
A Proposal for Definitions in ALGOL

by 36
BoAo Galler and AoJo Perlis

Abstract

An extension to ALGOL is proposed for adding new data types and

operators to the languageo Definitions may occur in any block heading and

terminate with the blocko They are an integral part of the program and

are not fixed in the language. Even the behavior of existing operators

may be redefinedo The processing of text containing defined contexts

features a "replacement rule" that eliminates unnecessary iterations and

temporary storageo Examples of definition sets are given for real and

complex matrices, complex numbers 9 file processing 9 and list manipulation.

-
Errata for "A Proposal for Definitions in ALGOL"

by B.A. Galler and A.J. Perlis

Title page Insert as 1.-1 March 29, 1966

P• 6

P• 7

P• 9

P• 10

P• 11

P• 14

1. 11

1. 1

1.-10

1.-3

(<arithmetic expression>))

(5)

...
The revision •••

[i,jJ represents (Ak) ..•
J.J

such <procedure>s •••

<e.e.>

1. 3 ••• <actual parameter> I <a.t.s.p.>

Insert <actual type set parameter (a.t.s.p.)>
after 1.6 <a.t.> I <c.t.s.n.>

1.10

1.16

1.17

. . . <a.t.> I <a.t.s.p.>array •••

<operators(o.)> ::= •••

••• I <relational operator> I, l+I@ 1)

Move footnote from page 15 to page 9.

1..9

1.16

1.-2

1 .• 2

...

...

. . .
• • 'e

<c.t.i.> I <a.t.s.p.> [i>rogram} •••

<r.t.><string> I <c.> := <r.t.>

ignore it since <delimiter> has no

<context >s. 1
) •••

.. -

...

36

1.-2 ... every <context definition> which ~as a <string> and

<result

p. 15 1. 1 (+):
Delete footnote here after moving it top. 9.

P• 16 1. 6 ••• units let L be the ••• legal strings in
X

1. 7 ALGOL x. To each D there . . . analyzer ~ which has . ..
1. 8 • •• that : if pe:1n then ~ (p) = t(p), where t(p)e:LC,

or t (p)

1.14 ••• necessity ••• when~

1.17 ••• The analyzer~' for one of <arithmetic •••

p. 21 1. 7

1. 8

s : = s + p Q ,k J X Q [i ,k];
K[i,jJ := C X s !:. !:_;

......... ..,,

p. 21 1.-4, ••• ,~1- This.program requires only 2n+2 locations for temporary

storage, but it takes more time. Should one wish to produce

the faster code, definitions could be written to generate

1.-2

p. 25 1.14

1.15

P• 27 1.18

1.19

1.20

1.-4

P• 28 1. 3

P• 29 1.-9

P• 31 1.-5

1.-4

P• 33 1.-1

P• 37 1.-1

the full temporary storage required. The key definitions would

reflect ·a 11bottom~up" syntax:.a.nalysis. For example:

matrix(u,v)a x matrix(v,w)b := ma.trix(u;w) 'matrix(u,w)

~ array P[1 :-:i.t~ 1 :v], Q[l~v, 1 :w]; ·p := a;' Q := b; b integer i,j ,k;

~ s ; . . i + u ~ j + w do b s : = 0; k + v do s . -

s + P[i,k] x Q[k,jJ; ::_[i,j] := s !:, !:, !:.';

Some of the transitional states of the tree for the second

expansion were as foliows (numbers in parentheses refer to

definitions invoked):

... follows (numbers in . ..
••• real'~ b ~ c; •••

C : = C + if a [i] •, •

(10) £.P_ (F)f 2.f. list x • ••

(11) £.P. (F)f of £.P. (G)g :=

(12) list y 2.f. _s>£ (F)f :=

such as £.P_ (H)h, the •••

else E(.£!!£ f, (pie of •••

• • • 'complex { a x b [1], a x b [2]) ' ;

tion 5. Then a <context definition> and <declaration>

are:

complexma.trix (b,c)a := complexma.trix 'b,c';

matrix {complex, m, m) means array [1 :m, 1 :m, ·1 :2];

••• naming techniques, as in COMIT and SNOBOL, for

example.

p. 38 Insert after 1.11 {ii) Create another <context definition> using

the <result type> y of Q:

P• 39

1.12

1:14

y [Program] [[bound pair list]] := y - - - -Now for each <context definition> use •••

(iii) If there is already

1.16 {iv) Represent P ••.

