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I, Introduction

In this talklpropose firstly to deal with those aspects of the
study of continued fractions whic. s sre of direct application
in the theory of approximation, and secondly to sketch some develop=-
ments which are of recent origin and as yet incompletely worked out.
It has taken more than two hundred years for the theory of continued

fractions to attain its present condition, and I do not propose to

speak for quite that length of time,FBr this reasor;

I shall confine

myself to sketching the strategic principles involved in the develop-
ment of the subject, without going into too much tactical detail.
ITI. ©Sequences of Bilinear Transformations

For the purposes of this talk we shall regard a continued fraction

as resulting from a sequence ~f hilinear transformations of the form

a
r
- + e — e ¢ &
fq= b, £, £ T F . (r= 1,2, ) (1)
r r+1
As 1s well known, fo can be expressed as a bilinear function of fn+1’
thus
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where the functions An, Bn satisfy the twin recursions
A=bA .+adh , (n= 1,2,000), A, =1, Ag= Db (L)
= = 6 o o = = 1.
B=bB .+aB (n= 1,2,0¢0), B_, =0, B, (5)

Continued fractions can there.fore be brought into play wherever

sequences of bilinear transformations occur.

The Riccati Equation

In order to indicate how bilinear transformations arise and may

be exploited we first consider the general Riccatl equation

/ 2
* +
fo + aofo Bof

0 + Y4 O (6)
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where f_ 1s the dependent variable, and « are functions of Xo

O 09 Bo‘SYO -
This equation has the property that if the dependent variable fO 1S
replaced by means of the bilinear substitutions (1), then the functions

fr (r= 1,2,...) also satisfy Riccati equations

fl 4 a2+ 8F +v =0 (7)
Y r Tr r Ir r

where very simple recursions exist between the coefficients

b . (8)
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This 1mplies that the sclution to a Riccatl equation can be directly
expanded in the form of a continued fraction. The coefficients in this
continued fraction can be chosen in such a way that the resulting
expansion has certain asymptotic properties with regard to the variable
X, or they may be chosen in such a way as to simplify the recursions
between the members of the set (8), and so on.

A little reflection will several that many elementary functions
(e.g. exp{x), 1n(1+x), tan{x), arctan(x), arcsin(x), arccos(x), the
error function, the exponential integral, and so on) satisfy differen-
tial equations of Riccati form. For example, tan(x) satisfies the
equation

y! = 14y2. (9)

This means that such functions have continned fraction expansions
whose coefficients have a particularly simple form. For example
X x2 x2

3. To cec (10)

tan(x) = T 3= ST cev

In his recent text book A.N. Khovansk 1 [1] uses this principle to

give a unified treatment of the continuwed fraction expansions of

elementary functions.
Such functions as sin(x) and cos{(x) do not satisfy Riccati

equations; their continued fraction expansions do not have simple

coefficients.



-3=

The Riccati equation has other points of 1lnterest besides the fact
that it is satisfied by many elementary functions. As 1s well known
many differential equations can be derived from the consideration that
their solutions maximise or minimise certain functionals. Bellman [?}
and Calogero |[3] recently proved that a solution of the Riccati
equation maximises a certain functional which the latter shows (by
use of the Schr&dinger equation) to occur in problems in scattering
theory. The mechanism of the continned fraction enables us to obtain

direct expansions for the solutions of such problems.

Nevanlinna Continued Fractions

R. Nevanlinna [&] investigates the following problem: to determine

whether the function fo(z) obeys the inequality

|£,(2)] <1 (11)

or the unit di:¢. e shows that this 1s true if and only if the
sequence of con. tants fé(O) (s= 0,1,+..) where
fs(z)nfS(O)

£f  (z) = ————— Al (s= 0,1,000) (12)
S 1-f_(0)f _(2) z?

satisfy the i1nequalities
|f5(0)|~<1¢ (s=0,1,000) (13)

Clearly relationship (12) can be solved to give an expression ‘nr

fs(z) in terms of fs+1(z) similar to (1). This yilelds a continuzd

fraction of the form

c Cc.Z cC z
TS J R . LA N (1)
f (0) 144 _z+ 1+d4.z+ 1+4 z+
0, O i r

1f the coefficients of this continued fraction have a certain form then
fo(z) satisfies the inequality (11) upon the unit disc. Conversely, if
fo(z) 1s known to satisfy (11) then the coefficients in (1L4) have a

certain form and the convergence behaviour of (1L) can be investigated.
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Functions whose modulus has a known upper bound on the unit disc

occur 1n numerous physical problems. Nevanlinna continued fractions
can be used to compute the sclutions to such problems,

Richards =~ Goldberg Continued Fractions

Recently Richards [5] and Goldberg [é] have investigated the class
of analytic functions which map the right half-plane into itself and
take the real axis into the real axis. Such functions, referred to as

positive real functions, find application in the synthesis of two-

terminal passive networks [fj R ES] > EQ] - A function fo(z) 1s positive
real 1f 1t 1s single valued and analytic in the open right hand plane,
1f Re {fo(z)} 1s positive for z in the open pight hana plane, and if
fo(z) 1s real for real z. It can be shown that if fr(z) is positive

real and neither a_f (z)-zf (a_ ) nor a f (a )-zf (z) vanish ident-
rr r “r rr' r Y

ically for arbitrary choice of the positive constant a s then the

function fr+1(z) given by

f (z)-zf (a )
fr+1(z) — ar I 2 r aI‘

(15)

i‘v b v , “
a. r(ar) Zfr(z}

1s also positive real. Clearly relationship (15) can be sclved to give

an expression for fr(z) 1n terms of fr+1(z) similar to (1). This yields

a continw2d fraction of the form
dO 61“31 e2~-z2 .

