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By P. Wynn 

1. Introduction. It it-i the purpose of this paper to deserihe a non-linear tC'chnicp1P 
which appears to have powerful and geueral application in numerical analysi:-. 
However, before doing so it is neeessary to rf'fer to a few related thC'Oretiral eon
eepts. 

2. Rational Operational Formulas. The double sequenee of rational functions 

where 

(1) 

U,,,.(x) 
v,, .• (x) 

Uµ,,(x) - aµ,v,O + O!µ,P.l X + ... + O!µ,V,V x· 
Vµ,,(x) /3µ,,,o + /3µ,,,1 x + · · · + /3µ,,,µ .cµ 

may be derived from the series 
0:, 

(2) /3(:r) = L C,,:r" 
S=O 

µ, V = 0, 1, · · • 

by imposing the condition that the power series expansion of ( 1) should agree 
with ( 2) as far as the term in xµ+,_ If none of the Hankel determinants 

Cm Cm+l Cm+k-1 

Cm+l Cm+2 Cm+k m, k - 1 0, 1, ... 

Cm+k-1 Cm+k Cm+2k-2 

vanish, and the additional condition /3,.,.,n = 1 is imposed, the coefficients in the 
rational expression ( l) are uniquely determined. The rational expressions ( 1) may 
be placed in a two-dimensional array in which the quotient (I) occurs at the inter
section of the ( µ. + 1 ) th row and the ( v + 1) th column. [l] [2] [:3]. 

As is well known, the numerical convergence of the sequence 

U,.,r(:c) 
v~~(x) r = 0, 1, · · · 

for a particular value of .c i:,; in many cases much better than that of the series (2). 
This consideration led Eopal [4] to the consideration of rational operational forma
laR, that i:,, to the replacement of the operational equation 

(t Cs d") F' = f 
s=O 

where P is a known function from which j is to be determined, and d is a finite dis
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152 P. WYNN 

placement operator, by the equation 

(5) ( U,,r(d)) F = f 
V,,r(d) . 

Equation (5) cannot at the moment, in its non-linear form, be solved. The equation 
may however be linearized by multiplication throughout by V,,,(d) to give 

(6) Ur,r(d)F = V,,r(d)J. 

Assuming that F and fare completely known, that r in equation ( 6) is sufficiently 
large, and the example is a suitable one, then there will exist considerable numerical 
agreement between the right and left hand sides of equation ( 6). Assuming that d is 
any one of the conventional operators t:., E, V, µ, li of numerical analysis, and that 
F and the sequences of values Ji, f2, • - • ; f _1 , f-2, • • · are known, then equation 
( 6) may be rearranged so as to determine Jo . It is this very last assumption which 
constitutes a serious limitation of the linearizing technique resulting in equation 
(6). Indeed, Kopal was only able to find useful application of the technique when 
d was the backward difference operator, though his numerical results, which related 
to the forward integration of a differential equation, appeared to be very promising. 
However, the same effect over a very much larger range of problems may be achieved 
by recourse to another method. ' 

3. The em(Sn) Transformation. In his researches into the non-linear trans
formation* 

Sn Sn+l 
t:.Sn t:.Sn+i 

(7) em(Sn) = t:.Sn+m-1 t:.S,.+m 
1 1 

m,n = 0, I,··· 

t:.S,. t:.Sn+i 

t:.Sn+m-I t:.Sn+m t:.Sn+2m-l 
of the sequence Sr, r = 0, 1, · · · Shanks [5], by an appeal to the theory of linear 
equations, showed that if 

(8) r = 0, 1, · · · 

then 

(9) m,n=0,I,···. 

The same result may be derived from the theory of orthogonal polynomials [6]. 

4. The e-Algorithm. The evaluation of the determinants in the various expres
sions (7) is sufficiently laborious to be prohibitive. However, the expressions (7) 

* The notation used here is consistent with that of [7] but differs slightly from that of 
[5] where the right hand side of (7) would be designated as e,.(S,.,.,..). 



mny lit> mmpuh·d r<>••ur:,;iy.-(y hy 11w1rn,-; of 1!11· t-.\i~mitlnn ,1,, fuii,m,, l7l. If. from 
thi.• initial enmlition,-

i II l 11,,.~ = 0, l, ···, 

tlwn 

(0) 
t1 

(l 'j 
~o 

d') 
t1 

('!) 
to 

( :;l) 
t 1 

il will bi• ,-;epn that rplation:s ( 11) may be u~•<l, eohunn by eolumn, to build up the 
sclwme from left to right. It ,.:hould he not Pd th:i.t if eonformity, by nwans of Pqua
tions (ff) and (I~'), i;; to take phlce hr•twe,»H tJw Pade Tahir and thP ~-arnty. the 
bttPr m11:,;t be tmn:,;posl'd about the diagonal m = O; the ,·olumns of the HU-ray 
with t•\·m order sufiixt•:,; t!wn take their placr a;. row:- in tlw Pade Table. 

