The Wang Algorithm for the Propositional Calculus
The Wang Algorithm for the propositional Calculus.

The Wang Algorithm is a method of deciding whether or not a formula in the propositional calculus is a theorem. The reader will need to know something about the propositional calculus in order to understand this discussion.

We use the five logical constants ¬ (not), ∧ (and), ∨ (or), → (implication), ≡ (equivalent), with their usual interpretations.

A propositional letter P, Q, R, M or N, et cetera, is a formula (and an "atomic formula"). If φ, ψ are formulae- then ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ≡ ψ are formulae. If π, ρ are strings of formulae (each, in particular, might be an empty string or a single formula) and φ is a formula, then π, φ, ρ is a string and π → ρ is a sequent which, intuitively speaking, is true if and only if either some formula in the string π (the "antecedent") is false or some formula in the string ρ (the "consequent") is true, i.e., the conjunction of all formulae in the antecedent implies the disjunction of all formulae in the consequent.

There are eleven rules of derivation. An initial rule states that a sequent with only atomic formulae (proposition "letters") is a theorem if and only if a same formula occurs on both sides of the arrow. There are two rules for each of the five truth functions- one introducing it into the antecedent, one introducing it into the consequent. One need only reflect on the intuitive meaning of the truth functions and the arrow sign to be convinced that these rules are indeed correct. In Wang, Hao "Toward Mechanical Mathematics", IBM. I. Res. Develop., Vol. 4, No. 1. January 1960 is a proof given of their completeness, i.e., all intuitively valid sequents are provable, and of their consistency, i.e., all provable sequents are intuitively valid.

P1. Initial rule: if λ, ζ are strings of atomic formulae, then λ → ζ is a theorem if some atomic formula occurs on both sides of the arrow.

In the ten rules listed below, λ and ζ are always strings (possibly empty) of atomic formulae. As a proof procedure in the usual sense, each proof begins with a finite set of cases P1 and continues with successive consequences obtained by the other rules.
The rules are so designed that given any sequent, we can find the first logical connective, and apply the appropriate rule to eliminate it, thereby resulting in one or two premises which, taken together, are equivalent to the conclusion. This process can be repeated until we reach a finite set of sequents with atomic formulae only. Each connective-free sequent can then be tested for being a theorem or not, by the initial rule. If all of them are theorems, then the original sequent is a theorem and we obtain a proof; otherwise we get a counterexample and a disproof. Some simple samples will make this clear.

For example, given any theorem of "Principia," we can automatically prefix an arrow to it and apply the rules to look for a proof. When the main connective is ∼, it is simpler, though not necessary, to replace the main connective by an arrow and proceed. For example:

\[2.45. \vdash (PVQ) \rightarrow \sim P,\]
\[4.21. \vdash P \land \sim Q \rightarrow P \equiv Q\]

can be rewritten and proved as follows:

\[2.45. \sim (PVQ) \rightarrow \sim P\]

(1) \rightarrow \sim P, PVQ
(2) \rightarrow P \rightarrow PVQ
(3) P \rightarrow P, Q

\[4.21. \rightarrow P \land \sim Q \rightarrow P \equiv Q\]

(1) \rightarrow P \land \sim Q \rightarrow P \equiv Q
(2) \rightarrow P, \sim Q \rightarrow P \equiv Q
(3) \sim Q \rightarrow P \equiv Q, P
(4) \rightarrow P \equiv Q, P, Q
(5) P \equiv Q, P, Q

VALID

(5) Q \rightarrow P, P, Q

VALID

P2a. Rule \(\rightarrow\): If \(\psi, \xi + \lambda, \rho\), then \(\xi + \lambda, \sim \psi, \rho\).

P2b. Rule \(\sim +\): If \(\lambda, \rho + \pi, \phi\), then \(\lambda, \sim \phi, \rho + \pi\).
P3a. Rule $\rightarrow\lambda$: If $\zeta \rightarrow \lambda \phi$, ρ and $\zeta \rightarrow \lambda$, ψ, ρ, then $\zeta \rightarrow \lambda$, $\phi \land \psi$, ρ.

P3b. Rule $\lambda \rightarrow$: If λ, ϕ, ψ, ρ, π, then λ, $\phi \land \pi$, ρ.

P4a. Rule $\rightarrow V$: If $\zeta \rightarrow \lambda$, ϕ, ψ, ρ, then $\zeta \rightarrow \lambda$, $\phi V \psi$, ρ.