:m“. & & !
fO(z) v d1z~ d2z~ (16)

which can be used for the computation of a positive real runction.

III. Continu=zd Fractions Derived from Power Series

We have just reviewed certain methods of deriving continued
fractions based on function-theoretic considerations. We now proceed to

what 1s perhaps the most extensively studied class of continued

fractions, namely those continued fractions which are derived by the

transformation of power series.

We consider the formal power series

o0

fo(z) ~ ) CSZ_5”1 (17)
s=0
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Clearly the formal power series for f.(z) derived from

1

¢
£,(z) = e 9 ,. (18)

Ze=C . C -1 £.(z)

10 1

mj)

1s similar to that for fo(z) (1.e. it begins with a term in z s thus

substitutions of the form (18) can be repeated and we derive the

continued fraction expression

%0 %0
fo(z) = e ——— o = '
O 1
(19)
c R g
Y, O o oo r=c oo o
A To B L= - s o L
1 e

The successive denominatore of this continued fraction are poly-
nomials (see e.g. [ﬁd] vol II p. 162) of the form

r
pr(z) = ) k_ SZS; (20)
s=0 ?

They satisfy a recursion of the form

p . (z)=(z-a_ ) p, ,(z)-8_ ,p ,(2); (21)

Ir

They are orthogonal with respect to the system of weights CS(S=O,1,aae),
1o€e

- OGc:'- Oa'i,aw,r'-'!) (22)

i o~1%
0
!

S

The successive numerators of (19) are the sqﬁalled associated

orthogonal polynomials of the form

o (z) = Yy k' z° (23)

It is a consequence of the way 1n which the continued fraction

(19) is derived that that the series expansion of the quotient
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in inverse powers of z should agree with the power series

? -5=1 % ‘
/ C . Z as far as the term 1n %b_jg l.€., that
s=0
O { Z} oo o0
- - Ll =S ]
L - AT ez LI 74 =l =S (2k)
S - dr+s
5=0 g={)

where 1n general dzﬂ_s# 0 (s=0,1,c05)s For this reason the continued
. . . . . : . TR
fraction (19) is said to be associated with the series E c_Z s
s=0

Convergence Theory

The investigation of the convergence behaviour of continued
fractions of interest in function theory usually proceeds in the fol-
lowing way: we first establish that the continued fraction being
investigated 1s a member of certain class, then, by establishing cer-
tain criteria which relate either to the coefficients of the
continued fraction or those of the power series from which 1t was

derived, we show that i1t converges.

Grommer Fractions

The convergence theory of associated continued fractions 1s
particularly easy to discuss if it 1s known a priori that in (19)

BS>0 (s=0,1,...). Associated continued fractions of this type are

known as Grommer fractions.

Lﬁ we dende
€::fH€“HEEE€IWa;€;rminant

s
k=1
;

<k> 0) (25)
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then the coefficients BS in (19) are given.([ﬁ?] p 325) by

H o H
B ~ - & (S=O,3,@@@) (27)
S 2
H
s+ 1

From the determinantal expression (27) it follows that if

HS}O (S=O,1,¢@@) (28)

then B8_> 0 (8=0,1,600)0

From the algebraic theory of quadratic forms 1t 1s known that

(28) 1is true if the quadratic form

Q0O

z cC. . X. X. (29)

WECHE

1s positive definite., In general, however, 1f the coefficients
cs(s=0,1,,¢,) are given, neither of the criteria derived from (28),
(29) are easy to use.

For this reason we proceed to consider the behaviour in the

large of the function fo(z) which, so far, has been no more than form-

ally associated with the power series E c zwsﬂza We consider =a

s=0 S

certain class H of functions, and say that f (z)€H if it is

0

asymptotically represented by the series Z cSzmsm‘g 1in the sector
s=0
€sarg(z)s T —€, O<ifég'where the coefficients CS(S=0,1,aaa) are real,

fo(z) is analytic for Im(z)>0 and furthermore for Im(z)>0,

Im{fo(z)}<0 (30)

It is dear that if (30) is to obtain then c|,
it may easily be shown ( [27] Po 30) that if fo(z)€ H, then the function