1.-5 Successive replacements

A Proposal for Definitions in ALGOL

by

BoAo Galler*)

University of Michigan and Mathematisch Centrum, Amsterdam

and

AoJo Perlis ~)

Carnegie Institute of Technology and Mathematisch Centrum, Amsterdam

1. Introduction

This paper describes a te9hnique for programming definitions

within an ALGOL-like programming languageo Though the approach is

applicable to most languages which possess compilers 9 this paper de

scribes in detail the technique for one language, ALGOL c, a variant

of ALGOL 60 [1]o The variation, as described in section 2 9 does no

violence to the important basic concepts of ALGOL 60o

It is believed that the inclusion of definition making in pro

gramming is a natural development to be expected from the increasing

sophistication of language designo In any event 9 programming of de

finitions is to be preferred to the current pastime of tediously

redesigning programming languages to handle newly arisen 9 apparent

ly unforeseen,operators and operandso

Curiously 9 definitions in some programming languages have been

in use for some time, eogo 9 macro systems in assembly languages, and

iE#)

The work presented here was supported in part by the National
Science Foundation (GP - 4538) and the Air Force Office of
Scientific Research (AF - AFOSR - 1017-66)0

The work presented here was supported in part by the Advanced
Research Project Agency of the Office of the Secretary of Defense
(SD - 146)0

~

through the fluently applicable but weak device of procedures in

all languageso But there has not been any general exploitation of

the macro concept in algebraic languageso

The MAD language [2] permits the definition of new operators

with unary and binary "contexts", but requires their definition to

be in assembly language, and provides little interaction between

definitionso CDC Fortran 63 [3] allows up to three additional types

of arithmetic with existing operators» but the definitions merely

produce calls on procedureso This paper attempts a more general ex

ploitation of the macro concept, albeit an incomplete one, since

it has nothing to contribute to the problem of diversification of

control through definitionso

As is customary in other macro systems, the processing of de

finitions follows the simple pattern~ Take a language x, extend its

syntax to a language x 9 to include that syntax necessary for phrasing

and using definitions, and then reduce a text in the extended syn

tax to an "equivalent" one in language Xo We beg the reader 9 s for

giveness for giving in this paper neither a precise definition of

"equivalence" nor even an informal proof that given such a reasonable

definition the reduction process does yield an equivalent programo

But such has not yet been given for the translators that map ALGOL

programs into machine code, eitheri

As mentioned above, it is convenient to look upon definitions

as altering the syntax of a programming language, ioeo~ certain

syntax units are assumed variable, While a range of choice is pos

sible9 this paper limits its treatment to variability of the syntax

units~ <block head>$ <type>, <assignment statement>, <arithmetic

expression>, and <Boolean expression>o This level of variability

permits the definition of new operators and new data structureso

For examplei one who works extensively with matrix arithmetic writes

K = c x !_((Ax ,'.!'_B) x !_(G + D)) where 1'. is the transpose operator,

c is a scalar, A and Bare n x n matrices 9 and D, G, and Kare

m x n matricese The level of detail 9 ioeo 11 iterations and subscrip-,.

tion sequences, needed to carry out this computation on the ele=

ments of the matrices should be generated by the processor. Another

person might wish to redefine~ multiplication so as to force a

non-standard rounding.

Furthermorej an implementation of the techniques described in

this paper should be possible within the general framework of any

ALGOL 60 translator. Analogous techniques can obviously be given

for other algebraic languages.

A set of definitions assigns a syntax to the above-mentioned

five syntactic units and defines 9 much as ALGOL 60 and '

ALGOL Care defined, the syntax of a language called ALGOL DG Thus

there are many ALGOL D's. In order to give each an interpretation,

the technique developed here gives a reduction of any of them to

one fixed language, ALGOL c~ The scope of definition of an ALGOL D

is dynamically controlled by block boundaries in the following way.

The definitions occur only in a <block head> 1) and fix the

five variable syntax units for the block having that heading, i.e. 9

define an ALGOL Dover that <block>.

On exit from a <block>, the syntax of the five variable syntax

units reverts to that which was in effect on entry to the <block>,

i.e. 9 a reversion to a previous ALGOL D. The interaction of new

definitions with those in effect on <block> entry will be described

in section 3. It will be seen that only one ALGOL Dis in effect;

ioe. 9 defined, at any one time in the processing of a program.