P4b. Rule $V \rightarrow$: If λ, ϕ, $\rho \rightarrow \pi$ and λ, ψ, $\rho \rightarrow \pi$, then λ, $\phi V \psi$, $\rho \rightarrow \pi$.

P5a. Rule $\rightarrow\colon$: If ζ, $\phi \rightarrow \lambda$, ψ, ρ, then $\zeta \rightarrow \lambda$, $\phi \psi$, ρ.

P5b. Rule $\colon \rightarrow$: If λ, ψ, $\rho \rightarrow \pi$ and λ, $\rho \rightarrow \pi$, ϕ then λ, $\phi \psi$, $\rho \rightarrow \pi$.

P6a. Rule $\equiv \rightarrow$: If ϕ, $\zeta \rightarrow \lambda$, ρ and ψ, $\zeta \rightarrow \lambda$, ϕ, ρ; then $\zeta \rightarrow \lambda$, $\phi \equiv \psi$, ρ.

P6b. Rule $\equiv \rightarrow$: If ϕ, ψ, λ, $\rho \rightarrow \pi$ and λ, $\rho \rightarrow \pi$, ϕ, ψ, then λ, $\phi \equiv \psi$, $\rho \rightarrow \pi$.

(2) The LISP Program. We define a function theorem(s) whose value is truth or falsity according to whether the sequent s is a theorem.

The sequent

$s: \phi_1, \ldots, \phi_n \rightarrow \psi_1, \ldots, \psi_m$

is represented by the S-expression

$s^\sim (\text{ARROW}, (\phi_1^\sim, \ldots, \phi_n^\sim), (\psi_1^\sim, \ldots, \psi_m^\sim))$

where in case the ellipsis \ldots denotes missing terms, and where ϕ^\sim denotes the S-expression for ϕ.

Propositional formulae are represented as follows:

1. For "atomic formulae" (Wang's terminology) we use "atomic symbols" (LISP terminology).

2. The following table gives our "Cambridge Polish" way of representing propositional formulae with given main connectives.

1. $\neg \phi$	becomes	(NOT ϕ^\sim)
2. $\phi \land \psi$	becomes	(AND ϕ^\sim ψ^\sim)
3. $\phi \lor \psi$	becomes	(OR ϕ^\sim ψ^\sim)
4. $\phi \supset \psi$	becomes	(IMPLIES ϕ^\sim ψ^\sim)
5. $\phi \equiv \psi$	becomes	(EQUIV ϕ^\sim ψ^\sim)

Thus the sequent

$\neg P \land \neg Q \rightarrow P \equiv Q$, RVS

is represented by

$(\text{ARROW} \ ((\text{AND} \ (\text{NOT} \ P) \ (\text{NOT} \ Q))) \ ((\text{EQUIV} \ P \ Q) \ (\text{OR} \ R \ S)))$
The S-function theorem \(\{s\} \) is given in terms of auxiliary functions as follows:

\[
\text{theorem}(s) = \text{thl}(\text{NIL}; \text{NIL}; \text{cadr}(s); \text{caddr}(s))
\]

\[
\text{thl}(a_1; a_2; a; c) = \{ \text{null}(a) \rightarrow \text{th2}(a_1; a_2; \text{NIL}; \text{NIL}; c); T \rightarrow \\
\text{member}(\text{car}(a); c) \text{?} V(\text{atom}(\text{car}(a)) \rightarrow \\
\text{thl}(\text{member}(\text{car}(a); a_1) \rightarrow a_1; T \rightarrow \\
\text{cons}(\text{car}(a); a_2) \rightarrow a_2; T \rightarrow \\
\text{cons}(\text{car}(a); a_2); \text{cdr}(a); c)) \}
\]

\[
\text{th2}(a_1; a_2; c_1; c_2; c) = \{ \text{null}(c) \rightarrow \text{th2}(a_1; a_2; c_1; c_2); \text{atom}(c) \rightarrow \\
\text{th2}(a_1; a_2; \text{member}(\text{car}(c); c_1); c_1 \rightarrow c_1; T \rightarrow \\
\text{cons}(\text{car}(c); c_1); c_2; \text{cdr}(c); T \rightarrow \\
\text{th2}(a_1; a_2; c_1; c_2); \text{member}(\text{car}(c); c_2) \rightarrow c_2; T \rightarrow \\
\text{cons}(\text{car}(c); c_2); \text{cdr}(c) ; \text{car}(c)) \}
\]

\[
\text{thl}(a_1; a_2; c_1; c_2) = \{ \text{null}(a_2) \rightarrow \text{null}(c_2); \text{thr}(\text{car}(c_2); \\
\text{al}; a_2; c_1; \text{cdr}(c_2); T \rightarrow \text{thl}(\text{car}(a_2); \\
a_1; \text{cdr}(a_2); c_1; c_2) \}
\]