1s positive., Furthermore

f1(z) given by (18) is also a member of H. Thus the coefficients BS
(s=041,00.) 1n (19) are all positive and (19) is a Grommer fraction.
If we transcribe relationship (3) into the notation of the

continued fraction (19) we find that
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This is bilinear transformation of the f =-plane into the fonplaneg

n
30 far we have only used the property of bilinear transformations that

the result of a sequence of bilinear transformations 1s a bilinear
transformation. Now we use their other well-known property - that
they transform straight lines into circles. In particular the real

axis 1n the fn--plane is transformed into the circle of radius (V’,,,(‘Z))

80 81 50 6 8n-2 (32)
~2Im{p__.(z)p (z)}
whose centre lies at the point (ce,)
Im{on( 2 )pn--‘i (2 )+°n-@ (z )Pn( ) } {on( Z) n 1( (33)
ZImpn_](z)pn(z)} ZIm{pn_.!(Z)pn(Z)}

in the fomplanea The lower half of the fn-plane 1s transformed into
the interior of this circle. Since fn(z)e H, then the value of f‘n(z)
lies in the lower half plane if Im(z)»>0, thus for these values of z
the value of f‘o(z) lies 1n the interior of the above circle. Thus the
successive convergents of a Grommer fraction provide a sequence of
circles within which the value of the continued fraction must lie.

Let us 1llustrate this phenomenon by means of the continued
fraction

f(z)’b1 1 1 2 2 r

W $ 00 a0 TR 0 G000 ST

I
O P e P o= 7, o 7 - 7 - ¢ & © 2 - ¢ & C (3)4)

which 1is of the form (19) with
a =0 (820,1,...), Bg = [(s+2)/2] (35)
I1f

z! = 2% (36)



then
o B

fD(z) = - ze" ki(=2z21), (37)

When 2z=0.5+0,.51 we obtain the following diagram

The first convergent of (34) tells us that the value of fo(z) lies
within the circle I, the second- within the circle II, the third -

within the circle III, and so on,
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Clearliy, if the value of rniz} tends to zero then fdﬁz? may be
determined to any accuracy, and the continued fraction converges:
this is the determinate case. [f however the value of rn(z) tends to a
finite non-zero limit, then the successive convergents of the Grommer
fraction may tend tc a limiting point on a circle of this radius, or
they may be distributed in some other fashion on this circle: 1n any
case, without further information we cannol as yet say angthing aboul
the convergence of the continued fraction: this 1s the indeterminate
case.

By using the recursion (21) we can derive an expression for rn(z)

in terms of the partial sum of a certain series. For from (21) i

*Impn_.&(z)pn(z)}*: Im(z) lpn_1(z7 lzwﬁn?1{pn“2(z)pn“1(2)}
i lLSIE iy FREUNE R
Thus
n-1 !ps(z)lz -1
rn(z) =%lm(z) SZ:O m} ‘ (39)

The critical problem i1n the convergence theory of Grommer
fractions is to establish the divergence of the series in (39). Now
1t may be shown that the partial sums of the series (39) satisfy a
Volterra sum equation ([13] p. 96), and using tnhis fact it is possible
to prove that rn(z) and rn(O) tend to zero or to a non=-zero limit
together. This makes 1t easler to bring the conventional convergence
theory of continued fractions 1nto play, and it can be shgwn E‘R li] that

when z 1s equal to zero, the series in {(39) diverges if ): E;/z

s=0
diverges, The disadvantage of this result 1s that 1t 1nvolves the

coefficients of the continued fractior, and these are not usually

avallable in simple form. Howe'e' Carleman, _using his result
([15] p. 112) that if ug>0 (5=1,2,...) and | wug di.erges, then

s=1}
1 - o L
z (u,‘u ¢ ool ) /s diverges, Shows (egaln by purely algebraic means )

s=1 2 >
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v =12 . .;. ..
that the series Z BS / diverges 1f the series

s=0 S

-1/2s

9 E
¥

i} ~1 8

diverges.

Summarising these results: if fo(z)eH and the series ) czsw‘!/2s
s=1

diverges then the the Grommer fraction (L9) converges.
The existence and convergence of a Grommer fraction can be

versed 1in terms of the Hamburger moment problem [16] . If it is

possible to find a bounded non-decreasing function % (t) such that
oo .
f mt dg(t) - CS (5:091,@1@@)5 ;(“m) - 0 (}40)

then the coefficients BS(S=091,@@3) ir. (19) are positive. If it is
possible to find only one such function g (t) (i.e. the Hamburger
moment problem i1is determinate) then the Grommer fraction (L9)

converges, and 1ts value 1s given by the Stieltjes transform

= &3 (1n(2) > 0)

Z=1

M Riesz [17] has shown that if the Hamburger moment problem is soluble,

then 1t 1s determinate 1f

/ ¢
. . g 25 -
luim:lf T53)1 S (41)

Thus if fo(z) € H and condition (41) obtains then the associated Grommer
fraction 1s convergent.