The most impor~~nt feature of th~Jmplementation described

here is that both the number of iterations and t~~ount of tempo

rag st~~ge ne~ged for intermediate results in the evaluation,2!

~fpressions are drastically reduced by the use of a replacement

rule which avoids any unnecessary introduction into the code of ite=

rations and "workspace" arrays. This is particularly important with

1~ Throughout this paper the<> notation 9 such as in <block head>,
is used to assign a technical intent to the bracketed words
"block head"~ i.eo 9 as one of a set of legal strings (not <string>s)
defined by the syntax precisely as in ALGOL 60.

- 4 -

arrays 9 for examplei and is difficult to achieve when working with

collections of individual <procedure>So This effect will be demon

strated by the examples in section 5o

Section 2 describes ALGOL C by listing its differences from

ALGOL 60. Section 3 describes the syntax common to all ALGOL D9 s 9

concentrating primarily on the new constructions needed to write

definitionso This discussion of syntax is followed by a description

of the processing to be carried out on each of the new constructions

and the,generation of a new ALGOL D from the results of this proces

singo This process,when applied to the definitions of Figure 1,

generates the syntax of<arithmetic expression~<Boolean expression>,

and<assignment statement>of ALGOL C. Once a new ALGOL Dis gen

erated, the process of determining the "legal" expressions in this

language is · 1• 1 di·scussedo Section 4 i's·'Goncerned with the proces

sing of declarations and text once an ALGOL D has been defined. A

"replacement rule" is given which reduces ALGOL D text to ALGOL C

text. In section 5 seve.ral examples are given of definition sets:

matrix arithmetic, file processing 9 and list processingc In the ma

trix set 9 the strategy for obtaining a useful set of definitions is

presented, as well as the detailed application of all .of the major

features of this paper. Section 6 deals with the generalization

possible with sets of definitions. Complex arithmetic definitions

are introduced here 9 leading to a combined set of definitions for

complex and real matrix arithmetic.

,.

2. De·scription of ALGOL C

ALGOL C coincides with ALGOL 60 (revised) [1] except for the

following~

(1) The addition of six standard functions:

~

name of

argument type

<procedure identifier>,

<array identifier> 9 ~ 9

Boolean 9 integer

value type

integer

- 5 -

re of
1)

integer real -
Be of integer Boolean

WWW S ..
of inte5er integ~ J.C

pie of integer <procedure identifier>

aic of integer <array identifier>

The value name of(x) will always be a positive integer and may be

interpreted as the index of x in a vector consisting of some segment

of storage. ~he arguments of the five other functions must always

be positive integers, since they are intended to apply to values

which could be produced by the procedure name of.

(2) The addition of <structured expression>:

It will be required of ALGOL C that <arithmetic expression>s

and <Boolean expression>s be able to have an array of values. Accor

dingly, the value of a function designator may need to be an array

of values, also.

Syntax:

<program expression (poeo) 2)>: := <type><progra.m> [<bound pair list>]

l<program>[<bound pair list>] l<type><program>l<program>

<function expression (f.e.)>::= <function designator>Kpic of(<arithmetic

expression>))

<list of arithmetic expressions (lca,e.)>::= <arithmetic expression>!

<l.a.e.>, <arithmetic expression>

1)

2)

These represent real contents of, Boolean contents of, integer
contents of, procedure identifier contents of, and array iden
tifier contents of, resp.

Abbreviations introduced in syntax definitions will be used in other
synt4x definitions, but not in text.

- 6 -

<list of Boolean expressions (loBoeo)>g:= <Boolean expression>!

<loBoeo>i <Boolean expression>

<arithmetic type>::= integer I ~
<enumerated arithmetic expression (eoaoe.)>::= <arithmetic type>

(<loaoeo>) [<bound pair list>]l<arithmetic type>(<arithmetic

expression>)l(<arithmetic expression>)! (<loaoeo>)[<bound pair list>]

<enumerated Boolean expression (eoBoeo)>::= Boolean (<l.Boeo>)

[<bound pair list>] !Boolean (<Boolean expression>)

<enumerated expression (e.eo)>gg= <e.aoeo>l<eoBoeo>

<structured expression (s.e.)>g:= <poe.>l<function designator>l(aic of

(<arithmetic expression>))

(3) The revision of <procedure declaration>:

<procedure declaration>::= <prologue><procedure heading><procedure

body>

and the addition of:

<prefix>:~= <type> I <type> array [<bound pair list>] I arra_z[<bound pair

list>]

