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I~ Introduction 

In this talklpropose firstly to deal with those aspects of the 

study of continued fractions whic. - ~ ~ ~re of direct appl1cat1on 

in the theory of approximationi and secondly to sketch some develop

ments wl1ich are of recent origin and· as yet incompletely worked out o 

It has taken more than two hundred years for the theory of continued 
• 

fractions to attain its present condition, and I do ~ot propose to 
., ' 

speak for quite that length of time. or this reasorf I shall confine 

myself to sketching the strategic principles involved in the develop

ment of the subject, without going into·too much tactical detail. 

II. Sequences of Bilinear Transformations 

For the purposes of this talk we shall regard a continued fraction 

as resulting from a sequence~~ bilinear transformations of the form 

As is well known, 

thus 

where the functions 
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• • the twin recursions 

( 1 ) 

(2) 

( 3) 

(4) 

(5) 

Continued fractions can thereAore be brought into play wherever 
e D • 

sequences of bilinear transformations occurc 

The Riccati Equation 

In order to indicate how bilinear transformations arise and may 

be exploited we first consider the general Riccati equation 

I 
f· + 

(J 
+ e :r + Y ::- o 

0 0 0 
(6) 
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.. 
This equation has tl1e r)ropert~y that if the dependent variable f O 1.s 

replaced by means of the bilinear su1)stitutions ( 1), then the functions 

f (r- 1,2,oco) also sati.sfy R-iccat,i 8quat,ions 
r 

r 1 + a r 2 + 8 f + y = 0 
1 r r r r r 

where very simple recursions exist between the coefficients 

a s y • u a y • a 
r- 1 ' r- 1 ' r-1 ' r' 'r' r' r- 1 ' b 1 ¢ r-

(8) 

This implies tr1at the solution to a Riccati equation can be di.rectly 

expar1ded in the t"'"orm c)f a contin11ed fraction. 11he coefficients ir1 this 

continued fraction can be chosen in such a way that the resulting 

expansion has certain asymptotic properties with regard to the variable 

x, or they may be chosen in such a way as to simplify 

between the members of the set (8), and so on. 

• the recursions 

A little 

(e.g. exp(x), 

. . " reflection will several that many elementary functions 

ln(1+x), tan(x), arctan(x), arcsin(x), arccos(x), the 

error function, the exponential integral, and so on) satisfy differen

tial equations of Riccati form. For exan1ple, tan(x) satisfies the 

equation. 

(9) 

This means that suer~ functions ha.ve continned fraction expansions 

whose coefficients have a particularly simple f'orm. For exa.rn.ple 

tan(x) = X 

1-

x2 

3-
x2 

5- (10) 

In his recent text book AoN. Khovansk·i 1 uses this principle to 

givt a unified treatment of the continued fraction expansions o~ 

elementary functionse 

Such functions as sin(x) and cos(x) do not satis~y Ricca.ti 

equations; their contin~ed fraction expansions do not have simple 

coefficients~ 

• 

' . 
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The Riccati equation has other points of interest besides the fact 

that it is satisfied by many elementary functionso As is well known 

ma.ny di~ferential equations can be derived from the consideration that 

their solutions maximise or minimise certain functionalsc Bellman 2 ... 
and Calogero 3 

' . recently proved that a solution of the Riccati 

equation maximises a certain functional whi.ch the latter shows (by 

use of the Schrodinger equation) to occur in problems in scattering 

theory. The mechanism of the continned fraction enables us to obta.in 

direct expansions ~or the solutions of such problemso 

Nevanlinna Contin~ed Fractions 
-

R. Nevanlinna 4 • • • • investigates the following problem: to determine -
whether the function obeys the ineg~ality 

< 1 

or the unit di~c. rle shows that this is true if and only if the 

sequence of con~tants f (0) (s
s 

f (z)-f (o) 
s s 

1-f ( 0 ) :r ( z ) 
s s 

satisfy the inequalities 

where 

1 
Q ' z ( s= 0 t 1 t G 0 G ) 

f (0) < 1 & 

s 
(s=0,1,oo@) 

( 1 1 ) 

(12) 

( 13) 

Clearly relationship (12) can be solved to give an expression ;nr 

s s+ 
fraction of the form 

similar to (1). This yields a contin~~d 

C Z r 

1+d z+ 
r 

(14) 

I~ the coe~ricients or this continued ~raction have a certain form then 

( 1 1 ) if 

certain form and the convergence behaviour of (14) can be investigatedQ 
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.. . Functions whose modulus has a known upper bound on the unit d1sc 

occur in numerous physical problemso Nevanlinna continued fractions 

can be used to compute the solutions to such problems. 