R, Nevanlinna has shown [jS] that 1f the Hamburger moment problem
1s indeterminate then the sequences of convergents of even order and
of odd order respectively of the Grommer fraction converge to differing
functions. *

To conclude this section we mention that there i1s a Tauberian
theorem for Grommer fractions: 1t was shown by E.V. van Vleck [jé}
that 1f a Grommer fraction converges for all !'i[ >R, then the associated
power series (17) also converges for all iZlBLRa

Time and space do not allow me to discuss corresponding continued

fractions, and their connection with the Stieltjes moment problem
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it ) = ( g=0 3 ] g 06 0O ) ( h2 )

o,

and the Markoff moment problem

f:) t8d§(t) = C s (s=0,1,4600) (L43)
But the principles involved in establishing the convergence of the
continued fraction expansion of a certain function may be summarised

as follows. A formal power series expansion is obtained from this

power series by ensuring that the power series expansions of the
successive convergents agree with the formal power series to an
increasing number of terms. From a number of criteria, which may be
algebraic or function-theoretic m charecter, 1t can bhe shown that

the continued fraction 1s of a certain type. From this continued fralion a
sequence of bilinear transformations is obtained which %ell us that

the value of the given function lies within a succession of circular
regions. From a number of further criteria, which again may be
algebraic or function~theoretic in character, it can be shown that

the radii of these regions tend to zero.

The type of the continued fraction and the question as to whether
1t converges or not 1s related to the solution of a certain moment
problem. If the coefficients of the cuntinued fraction possess certain
properties then the corresponding moment problem has a solution, i.e.
a bounded non-decreasing function g(t) can be found satisfying certain
conditions. If the continued fraction converges then only one such
function can be found. The value of thke continued fraction can be
expressed by means of an i1ntegral transform involvinggit)a

The convergence of the original formal power series has not been
mentioned, and 1s in the first instance ierelevant. For example there
exlst continued fractions converging in certain bounded domzins in the
complex plane for the functions exp(x), wheg: power series converges
everywhere 1in the bounded complex plane; fur tan(x) whose power
series converges for |x|< [/2; and for ~e“Ei(~2) whose series develop-

ment 1n inverse powers of z converges only at one point, zm?woa
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The e=Array

So far we have only ¢ zidered the ser.ex o o 2z . Tt 1is

8
Sy
85 __
4 % e . , “ . ; a ' S E; Rt g )
clearly possible also to cunsider the serien S , transform
5=

this into an associated continued fraction, and cbtain the expansions

. (LL)

Tf we denote the successive convergents of this continued fraction by

€2$) s then thev can be arranged as ftollows:

¢l 0)

D

(1) 0)
£3 g .

(2) r) (0)

A * N
£3 €, &h

2 )

(3) 2] )

J 2 '} o

this 1s the even order c¢-array. The successive convergents of (L4 )

kS

lie on amdiagonal in this array: the successive partial sums of the

Sl .. ,
i C 2 lie 1n the first column.
s=0

series

. ) N _ . o i
This array has a very strong connecticon with the Pade table LQQj,

indeed if we transpose this array about the diagonal with superscript

: - .
1 and change the varlable to x=z , then we obtain the upper halfl of

the conventional Padé table.

Determinantal expressions in terms of the coefficients csis=03?5aga)

for the Padé quotients were given by Frobenius 121] o in 2rms of the
) -s (m)

c Z for the gquantities &

partial sums of the series . 24

s=0

(myr=0,14c0-) by Shanks {?élﬁ
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The types of convergence manifested by the even order s=array

can 1n principle be distinguished as follows

1) The quantities in all the diagonals converge to the same limit
(this corresponds, for example, to the case in which the Stieltjes
(m=og?930¢) are

moment problems for the weights ¢ .c

m* m+1? “ma29°°°
determinate). This 1is regular convergence
2) The quantities ineach diagonal converge to differing limits (this

corresponds, for example, to a determinate Hamburger moment problem

for the weights ¢ ,c

- 'his 1s 1rregular convergence
12Cme1® Cprppsos )., 1 o o .

3) The even members and odd members of each diagonal converge to

differing limits (thts corresponds to indeterminate Hamburger moment

problems for the weights cm)cm+§3 Cm+29aa@

to the distinguished mathematician who first investigated this behav-

(m=0,1,¢0.)). In deference

lour, we shall call tkis the highly 1rregular convergence behaviour

of R, Nevanlinns.

Here are two examples of regularly convergent even order c-~arrays.