<prologue>g:= procedurel<prefix> procedure

(4) The revision of <function designator> 9 <actual parameter>, <subscripted

variable>g

<function designator>gg= <procedure identifier><actual parameter part>I

(pie of(<arithmetic expression>))<actual parameter part>

<actual parameter>g~= <string>l<expression>l<array identifier>l<switch

identifier>l<procedure identifier>l<soeo>

<subscripted variable>::= <array identifier>[<subscript list>]l<s.e.>

[<subscript list>]

(6) The revision of <left part> in <assignment statement>i

<left part>~g= <variable>g= !<procedure identifier>~= j<procedure

identifier>[<subscript list>] g= 1!. := !!,[<subscript list>) :=

The value. assigned to a <program expression> is the value on

exit from that <program expression> of a variable!. which occurs in

ito In each <program expression> Q there must be exactly one occur

rence of the variable r exterior to any other <program expression>

contained in Qo This occurrence may be subscripted and must be the

only variable in the <left part list> of an <assignment statement>.

If the <type> of a <structured expression> is omitted, it is

~o The omission of the <bound pair list> allocates to the value

of a <program expression> the structure of an individual variable

of its <type>c Thus the <bound pair list> and the <type> specify

the amount and organization of the storage to be allocated to the

value of the <program expression> each time it is computedo

Exampleg (i) ~(x~y) [1 g2] (j] may represent the real or imaginary

part of the complex number x + iyo

(ii) {Program to compute the elements of the kth power of a real

n x n, matrix A} [1 gn\) 1 gn] [i 1J] c

The array{<bound pair list>] in the <prologue> of a <procedure

declaration> specifies the amount and organization of the storage

to be allocated to the value of the procedureo In general such de

clarations are to be used in the context of <function designator>s
'

and a component of the value is accessed with a <function expression>_.

Along with the agreement required by the actual-formal correspondence,

such procedures require an agreement of the number of subscripts in

the <function expression> with that predicated by the <bound pair

list> in the <procedure declaration>c

= 8

:: o e rationala.dd(w,, (t + 3;1h

Even though we have indicated that there will be many ALGOL D's,

they are actually almost identical, the exception being the defini

tions of the five syntax units listed in 1) belowo The common syntax

of all ALGOL D9 s is:

1) that of ALGOL C with the syntax definitions of <block head>,

<type>, <arithmetic expression>i <Boolean expression>i and <assignment

statement> deleted~

and 2) the following additions:

a) The syntax for <block head>:

<declaration list>:g= <declaration>l<declaration list>, <dec~ara~ion>

<new syntax element>::= <primitive representation>l<context defini-

tion>l<set definition>l<new operator declaration>

<new syntax list>::= <new syntax element>l<new syntax list>; <new

syntax element>

<block head>::= begir <new syntax list>, <declaration list>;lbegin

<declaration list>;lbegin <new syntax list>;

b) The syntax for <type>:

<boldface character (boch.)>::= alblcldlelflglhlililkl1lmlnlolElgl

~l~l!l~lr1~1~1~1~1~1~1£1£1~1!1Qllil1lil~l~IMllil2IElslEl2l

TlulvlwlxlYlzlol1l213l412l6l1lsl2

<boldface symbol (bes O) > g := I.J <b,Cho > I <b,s O ><be Cho> 2
)

fj
The symbols ,2. and!:. are used throughout to represent begin and
~~ respc

2) In this paper the leading character (lJ) will be suppressed
where no ambiguity is possible.

<fixed type {foto)>gg= ~ I Boolean I integer

<basic new type (bonoto)>gg= <boso>l<foto>

<actual type parameter (aotop.)>gg= <actual parameter>l<aot.>

<actual type parameter list (aotopolo)>gg= <aotopo>l<aotop&lo>,

<aotopo >

<actual type (aoto)>gg= <bonoto>l<boso>(<aotopolo>)

c) The syntax for <new syntax element>g

(i) for <primitive representation>g

<new type (noto)>gg= <boso>l<boso>(<aotopolo>)

<representation>gg= <aoto>l<aoto> array [<bound pair list>]

<primitive representation>gg= <n.to> means <representation>!