Ricl1ards - Goldberg Continued Fractions 
• -

Recently Richards 5 ... and Goldberg 6 - ·• 
have investigated the class 

of analytic functions which map the right half.- ne into itself and 
• 

take the real axis into the real axis. Such functions, referred to as 

positive real functions, find application in the synthesis or two-
- --- -terminal passive networks 7 , 8 , 

. -
real if it is single valued and analytic in the open right hand plane, 

if Re is positive for z in the open right hana plane, and if 

is real for real z. It can be shown that if f (z) i.s :positive 
r 

real and neither a f (z)-zf (a) nor a f (a )-zf (z) vanish ident~~ 
r r r r r r r r 

ically for arbitrary choice of the positive constant a, then the 
r 

function given by r+ 

a f (z)-zf (a) 
r r r r 

a f. ( a )-zf· { z) 
r r r r 

( 15) 

is also positive realo Clearly relationship 

an 
r r+ 

(15) can be sclved ·to give 

similar to (1)o This yields 

a contin~~d fraction of the form 
d e -z'J. 

= 0 + _, __ 
z d

1
z-

e -zi. 
2 

dz-
2 

0 0 0 

which can be used for the computation of a positive real r~unctiono 

III. Continued Fractions Derived from Power Series 

1 

We have just reviewed certain methods of deriving continued 

fractions based on function-theoretic considerationso We now proceed to 

what is perhaps the most extensively studied class of corltinued 

fractions, namely those continued fractions which are derived by the 

transfo1~ation of power serieso 

We consider the formal power series 

(X) 

rv C Z 
s s=O 

-s-1 
( 17) 
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Clearly the formal power series 

( 18) 

• 
l.S 

,;t, i' G it -1' it begins with a term 1n z ), thus 

substitutions of the form (18) can be repeated and we derive the 

continued fraction expression 

--

• 

z-a -
1 

fl 2 r-
z-a. 1-f z 

r- r 

(19) 

The successive denominators of this continued fraction are poly-

nomials (see e.g. 10_ vol II p. 162) of the form 
r 

k s z . 
r s ' , 

They satisfy a recursion of the form 

( Z ) ' 1 " 

r r- r-1 r- r-

They are orthogonal with respect to the system of weights 

r 
k 
r,s 

- 0 t= 0,1,ooG,r-1 

# 0 t=-r-

(20) 

(21) 

C (s=0,1,e•o) 9 s 

(22) 

The successive nurnerators of' ( 19) are the s alled associated 

orthogonal polynomials of the form 
• 

r-1 
o (z) = 

r· 
(23) 

It is a consequence of the way ir1 which the contint1ed fraction 

( 19) is derived that t·hat the series expansion of the quotient 
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in inverse powers of z should agree with the power 

-s-1 
C Z 

s 
• as far as the term 1n 

o (z) 
r -

p z. 
r 

00 

-s-1 
'\, C Z + 

s=O s 

that 

00 

•• 

s=O 

-~ -s-1 
d z 

2r+s 

" series 

(24) 

where in general For this reason the 
.. 

continued 

fraction (19) is said to be associated with the series 
' 

Convergence Theory 

00 

s=O 
C Z 

s 
-s-1 

The investigation of the convergence behaviour of continued 

QI 

4f • • • • 

fractions of interest in function theory usually proceeds in the fol-

lowing way: we first establish that the continued fraction being 
• • • • • • investigated 1s a member of certain class, then, by establishing cer-

tain criteria which relate either to the coefficients of the 

continued fraction or those of the power series from which it Wfi.S 

derived, we show that it converges~ 

Grommer Fractions 

The convergence theory of associated continued fractions is 

particularly easy 

B >O (s=0,1,ooo )o 
s 

to discuss if it is known a priori that in ( 19) 

Associated continued fractions of this type are 

known as Grammer fractionso 

e ankel determinant · 

c, ck-1 
I 

(.I ,, I\) ! 
j 

I 
~ ! 

c2 e C e ck 
I 

0 0 0 

'>0 (25) ' 

0 0 

' 

by Hk, with 

• 

• 

• 



- -
then the coefficients B in (19) are given ( 11 p 325) by 

s 

H li 
s+2 s 

( s=O , 1 5 o G e. ) (27) 
Ii2 

s+1 

From the determinantal expression (27) it follows that if 

H >O 
s 

( s =O., 1 , .,, o <Ii ) (28) 

From the algebraic theory of quadratic forms it is known that 

(28) is true if the quadratic form 

c .. x. x .. 
. • l+J l. J 

(29) 
1. ,J 0 

is positive definitee In general, howc1ver, if the coefficients 

c (s=0,1, ••• ) are given, neither of t~1e criteria derived from (28)~ 
s 

(29) are easy to use. 

