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Abstract.

A number of efficient methods have been developed for the
numerical solution of linear second order differential
equations from which the term involving the first deriva-

e(z)
tive is absent. The function O(z)é ¢(t)at+h(z) satis-

fies such an equation. This fact is of material assistance
in the tabulation of indefinite integrals.

The tabulation of an auxiliary function which is related
X

to an indefinite integrasl of the form _S#(t)dt may often
ot

be most economically carried out by the numerical integra-
tion of a differential equation which is satisfied by the
auxiliary function. The choice of auxiliary function and
auxiliary variable z where x = g(2z) 1is in the main
determined by facilities for interpolation in the result-
ine table, and is logically that which provides the great-
est information about the required indefinite integral in
the smallest possible space. Of necessity the auxiliary
function must be simply related to the indefinite integral,
so that the latter mav easily be extracted from the former,
the final choice of muxiliary function and auxiliary vari-
able »eing resolved from the conflict of economy of ex-
pression on the one hand and ease of definition on the
other. Tn general it is true to sav that the considerations
which lead to the choice of auxiliary function and variable
are precisely those which make the numerical solution of
the differentisl eauation which the function satisfies most
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pleasant. If an auxiliary function has been chosen which
ig easy to interpolate, then the appropriate differential
equation is in general correspondingly easy to integrate
numerically, for the implication of the first statement

is that the successive differences of the function decrease
smoothly, which is a condition for the second. A form of
differential equation which particularly lends itself to
numerical integration1 is that which is linear and of the
second order and in which the term in the first derivative
is absent. In view of this fact it is of interest to de-
rive the following elementary

THEOREM
(z)
1f  y(z) = 6(z) | #(t)at + n(z) (1)
o
then y(z) satisfies a linear differential equation of the

second order in which the term involving y'(z) is absent.
For, from (1)

(2)
y'(z) = 6'(2) % g(t)at + 8(z)e'(2)4(-(z)) + h'(2)
and hence 8(z)y'(z) - 0'(z)y(2) = 0%(z)g'(2)A(e(z)) +

+ 8(2)n'(z) - 8'(z)h(s)

and by differentiating again
o(2)y"(2) - 6"(2)y(z) = [62(2)e" (2)h(e(2))]" +
8(z)h"(z) - 0"(z)h(z) (2)

where primes denote differentiation with respect to z.
Since the computation=1lv unpleasant behsviour of the in-
z
definite intezral jé(t)dt mav well arise from the be-
o

haviour of (x). ane obviou- choice for @(z) is

o(z) = [4(az))] "

Tn this case with h(z) =0 =nd x = z(z) = 2 equation
(2) becomes

8(z)y"(z) - 8"(z)v(z) = 6'(z) (3)

Another choice which would apply when ﬁ(x) is dominated by
a term of the form x1, i.e. when

#(x) = kx" + €(x)
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where €(x) {8 relativelv small throughout the ranse of
‘integration, is

-1
8(z) = [xf(x) - ag(a)] (4)
¥or if #(x) = kx', then y(z) is constant and little
diffieulty is to be expected in its tabulation, whilst if

4(x) $ kx" the substitution (4) is at least a remsonable
atep which can be made in the hope of easing tabulation.
Tn this case, when h{(z) = 0 it is necessary to eliminate
v,2{2) and #(x) from

v = alz) =23 @(z)v(a) - 6"(2)v(e) = [Sg(z)g'(z)ﬁ(:(z)ﬂ'

and equation {4), Thus the required version of equation (2)
is

alzdy*(2) - 8(2)viz) = [(1 +-«¢(u)9(z))9(z)/z]l (s)

“or large values of the argument the simplest auxiliary
4 . 1
variable to use is =z = /x , i.e. x = &(z) = /z . In

this case, with h{z) = 0 and 8(z) = [#(e(z))l‘1, equation
{2} becomes

8(z)v(2) - en(z)v(z) = -[8(z) /2% ]’

vis & vis equation (3); and with h(z) = 0, 8(z) again
being riven by equation (4), equation (2) becomes
k)
8(2)v"(2) - 07(2)v(2) = -[(1 +af(@)0(2))e(2) /7]
vig & vis equation (5).
An example in which the above theorem may be applied can
be taken from the literature. Fox and Miller? tabulated
the function T(z) where T(z) = e “Ei(x) - x-1, z = x|
x
and Ei(x) = S t”etdt, for z = -0.1(0.01)0.1, by in-
-0
terrating the equation
™ - (5'4-2:-3)T +22 20

What seems to be a slightly better choice of auxiliary

function was adopted by Vickers3 who tabylates S(z) over
the same range where

$(z) = xe™* Ei(x)
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(This corresponds in the general case to 8(z) = [ﬁ(x)]-1
and S(z) satisfies the differential equation,

zhsn - (2z2 - 42 + 1)S = 3z - 1

though Vickers did not integrate this equation to obtain
his values). Results displayed in reference 2 indicate
that facilities for interpolation in S(z) are better
then for those in T(z).

The mathematics in the above work is of a somewhat naive
order but it is felt that a statement of the general case
serves to indicate one possible line of attack in the ta-
bulation of indefinite integrals, and may save a little
of the time of someone who is engaged upon this problem.

I am indebted to Miss D.B. Catton for useful discussion of
the above work.
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ALGOL Programming.

CONTRIBUTION NO. 2.
SIMPSON NUMERICAL INTEGRATION WITH VARIABLE LENGTH OF STEP.

Author: Sten Henriksson, Avd., for numerisk snalys, Lunds
Universitet, Lund, Sweden,

procedure simpson(a,b,h,ut,1t,fct,sum,g);
value a,b,h,ut,1ty real a,b,hyut,lt,sum,g;
real procedure fcotij

comment simpson computes the approximate value of the
definite integral of fct(x) from a to b with
automatic search for the appropriate length of
step., Input parameters are: a and b, the lower
and upper boundaries of the quadrature interval
(a< bg, h the proposed length of step between
used function values, ut and 1+, the upper and
lower tolerance factors, fct the function. Out-
put parameters are: sum the value of the inte-
gral, g the average length of step. The proce-
dure will usually give better accuracy than it
is asked for but should nevertheless be used
with discriminationy

begin integer i} real x,F1,F2,F3,F4,F5,8ps,p,q}
Boolean ready
i1=0 ; sumi=0 § ready:=falsej gi=h § x31=a
Fli=fet(x)

loopstarts i:=i+1 ; if x + 4wgx b then begin gi=(b-x)/4;
ready:=tirue end;
FStafot{x+4xz)j F31=fot(x+2xg)s

innerloop: F2:=fot(x+g); FAdr=fet(x+3xg);
pi= F1 + 4xF3 + FS53 q:=p - 2xF3 + 4x(F2+F4);
eps:= (2xp-q)xz/45 ;
if abs(gxaxut/3) >abs(eps) then go to nottobad;
ready:=false § gi=g/2 ; Th:=F3j F3:1=F2;
g0 _to innerloop;

nottobad: sum:=sum + qxq/S - eps
if ready then go to final
X:=X + 4xg 3
if abs(qwexlt/3)2 abs(eps) then z:=2xg;
F1:=F5 ;3 go to loopstart;

final: gr= (b-8)/i/4

ends

The Program has been successfully tested using the ALGOL Compiler

FACIT Electronics, Gothenburg.
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