<cotosono> means <representation>

Exatllpleg matrix(m~n) means array [1 gm, 1 gnJ;

(ii) for <new operator declaration>g

<precedence relation (poro)>gg= <l=I>

<operator (o.)>g;= <boso>l<arithmetic operator>l<logical opera-

tor>l<relational operator>li

<current operator (c.o.)>gg= <o.>

<new Operator (noOo)>gg: <oo>

<new operator declaration (n.oodo)>gg= <n.o.><poro><c.o.>l<o.sono>

Exampleg ! > x,
(iii) for <set definition>;

<operator set name (o.son.)>gg= <boso>

<operator list element (ooloeo)>gg= <oo>I ~~ l<ocsono>

<operator

<operator

<context

<context

list

set

type

type

(oolo)>gg= <ooloeo>l<oolo>, <ooloeo>

definition (o.s.d.)>gg= <o.s.n.>g= (<o.1.>)

list (cotolo)>gg= <coto>l<cotolo>, <coto>

set name (c.t.sono)>gg= <b.s.>

<context type set definition (cot.s.d.)>g= <c.t.son.>g= (<cot.l.>)

<set definition>gg= <oosodo>l<cotosodo>

- 10 =

(iv) for <context definition>g

<formal type parameter (fotopo)>gg= <formal parameter>l<aotopo>

<formal type parameter list (fot~polo)>gg= <fotopo>l<fotopolo>, <fotopo>

<context type (coto)>gg= <bonoto>l<boso>(<fotopolo>)l<cotosono>

<result type (roto)>gg= <coto>

<context typed identifier (cotoio)>gg= <coto><identifier>

<current context operator (coCoOo)>gg= <cooo>l<oosono>

<basic context (boCo)>g g= <coto io > I <aoto > [program] [[bound pair list]] 1) I - - -
(<co>)

<subscripted context (So Co)>g g= <bo Co> I <boCo > [<coto L >] I <soCo> [<cotoio >]

<context (co)>gg= <soCo>l<coCoOo><soCo>l<soCo><coCoOo><soco>I i! <co>

~ <soCo> ~ <co>

<left side (loso)>gg= <cotoio>[<loso>[<subscript list>]

<assignment context (aoco)>gg= <loso>g= <co>

<context definition (codo)>gg= <co>g= <roto><string>l<co>g~ <roto>

<aoco>g= <roto><string>l<aoco>g= <roto>

Exampleg !£!(u)a x !,2!(u)b g= ~ v~ .E. integer j;

~ s; s g= O; !2,!: j g= 1 step 1 until u do

S g = S + a [j] X b [j] ; !, g = S ~ V ;

The alphabet of ALGOL C contains certain characters which are, to

say the least, difficult to distinguish from certain sequences of

characters from the set of <boldface character>s; eogo 9 J1. and .!2!,o To

remove this conflicti this paper will not contain any <boldface symbol>

which resembles a character present in ALGOL 60o

In a <block> any <current context operator> occurring in a <basic

1) The boldfaced brackets indicate an ALGOL C syntax unit, for whose
analysis the ALGOL C analyzer will have to be called upono

- 11 -

context> must have already been defined either by appearing as a. <new

operator> in an earlier <new operator declaration> or by being an <arith

metic operator>i <relational operator>, or <logical operator> of ALGOL Co

Any occurrence of an <actual type> appearing in a-<representation> must

have been preceded by its occurrence as a <new type> in a <primitive re

presentation>, unless it is a <fixed type>o Any <context type> must appear

as either a <new type> in a <primitive representation>, or as the <result

type> in a <context definition>o

Naturally 9 it is not intended that the <string> appearing in a

<context definition> be amorphouso As will be clear in section 4, it is

a form which, after certain speciif'ic editing operations are performed,

must be a "legal" <arithmetic expression>, <Boolean expression>, or

<assignment statement> for some ALGOL Do In addition, there may appear

in the <string> the following:

(i) A single pair of matching boldfaced parentheses such that i is

immediately preceded by a <result type>, and

(ii) an assignment to a subscripted!, contained between the matching

boldfaced parentheseso (As will be seen, this structure will

have disappeared before the <string> is processed with an ALGOL D

syntaxo)

(iii} An asterisk{*) preceding some occurrences of variableso 1}

(A variable declared to be of a <new type> has two <type>s

associated with it~ its <new type> in ALGOL D and its ALGOL C

<type> derived from the expansion of its <primitive representa

tion>, described in detail later in this sectiono The program

mer may indicate that an occurrence of a variable has its

ALGOL C <type> in a context definition (ioeo, in the <string>}

by preceding that occurrence by an asterisko}

1) (} Strictly speakingi<delimiter> must also be redefined to include , ,
*, and meanso We ignore it since <separator> has no contact with-any
of the concepts treated here.