For this reason we proceed to consider the behaviour in the 

large of so far~ has been no more than for1n-
oo 

s=O s 
certain class Hof functions, and say 

-s-1 .. 
asymptotically represented by the series c z 1n the sector 

s 

O< ~ <Jl 
2 

s=O 
where the coefficients c { s=O , 1 , s ri. c ) 

s 
are real, 

analytic :for Im(z)>O and rurthermore ~or Im(z)>O, 

(30) 

it may easily be shown 

also a member of !Io Thus the coefficients 6 
s 

(s O, 1, a e e) in ( 19) are all positive and ( 19) is a Gro1,1cner :fraction. 

If we transcribe relationship (3) into the notation of the 

continued fraction (19) we find that 



= _n n _ n-
p Z .. -f Z D 1 \ Z I n n , n-1 

This is ·bilinear 

S~ fa.r we l1ave only 11sed the property of bilinear tra11sformations that 

the resul.t of a sequence of bilinear transformations is a bilinear 

transformation~ Now we use their other well-known property - that 

they tra.nsfor1n straight lines into circles e In particular tr1e rei1l 

axis in the f -plane is transformed into the circle of radi·us r~ -z) 
n 

whose centre lies at the point 

t 

• in the r 0-planeo The lower half of 

the interior o~ this circleo Since 

" the f -plane is transfo?·1ned 
n 

f (z)EH, then the value of 
n 

lies in the lower half plane if Im(z))O, thus for these values 

(32) 

(33) 

into 

f ( z) 
n 

of z 

the 

successive convergents of a Grammer fraction provide a sequence of 

circles within which the value of the continued fractior1 must lie o 

Let us illustrate this phenomenon by means of the continued 

:fraction 

1 1 -
z- z-

1 2 -z- z-
2 r r 
z- z- z-

(34) 

which is of the form (19} with 

(s+2)/2 (35) 

If 
• 

(36) 
• • 

'" • 



then 

When z=O 0 5+0 e 5 i we obtain the :following diagra.rn 

o.., 1- t 

17 

--~ -~. - ::L ...... t., 

113 113 

--

• 

I 

. 0 
0 

c~ 

(37) 

• 

within the circle I, the second- within the circle II, the third -
• • • within the circle III, and so on. 

• 
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Cl ·~ if tr1e val.1,1e t)f r ( z) tends to zero then ear .a.,y 1 n 
determined to any accuracy, an·i the continued fraction converges~ 

to a 

finite non-zero limit;. tr1en the successive convergents of the Gro11uner 

fraction may tend ·t() a limiting point on a circle of this r1.1dil1s j or 

they may be distributed in some ot.,her fashion on this circJ.e~ in r:1ny 

case, witr1out furtl1er ir1formation we cannot as yet say anlJthing al1out 

the convergence of the continued fraction: this is the indeterminate 

case. 

By using the recursion (21) we can derive an expression for r ( z) 
ll 

in terms of the partial sum of a certain serieso For from (21) I 

= Im(z) 

n-2 
= Im(z) ~ 

2 (38) 
s=O 

Thus 

n-1 -1 
r ( z) 

n 
= 2Im(z) (39) 

. •· -

s=O 

The critical problem in the convergence theory of Gro1runer 

fractions is to establish the divergence of the series in (39)~ :f\Jow 

it may be shown that the partial s,~ims of the series (39) satisfy a 
• 

-
Volterra sum equation ( 13.__. p~ 96), and using tr1is fact it is possible 

to prove that r (z) and r (0) tend to zero or to a non-zero limit 
n n 

together. This makes it easier to bring the conventional convergence 

theory of cont:i.nued fractionr into play, ar1d it can be shown -,4 
QI) -..I 

when z is . s 
s=O 

diverges& The disadvantage of this res.ult is that it involves the 

coefficients of the continued fractioD, and these 

available in simple formo Howe"\ e' Carleman, using 
00 .. 