The following tlworern, ba;.ed upon the n•sults of ihe last two f¾:•etions. nmy now 
h<- given: 

T1rno1-cEM. If p is an as.w,cialfrf and comnwla.lfre opaator, and 

( l •t I 111 = I,~ •... ; 

l·, .... ,,Lrl 

•. ,,.,+1Cr) 

m 

L a,p'F 

m, s = 0, l, · · · . 

Fm,.;'1' Ex.\~1ru:: .\ 11m11,·ri,·nl n.:umplt:- of tlw t\pplieation of tiw tlH·orem now 
follow,.;. It 1·u1wi•rn,; tlw p1·,we:,;,- uf obtainin~ lht> derini.ti,·p at z = 0 of tht' furwtion 
Pxp{h:), wlwn f, = O.H, h_v nwan,; ,if tht fornmht 

( Hi) 
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Here, in the notation of equation ( 1::-1) 

( 17 ) 

The quantities with even order suffix in the €-array for this example are displayed 
in Table I. 

Note: The results of Table I begin with the diagonal m = 1. If the notation of 
equation ( 15) is strictly to be adhered to, an entry Eboi = 0 together with a corre
sponding diagonal should be appended to Table I. However, this is not a matter of 
great importance, and in the event that an operational series were to begin with a 
term in p", s > 1, even this artifice would not be available. 

It is perhaps in order to comment upon the power of the algorithm as revealed 
by this example. Attainment of the same accuracy as is achieved in Table I by 
the straightforward use of the series (16), even neglecting the accumulation of 
round-off errors, would involve the summation of about eighty terms and an excur
sion into arithmetic involving twenty-eight decimal figures. 

The Pade quotients ( :~) in this example are successive convergents of the con• 
tinued fraetion 

(18) 
2 '> 2 •) 

-1 1 1 x 1 ·x 2 x 2-x 
c log (1 + i::) = ----- ··· . . . 1 + 2+ 3+ 4+ 5+ . 

Numerieal investigation into the behavior of this continued fraction [8] shows that 
application of the €-algorithm to the series ( 16) converges quite reasonably for 
( iz - l ) > 1, when the series rapidly di verges. 

In the derivation of the classical operational formulas of numerical analysis 
the operand is assumed to be a polynomial, and the formulas derived arc then 
completely valid. The formulas are then universally applied, without examination 
of the operand, and without any more justification than that of the results achieved. 

In the same way it occurs that although formula ( 1:3) is no longer valid, use of 
the €-algorithm in eonjunction with operational series meets with success. Two 
examples which support this thesis now follow. 

SEco:--;o EXAMPLE: This coneernt-; the interpolation of the function log (O.G + hz) 
when h = 0.1 and z = 0.25 with points of tabulation at unit intervals of z, by use 

o.s221 18so! I 

0 .48-tl 7H 14' 0. 60:38 2270\ 

TABU:: I 

o. mm:>, !:lf\84! o. 5987 52W'1 o. 6000 786\l 
0.5551 !l:3(i2 0.!1005 040ti' 0.59\19 79;37 0.6000 01G8 
o. t5:m3 0-1.j 11 o. 5\197 G720! o. nooo OG65

1 
o. 5999 9961 

0. ;j788 4Gl 2i O. li001 1785! 0. 599\l 97 52\ 0. 6000 0011 
O.til51 07-t-71 0.5\J\l!:l :1022: 0.GOOO 0102 0.5999 H996 
o. ;j890 :22n o. woo :3tm I o. 5~mn 9954\ o. 6000 0001 
0. (i080 8-17:~ 0. 5H\Hl 78-19 0. GOOO 0022\ 
0. ;j\l3D 80li2i O .tiOOO 1 ;{ ](i! : 

0. G().!:j 21 il\j ] 

O.GOOO 0004 
0. 5999 999910. 6000 0000 
o. c;ooo 0000[ 

i 

i 
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of Bessel's Interpolation Formula 
., 

(19) F(z) = L a,F(0) 
•-O 

where 

ao = 1 

(20) 

- (2 + 8 - 1) ~2•El/2 a2, - 2s µ,u , 

a = z - ½ (2 + 8 - 1) ~2,+1E1128 = 1 2 ... 
2•+l 28 + 1 28 u ' ' • 

The quantities E~m) with even order suffix are displayed in Table II. 
Since log(0.625) = -0.4700 036, it will be seen that application of the E-algorithm 

results in an effective gain of three decimal figures. This is not spectacular, but 
there is no point in selecting for presentation only those examples which display 
the method in a particularly favorable light. It might be mentioned at this point 
that the author has experimented with the E-algorithm in conjunction with opera
tional formulas in a large number of cases, and in none of these was the accuracy of 
the transformed results worse than the original partial sums. 

