a)ﬁ H we may 1n certain cases show that the Borel intecral may
be evaluated by means of the analytic continuation of a function for
which a power series may be given [121&?6 have

o
Theoxrem III. 6., If ¢ (a+t )e Z;; 1s ¢c.f.1. to a finite function for all

]Z"?’ R then the power series | ¢(S)(a,):z,‘msmJs converges for all
s=0
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: © ~-z't
sz'] ), R to the value of the integral f° e 4) (a+t)dt.
To conclude this seetion we have from Theorem II.3 and certain

consistency theorems concerning the conversence behaviour of :Ipmfractions

[T] (i.e. continued fractions of the form (1) in which the ﬁsn (s=0,1,¢00)

are positive).
] : . -z't .
Theoren III. 7. 1T ¢(a)e H and ¢(a+t) 1s c.f.1, then (b (at+t)e 18

c.f.1. for Im(z.')?.S) 0.

6. The Application of the Stieltjes Moment Problem

It is formallv possible to construct Stieltjes tvpe continued fractions

1 1 1 1 1

e O ¢

| A z +
k1z+ 1{2-!- kBZ Ia;- 1\2”12

in which the coefficients ks(s=0,1,...) are unigquely determined by the

conditions that

o0
1 "l"""""" 1 © o o ":L"""""'m : ; C Z“S“" + 0 (2“2‘*)

S
+ + k_z+ =
k1z k2 h3z LEW s=0
and o) s
- e _ar
1 1 L L 1 1 i\JE: cSzS1+ 0( =z )
+ + k + =
k1z k2 h32+ k2r ﬁb+qz s=0
O
57 —-S =1 . . :
vhere .\ C 2 1s a prescribed formal power series.
s=0

Clearly the even part of (19) (i.e. that continued fraction whose
successive convergents are the successive even order convergents of (19))
is the continued fraction (1). Now as z tend to zero the continued fraction
(19) is clearly divergent, but as is easily shown by induction its even

order convergents are the successive partial sums of the series 222325.
s=1

Thus 1f we can show that the terms of the series4§::ks are positive, and
s=1
thag the series 1tself 1s convergent, then we may conclude that the sequence
ea,,(a) 1S a monotonic convergent sequence,
The first condition is provided by the following
Lemma III.8. The coefficients kX of the continued fraction (19) are real

S
and positive of the Stieltjes moment problem

(s=0,1,000) (20)
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1s soluble, i.e. if a real positive non-decreasing function § (t) can

be found such that equation (20) holds D 3:].

: : S : . . :
If the Stieltjes moment p:c‘cﬁr:il.elni determinate, 1.e. 1f the function

§(t) determined by cgquation is unique, then it is known that the series

<7

i ks diverges; this of course tells us nothine about the series yan k25'
=5 _ s=1

But 1f the Stieltjes moment problem ismdeterminate then the series

* (a) (r=0.1....)

3
S 21T

certainly converges. Now examples have been constructed in which the Stieltjes

moment problem is indeterminate.

ks converges, and as we have said the seqguence

We have

Lemma III. 9. The moment problem

S .S =ut 1
jt t) = jte dt X < 3
o % o ’

1s indeterminate ( [1 h_] pD. 22)

Lemma III. 10. The moment problem

R co
fotsd §(t)== fo ; Sy 1n(t) 1+Asin(2T ln(t))} dt (A}@

1s 1ndeterminate EB}
Combining lemmasIII.8 and IIT. 9, and III. 8 and III. 10 we have
Theorem III. 8. The functions

x ot

foleror o < 4 21
S o
are c. .1. for a=0.
Theorem III. 9. The functions
00
jo (a*t)x _-ln(x)§. sin(emin(x))} ax, laf € 1 (23)
A
»L}e“(a“"t)x x~n(x) 1 1+Asin (2 'ﬂ'ln(x))} ax, |A) €1 (2k)

are c.f.1. for a=0 and real A,
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Note: The Riemann integrals (21) and (23) do not, of course. exists
(the values assigned to them are the negative values of (22) and (24)
respectively).

To conclude this section we adapt the following result of Carleman

(0] . 86).

Lemma IIT. 11. We are given a function f(x) (not identically zero) which

1s 1ndefinitely differentiable and such that

f(s)(-o):: f(S)(1) =0 (s=0,1,0..). (25)

Put

1
mi = j{‘f(s)(x)}2 dx.
. O

The series Z mi (=1 )S 2"5"1 may formally be develoned 1n a Stieltjes

s=0
continued fraction ! 1 ! s o Where k1 ,k2, .« are positive
k1z+ k2+ k32+

niumbers whose sum 1s finite.