00 s=1 

,q,re not usually 

his result 

that 

diverges, shows (~gain by purely algebraic means) 
1/s 

s=l s 

' 



that the series ., 

s=O 

01 '1 / 2 
8 diverges if the series s 

-1./2s 
'is 

• d:ivergeso 

Su1t1rnari sing the series -1/2s 
C 

s=1 2S 

diverges then the the Grommer fraction (49) convergeso 

The existence and convergence of a Gromrner fraction can be 

versed in terms of the Ha.rnburger moment problem 1 

possible to :find a bounded non-decreasing function 

_oo 

If it is 

(t) such that 

(40) 

then the coefficients 8 (s=0 91,G0a) it (19) are positive. If it is 
s 

possible to find only one such function (t) (i.el> the Ifa.rnburger 

moment problem is detern1inate) then the Gro1runer fraction ( 49) 

converges, and its value is given by the Stieltjes transform 

z-t 
( Im( z) > 0) 

-oo 

M Riesz 17...... has shown that i:f the Han1burger moment problem is soluble, 

then it is determinate if 

lim in:f 
'S::a .0 

and condition (41) 

fraction is convergento 

< 00 (41) 

• • obtains then the associated Grommer 

R. Nevanlinna has shown 18,..J that if' the HaJnburger moment problem 

is indeterminate then the sequences of convergents of even order and 

of odd order respectively of the Grommer ~raction converge to differing 
• 

functions a 

To conclude this section we mention that there is a Tauberian 
-

theorem for Gro1rJrner :fractions: it was shown by E o V ~ van Vleck _19 

that i:f a Grommer fraction converges for all ·z ~R, then the associated 

power series ( 17) also converges f'or all z ~ Ro 

Time and space do not allow me to discuss corresponding continued 

fractions, and their connection with the Stieltjes moment problem 



and the Markoff moment probl~m 
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( s=O , 1 , o o o ) 

( s=O , 1 , e o .') ) ( 4~3) 

But the princ·iples involved in establist1ing the convergence of the 

continued fraction expansion of a certain function may· be surnmarised 

as followso A formal power series expansion is obtained from this 

power series by ensuring that the power series expansi.ons of the 
.. 

successive convergents agree with the formal power series to an 

increasing r1urnber of terms. Wrom a number of criteria, which may be 

algebraic or function-theoretic m cr1aracter, it can be shown that 

the continued fraction is of a certain type~ From this continued on."' 

sequence of bi.linear transforrnations 

the value of the given function lies 

is obtained wh.ich 11 uf; that 

within a succession of ci.rcula.r 

regions~ 1',rom a number of further crjteria, which again may ·be 

algebraic or function-theoretic in character, it can be sr1own that 

the radi.i of these re~ions tend to zeroo 
' ' ' 

11,he type of tr1e cor1tinuecl fractic,n and the question at, tc·) wl1etr1er 

it converges or not is related to the solution of a certain moment 

problem. If the coefficients of the cc1ntinued fraction possess certai.n 

properties then the corresponding 

a bounded non-decreasing function 
• • 

~ q 

moment problem has a solution, i.e. 

(t) can be found satisfying certain 
• • - flj 

cond1t1ons& If the continued fraction converges then only one such 

function can be foundo The value of tt,e continued fraction can be 

expressed by means of an integral transform involving (t)G 

The convergence of the original formal power series has not ·been 

mentioned, arid is in the f_j_rst instanc.~e iaorelevanto For exarr1ple there 

exist continued fractions converging in certain bounded domains in the 

complex plane t'or the functions exp(x), who~~ power series converges 

everywhere in the bounded complex plane; ft.,1· tan(x.) whose p()wer 
0 

series converges for 
' 

X < 



The £-Array 

So far we have only C'(; ·· :; ~-<Jered t:t1e 

clearly pc,ss:i.bJ e alt3Ci to c·(,;r:1s·ider the 

this into an associ.ated continued fral·t1.c:rli 

m-1 
' 

C Z 
s 

· .. s.-1 -m + z 

c• 
l .I 

t~ransform 
~ 

" and ol)tain the expansions 

(44) 

tf we denote the successive convergents of ttl·is cor1tinued fraction by 

'lit' , then they can be arranged as f .. c,J_ l.ows :: 

J 

~ 

this is the even order e:-array~ The successive convergents of (44} -
" lie on a diagonal in this array: the EllcceAsive 

