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I. Int:t'bduction 

0 

In this paper we shall consider methods of obtainin~ the inteFral 

(a+t)dt where a is in ~eneral complex valued. It is assumed that the 

of the arg1Jment. 

The principle 

The terms h (a+rh) 

underlyin~ the metho sis as follows: 
,__, ( 

of the Riern.ann stim .l~--!ti h a+rh) are regarded as 

coefficients of the nower series -
r=O 

is transformed unto an associated continued fraction, the variable z is 

made to tend to unity~ the interval h is made to tend to zero. Here ,-re 

examine the conditions under which this continued fraction either 
• terminates or converges. 

In certain cases the methods developed provide a v-ray of ascr..;.bing a value 

to the integral ( a+t) dt vrhen the series h (a+rh) diverges, i.e. 
r=O 

when the Riemann definition breaks down. In all cases in which convergence 

c teria are established it is shovm that if the function of z' 

is meromorphic in some do--main, then the process described yields the value 

of the Borel integral 

lim 

z'-,..o O 

This limiting va ue of course be infinite, in whic case t e continue 

fraction described above diverges inessentially, i.e. the reciprocals of 
• • its successive convergents tend to zero. 

·It should be emphasised that we are concerned here 1rrith an entirely 

new and constructive definition of an integral; it is shown how the value 
• 

of the (possibly divergent) integral may be determined. The Borel definition 

of an integral is formal, it is assu1ned that F(z') is analytic in a certain 

domain; the definition does not contain a prescription fdr computing the 

value of F(z'). 

------------- · . .._ __ _ 

• point of fact the fonnulae of this paper are valid if ( a+t) is 
• 

replaced by i:1here O (.8 <2tt, but since this is not a ~eneralisation 

productive of any essentially new results and entails a considerable compli-
' . 

cation in the :formulae used, it will not be taken into adcount. 
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II. The tecdnd Confluent Fohn of the • 
; 

• 

A forrnal process for computing the successive convergents of the 

above continued fraction has already been derived. It vras established 

as follovrs. vle are considering continued fractions of the :ro1·m 

z 

e 
0 0 

z - « -1 

• 0 • 

r-1 

z -ex r 
• • • ( 1) 

' . 

Under certain conditions the coefficients <x; (s 0,1, ••• ) dccurring s s 
in this continued fraction may uniquely be determined by imposing the 

agrees ,fith a given power series as fQr as the 

C 
0 

z-<X­
O· 

z-Ol-
1 

••• 
' 

z-CX r 

00 

s=O 
C Z 

s 

term, c:p 

_2~ 

( 1 ) 
• 

(2) 

Now it may be shown 

band side of (2), is 

1 that the th r convergent of (1), namely the left 
• • given in terms of the coefficients c (s=0,1, ••• ) 

s 
by means of the determinantal expression 

0 ,f ~ ... " 
•S 'l -s-1 s 0 " 'JO. C 'Z • • • C 'Z 

s s s • 

s=O 
• 

s-0 0 s • 

2 3 -r-1 
eo7A C 1 !:l C,22' 0 0 • 

t, Z, .,. 
' 

• 

2 3 -4 -l"-2 . . 
e-1 z, ~ 1!1 c

3
z • • • C r+1~ 2 

., • • • - • - .. ,. 

_ ... 

·:at p 1 111 nJ.@JM41dl a 1 11wt•I Ji :.t.bili!IF ••n1ii;il•Jd"ft3TI 11:,11wn: • t I lllll"1il'f!llii$?T:.JP'\rl'11i♦ zre'8W••PZist:•:•r••u.- (3} 

1 1 1 1 

_., -2 «= ~-3 r--1 
bQ'Z!i ~ z C ~ • • • 1 2 r 

~ 

-2 e ~-3 .,-4 i t-2i, c 1 !t c3~ • • 0 t: 'Z.. t-' 2 • ~ 

\' 
" • • • • - • .. • . 

-r 1 -t: 2 2...-e . ,~ C 'Z c.-+4~ ••• c,._" 'Z, 

·' r- r 
• 
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Let us introduce the notation 

. .. , .. 