Furthermorei the<string>may not be perfectly general in the sense

that& when parsedil no structures of the form <new syntax element> may be

encounteredil ioeos no definitions may contain other definitionso (This

is a recognized limitationil and could be eliminated at the expense of

some extra complexity in the performance of the replacement rule of sec

tion ,4o)

ExampleJ)matrix(usv)a + matrix(u 9v)b i= -matrix(u 9v)
0matrix(u 9v) .£, integer i, !2! i g= 1 step 1 until u

do row(v)(r(i] i= a[i] + b[i]) ev,
~~ c:;igQIO --

The relation of an ALGOL D to ALGOL C can now be made clearg

Upon entry to a blockil two tables are assumed to exist:

1) a type table 9

2) a context table containing two sub-tablesg the table of expression

contexts and the table of assignment contexts, whose lines are labelled

by pperatorso The assignment context table contains only that line of

the context table labelled by i=o The expression context table consists

of the remaining linesa

The contents of the two tables determine a syntax for each of:

<type> 9 <block head> 9 <assignment sta~ement> 9 <arithmetic expression> 9

and <Boolean expression>o These 9 together with the common syntax of all

ALGOL D9 s 9 yield the syntax of the ALGOL D which is in force throughout

the processing of the <new syntax list> of the <block> just entereda

When the <block> is entered& copies of these two tables are made, and

the <new syntax list> of the new <block> may alter these copiesa Age

neral description of the processing of the <new syntax list> is given

here; details will be found in Appendix Ao

<Set definition>s\are used to generate copies of other <new syntax

element>so Each generated copy contains a different representative from

the set chosen in all possible wayso The <primitive representation> causes

an entry to be made in the type tableo These are later used to allocate

storage for variables declared to have the <new type> involved1 since

each <primitive representation> describes its· <new type> in terms of

ALGOL C arraysc This ma;y involve a chain of reductions 9 such as

1) The examples used here are generally taken from the more complete
examples in sections 5 and 6,

- 13 -

matrix{complex,mj)m) means somplex array [1gm,1gm];

complex means array [1 g 2] ;

which leads to the entries in the type tableg

matrix(_complexl)ml)m) means array [1gm 9 1 gmj) 1 g2];
.s.omplex .!..~! array [1 g2],

Only <type>s in the type table are allowed in <declaration>so A <new

operator declaration> establishes a precedence for a <new operator>

relative to existing operators, and it also labels a line in the context

table with that operatorc <Context definition>s involving that <new oper-

ator> as their principal operator will be placed in the line which it

labels,

A <context> is an occurrence of one or more <operator>s 9 together

with the <type>s of their operandso <Context>s are the natural unit of

definition for <assignment statement>s and expressions, since it is al

ways necessary to determine the <context> in which an operator occurs

be:fore one can replace it with "code"o This is true even for ALGOL C,

since there are quite different definitions forg ~ x/real y 9

~~ x/jnteger yj) integer x/~-~ y 9 and integer x/integer yo In a

~context definition> a <result type> is given as the <type> of the va

lue of the expression represented by the <context> 9 and the associated

<string> is the "definition" of the <context> 0 Leo 9 text to replace an

occurrence of the <context> during the reduction of ALGOL D text into

ALGOL C texto (When no <string> is presentj) recognition of the <context>

in a piece of text induces no change in the texto) The <string> need

not be itself in the ALGOL C language; it merely reduces the ALGOL D

text to something "closer" to ALGOL Cc There may be <context>s in the

<string> which will need replacement by other <string>s in turnc

During the processing of the <new syntax list> in a <block head>,

any <context definition>s that are encountered are entered into a line

of the context table determined by the relative precedence of the

<context>vs principal operator among the set of <current context oper-

·ator>s, iaecj) among those operators which have appeared in ALGOL C or

in <new operator declaration>so Some <context definition>s generate

others by means of the "boldface parentheses" notation, which is a de

vice for implying subscription<contexts~)For example, the <context de

finition>i

matrix a+ matrix b g= matrix 0matrix

,2, integ.z.r i, 12!, i g= 1 step 1 until n do

row(r[i] g= a[i] + b[i]) e 0 ,
~= aim, -

would lead to two entries (which no longer contain.land l):

for subscriptiong

(matrix a + _!!trix b) [integer i] g= £2!
0r[i] i= a[i] + b[i} v; - '

for +i

matrix a+ matrix b g= matrix 0 matrix!?, integer 1;