00 ,. 
nartial s,uns of the ., 

• series 
-S=n• 1 c z lie in the first C(•l .. \1mn ,, 

s IL.; 

s=O 

This array has a very strong conr1ect ion with the Pade table -2q] , 

indeed if we transpose this array about. the dia{,!c)naJ_ w:i·t,h st1perscript 

1 and chan~e the variable to 

the conventional Pade tableQ 

c)btain the 11pper half of 

Determinantal expressions in terrrLs of the 

for the 
;I .. Fade quotients were 

partial sums of the series 

.- ._,, 
~i ven by :B 1rober1.i.us l.? lJ t in · °-rms of the 

s s=O 

( m, r=o, 1 , e e o ) by Shanks . 22] ., 



The ty·iJes of convergenc·e manifested by the even order £.--array 

can in princinle be disting11ished as follows 
d • •• 

1) The quantities in a:11 the diagonals converge to the sa.t1ie limit 

( this corresponds, for exa.rnple, to ·the case in which=the Stieltjes 

m m+ m 
determinate)o This is regular convergence 

2) The quantities ineach diagonal converge to dirfering limits (this 

corresponds, for e.xa.rnple, to a deter111inate Ifa.,nburger moment problem 

This is irregular convergenceo 

3) The even members ,:ind odd members of each diagonal converge to 

differing limits (thls corresponds to indeterminate Hamburger moment 

· m m+ m+ 
to the distinguished mathematician who firs·t invest:i.gated this behav-

iour, we shall call tr. ts the highly ir·rep;ular cor1vergence behaviour 

of Re Nevanlinnao 

flere are two examples of regularly convergent even order e:-arraysG 
first (Table I) refers The 

00 

.. 
tn the transformation of the ,, 

ser1es 
'( )s ( ), -s-1 t -1 / s+ ·1. j z when z;...1 , .,hich is slowly conv·ergent (its 

s= 
va.ue is ln 2 = Oa69314ooo)o The second refers to the transformation e oo 

o:f the series 
s=O 

,. I ., 

divergent lthis 

series may be from the exponential integral -ezEi(-z), whose value when 

z=1 is Oc596ooo) 

2s 
m 

0 

0 0 

1 

2 

3 

4 

5 

6 

1o0 

Oo5 

0083333 

0058333 

0078333 

0061667 

2 

0066667 

Oo7 

0069048 

0069444 

0069242 

Table I 

' 

4 

Oe69231 

0069333 

Ci(!) 69309 

6 



2s o 

rn 

0 0 

1 

2 

3 

4 

5 +:20a0 0 

6 -10000 

4 

Oe571 

0$615 

0.571 

-15-

' 

• The members of the even order c-array may be constr1.1cted in 
s 

variousA 21_e For later application we mention that the even order 

£-arra.::r may be completed by the addition of quantities with odd 
.. suff1 x. , thus: 

a 

0 
<2 E' , 

e· 
' ~ 0 

€. 3, 
.. 1 ( 3) 

0 

1 ( 1 ) 
e. 

' 

Cl 

The members of this array then obey tre relationshi.ps of the 

£-algorithm, vizo 

(m+1) 
= ~ s-1 

- s 

_, 

• 

(45) 

these concern quantities lying at the vertices of a lozenge in this 

arrayo If we take as in:tial values 

= 0 r•m 
C. 0 2 

s=O 

-s-1 
C Z 

s 
(46) 
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then the £-array may be built up, column by column<» from left to 

righto 

. .U:V Non-Corrnnutati ve Continued Fractions 

So far we have only considered continued fractions whose 

coefficients are real or complex n1.1mbers o Recently a :formal theory 

has been described of' continued :fractions_whose coefficients obey a 

non-connnutative law of multiplication 23~G We are now dealing with 

continued fractions of the form 

' ' 

0 0 0 (47) 

where a 11 ( s= 1 ,2, o o e) ~, bis' ( s=O, 1, o o.) are elements o:f a ring in which 
' 

an inverse and unity ar~ definedo With regard to the elements A,B,C,oee 

of N the following assumptions are made~ To every pair A,B there 

corresponds an element C, such that 

A+B = B+A = C 

and 

(A+B)+C = A+(B+C)o 

To every pair A,B there corresponds an element D such that 

AB = D 

and further 

(AB)C = A(BC)G 

In general 

AB:# BAa 

There exists an element I such that 

AI = IA = A :for all AE N 

To each A there corresponds an -1 element A such that 

(48) 

(49) 

(50) 

{ 51 ) 