(m-+1 
• 

0 k • 0. • • • 0 

• 

for the Hankel determinant, where 

0 • 0 

• 0 • 

0 • • 

(m-0,1, ••• 

k=1,2, ••• ) 
(4) 

(5) 

( a) • ( s=O , 1 , ••• ) 

In the determinantal quotient (3) nut -

( s-o, 1 , •• 0 ) 

Let 'Z. tend to unity, let h tend to zero, and denote the resultant value of 
(3) by * . . +) 

Then 1.t is easy to sho1•1 that 

- r+1 
• (6) 

r 

The sequence of functions (r-0,1, ••• ) may be constructed by means 

of' the second confluent form of the E -alr:orithm 2 
• 

Theorem II.1. From the initial values 

(7) 

The effect of introducing the factor of e mentioned int e oo -no e 
. ~ i8 -* to Page 1 is merely to replace the expression 

.. 



• • • • ibe sequence (a) ( s•O • 1, ••• ) 1s deterr111ned by means or the non-linear 
~ 

ditfertnce-difterentia.l relation•hina 

(8) 

(a) =1. (9) 

• We shall now establish a fundamental pronertv of the functions 

which considerable use vill be made in this paper. Consider the integral 

Cl) 

-z't 
" e 0 

(a+t )dt 

This has the for~al expansion in inverse powers of z' 
CM:) 

F(a;z') f\/ 

s=O 

t ... s- ~ 
z 

This power series may for·111ally be tra.nsforrned into a.n associated continued 

traction of the fc:m (1) • viz • 

. (t) 
F(a;z' )rv lim · -------

Tb;e successive conver~ent s 
•• 

• • • • •• ·(10) 

C {z')= lim r 
.· ( t) 

• • • .· ( r=O , 1 , • • • ) ( 11, 
t+a 

of this contir:ued fraction are given by determinantal expressions of the 

fora (3) in which 

C = 
8 

(s=0,1, ••• ) 

a.nd z is replaced by z'. If ve let z' tend to zero in this expression 

(after s.uitable m.ani ·.·. ations} and co:11pa.re the result with express:ions 

(4) and (6) ve find that 

l . 
J.-m 

( 12) 
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Theorem II.2o In the notation of equation (10) 

( t) 

Note: In equations 

• 411 • 

-0 ( t) 
r 

subseouentlv we use the 
• -

(13) 

desir-nation lim 
'-. 

• • rather than re1:)lace t by a 1n the relevant expressions; 
. . t-
in this T..vay a convergents of the continued fractions of the rather special 

class being considered are dete1ininate. In more p-eneral cases this is not ,_ . 

always true; for example the value of the convergent 

1 
1+ 

0 
1-

t 
is ... eter1ninate. 

1 
1 

i~re conclude this section on the formal properties of the second - ~-

confluent f alp-orithm process by remarkin.cr that if ,;,re replace ( a+t) 

result with 

(3) in ~rhich the substitution ( 12) has been made, then 1rre obtain the 

followin~ consistency result 

Theorem II.3. The successive converrrents of the continued fraction (10) 

may be obtained from the ~elationships 

~ 
= € (z t) 

0 

when 

(z) - lim 
t-.a 

d 
dt 

o, 

d 
dt 

III. Continued Fraction Integration 

• 

= 1, 

-zt 
e (a+t) = 1, 

* Definition 1: If the functions c 2 .... (a) (r·- .. 0,1,.o•) -produced 'ty means 

of the relationshins - .. , ... + -1 
becomes infinite for all a), or converge to a finite limit, or diverge 

* . 
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converges to zero) then the function 

integrable {c.f.i.). 

1 A Certain Class of Functions ( a+t) 

The 

of ways 

coefficient B {a), (1 ( a) of ( 10) :may be constructed in a n1.11nber 
s s 

t"-3 , , L5 o They are ~iven by the determinantal formulae 

E (a)= 
t 

r+1 r-1 

2 
J-

, Q, ( a)= 
r 

+ • 

Let us dismiss, once and for all, the case in which the function 

(a) satisfies a linear differential equation ~vith constant coefficients 

s-o 
a 

s 

in which n' cannot be replaced by a smaller integer. 
,,.,.,.-____ ---- _,..._ - " ► .. ,•'".:'!,.")-#jf l le,' ._.--e- , ..... ♦- J!) ,,....~.wld"-C:311 ~ ....... fl"'::, .. l-,~=••,.•---........... ---- -. ' 

We shall agree to call this class of functions IJ. 