~ i := 1 step 1 until n ,2;2,

~,:[i] := a[i] + b[i] ~~v,
As indfoated below~ when the last declaration in the <new syntax list>

has been examineds the two modified tables define the syntax of the five

variable syntax entities which is to remain in force for the duration of

the current blocko A possibly new ALGOL D has been definedo Finally, on

exit from thi~ block~ the tables are reconstituted as they were on entry,

and the ALGOL Din effect on entry to the block is reinstituted as the

current ALGOL De Appendix B describes in detail how to generate the set

of "legal" ALGOL D expressions and <assignment statement>s from the type

and context tableso In general~ these expressions and <assignment state

ment>s are just what one would expect to obtain from adding new 9pera

tors to ALGOL Co They are generated by listing first those <oontext>s

which are directly definable in ALGOL Ci then those definable in terms

of the <context>s already chosen 9 and so ono When the <context typed

identifier>s are replaced in these <context>s by actual <identifier>s of

the correct <type>!) legal expressions in ALGOL Dare obtainedo

Initiallyi the context table contains four empty, but labelled lines:

1 J
Mor~over, every context definition which has a string and result
type> y generates a <context definition>: y [Program] [[bound pair list]] : = Yo -- - - -

< 't > n g

(g~~)g

(program expression)g

(no operator) z

The type table contains ~ 9 integeri and Booleano We assume the exis

tence of an outermost block supplied by the "environment" 11 which con

tains the definition set for ALGOL Co This is given in Figure 1o

arith ?,= (~11 integer), any g= (arith~ Boolean); l1, g= (x~¾); fil g= (x,/);

! g= (+©=h fil g= (>ll=®~11!»#); .li g= (!Ui<), ! g= (A,v,::>,=);

@ > +; 'r < 't', x < +, ¾ = x, / = x, + < x, _ = +, < < +, fil = <; -, < <;

any a (t) arith b g= any,

any a+ a.rith b g= any,

!:El a (!) Boolean b g = any;

fil:_ith a t arith b ~= ~;

arith a fil arith b e= ~'

integer a 1:1 integer b g= integer;

11,rit.h a!_ arith b g= ~;

~a!_ integer b g= integer;

A arith a~= arith,

arith a B, arith b ~= Boolean;

7Boolean a g= Boolean;

Boole~ a], Boolean b g= Boolean;

if Boolean a then Boolean b ~ Boolean c g= Boolean;

i! Boolean a~ arith b else arith c

i! Boolean a~ integer b ~ integer c g= integer;

Boolean a~= Boolean b i= Boolean;

~a~= arith b

integer a z= arith b

an;y ail rn b

(~ a)

~ (ProgramJ [!:bound pair list~]

g= integer,

Figure 1 The Definition Set for ALGOL Co

1)
The '1:lymbol. i represents subscription 9 treated as a binar_y operator.
Similarly 9 © represents function evaluationo The ALGOL 60 (implied)
forms will also be acceptableo

4~ The reduction of an ALGOL D program to an ALGOL C program

• • Since -the syntax of an ALGOL D program is that of ALGOL C with the

exception of <arithmetic expression>~ <Boolean expression>i <assignment

statement>~ <block head>~ and <type>j an ALGOL D program can be parsed

by the syntax of ALGOL Cj except for these five syntax unitso For each

of these units let L (s) be the set of legal strings having syntax sin
X

ALGOL Xo To each s there corresponds an analyzer ~-(s 9 P) which has the

property that g if P €1) (s) then AD (s i P) = t (P) i) where t (P) ELC (s) , or t (P)

is the null stringo We.wish to give the algorithl!r:by which t(p) is producedo
. ': ~-- ·, .