(52) 
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(54) 

There is a subset S of N such that for all BE S and all AG N 

AB= BA" (55) 

Finally there exists a zero element O, such that for all A EN 

A+O = A, AO= OA - 0 

We are dealing, for exalnple, with square maticesc 

In the case of scalar continued fractions the 

C 
n • • • 

a a 
n-1 n 

b 1+ b 
n- n 

(56) 

th n convergent 

(57) 

may preliminar,l r be defined by the following rules: divide a by b n n 
and add the the result and add the 

quotient to 

when 

n- n-
• 

b 
2

, OMc:l :10 on9 That is, compute D 
n- s 

D - C n n' 

a 
n-s 
D 

s 
(s=0~1,GGG,n-1) (58) 

(59) 

When we come to non-co1mnutative continued fractions whose elements 

are members of N, we must in addition prescribe the ordetof the 

multiplication by the inverse in (58)0 

The development of the theory of non-commutative continued 

fractions has been confined to two caseso That in which the convergents 

are de:fined by 

pre 

where • 

a 
n 

b 
n 

b +D- 1 
n-s-1 s 

= D 
n 

a 
n-s 

(60) 

(61) 
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(ioeo prernultiplication by the inverse o~ 

and that in which 

D is consistently used) 
s 

post 0 0 0 

where 

a 
n 

b 
n 

= D 
n 

(62) 

(ioeo where post multiplication by the inverse of D is consistently 
s 

used) o 

In order to give a brief indication as to how the theory develops 

from these definitions we give the derivation of the fundamental 

recursionso We wish to show that 

where 

a 
n 

b 
n 

A =b A 1+a A 2 , A 1-I o, A0=b
0 n n n- n n- - > 

B =b B +a B B O B I 
n n n- 1 n n-2 , -1 , 0 - • 

and B0 are clearly correcto The quantity 

.. n+ by 
.. .. 

replacing bn in 
0 .. • 

the de:f1n1t1on 

- 1 " b +b 1an,ij,,.f~The right n n+ hand side of (65) then becomes 

or 

-1 
b b A +a A n+1 · n+1 n n+1 n-1 

of preC 
n 

(64) 

(65) 

(66) 

by 

(68) 

(69) 

with a similar expression for the right hand side of (66)0 The quotient 

of these two e~pressions is 
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• 

where 

·1 
b- . b B +a B . } 

n+l -. n+1 n n+1 n--1 J)..,. 

A 
n+1 

(66) in which n is replaced by n+l~ 

Similarly 

• • 
1S given 

a1 a2 
post bO+ b + b2+ 

by AB 
n n 

A n 

B 
Il 

1 

, 

where 

A b +A a 
n-1 n n-2 n , 

I' 

B b +B a 
n • 1 n n-2 ?1 ~ 

• • • 

(70) 

(71) 

a 
n (72) 

b 
n 

(73) 

(74) 

The theory of these two systems of continued fractions has been 

built upo In particular we l1ave derived orthogonal polynomials 

prep (z) (zE S) for which 
n 

n 
k C 

s=O n,s r+s t/:O 
(75) 

and orthogonal polynomials post {p (z)} 
n 

( z E. S) for which 

n =O r· ·O , 1 9 (i) ID e t n-1 
C k (76) 

•• r+s n,s 
s=(J :/:O r·~· n 

• 

Similarly tr1ere exist associated anr 

~ {o (z)}o An £-array such as was described earlier can also be 
n 

constructed.~ It will be seen that if z E. S then the initial conditions 

(46) for the application of thee-algorithm are the same in the pre 

and in the post systems; ~urthermore the £-algorithm relationships do 

not involve either pre or post multipJication, ioee 

(77) 
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b b f n-onnc-.i-·, r1.· n'1" t.'1v t· r• j !?'1"err3e.., rr}1e TI(.)l"'mS Ot)€'Y tr'.it?-ecome mem ers 0 .. a. J)c, ... (,.;., ,iJ . ,. n .•. 

re.la. t ions r1 i !Jf~i . 

and 

( '(9) 

0:., 

It is poss:.i bl.e to sr1ow, ft')l'.'" example, t.t1at 
.. I it• ' "\ s I 
s~o 

tt1en 
,,.. 
t ,f 

a.o + l.,. I+ 
(80) 

1· r 
( e1 ) .;. 

t) ➔• "' · "'* I 7 \tfc "Ml t WI ' • i) QI • 

' • • I . . ., 
t.1 + ·1·1 + 

1 
~ , ... 