TB@ first (Table I) refers tr~ the transformation of the series
' S R T - T R g . . X
E %{WE) f(s+§}z Z S when z=4., .hich 1is slowly convergent {(1its

S= ﬁ a
vague 1S 1ne2 =m05693‘ﬁhw -). The second refers to the transformation

: S ] : . : oy
of the series X (mi)ssgz S when z=1, which 1s divergent (this

S~
series may be from the exponential integral me;Ei(mz)g*Mhose value when

z=1 15 0,596, ., )

2s 0 2 L 6
m
0 0
1 1.0 0.66667
2 0.5 0.7 0.69231
3 0.83333 0,690L8 0.69333 0.69312
4L 0.58333 0,69L4Y ~ 0.69309
5 0,78333 0.69242
6 0,6166T

Table I
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2s O yA 4 &
m
0 0
1 1.0 0.5
2 0 0.6 0571
3 42,0 0.5 0.615 0,588
L  -L.0 0.8 0,571
5 4 20,0 O
6 -100.0

The members of the even order c-array may be constructed 1in
$
various A [2 "i] . For later application we mention that the even order
e-arravy may be completed by the addition of quantities with odd

suffix. . thus:

o)
€, _
13
EE’ (1) iio} (0)
\
€0 £,
e(fi giz) EEOJ
) gie) (1)
30 2y
e_? & )

The members of this array then obey tle relationships of the

e-algorithm, viz.

m)  _(m+1) . m+1) (m) -1 S =04 % "
is""!“éS“‘! +l§s “&S) % G“'Js OJ )*%57(5)

these concern quantities lying at the vertices of a lozenge in this

array. 1f we take as in“tial values

@j‘?) =0 , e ™), ) ¢ 25 (46)
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then the e-=array may be built up, column by column, from left to

right.

IV Non-Commutative Continued Fractions
So far we have only considered continued fractions whose
coefficients are real or complex numbers. Recently a formal theory
has been described of continued fractions whose coefficients obey a
non-commutative law of multiplication [éi]@ We are now dealing with
continued fractions of the form
2

24
+ +

b oo o (L47)

O +

where asj (521,2,000) 4 :' (s=0,1,...) are elements of a ring in which
an inverse andunityaré defined. With regard to the elements A,B,Cyc0c
of N the following assumptions are made. To every pair AyB there

corresponds an element C, such that

A+B = B+A = C (L8)
and

(A+B)+C = A+(B+C). (L49)

To every pair A,B there corresponds an element D such that

AB = D (50)
and further

(AB)C = A(BC). (51)
In general

AB # BA. (52)

There exists an element I such that

AT = TA = A for all AeN (53)

To each A there corresponds an element Afi such that
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an~t = a7 la = 1L (54)

There 1s a subset S of N such that for all B€S and all A€N

AR = BA, (55)

Finally there exists a zero element O, such that for all AeN

A+0 = A, AO = OA = O (56)

We are dealing, for example, with square matices.

In the case of scalar continued fractions the nth convergent
a a, a a
1 2 ne-1 n
TP TTF TF " b+ (57)
1 2 ne1 n

may preliminaril; be defined by the following rules: divide a_ by brl

and add the guotient to bn 13 divide 8 _1 by the result and add the

quotient to bn...,g ,‘ and 5o on. That 1s, compute DS (s=0,1,000,n) where

a.
D :bn > D =b + = (s=0414000,n=]1 ) (58)

O s+1 nes=1 D
S

when

D =C_, (59)

When we come to non-commutative continued fractions whose elements

are members of N, we must in addition prescribe the orderof the

multiplication by the inverse in (58).
The development of the theory of non-commutat ive continued

fractions has been confined to two cases. That in which the convergents

are defined by

pre {b0+ =T T+ °°°% } Dn (60)
| 2 n
where
D = D = b +D“1 &, (5:0,1,@@@311“1) (61)
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(i.e. premultiplication by the inverse of D_ is consistently used)

and that in which

<A a a

‘" | | | 2 mn - 62
post {bot T ¢ oo T | D_ (62)
] 2 n
where
=
— — + — 0 QO "'"'1 6
Dy s D_,,=b __ .+a D (s=0,1,0004n=1) (63)

(i.e. where post multiplication ty the inverse of Ds 1s consistently

used) .
In order to give a brief indication as to how the theory develops

from these definitions we give the derivation of the fundamental

recursions. wWe wish to show that

8y 85 %n -1
pre anprE{bO"' E"’“: “'B"'T e @ O ".B“""} -— Bn An (6h)
1 2 n
where
= + = =
A=b A +a A A =T, A=b, (65)
B =b B _ +a B B .=C, B =I (66)

N N n=1 N n=2 9% ] O

The expressions for AO and BO are clesrly correct. The quantity

precn+? 1s obtained by replacing’bn in the definition of preCn by
- : :
Q
b +b . Bne.The right hand side of (65) then becomes
-1
+ +
(bn bn+1an+§) Anui a'zlAr:w«-m-Q (67)
or
= ]
bn+1{bn+1(bnAn~1+anAnw2)+an+1 Anmi} (68)
lo€o
-1 _
+
bt pgghite A Ll (69)

with a similar expression for the right hand side of (66). The quotient

of these two expressions 1s
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. - | | , e B .
Ebn+?€bn+33n+an+18nu§?] ipn+? gbn+§An+an+ﬁAnw1}] (70)
lo€o
B™'. A (71)
n+l n+1 B
where An+! and B ,q &re given by expressions of the form (65) and