Lemma. III. 1. The eauations 

r 
0 

= 0 

-

r-0 , 1 , •• o , n-1 

r-n 

hold for all values of a if and only if 

Lem1na III. 2. The continued fraction ( 10) terminates 1-rith its 

convergent for all values of a if and only if ~N. 

th 
n 

In this case F(a;z') is a rational function of z' • ,-,hose denominator 

· 1 · 1 of the nth d is a po ynomia e~ree. 

Theorem III. 1 G The second confluent € -al,q:orithm nrocess terro.inates i:f --
Olt 

and only if (a.)tI,r. If the Riemann inte€;ral (a+t)dt exists then 
Q 

-~ 
(a) = ( a+t )dt. 

0 

If (a+t) is not Riemann integrable then the Riemann inte~ral 

certainly exists for sufficiently large Re(z') and the integral 
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is derived by analytic continuation of this function of z'; in this case 

00 
r -z 't 

\/? e ....,.. ( a +t ) dt • 
0 

Corollary. All constants, polynomials, exponential functions, sines, 

cosines, h :;perbolic sines, h -, perbolic cosines, and any finite linear 

combination of products of these functions are c.f.io 

• 
I 
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2. Two E¥a,rnpleso 

works 

When 

At this point it is instructive to consider how the method of integration 

in two simple caseso 

vergent. In this case a=O, and we have 

0 

When 

• 
dt = E {a) 

2 

= lim t..,... --- = 1o 
-{ e -t) 

with its first convergent, a-o, and 'lve have 

t: .,.1 

( 10) ter1ninates ,-rith its first con 

• terminates 

00 
thus the value -1 is assigned•to the divergent inte~ral et dt for which 

0 
the Riemann definition breaks do1m. 

The Borel definition yields the same values, of course. In the first 

case 

e-tdt = lim 
z' ,o 

00 

0 

-.z't 
e 

1 = lim -- = 1; 
-z'..;,,o z'+1 

• in the second 
00 

etdt = lim 
0 

= lim 
z' ,o 

c,g 

1 
= - 1. 

z'-1 

e-tdt 
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3. General Convergence Criteria 

Now let us ~roceed to the -
• case in 't?hich rr. Since ,re have 

established that the functions are successive converpents of 

the continued fraction ( 13) then 1r1e can base the convergenc.• theory of 

the second confluent £-aleorithm process upon the convergence theory 

of infinite continued fractions. For example 1ve may use the follo,,rin~ 

result 6 which includes a nl1tnber of celebrated theorems as special 

cases: 

Theorem III. 2. vlrite 

C r 
--

'(a.) 

Q 1 r-

-

' • 

(r=2,3, ••• ) 
• 

Then if sequenses h 
p 

(p=1,2, ••• ) can be found such that 

C 
p 

-Re (c e P p+ ) 
p 

E>O,O~g 1 p-

I 

and the senes 

00 -

-
n-1 -

diverges, then 

C 

( a) 

2 
(h < - , 

p 2 

w,'l!I·· :, 
.. 

( 1 +Sse )) ( 1 +Sse 
p p -

• • 
1S c.f.1. 

(p=1,2, .• o) 

1 

• 

The disadvantage of this theorem and ~-;f' a nt1rriber similar to it is 

that in ~eneral it is difficult to deduce the behaviour of (a) frbm 
.. -

the conditions which are imposed upon O' (a), . (a) ( r=O, 1 , • •• ) • 
r r 

4 • Application of the Problem of r,1oments 

The most natural way in which to relate the convergence of continued 

fractions of the form { 13) to the behaviour of the function ( a+t) , is 

, by exploiting the function theoretic· aspects of the conver~ende theory 
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of continued fractions. 