('J 

(' 

tlj_ vei~ges ,~ 

. .. .. 
1. r1 t; q 1.1 al 1 ·t .. l. t:: ~-~ Ii f.;,,ppeal 

·to a functior1 thE.~oret.i(~ apnrt)t-lch, tr\E-: 11s(:l ()f tht~ rn1,)n1,,nt .. pr,)l:ilt')rn, tt1f~ 

location of t.r1c)se v,:,J.1.ie<:4 C)f t.r1e sca.~l.~:r.· z ·fcJr which t}1(~ (.ienominat<.)r 

s ir1gular, ttr1d so on , has not been madL; though 
• • • 

presents a r1t1mber o1~ interesting probJ.ems., 

V Non-Commutative I)etE~rm:tnants 

work i.n this direction 

Early work on continued fracti.on~ was very rrucl1 bound up wi·t~1 

ttle theory of deter1ninantse We have seen t}1at determinantal :formulae 

o~ the coefficients c (s=0,1,&os) of the s . 
• • • original power series for 
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t~e coefficients 8 (s=0,1jooo) of an associated continued fraction, 
s 

cen be gi veno Determinarital forrnulae fo~ the orthogonal polynomials 

p (z) and the 
n 

associated polyr1omials 

can also be giveno 

o ( z) 
n 

To give one further simple expression, we have 

z-o. 
n 

-I 

a n-1 
0 

0 

-I l (82) 

• 

0 

-I 
• 

By an appeal to this formula it is possible to show that the roots 

o:f the denominators of a Grorrm1er fract.ion can only be real<l) 

Further·more Wall establishes his matrix theory of continued 

rractions ( 13_ Ch. XII) by studying the expression (82) an n tends 

to in:fini ty, and exarr1ines the conditions under which the corresponding 

matrix.remains non-singular$ 

When proceeding to the theory of non-commutative continued 

:fractions we are however confronted by the :fundamental difficulty that 

a non-commutative deter1ninant may be defined in two ways o The first 

definition derives from a set of lines.r equations in which the 

coefficients, the homogeneous terrns, a.nd the unknown variables are 

all linear operators: the second derives from the usual expansion 

o:f a determinant with respect to its terms. 

, 

• • • • • In the scalar case these de~1n1tions are equivalent~ 1n the non-

conunutative case they appears to have little to do with one another11 

However, if the theory of non-commutative determinants is to be 

exploited in the theory of non-co1mnutative continued fractions, it may 

be possible to apply some recent work of Ostrowski 25 in which he 

considers no1·ms o:f matrices whose elements a .. (i,j=1,.o,m) are 
J. ,J 
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linear operatorso He finds that the norm of the matrix depends solely 

on the norms of the operators (ice$ not individually on the elements 
' . 

of the linear operators)o 

It is important to bear in mind that Ostrowski is dealing with 

matrices of linear operators, not witr~ determinants of linear 

operators ( thus if his matrix is an mx.m matrix of elements whi.ch are 

nxn matrices, then the 

(mxn)x(mxn), not nxn)o 

e, Ii • + 

resultant matrix 1s of dimension 

Nevertheless I feel that an attempt to adapt Ostrowskj. 's 
• • • 

results to Wall's convergence theory would constitute a very promising 

line of attackQ 

VI Vector Series 

I have also shown that the £-algorithm may be used to 
00 

transfonn series of the form 
s=O 

C Z 
s 

-s 1 in which the coefficients 

c (s=0,1,ooo) are vectorso In order to do this use is made (for the 
s 

inverse which occurs in the e:-algoritr.m relationsr1ips) of a suggestion 
• 

of Ko Samelson, na.tnely that 

n 
(' 

-r=1 

~ err 1 .w.a ;; • , r11,■ at (83) 

This corresponds to more general defir.itions of the inverse of a 

rectangular matrix given by Lanczos 27 and Pennrose 28_ o 

VII Application to Iterative Methods~ 

Matrix and vector functions have, of course, appeared in the 

literature; admittedly the equations "·hich such functions satisfy are 

no more complicated than linear differential equations of the first 

order with constant coefficients, but all things must have a 

beginning ~ To the approximation of Eu h functior1s the continued 
~ve 

fractions which have '\just been d.escril:,edAdirect applicationo 

But the most immediate point of a.pplication of these continued 

fractions lies in the acceleration of slowly convergent iterative 

processese 
• 
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To revert to the scalar case for the moment, if we consider the 

solut.·ion of t~r1~ (1 i fferept&:i i'i_J f:a11ation 
< 

(84) 

by Picardws method of successive approximations, thus 

X - 1 -1 (85) 

then the successive iterates are indeed the successive partial sums 

o't' the series 

-1 x ln( 1+x)= 
s=O 

(-1) 6 /(s+1) s 
X (86) 