\(\text{th} \) is the main predicate through which all the recursions take place. \text{theorem}, \text{thl} and \text{th2} break up and sort the information in the sequent for the benefit of \(\text{th} \). The four arguments of \(\text{th} \) are:

- \(a_1 \): atomic formulae on left side of arrow
- \(a_2 \): other formulae on left side of arrow
- \(c_1 \): atomic formulae on right side of arrow
- \(c_2 \): other formulae on right side of arrow

The atomic formulae are kept separate from the others to make faster the detection of the occurrence of formula on both sides of the arrow and the finding of the next formula to reduce. Each use of \(\text{th} \) represents one reduction according to one of the 10 rules. The formula to be reduced is chosen from the left side of the arrow if possible. According to whether the formula to be reduced is on the left or right we use \text{thl} or \text{thr}.
We have

\[
thl(u; a_1; a_2; c_1; c_2) = \{ \\
\text{car}(u) = \text{NOT} + \text{thlr}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{AND} + \text{th2r}(\text{cdr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{OR} + \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2) \land \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{IMPLIES} + \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2) \land \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{EQUIV} + \text{th2r}(\text{cdr}(u); a_1; a_2; c_1; c_2); \\
T \rightarrow \text{error(list(THL; u; a_1; a_2; c_1; c_2))}
\]

\[
\text{thr}(u; a_1; a_2; c_1; c_2) = \{ \\
\text{car}(u) = \text{NOT} + \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{AND} + \text{thlr}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{OR} + \text{th2r}(\text{cdr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{IMPLIES} + \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
\text{car}(u) = \text{EQUIV} + \text{th1l}(\text{cadrr}(u); a_1; a_2; c_1; c_2); \\
T \rightarrow \text{error(THR; u; a_1; a_2; c_1; c_2))}
\]

The functions \text{thl1, thlr, th2l, th2r, th1l} distribute the parts of the reduced formula to the appropriate places in the reduced sequent.

These functions are

\[
\text{thl1}(v; a_1; a_2; c_1; c_2) = \{\text{atom}(v) \rightarrow \text{member}(v; c_1) V \\
\text{th}(\text{cons}(v; a_1; a_2; c_1; c_2); T \rightarrow \text{member}(v; c_2) V \\
\text{th}(a_1; \text{cons}(v; a_2; c_1; c_2))
\]

\[
\text{thlr}(v; a_1; a_2; c_1; c_2) = \{\text{atom}(v) \rightarrow \text{member}(v; a_1) V \\
\text{th}(a_1; \text{a_2}; \text{cons}(v; c_1; c_2); T \rightarrow \text{member}(v; a_2) V \\
\text{th}(a_1; \text{a_2}; c_1; \text{cons}(v; c_2))
\]
\[\text{th2l}\{v; a_1; a_2; c_1; c_2\} = \{\text{atom}(\text{car}(v)) \rightarrow \text{member}(\text{car}(v); c_1)\} \text{V} \]
\[\text{th1l}\{\text{cadr}(v); \text{cons}(\text{car}(v); a_1); a_2; c_1; c_2\}; T \rightarrow \text{member}(\text{car}(v); c_2)\} \text{V} \]
\[\text{th1l}\{\text{cadr}(v); a_1; \text{cons}(\text{car}(v); a_2); c_1; c_2\}\]

\[\text{th2r}\{v; a_1; a_2; c_1; c_2\} = \{\text{atom}(\text{car}(v)) \rightarrow \text{member}(\text{car}(v); a_1)\} \text{V} \]
\[\text{th1r}\{\text{cadr}(v); a_1; a_2; \text{cons}(\text{car}(v); c_1); c_2\}; T \rightarrow \text{member}(\text{car}(v); a_2)\} \text{V} \]
\[\text{th1r}\{\text{cadr}(v); a_1; a_2; c_1; \text{cons}(\text{car}(v); c_2)\}\]