In order to do this 1-,e shall be concerned with t,b,.e moment problems 

(t) = 

and 

(t)= 

C ~ s 

C s' 

( s=O, 1 , ••• ) ( 14) 

{ s-0, 1 , 0 O D ) ( 15) 

that is, of deter1nining certain functions ( t)' (t) satisfying (14) and 

(15), when c (s-0,1, ••• ) are prescribed constants.:> 
s ._ - -- ~- ~ ~ ... ~ ... , .. ,....,.,,. .. · --•·11t.',,V.lfiM:•• ""''¾Ii,,.,~ 

case in which 

the constants c ( s=O, 1 , ••• ) are rea:l:,_,,_;:, 
S ' ,-1;;.A,?i .• _ ......_ ___ -- -·-- ,...... - .......,;; 

C 
s 

........ ,. _ 

( s=O, 1 ~ ••• ) 

and hence we shall now impose the condition that (a+t) should be real 

for 

5. Application of the Ffa,mburger 11oment Problem 

Definition 2. \•le say that if 0( r- (a) , . (a) ( r-0 ~ 1 ~ ••• ) 
l" 

( and therefore (a)) are real and "r( a ) :> 0 ( r-0 , 1 , • • • ) • 

Lemma III. 3. (a)E.H if the Hamburger moment problem is soluble, i.e. 

if a positive non-decreasing function {t) with an infinite number of 

~oints of increase can be found such that the equation 

( s=O, 1 , ••• ) 

holds 7. 

A criterion which may frequently be used to determine whether 

is provided by 8; 

- ... .., ...... _ --------------
.. 

Actually it 1vou.ld be pennissible to ass1ime that (a+t) 
. 

(a)€ H 

rhere A is some complex for real values of - <A.U~s 
i+t, but this is hardly a generalisation worth..._1,r1th. 
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Lernma III o 4. If there exists a function f(z') such that 

Im f( z ! ) ~ 0 for ) 0, and havin,o- the asyr.11ptotic representation 

00 

f(z')I\J 
-s-1 

g ..... Q 

in E~arg(z•)~1T-E, then (a,)€. H. 

The connection between the Hamburger moment problem and the continued 

~raction (13) is provided by 

Lem1na III. 5 The continued fraction (13) converges if the moment problem 

is determinate, ioeo if only one function (t) satisfyin~ the conditions 
-

of Lemma IIIo 3 can be found 7. 

1rTe are thus interested in obtainin.~ conditions under 1-1hich the 

HamburP,er moment problem is determinate. One such is provided by a result 

of Carleman ( 9 l). 78) 
1 - 00 -

III.60 If (a)c H and the • 2s • • Lemma ser1.es 1S divergent 
. •· 

s=O 

then the jamburger moment problem is eterminateo 
COi'\ inln. Ce.Yt-\'tTfC\.8 m. 4 o..nd. Ut~ C we. o...,~e. 

eol"'•m 1D. .. . . . ··~. :· •·1 ·- . If the Laplace transform 

representation 

co 

F( z') rv ._ 
s=O 

for E ~ arg( z' ) ~ Tr- ... E where 

diverges, then (a) is Cof.io 

• and the series 
s=O 

Oo 

F( z') = 

and has the asymptotic 

1 ----2S 

A further condition :for the Jiambur~er moment problem to be deterrninate 
' 

was given by Fo Riesz 10·; it is exploited in the follo1~ring 

Theorem III. 4 If F(z') satisfies the conditions imposed upon it in 

Theorem IIIo3 and • 

lim in.;:f ( 16) 
( 2s) ! 

then (a) is Co:f.i. 

The inequality ( 16) may also be deduced :from the behaviour of ·· (a) 
• 

• 
in the largeo vTe are concerned ivith inte ·. al :functions, i.e. functions 
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r(·x.) such that the power series f(X) = 
s=O 

values of Xo Denote 11 by Ji.1(r) the ma.xjr'1111n value of ~1(r) on the circle 

X =r. The relation M(r) ({ g(r) means that there exists some finite R 

such that for all r R 1-1e have M(r) < g(r). Then the lower lj1nit of' k 

such that 
r 

M(r) <..< e 
1· .. 

is the order of f (x). 