‘Thus we have

Theorem III. 10. Suppose that some indefinitely differentiable function

£(x) satisfying equations (25) can be found such that

4
¢(S)(a) = L{f(S)(x)}zdx (8=0,1,00.)

then ¢(a+t) 18 c.f.1.
IV Rational Fraction Integration

We now consider a second process of integration based on the
non-linear difference-differentialrecursions (7) (9). By way of introducing

it we remark that if the € -algorithm {15] relationships

(m,s=0,1,0..) (26)

are applied to the 1initial conditions
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@) Z o g ¥ s (27)
= e s=0  °

then the sequence

Eflm) (m=0,1,¢0.)

is the sequence of Padé [16] quotients

T u

s=0 (m=0,1,c..) (28)

th

in the n~ row of the Padé table of the power series whose partial sums

are given by (27).

The connection between the Padé quotient (28) and the determinantal
quotient (3) is this: that if we put m=-1, x=z"' in (28) we obtain (3).
However 1in thilis chapter we deal with expansions 1in ascendlng pPOWers

of x rather than in descending powers of z, since this i1s the usual

form in which the theory of the Padé table is presented.

We now introduce the following fundamental result in the theory of the
E-algorithm:

Lemma IV.1. If the £-algorithm relationships (26)are applied to the

sequence

e(m) - 0 E‘(m) _ q

- ? S m

(m)

to produce quantities ES

, and to the quantities

(m)! (m)" _
&.'=0, <5 = A+BS
. ~(m)"
to produce quantities Cs then
?
6(;:‘) = A+B 82(:,11) o (m,r=0,1,...)
Putting
m S m"
A= &_& c X, B=x



we have

Lemme IV.2 If the &-algorithm relationshivs are applied to the
sequence

(m) _ ( =)
E’...1 =0 |, E.Om) = ZZO csxs

to produce the quantities &im) and to the guantities

(m)*' _ (m)*'_ s mZ S
s=0 s=m'
then
gwn) B3 s om (@) (we0,1,...) (29)
2r o S 2r

Thus to form the quantity &(;f,) (my 0) we Pirst add together
the terms i1in the partial sum %ij csxs, apply the & -alegorithm relation-
=0

o
ships to the partial sums of the series Z_ C oty > and form the linear
s=0

combination (29).

The equivalent confluent £ -algorithm process is as follows:

' -
we evaluate the definite integral Jot ¢ (a+t)dt, evaluate £z£a+t’)
by use of the relationships

e *x

¢ (a+t?) 8(a+t') = 0
— 0

{hﬂ(aﬁt') - Ez,_ﬂ(aﬂ;r )} {%{ E’z’r(a"'t')"' ¢ (é,-!-t')} -

and form the sum

e . et 3
5 (}3 (a+t')dt + &b(aﬁt ). (30)

We shall give a sufficient condition for the convercence of the

function (30) as t' tends to infinity, For some finite r.
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With regard to the converrcence behaviour of the Padé ocuotients

(28) we have the followine result of Montessus de Balloire [‘!T]

O
Lerma IV. 3 Let the power series ZZ csxs represent a ﬁunction £{x)

. b = : . RS
which 1s regular for }x}' S R excegtofor m noles with.in, cirde. Then
the sequence (28) converses uniformly to f(x) in anv domain bounded

by ix! gﬂ hich does not include a pole of f(x).

: . . -7 "
Introducins the substitution x=e we have

Theorem IV. 1 If the function
[e's

F(z') = jge“z't q> (a+t)at

is Riemann integrable in somé& strip & £ Im(z') £ & +27 ;

In(R) <Re(z')€ o3, (1{R{w) and F(z') is meromorphic in the rectangle o <
Im(z'){ o +2T; 0< Re(z')<1n(R) then the expression (30) tends to a
finite limit or properly to infinity as t' tends to infinity; this limit
has the same value as that of the Borel integral lim jmeﬂz't¢ (a+t )dt.

. . . . . 20 G ..
Definition 3. If the function Ci) (a+t) satisfies thé conditions of

Theorem IV, 1 then we say that q} (a+t) is rational fraction integrable
(r.f.i.).

Theorem IV. 2. If (b(a)e N then {tg(ai-t) 18 r.f.1. ,
* the CarollaryTo
Theorem IV. 5. All functions <§) (a+t) which are the subject of, Theorem i .1

st

are r.f.1.

An Example

Consider the integral
<

sin (t)dt
fotn e

Here we have a=0 and
oG

.
Je 2t sin(t)at . (31)
O ?2+1

In the notation of Theoreml¥éhe may put KX =-TN, R=1,
In the notation of equations (6) and (30) we find that

8
&, (t') = cos(t')
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and since
t' .
J’ sin (t)dt = 1- cost!
V0O
we have

' w
sin(t)dt + Ez(t’) =1 (32)

. B
7t g

and of course the limit of expression (32) as t' tends to infinity

is also 1. -hermore we may evaluate the Borel intesral by

means of (31) and also have

!
,.’ sin(t)dat = 1im j e”2't sin(t)dt
0 z'-»0 O
= lim —
Z"*G Z!2+1
= 1.