Finally the function \text{member} is defined by
\[\text{member}(x; u) = \sim \text{null}(u)\text{A}(\text{equal}(x; \text{car}(u))\text{V}\text{member}(x; \text{cdr}(u)))\]
Transcription rules from LISP to ALGOL:

1. A conditional expression has the following form:
 \[(p_1 \rightarrow e_1; p_2 \rightarrow e_2; \ldots; p_n \rightarrow e_n)\]
 where each \(p_i\) is an expression whose value may be truth or falsity and each \(e_i\) is any expression.
 The meaning of a conditional expression is:
 If \(p_1\) is true then the value of \(e_1\) is the value of the entire expression.
 If \(p_1\) is false then if \(p_2\) is true the value of \(e_2\) is the value of the entire expression.
 The \(p_i\) are searched from left to right until the first true one is found.
 Then the corresponding \(e_i\) is selected.
 If none of the \(p_i\) are true, then the value of the entire expression is undefined.

 A conditional expression as above has in the LISP-ALGOL system the following transcription:
 \[\text{if } p_1 \text{ then } e_1 \text{ else if } p_2 \text{ then } e_2 \text{ else } \ldots \text{ if } p_{n-1} \text{ then } e_{n-1} \text{ else } e_n\]
 Consequently the system does not accept conditional expressions with all the \(p_i\) false. Side effects of the last predicate \(p_n\) are ignored.

2. \(p \land q = (p \rightarrow q; T \rightarrow F)\)
 So in ALGOL: \text{if } p \text{ then } q \text{ else false}

3. \(p \lor q = (p \rightarrow T; T \rightarrow q)\)
 In ALGOL: \text{if } p \text{ then true else } q

4. \(\neg p = (p \rightarrow F; T \rightarrow T)\)
begin comment LISP-programma Hao-Wang in ALGOL, van de Isarschot;
integer NOT, AND, OR, IMPLIES, EQUIV, NIL, a, b;

Boolean procedure null(x); value x; integer x;
null:= if atom(x) then eq(x,NIL) else false;

Boolean procedure equal(x,y); value x, y; integer x, y;
equal:= if atom(x) ∧ atom(y) then eq(x,y) else
if T atom(x) ∧ T atom(y) then
equal(car(x),car(y)) ∧ equal(cdr(x),cdr(y))
else false;

Boolean procedure member(x,y); value x, y; integer x,y;
member:= if null(y) then false else if
equal(x,car(y)) then true else
member(x,cdr(y));

Boolean procedure thl(u,a1,a2,c1,c2);
value u,a1,a2,c1,c2; integer u,a1,a2,c1,c2;
thl:= if eq(car(u),NOT) then
th1r(car(cdr(u)),a1,a2,c1,c2) else if
eq(car(u),AND) then th2l(cdr(u),a1,a2,c1,c2)
else if eq(car(u),OR) then
(if th1l(car(cdr(u))),a1,a2,c1,c2) then
 th1l(car(cdr(cdr(u))),a1,a2,c1,c2) else
 false) else if eq(car(u), IMPLIES) then
 (if th1l(car(cdr(u))),a1,a2,c1,c2) then
 th1r(car(cdr(u))),a1,a2,c1,c2) else false)
 else if th2l(car(u),a1,a2,c1,c2) then
 th2r(cdr(u),a1,a2,c1,c2) else false;

Boolean procedure thr(u,a1,a2,c1,c2);
 value u,a1,a2,c1,c2; integer u,a1,a2,c1,c2;
 thr:= if eq(car(u),NOT) then
 th1l (car(cdr(u))),a1,a2,c1,c2) else if
 eq(car(u),AND) then
 (if th1r(car(cdr(u))),a1,a2,c1,c2) then
 th1r(car(cdr(cdr(u))),a1,a2,c1,c2) else false)
 else if eq(car(u), OR) then
 th2r(cdr(u),a1,a2,c1,c2) else if
 eq(car(u), IMPLIES) then
 th1l(car(cdr(u))),car(cdr(cdr(u))),a1,a2,c1,c2)
 else if
 th1l(car(cdr(u))),car(cdr(cdr(u))),a1,a2,c1,c2)
 then
 th1l(car(cdr(cdr(u))),car(cdr(u)),a1,a2,c1,c2)
 else false;
Boolean procedure th11(v1,v2,a1,a2,c1,c2);
 value v1,v2,a1,a2,c1,c2; integer v1,v2,a1,a2,c1,c2;
 th11 := if atom(v1) then
 (if member(v1,c1) then true else
 th1r(v2,cons(v1,a1),a2,c1,c2))
 else if member(v1,c2) then true else
 th1r(v2,a1,cons(v1,a2),c1,c2);