(66) in which n is replaced by n+l,

Similarly
a. 8, a
1 2 n
pOSt {bo+ "'.E;“""": ﬁ o o ® "'.B'""" } (72)
1 2 n

. : -
1S given by Aan s Where

A= A (D *AL sa AT, AgThg (73)
B =B .b +B B .=C , B =I , (T4)

ﬁ= N=-1 n n~2an 9 T ? 70

The theory of these two systems of continued fractions has been

built up. In particular we have derived orthogonal polynomials
pre{pn(z)} (z€ S) for which
=0 (r=0§1,@0@,nu1)

k c_, | (75)
g RsB THS (r=n)

and orthogonal polynomials post {pn(z)} (z€&€S) for which

e~

S

Il =0 (I’=0,1 g © © & gn‘“j') 6
Z cr+sknas _ (76)
s=0) #0 (rmn)‘

Similarly there exist assoclated polynomials pre{on(z)} an:
,n(z)}c‘An e-array such as was described earlier can also be
constructed. It will be seen that if 2 €S then the 1nitial conditions
(46) for the application of the e=-algorithm are the same in the pre
and in the post systems; furthermore the e-algorithm relationships do

not involve either pre or post multiplication, l.€a

&re{pn(z) }]“1 Epre{oh(z) }]:[—_post{on(z) H [poat{pn(Z)} ,“1 (77)
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of suitable nerms. The cosfficionta of the continued Traciion BOW
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become members of a Banach ring witrs inverse., he NOVMS obey tLhe

relationships
LIP3

and

: (ry)

l1s|| converges,

3 £

It is possible to show, for example, tnat it

)

= ()
then

s o+ 2 (80)

| P ,
h.) +- E‘“‘“"‘“‘ s e & & (61}

i h o+ I
1 .

1
dive :z*gzgesﬁn "ﬁan evwl.3 Lv% 3 19 &L@M .

The ecaornvorgonce Lreanry wiich has so for roen sastahlished YRS
algebraic and depends solely upon the use of inequalities. An appeal
to a function theoretic approach, the nse of the moment problem, the
location of those values of the scalny 2 for which the dencominator
of an acsocinted non-commutative contimied fraction becones i,
singular, and so on, has not been madcey though work in this direction

presents a number of 1nteresting problems.

V Non=Commutative Determinants
Early work on continued fractione was very much bhound up with
the theory of determinants. We have seen that determinantal formulae

of the coefficients cs(s=0,1,ao@) of the original power series for



s

the coefficients Bs (8=0,1,.0..,) of an associated continued fraction,

cen be given, Determinantal formulae for the orthogonal polynomials

pn(z) and the associated polynomials @ (z) in terms of the cs(smOﬂ Jooo)

, n
can also be given.

To give one further simple expression, we have

2 =L A 0O
N Ne1
O
Z“ana4 8n~2
- - 8
T Z. anﬂz (82)
zwa‘l BO
O
- zma4

By an appeal to this formula it is possible to show that the roots
of the denominators of a Grommer fraction can only be real.

Furthermore Wall establishes his matrix theory of continued
fractions ([}3] Ch. XII) by studying the expression (82) as n tends
to infinity, and examines the conditions under which the corresponding
matrix remalns non-singular.

When proceeding to the theory of non~-commutative continued
fractions we are however confronted by the fundamental difficulty that
a non-commutative determinant may be defined in two ways. The firsF
definition derives from a set of linear equations 1in which the
coefficients, the homogeneous terms, and the unknown variables are
all linear operators: the second derives from the usual expansion
of a determinant with respect to 1ts terms.

ITn the scalar case these definitions are equivalent: in the non-
commutative case they appears to have little to do with one another,

However, if the theory of non-commutative determinants 1s to be
exploited in the theory of non-commutative continued fractions, it may
be possible to apply some recent work of Ostrowski'EESJinwhich he

considers norms of matrices whose elements a. 3 (1,j=1,.0.,m) are
¥
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linear operators. He finds that the norm of the matrix depends solely
on the norms of the operators {i.e. not individually on the elements
of the linear operators).

It is important to bear in mind that Ostrowski 1s dealing with
matrices of linear operators, not with determinants of linear
operators (thus if his matrix is an mxm matrix of elements which are
nxn msetrices, then the resultant matrix 1s of dimension
(mxn)x{mxn), not nxn).

Nevertheless I feel that an attempt to adapt Ostrowski's

results to Wall's convergence theory would constitute a very promising

line of attack.

VI Vector Series

I have also shown [26] that the e=algorithm may be used to

. Y e . .
transform series of the form X csz > in which the coefficients

s=0
c (s=0,1,500) are vectors. In order to do this use is made (for the

inverse which occurs in the e-algorithm relationships) of a suggestion

of K. Samelson, namely that

il THIRME:  TARATICRARRY:

s
-1 - — e ] —
(yjryzoﬁﬁaayn) = (rz::.{‘g Yryr) (5’1:3’299@0:3’]&)5 (83)

This corresponds to more general defiritions of the 1nverse of a

rectangular matrix given by Lanczos E?'T] and Pennrose [283 o

VII Application to Iterative Methods.