(a> O) and that er is the lo,ver limit of a for 1-rhich this relationship is 

valid. Then f(>c) is of minim1.1m type if d =O; f('X) is of normal tYJ)e d if CS 

is finite and non-zero. vJe have the follo1-1in.g 

Lemina III. 7. The necessary and sufficient condition tl1at f(!I<) should 

belong at most to the minimum type of the order is that 

• 1,m ,= 0' ( 17) 
n -+-,oo 

and that that f(X) should belon~ to the normal type CS of order is that 

.. 2 -1 
limn n (18) 

• 

Compa.ring formulae (16)(17) and (18), • • • • and bearin~ in mind the expansion , 
co 

' 

(a+t )f\J 
s! s=O 

we have 

Theorem III. 5. If F(z') satisfies the conditions imposed upon it in 

Theorem III, 3 and (a) is an integral function of any order and of 

minimum or normal type, then (a) is Cof.io 

Note: Theorem IIIo5 is in a certain sense a complement to Theorer~III.1. 
•' 

Theorem III.1 states that if (t) is an intefsral :function of a very 

specilesort then the second confluent £.-algorith-m process terminates 

Theorem III. 5 states that if (t) is an integral function of a less 

restricted type then the second confluent E. -al~orithm process conver~es. 

If (a)E. H we may in certain cases show that the Borel inteq;ral ~ay 

be evaluated by means of the analytic continuation of a function for 

1-1hich a power series may be given 12 .. \·Te have 

Theorem III. 6. If -z 1 t c.f.i. to a finite function for all 

z' ~ R then the power series , f - _,"" 
s=O 

converpes for all ., . 

k 
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To conclude this section 1,1e have 
0 

-z't 
e ( a.+t )dt. 

fror.1 Tl1eoren1 II o 3 and certain 

consistency theorems concerning the conver~ence behaviour of -fractions 

7 (i.eo continued fractions of the forri1 (1\ in i:,rhich the ,(s=0,1,,o•) 
-
are positive). -

Theorem IIIo 7. If (a)E Hand (a+t) is c.f.i. then a+t e 1s 
• c.f.i. 

6. The Annlication of the Stieltjes ~-~oment Problem - . 
. 

It is forrnally possible to construct Stieltjes type continued fractions 

1 1 1 

k z+ 
3 

1 1 
D O 0 

in which the coefficients 

conditions that 

k (s=0,1, ••• ) are uniquely determined by the 
s 

and 

oO 

where 
s=O 

1 1 1 

1 1 

k z+ 
3 

••• 

1 
• 0 0 

00 

s=O 

1 

z 
+1 

-s-1 
C Z 

s 

oO 

s-0 
C Z 

s 

C Z 
s 

-s-1 is a prescribed formal :po1-1er series. 

Clearly the even part of (19) (i.e. that continued fraction whose 

successive conver~ents are the successive even order conver~ents of (19)) 

is the continued fraction ( 1) o i'Tovr as z tend to zero the continued :fraction 

(19) is clearly divergent, but as is easily shown by induction its even 

order convergents are the successive partial sums of -

Thus if 1•1e can sho1-1 tl1at tli.e terms o:f • the series .--4 k
8 

s- · 1 

• • are positive, and 

that the series itself is convergent, then we may conclude that the sequence 
~ 
~(a) is a monotonic conver~ent sequence. 

The first condition is provided by the followin~ 

Lemma III.8. The coef:ficients le of the continued fraction (19) are real 
s 

and positive o:f the Stieltjes moment problem 

(s=0,1, ••• ) (20) 
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is soluble, i.e. if a real positive non-decreasing function ( t) can 
• 

be found such that equation (20) holds 13. 
• -. • 15 . 

If the StieltJes moment u,roblem determinate, -ction 

(t) determined by equation is unique, then it is • known that the series 

k diverges·, this of course tells 
s= 1 
But if 

s . us nothin~ about the series k2. . s 
s=1 • 

the Stieltjes moment bl . \~ . 
pro em is 'determinate - then the • series 

s=O 
k converges, and as we have said the seQuence s 

* (a) ( r-o , 1 , ••• ) 

certainly converges. }Io,-1 examples have been constructed in which the Stieltjes 

moment problem is indeterminate. -
We have 

Lemma III. 9. The moment problem 

GO oO 
ot 

ts t) = .tse-ut 
0 

• indeterminate ( 14 22) 1S P 0 

Lemma III. 10. The moment ~roblem 

~ 

t 8 d (t)= 
0 

is indeterminate 13. 