Boolean procedure th2r(v,a1,a2,c1,c2);
 value v,a1,a2,c1,c2; integer v,a1,a2,c1,c2;
 th2r := if atom(car(v)) then
 (if member(car(v),a1) then true else
 th1r(car(cdr(v)),a1,a2,cons(car(v),c1),c2))
 else if member(car(v),a2) then true else
 th1r(car(cdr(v)),a1,a2,c1,cons(car(v),c2));

Boolean procedure th2l(v,a1,a2,c1,c2);
 value v,a1,a2,c1,c2; integer v,a1,a2,c1,c2;
 th2l := if atom(car(v)) then
 (if member(car(v),c1) then true else
 th1l(car(cdr(v)),cons(car(v),a1),a2,c1,c2))
 else if member(car(v),c2) then true else
 th1l(car(cdr(v)),a1,cons(car(v),a2),c1,c2);
Boolean procedure thlr(v,a1,a2,c1,c2);

value v,a1,a2,c1,c2; integer v,a1,a2,c1,c2;
thlr:= if atom(v) then
 (if member(v,a1) then true else
 th(a1,a2,cons(v,c1),c2)) else
 if member(v,a2) then true else
 th(a1,a2,c1,cons(v,c2));

Boolean procedure thll(v,a1,a2,c1,c2);

value v,a1,a2,c1,c2; integer v,a1,a2,c1,c2;
thll:= if atom(v) then
 (if member(v,c1) then true else
 th(cons(v,a1),a2,c1,c2)) else
 if member(v,c2) then true else
 th(a1,cons(v,a2),c1,c2);

Boolean procedure th(a1,a2,c1,c2);

value a1,a2,c1,c2; integer a1,a2,c1,c2;

th:= if null(a2) then (if null(c2) then
 thr(car(c2),a1,a2,c1,cdr(c2))
 else false) else thl(car(a2),a1,cdr(a2),c1,c2);
Boolean procedure th1(a1,a2,a,c);

value a1,a2,a,c; integer a1,a2,a,c;

th1 := if null(a) then th2(a1,a2,NIL,NIL,c) else if
member(car(a),c) then true else if
atom(car(a)) then th1(if member(car(a),a1)
then a1 else cons(car(a),a1),a2,cdr(a),c)
else th1(a1, if member(car(a),a2) then a2
else cons(car(a),a2),cdr(a),c);

Boolean procedure th2(a1,a2,c1,c2,c);

value a1,a2,c1,c2,c; integer a1,a2,c1,c2,c;

th2 := if null(c) then th(a1,a2,c1,c2) else if
atom(car(c)) then
th2(a1,a2,if member(car(c),c1) then c1 else
cons(car(c),c1),c2,cdr(c)) else:
th2(a1,a2,c1,if member(car(c),c2) then c2 else
cons(car(c),c2),cdr(c));

startlisp(XEEN(32765)); call(NOT,{}|{}); call(AND,{}\{});
call(OR,{}\{}); call(IMPLIES,{}|{}); call(EQUIV,{}\{});
call(NIL,{}); readstring(a); readstring(b);NLCR;
if th1(NIL,NIL,a,b) then PRINTTEXT(\{true\}) else
PRINTTEXT(\{false\})

end
Some examples of input and output:

<table>
<thead>
<tr>
<th>inputstrings</th>
<th>consequent</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ከቋቁ'</td>
<td>ከቋቁ'</td>
<td>false</td>
</tr>
<tr>
<td>ከቋቁ'</td>
<td>ከቋቁ'</td>
<td>true</td>
</tr>
<tr>
<td>ከቋቁ'</td>
<td>ከቋቁ'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>false</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>false</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>false</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>false</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>true</td>
</tr>
<tr>
<td>ከጆቁAgregar'</td>
<td>ከቋቁAgregar'</td>
<td>false</td>
</tr>
</tbody>
</table>
P. v.d. Laarschot.