Thus any attempt. t.o accelerate the convergence of the iterative 
'" 

scheme (c~) is a direct transformation of' the slowly convergent 

series (8b)o In this case the correspcndence is complete; in the case 

of a more sophisticated iterative process the story is a little more 

complicated but the idea behind it is the sameo 

When we proceed, for exa.'11.ple, to the iterative 

differential equations with two point boundary 

integral equ~+. ions, or of' partial differential 

multi-parameter minimisatio problems (see e.go 

solution of ordinary 

conditions, or of 
• • equations, or of certain 

) , we obtain 

arrays of higher dimension; ioe~ they are, or can easity be mapped upon, 

vectors or matriceso 

To problems of this type the continued fractions of the sort which 

I have just been describing have direct applicati_ono In order to 
• 

illustrate their use I give a simple example .. It relates to th.e iterative 

solution o:f the partial differential equation 

• 

2<P + 4> 
xy YY 

= 0 

Q ~ • 

w1. th boundary values g1 ven over a square in tr1e x-y plane, by means 

of' the scheme 
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1 
= - (88) 

xy 2 xx .. YY · 

The problem is discretised and the successive iterates of (88) 

conEti.tute a sequence of square matrices. With the boundary value. 

chosen (87) has a simple analytic solt:.tion ¢(x,y) and. thus if any 

approximate soluti.on ¢(x,y) to (87) is given then it is easy to 

compute its distance from the true sol.ution ( taken to be 
• 

max ( ~(x,y)- ¢(x,y) )). 
x,y 

From the initial approximation 

( 0) 
4> ( X ,Y) = 0 (90) 

a sequence of iterates has been computed by means of equation (88). 
To this sequence the £-algorithm ( usir~g the Sarnelson j_nverse) has 

been applied. From the resulting even order e:-array a similar array of 

distances, computed by means of ( 89) ras been obtainedG •rable III 

·ives such an array. 

s 
m 

0 

, 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

.11,0-2 

.,s,oo 

o29,o1 

2 

3 

-2 

.23,02 

.17,03 

0.99,03 

4 

0 13, 02 

.23,01 

0.37,02 

Table III 

6 8 10 

0 ~ 5 3 I il4 
10 

e11,o-3 

.21 10-3 

070 10-3 

0019 10-2 
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It will be seen that the original qcheme diverges quite sttongly 

( this is ind,icatHed by -.. e ces t ·1 the first col1lmn) II) 1lowever, 

the converp;ence o:f the first diagonal of the £-array is quite 

reasonable o 

VIII Conclusion 

In conclusion I wish to make two further points~ The first is 

as :follows: I have said that non-commutative continued fractions are 

of great interest in accelerating the convergence of multi-dimensional 
* • 
iterative schemes in Applied Mathematics; this is undoubtedly trueg 

But conventional continued fractions have played an enormous role in 

Pure Mathematicso To realise this one has only to recall the fluent 

and ingenious use of continued fractions made by Tschebyschef:f and 

his pupils in their work on the moment problem; the • • work of StieltJes, 

Ha.rnburger, Nevanlinna and many others on the theory of functions of 

a complex variable; and the part which continued fractions have played 

in investigations into the arithmetic properties 
.. 

of the continuum@ 

Thus it is eminently reasonable to suggest that non-cormnutative 

continued :fractions will make a simile.r contribution to the further 

development of the theory of li.near or,erators~ 

The second point (it is rather prosaic) is this: 

Numerical Analysis is very much an exi:,erimental science. For thi~ 
.. 

reason, if a method of 
~~ 

to illust.rate its use, some trouble be,.. taken to indicate exactly how 

the examples were worked out and how they may be continued. In this 

instance I have published a number of ALGOL programmes ( 30]- 3l) 
relating to the computational aspects of thi.s ta.1.k. From the corres

pondence which one receives on these c•ccasions it is quite clear 

that the methods which I }, tve discussed are being incorporated in 

various computer progranme libraries, and that the numerical 

application of continl1ed t .. ractions is at the present time a subject 

of active interest. 
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