?_ The First Confluent Form of the £ -Algorithm

Finally we relate the convergence theory which has been established
for the process (7)?(8)?(9) to that of the first confluent form of the
€ ~algorithm, [1 8] > [1 9] by means of which functions gs(t) are constructed

using the single recursion
{E (a) - £ (a)} a_ € (a) = 1 (s=0,1,...)
s+1 s=1 a S >3
from the i1nitial conditions
€ (a)=0 £ (a) =¢(a).
We now 1introduce the notation {(in contradistinction to (5))

t
$~"(a)= fo B (a+t)at. (33)

The following result has been derived [20]
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Lemma V.1 If the first confluent form of the §{ -alecorithm 1s avplied
to the function f(m.-1 )(t) to produce functions E(Sm"1 )(t), and the second
confluent form the €& -algorithm 1is apgl..i ed to the function f(m)(t) to

produce functions Eém) "zt) then the equations

-
8523_1 (t) = E.érg:_l) (t) (m,s=0,1,...)
"
eMe) = ety (m,em0,1,.00)

obtain.

The connection between the converzence of the first and second

confluent forms of the €& -algorithm i1s made apparent by Lemma V.1, for

with (33)

Jt f(m)(t)d’c = 1lim :f'(m""""'1 )(1-,)«...---f(m"""'1 )(t) (m=0,1,00.)
T -
Thus conditions under which Ear(a) either tends to a limit as r
tendsto infinity, or becomes independent of a for some finite r, may
be derived from the theory of Chapter III by replacing dp (a) bv Ji¢ (t)at

where X 1s some finite constant.

In conclusion we remark that the convergence of the first confluent
f =algorithm process has a very intimate connection with the convergence
of J-fractions. The value of a convergent J-fraction may be regarded as
the result of an infinite sequence of bilinear transformations. Subsequent
to each transformation 1t may be shown that the value of the J-fraction
lies within a certain circular region of radius rn(z), If rn(z) tends to
zero (the determinate case) the real J-fraction converges. It may be
showvn that in the case of a real J-fraction rn(z) and rn(O) tend to a

non-zero limit or to zero together. Now 1t may be shown ([1 h] D. T2)

that

r (0) = ¢ 2 (3k)

where ¢ does not depend upon n.Furthermore

4(0) .
&, (a) = 2=, (35)
4(2)
Il
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Comparing expressions (34) and (35) we have

Theorem V.1. If ¢@(a)€H, and the first confluent g-algorithm process

applied to ¢(a) produces a sequence Eb(a) (r=0,1,...) which converges
to zero, then the continued fraction (10) converges for all z' in the

sector 0 <arg(z)<Tand in particular #(a-i-t) is c.foi..

VI. Conclusion

So far 1in this paper we have not considered the regularity of the
methods discussed nor the extent to which the methods of integration

proposed m

ay be considered the inverse of differentiation. More precisely
we have not answered the questions (posed in terms of continued fraction

integrability):

1) If (a) is c.f.i.,then is (‘#(a') c.f.1., and if so does

¥ 3~ .
lim €, (a) = lin€, (a') - Ji ¢(f.)dt (36)
r —pox Y —3 02

hold?

2) If ¢ (a) 1s c.f.i.,then is

3) If the second confluent £ —algorithm process}is arplied to the

. ¥ :
function %E ¢ (a+t) to produce the seauence E,lr(a) (r=0,1,...), then is

4
lim 8”.(8.) = C%p (a) + constant.

I <% 00

when &? (2) € ¥, these Que€stions assume a trivial nature and can be

answered i1n the affirrative.

More generally, since vhenever conditions sufficient for

... -
be c.f.21. have been given it has also been shown that lim §

E‘zr
: ., ] _ r—=px ~
equal elther to the Riemann integral or the Borel equivalent, it T

| »
€&} 18

that under these conditions the answer to the last two questions

question 1) has been left open,

then equation (36), of course, holds.
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It 1s to be expected that a further study of the theory of this
paper will produce results which are of significance in the theory
of continued fractions. To a certaln extent this has already been done;

as an example of this we mention the following. It may be shown [1 9]
that

" g(2)
62.t~+1(8‘) = Hr(oj y (37)
r+ 1

Now 1n the determinate case of the Hamburger moment nroblem the radu of
certain circular regions were given by expression (34), which is very
similar to (37). If we bear in mind equations (34),(37) and (9) then

we see that

rn+1(o)wiﬁrn(o)“1 —> 0

and this tells us something about the rate of decrease of rn(O): 1t

tells us for example that rn(O) # constant/n.
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