Since the odd and even order terms in the series (19) are so dissimilar, the odd 
and even terms were separated out and the two series submitted separately to 
treatment by the E-algorithm, the transformed results subsequently being added 
together. The numerical results produced in this way were not, however, signifi
cantly better than those shown in Table II. 

THIRD EXAMPLE: This concerns the application of the Euler-Maclaurin integra
tion formula 

(21) 

when the integrand is the function exp(-z2) and the upper and lower limits of 
integration are O and w(l + i) respectively, with w = 0.75. 

h"+2p<•>(h) 
The functions u. = ( ) in this example satisfy the recursion 8+ 1 ! 

(22) 

-0.4337 503 
0.4722 880 
0.4700 009 
0.4699 419 
0.4700 084 
0.4700 105 
0.4700 020 
0.4700 017 

-0.4700 048 

8(8 + 1 )u. + 2h28Us-l + 2h2(8 - 1 )u,-2 = 0 

TABLE II 

-0.4701 290 
0.4699 404 -0.4699 923 
0.4699 732 0.4700 085 -0.4700 040 
0.4700 105 0.4700 032 0.4700 027 
0.4700 088 0.4700 027 -0.4700 031 
0.4700 017 0.4700 040 

-0.4700 019 

-0.4700 034 



0.875 042 + i0.198 341 

0.941 289 0.385 856 

0.925 783 0.409 131 

0.!l15 984 0.408 382 

0.!J14 27:3 0.403 G27 

°' 0 0.9Hi 792 0.401 460 

0.9HJ OG0 0.402 800 

0.918 494 0.405 171 

0.915 922 0.405 283 

0.915 008 0.402 370 

0.918 -1-29 + i0.-1-00 273 

TABLE III 

0.921 529 + i0.408 848 

0.915 f\69 

0.917 028 

0.917 G57 

0.917 403 

0.917 147 

0.917 231 

0.917 427 

0 .404 4841 0. 917 213 + i0 .403 098 

0.402 979 0.917 498 0.403 703 

0.403 511 0.917 258 0.403 730 

0.403 874 0.917 271 0.403 620 

0.403 734 0.917 332 0.403 635 

0.408 5221 0.917 319 0.403 675 

0.403 5731 0.917 289 + i0.403 603 

0. 917 403 + i0.403 776 

0.917 256+ i0.403 708 

0.917 299 0.403 (i2610.917 318 + £0.40:3 li59 

0.917 321 o,~, "'I 0.,11 302 o. 403 ""I o 017 ""' + ;o_ 403 "" 
0.917 302 0.403 G61 0.917 30G + i0.403 G5li 

i 
0.917 303 + i0.403 (i50 
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with 

-w!cos(21i) + sin(2w2)l - iw!cos(2w2 ) - sin(2u?)) 

-2wa/eos(2w2 ) - sin(2w2 )) + i2-uljcos(2w2 ) + sin(2w2 )). 

The quantities E~ 111 l ( which are now complex nnmbern) with ewn order suffix 
are displayed in Table III. Since erf(0.75(1 + i)) = 0.917 :306 + i0.40:3 654, 
application of the E-algorithm has in this case re,mlted in the gain of about three 
decimal plaees. 

It is perhaps of interest to point out that the accuracy of the transformed 
results produc(~d in the first and third examples could have been increased by ex
tPnding the, computation. This is also true to a limited extent of the second example, 
but the non-existence of central differences above a certain order limits the extent 
to which tlrn computation may be prolonged. 

It would be u"eful, when examining the mathematical validity of the procedures 
adopted in the Heconcl and third examples, to be ahlP to relate the determimintal 
quotiPnt 

s=.0 

L c,p"F 
-~=0 

C1 pf? 

Cm pmF 

I I 
! C1 pF 
I 

I . 

: Crn 1)mf? Cm+J pm+lj? 

to ihe solution .f of tlw opPratimml equation 

00 

L c.,p'P = f, 
8=0 

hut this appears to be one oft.he cases in which a statement of the problem iR not a 
great step forward to its Holution. 
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