Matrix and vector functions have, of course, appeared 1n the
literature; admittedly the equations which such functions satisfy are
no more complicated than linear differential equations of the first
order with constant coefficients, but all things must have a
beginning . To the approximation of suﬁgwfunctions the continued

fractions which have just been descrited,direct application.

But the most immediate point of application of these continued

fractions lies in the acceleration of slowly convergent iterative

Processes.
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To revert to the scalar case for the moment, 1f we consider the

solution of the differenti1al equation

yi= x" {(+x) " =y}, y(1) = 0.6931k (84)

by Pilcard’s method of successive approximations, thus

v .. (x)=0.69314+

rX_ =1 = | i
r+ 1 ?1x {(1+x) -y (X)ﬁdx (85)

then the successive iterates are indeed the successive partial sums

of the series

-1
X

In(1+x)= I {(~1)S/(s+1)} x> (86)
s=0

Thus any attempt to accelerate the convergence of the 1terative
scheme (&&) is a direct transformation of the slowly convergent
series (86)., In this case the correspcndence is complete; in the case
of a more sophisticated i1terative process the story 1s a little more
complicated but the idea behind 1t 1s the same.
When we proceed, for example, to the iterative solution of ordinary
differential equations with two point boundary conditions, or of
integral equstions, or of partial differential equations, or of certailn
multi-parameter minimisatic problems (see e.g EQQ:]_) ., We obtain
arrays of higher dimension g 1.e. they are, or can easily be mapped upon,
vectors or matrices.

To problems of this type the continued fractions of the sort which

I have just been describing have direct application. In order to

1llustrate their use I give a simple exmple@ It relates to the iterative

solution of the partial differential equation

b ot 2¢xy + ¢yy = 0 (87)

with boundary values gilven over a square 1n the x=-y plane, by means

of the scheme
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o(T+1) ”‘%'{¢(r)+ ¢(r)} (88)

Xy XX yy °°

The problem is discretised and the successive 1lterates of (88)
conditute a sequence of square matrices. With the boundary value.
chosen (87) has a simple analytic solution ¢(x,y) and thus 1f any

approximate solution g(x,y) to (87) ic given then 1t 1s easy to

compute its distance from the true solution (taken to be

max (Ig(x,y)w d(x,y) 1)) (89)
XY

From the initial approximation
) (x,y) = (90)

a. sequence of iterates has been computed by means of equation (88).

To this sequence the e€-algorithm (usirg the Samelson inverse) has

been applied. From the resulting even order e-array a similar array of

distances, computed by means of (89) bras been obtained, Table III

"i1ves such an array.

S 0 2 L 6 8 10
I
0 oa6210~3
1 1T 192 o,u110~3
2 15,40 @2h10-2 oah010~3
3 2914 12, = 13,42 OQSBTOwh
L ¢56102 @9610-1 025, =1 11,43 0.90,,=5
5 @1’10“ .52,,0 6561O~1 .21, 4=3 azzjemu 0.34
6 @21105 ¢u0101 913102 a7010~3 oa1210~3
T @hojoé 023,42 23,41 0.19. =2
8 T 407 17443 0.37.42
9 a15109 0;99103
1

O O¢281010

Table IIT

10
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It will be seen that the original scheme diverges quite strongly

(this is indicated by . e cislownces {1 the first column). However,

the convergence of the first diagonal of the g=array is guite

reasonable.

VIII Conclusion

In conclusion I wish to make two further points. The first 1is
as follows: I have said that non-commutative continued fractions are
of great interest in accelerating the convergence of multi-dimensional
lterative schemes in Applied Mathematics; this is undoubtedly true.
But conventional continued fractions have played an enormous rdle in
Pure Mathematics. To realise this one has only to recall the fluent
and ingenious use of continued fracticns made by Tschebyscheff and
his pupils in their work on the moment problem; the work of Stieltjes,
Hamburger, Nevanlinna and many others on the theory of functions of
a complex variable; and the part which continued fractions have played

1n investigations into the arithmetic properties of the continuum.

Thus it is eminently reasonable to suggest that non-commutative
continued fractions will make a similsr contribution to the further
development of the theorv of linear orerators.

The second point (it is rather prosaic) 1s this:
Numerical Analysis is very much an experimental science. For thui:
reason, 1f a method of computation :'if p&')posed and examples are give..
to 1llustrate its use, some trouble be, taken to indicate exactly how
the examples were worked out and how they may be continued. In this
instance I have published a number of ALGOL programmes ([30_] - [33:] )
relating to the computational aspects of this talk. From the corres-—
pondence which one receives on these cccasions it 1s quite clear
that the methods which I »ive discussed are being incorporated in
various computer programn@ libraries, and that the numerical
application of continued fractions is at the present time a subject

of active interest.