-

00 

0 

dt-, ex<~ 

1+Asin(21lln(t)) dt, 

Combinin~ iemmasIII.8 and III. 9, and III. 8 and III. 10 ,~,e have 

Theorem III. 8. The functions 

are co-~. i. for a:;:0. 

Theorem III. 9. The functions 

00 

0 

(a+t)x -ln(x) e X 

00 

-(a+t)x -ln(x) 
0 e X 

• 
1+A sin(2nln(x)) dx, A'~ 1 

1+Asin (2 rr1n(x)) dx) A ~ 1 

are Cofoi. for a-O and real A. 

(21) 

(22) 

(23) 

(24) 



-15-

Note: The Riemann integrals (21) and (23) do not, of course. exists 

(the values assigned to them are the negative values of (22) and (24) 

respectively) o 

To conclude this section ve adapt the follo,ving result of Carleman 

Po 86). 

Lemma III. 11. if'le a.re given a function f(x) (not identically zero) which 

is indefinitely differentiable and such that 

( s- 0 , 1 , 0 • 9 ) • 

Put 

2 
m 

s 
2 

. dx. 

The series 
s-o 

0 

2 
m 

s 

continued fraction 1 

ni1mbers whose su1n is finite. 

Thus we have 

1 

k z+ 
3 

•• 0 

• 

• 

(25) 

• • are positive 

Theorem III. 10. Suppose that some indefinitely differentiable function 

:f(x) satisfying equations (25) can be found such that 

2. 
dx ( s=O , 1 , ••• ) 

then (a+t) 

:rv Rational Fraction Integration 

v!e no,,, consider a second process of integration based on the 

non-linear difference-differentialrecursions (7) (9). By way of introducing 

it we remark that if the ~ -algorithm 15 relationsl'lips 

s-.; 
e 

1 
m+1 

s 

;·tre applied to the initial conditions 

(m~s=0,1~o••) (26) 

s 



0 1 0 

then the sequence 

n 

m-1 
--

s-0 

-16-

s 
C X 

s 

( m=O , 1 , o o o ) 

is the sequence of Fade 16 quotients 

m+n 

s=O 

(m) s 
U X n,s 

n (m) s 
...l V X 

s=O n, s 

( m=O, 1 , • o • ) 

(27) 

(28) 

in the th n ro,., o:f the Fade table of the power series 1-1hose partial st1111s 

are given by (27)o 

The connection between the Fade quotient (28} and the detern1inantal 

quotient (3) is this: that 
• • • • • • However in this chapter we deal with expansions in ascending powers -

of x rather than in descending poi:-rers of z, since this is the usual 

form in which the theory of the Pade table is presentedo 

We now introduce the follovring funda.mental result in the theory of the 

t-algorithm: 

Lemma IVo1o If the E-algoritbm relationships (26)are apn,lied to the 

sequence 

-1 , 

• • to produce quantities 

-1 , 

• • to produce quantities 

(m)' 
= 

Puttinp.: 
• 

m'-1 
A= .... ,1. C X 

s s=O 

s 

(m)' 

!"'l(m)' 
C. 

s 

2.t- • 

s 

' 

= s 
!n 

and to the auantities 

= A+BS 
m 

then 

-

( m, r=O , 1 , ••• ) 

m' 
B=x 



• 

we have 

Lemme. IV.2 

sequence 

If the 
. . . £-algorithm relationships are applied to the 

m-1 

-1 
0 ) 0 

to produce the quantities 
s 

(m) t 

-1 

then 

t = 
2.r s-o 

I 

$ 
C"' s 

Thus to 

the tenn,s in . m-1 the pa,--r t ial sum 
s-0 

and to the quantities 

m' 1 m'+m-1 

s=O 

(m-0,.1, ••• ) 
• 

(29) 