26 -

References

1. Khovanskiili A.N., The Application of Continued Fractions and
their Generalisations to Problems in

Approximation Theory, Noordhoff, Groningen,

1963,

2, Bellman R. 3
Proc.Nat.Acad.Sci.U.S., vol.U1 1955, p.Th3

3. Calogero F., Note on the Riccati Equation, Jour., of Math,
Phys., vol. 4, 1963, p.127

L., Nevanlinna R., Uber beschrankte Funktionen, die 1in gegebenen
¢
Punkten vorgeschnebene Werte annehmen, Ann.

Acad.Sci.Fenn., vol.13, 1919, p.1

5. Richards P., A Special Class of Functions with Positive
Real Part in a Half Plane, Duke.Math.Jou.,
vol 148,1947, p.122

6. Goldberg J.L., Richard's Transformation and Positive Real
Functions, Jour.Math. and Phys., vol L1, 1962,
Do 191

T+. Brune 0., Synthesis of a Finite Two-Ternimal Network,

Jour.Math. and Phys., vol 10, 1931, p.191%

8., Ciwor W,, Synthesis of IL.inear Communications Networks,

vol. 1,2, New York, 1958

9. Bott R. and Duffin J., Impedance Synthesis Without the Use of

Iransformers, Jour. Appl. Phys., vol.20, 1949

P 316

10. Erdélyi A. et al., Higher Transcendental Functions, vol 1,

Mc Graw Hill, New York, 1953

11, Perron 0., Die Lehre von den Kettenbruchen, Chelsea,

New York, 1950



13,

1h,

15

16,

17,

18,

19,

20,

21,

22

~27 -~

Shohat J.A. and Tamarkin J.D, s 1he Problem of Moments, Maths.

Wall H.,

Carleman T.,

Carleman T.,

Hamburger H.,

" Riesz M,,

Nevanlinna R.,

van Vleck E.V.,

Pa.d.dé H@S

Frobenius G,

Shanks D.,

surveys No. 1, Amer.Math.Soc., 1943

Analytic of Continued Fractions, van Neostrand,

New York, 1948

our les Equations Integréles Singuliéres a

NoyaufSumEtrique, Uppsala, 1923, p.189

Les Fonctions Quasi Analytiques, Gauthier

Villars, Paris, 1926.

Uber eine Erweltepr ing des Stieltjeschen Moment
Problems, Math.Annalen, vel 81, 1920, p.235;
vol 82, 1921 p 120, p 168

Sur le Probleéme des Moments, Arkif fdr Matematik
Ostronomie och Fysik, vol.16 19213 vol 16, 1922
vol 17, 1923

Asymptotische Entwickchung Beschréankter
Funktionen und das Stieltjeschen Momenten Problem,

Ann. Acad. Sci.Fenn., vol. 18,1922

On the Convergence of the Continued Fractions

of Gauss and Other Continued Fractions, Annals

Of M&tha, VOl 3, ‘!901, p@]

Sur la Representation Approchée d'une Fonction
par des Fractions Ratienelles, Ann. Ec.

Norm,Sup., vol 3, 1892, p.9

Relationen zwischen den Naherungsbruchen von

Potenzreihen, Jour. fur Math., vol 90, 1881,

p. 6

Non-linear Transformations of Divergent and

Slowly Convergent Sequences, Jour.Math:

Phys., vol 3k, 1955, p.1



239 wyﬂn Pf:} %

24, Wynn P.,

25@ Wynn P »

26, Wynn P.,

2T. Ostrowski A.M.,

28, Wynn P.,

29, Lanczos C.q

30, Pennrose R.,

31, Wynn P.,

32, Wynn P.,

33# Wynn P@ 3

The Rational Approximation of Functions which

are Formally Defined by a Power Series

Expansion, Maths of Comp, vo 14, 1960, p.14T

On a Dev ce for Computing the e, 5,
Transformation, MTAC, vol 10, 1956, p.91

On Continued Fractions whose Coefficients
Obey a Non-Commutative Law of Multiplication,

Arch, for Rat.Mech. and Anal., vol 12, 1963,
P. 273

A Note on the Convergence of Certain Non-

Commutative Continued Fractions, to appear.

On Some Metrical Properties of Operator

Matrices and Matrices Partitioned into Blocks,

Acceleration Techniques for Iterated Vector
and Matrix Problems, Maths of Comp.,, vol L1,

1962, p.301

Linear Systems in Self=Adjoint Form, Amer Math

Morthly, vol 65, 1958 p.665

Generalized Inverse of Matrices, Proc Camb

Phil.Soc., vol 51, 1953, p LO06

A Note on the Fitting of Certain Types of

Experimental Data, Data, Statistica Neerlandica,

vol 16, 1962, p 143

An Arsenal of Algol Procedures for Complex

Arithmetic, BII, vol 2, 1962, p.232

Acceleration Techniques in Numerical Analysis,
with Particular Reference to Problems in One
Independent Variable, IFIP Congress 1962
Proceedings, North Holland Publishing Co., 1962



-29-

34, Wynn P., General Purpose Vector Epsilon Algorithm

Algol Procedures, Nun,Math., to appear

35, Wynn P., Singular Rules for Certain Non-linear

Algorithms, BIT, to appear .