(m) 0) we first add together 
s c x , apply the 

s E-'altzorithm relation-

ships to the partial sums of' the series 

combination (29). 

s ,,....,, 1 · ct+ x and fonn the. inear 
s=O m s 

The equivalent confluent E.-algorithm process is 

we evaluate the definite integral 

by use of the relationships 

* ~ 
~ ( a+t') = 

1 

-1 

and form the sum 

t' * 
0 

(a+t' )dt + 

0 

t' 

d 

d 
dt 

as f'ollows: 

. , 
(a+t) 

• E (a+t, > 
2j 

= 1 

(30) 

We shall give a sufficient condition for the conver~ence of the 

function (30) as t' tends to in~inity, For some finite r. 
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With regard to the conver~ence behaviour of the ~ . de auotients -

( 28) vre l1ave the follo1rinP: result of }1ontessus de Balloire 17 
co 

Lercma IV o 3 Let the 

which is re~ular for 

. s 
series -\ c x 

s s=O 
represent a function f{x) 

-~ . .1Jis . 
R excent for m - noles 1-11 th., .. in"'c irde. Then 

the 

by 

sequence (28) converr.es uniformly to f(x) in any domain bounded 

hich does not include a pole of ~(x)o 

Introducin~ the substitution 

Theorem IV. 1 If the function 
Q:) 

F{z') = 
0 

-z' x=e i:-re have 

is Riemann integrable in som~ strip (.1... < Im( z' ) ~ O< +21T ; 

ln(R) <Re( z' )~ Oo, ( 1 ~ R ~&J) and F( z') is meromorphic in the rectangle et. < 
Im(z•)~Ol+21f; O~Re(z')<ln(:R) then the expression (30) tends to a 

finite limit or properly to infinity as 

has the same value as that of the Borel 

t' tends to infinity; this limit 

Definition 3. If the function 

Theorem IV o 1 then we say that 

(r.:foi.). 

¢0 't . ·- -z 

(a+t) . . z' ➔o . . f satisfies the conditions o 

(a+t) is rational fraction integrable 

Theorem IVo 2 .. 

Theorem IV o 3 . 

If ( a) E N then c ( a +t ) is r o :f. i o 

All functions 
• are rofelo 

An Example 

Consider the integral 
,:,, 

... 

sin (t)dt .. 
0 

Here we have a=O and 

0 

-z't 
e 

( a+t) 1,r11ich are the 

In the notation of T:i.eorem --?we may put Ol =- '1T, R=1 Cl 

subject ofA Theorem lif .1 

(31) 

In the notation of eauations (6) and (30) vre find that ... 

cos(t') 



and since 

we have 

0 

t' 

0 

sin (t)dt - 1-

19-

cost' 

= 1 (32) 

and of course the limit of expression (32) as t' tends to infinity 

is also 1. P'urtbertt~ore we may evaluate the Borel intes:ral by 

m,eans of (31) and also have 

V 

0 
sin( t )dt - ljm 

z 14'0 

= ljm 
,'-,..o 

= , • 

Ct) 

e sin t dt 
0 

1 

• The First Confluent Form of the E -Algorithm 

' • 

Finally we 

for the process 

€.-algorithm, 

relate the convergence theory which has been established 

( 7) ( 8) ( 9) to that of the first confluent form of the , , 
18 , 19 by means of which functions e (t) a,1-e constructed 

s 
using the single recursion 

from the initial conditions 

d 
da 

(a)• 

t (a) - 1 
s (s=0~1~•••) 

We now introduce the notation (in contradistinction to (5)) 

· · (a+t }dt o 

The following result has been derived 20 

(33) 
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Lemma Vo 1 If the first confluent form of the [..-algorithm is a-oplied 
~ . . ..... 

produce functions 
s 

equations 
• 

2s+1 
-- 2s+1 

( t) ( m, s=O , 1 , ••• ) 

-- 2s 
• obtain. 

The connection between the conver~ence of the first and second 
• • 

confluent forms of the l-alp:oritbm is made apparent by Lemma VD 1 ~ for 

with (33) 

00 

t 

Thus conditions under vrhich 

(m=O, 1 ~ ••• ) 

tends·- infinity, or becomes independent of a for some finite r, 

be derived from the theory of Chapter III by replacing (a) by 

where Xis some finite constanto 

as r 

may 
~ 

a (t )dt 

In conclusion we remark that the convergence of the first confluent 

e ·algorithm process has a very intimate connection with the convergence 

of J-fractionso The value of a converpent J-~raction may be regarded as 

the result of an infinite sequence of bilinear transformationso Subseq~ent 

to each transformation it may be shown that the value of the J-fraction 

lies within a certain circular region of radius r (z). If r (z) tends to · n n 
zero (the determinate case) the real J-fraction converges. It may be 

shown that in the case of a real J-fraction r (z) and r (O) tend to a n n 
non-zero limit or to zero together. !'To't,r it may be sho,•m ( 14 Po 72) 

that 

r ( 0) 
n 

where c does not 

n+1 = C -
H 2 

n 

(34) 

upon n.Furthermore 

0 (35) 
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Comparing expressions (34) and (35) we have 

Theorem V. 1 • If ·.··(a) EH, and the first confluent £-algorithm process 
• applied to ·. (a) produces a sequence (r=0,1, ••• ) which converges 

to zero, then the continued fraction ( 10) converpes for all 

sector O <arg(z)-<;lrand in particula.r (a+t) is c.f.i •• 

VI. Conclusion 

z' in the 

So :fa.1~ in this paper we have not considered the re., ..... arity of the 

methods discussed nor the extent to which the methods of integration 
"' 

proposed may be considered the inverse of differentiation. rlfore precisely 

we have not answered the questions (posed in ter1ns of continued fraction 

integrability): 

1) If · (a) is c.f.i.,then is 

hold? 

2) If (a) is c.f.i.,then is 

d 
da 

(a') c.f.i., and if so does 

-

(a) ? 

a' 
a 

(t )dt (36) 

3) If the second confluent 

ction d 
E-algorithm process

1
is applied to the 

• 
da (a+t) 

* J 
lim (a)+ constant 

" 

r'-?'oa 

• 1S 

( a) E. N, these questions asstl.me a trivial nature and can be 

answered in t11e af:firriative. 

More @'.'enerally, since ,1henever conditions sufficient for · (a) t,o 
~'."" . 

be c.f .i. have been given it has also been shown that lirn E. · (a.) is 
- r ~•:• .~ . . . 

equal either to the Riemann integral or the Borel equivalent,: 1.t folliovs 
. . ' -~ . ,.,. ' 

that under these cond1t1.ons the answer to the last tvo• que:st,1,pna 1s i:n . ·· 
' 

the affirmative. ' • • ·, .. 't... . .p;<t. .. . ... ' ... · .. ••. f Under these conditions the ansve:r te, ti1e ~1J!',B1v , , >' or, 
. ' .. ' . 

then equation (36), of couree. ho1as. 
. . ' 

. 
' '• ,. f -. ' . '" . _. ;· '' ' ' ~ • 

' . ; 

' 

. ' . . . . ' . . . 
. ' : . 

' •, ' . 
• • . . ' ' . . . 

' . ' ' ' ' . . ' ' 
. ' . : ._ " . ' 

. ' . . .. ' . ., . ', ,· ·, .. 
' ., . ·, 

' 
.. 

. • . I • , : , 

, , ' , I 

' ' . 
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It is to be expected that a further study of the theory of this 

paper will produce results which are of sip-nificance in the tl1eorJr 
• 

of continued fractions. To a certain ex.tent this has already been done; 

as an example of this 1-1e 1nention the folloi:,ring. It may be sho,,m _19 

that 

r =--
H 0 

r+1 

• (37) 

Now in the determinate case of the l1amburger moment problem the radii of 
' .. 

certain circular regions ,,rere ~i ven by expression ( 34), vrhich is very 

similar to (37). If we bear in mind equations (34))(37) and (9) then 

we see tl1at 

n 

and this tells us somethin~ about the rate of 

tells us for example that r (0) # constant/no 
n 

decrease of r {O): it 
n 

• 
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