The processing in,<block head> of <new syntax list> has already been

described (section 3) and no ALGOL C text is produced from this processingo

Following the parsing of <new syntax list>~ the ALGOL D for the current

block is completely definedo The processing of <declaration>s by ALGOL C

is interrupted only by the necessaty of analyzing ~type>si when AD(<type>,d)

replaces an occurrence of an <actual type> by its <representation> as

given in the type tableo Otherwise <declaration>s are parsed by the ALGOL C

parsero The analyzer ~(sip)S> for ans which is one of <arithmetic ex=

pression>~ <Boolean expression>S> or <assignment statement> operates as

followsg

Since an ALGOL Dis defined, any text p of one of these three kinds

can be parsed using the context tables for that ALGOL Do This parsing yields

a tree representation for Po The terminals are identifiers and the nodes

are operators and delimiters 11 such as J?. 11 ·h .+5) and instances of <for

clause>so The tree has either zeroi onei twoi) or three branches 1) emana

ting from any nodeo Furthermorei each node and terminal element is labeled

with an <actual type>o Similarly!) any <context>.in the context table can

be parsed into a tree (called a tvcontext tree") whose terminals are

<context typed identifier>so

1)
The conditional expression will be represented as a single node with
three branches labelled i!ll ~ 9 and~, respo

Suppose 9 then 9 that some text P has been encountered in the block

which is an <assignment statement> or expressiono The reduction of P to

ALGOL C text consists of the following steps (given in detail in Appen

dix C) g

(1) Parse Pinto a tree with labelled nodes!) as described aboveo

(2) Select a sub-tree for which a matching context exists in the

context tableo

(3) Using the <string> associated with the selected <context>, con

struct its tree representation 11 and replace <context typed

identifier>s in this tree by their correspondents (via the match)

from Po

(4) Substitute the new tree for the sub-tree·selected in (2)o

Since each <context definition> thus invoked is written to provide a

<string> which is "closer'.~ to ALGOL Ci) repeated substitutions such as are

descriped in steps (2) to-(4) eventually lead to the desired t(p) •

. Although care must be taken in the details of "matching" trees with

<context>s~ the rule given in Appendix C would be much simpler if it were

not also.concerned with avoiding the introduction of unnecessary iterations

-· and temporary storage allocations o As an example of the technique used for

this 9 suppose that the text being processed at some st~e isg

w[i] g= x[i] + y[i] + (v x z) [i];

where w, x 11 y 11 V 9 and z are matrices 9 and w[i] is the i-th row of Wo Suppose,

also, that the following <context definition> is selected by the matchin.'g

processi

(matrix ax matrix b)[integer i] g= row ~~1?£2! t;
t g= a[i], !, g= t x b !;,0 ;

While a straightforward substitution producesg

the replacement rule generates the following, eliminating the need for a

row of temporary storage for rg

Additional examples will be found in section 5o

- 18 -

5a Examples.£! definition~

1a A Matrix Arithmetic Definition Set

As an example of the development of a definition set, we consider

the definitions necessary to allow arithmetic expressions and assignment

statements involving matrices with dimensions m x m, m x n 9 n x m, and

n x n (where m and n are non-local)a The set is developed in stages 9 as

followsg

I. The <primitive representation>s are giveng

matrix(m 9m) means array [1 gm 5 1 gm];

matrix(m 9n) means array [1gm 11 1 gn];

matrix(n 9m) means arrai [1 rn, 1 gm];

matrix(n,n) means array [1 rn, 1 gn];

II. The <new operator>s are declaredg

These represent the transpose and inverse operatorso

IIIa The desired <context definition>s are Iistedg

(1) matrix(u~v} a g= matrix(u 9v} 9matrix(u 9v} .:!?, integer i;

i -1> u do row(v) (r[i] g= a[i]) e'; 1) -~ -- --
(2) matrix(utlv) a g= matrix(u 9 v) b g= matrix(u,v)

91?, integer i; i ➔ u ~ a[i] g= b [i]

! ~= (+9-},

e,. _,

(3) matrix{u,v) a! matrix(u,v) b g= matrix(u 9v) 'matrixtu 9v)

~ integer i; i -1> u ,.2;2. ~(v) i;::[i] g=

a[i] ! b[i]l ~9
;

arith g= (~9 integer);

1) The notation i -1> u is an abbreviation forg for i g= - 1 step 1 until Uo

(4) arith ax matrix(u 11v)b := matrix(u,v) 9matrix(uiv)

12, integer i; i + u !!£ !£.1!(v) £:: [i] g =

a x b [i]l .!;,9
:;-

(5) matrix{u~v)a x matrix(v»w)b g= matrix(u,w)
9matrix(u 9w) l2. integer i; i + u !!£
~(w)i.£ £m!.(v)t; t g= a[i];

r.8.J g= t X bl.!;,';

(6) !, matrix(uiv)a g= matrix(v 9u);

(7) 1, matrix(u 9 u)a g= matrix(u11 u) 9 inv(a,u) 9 ;

IVo The <string>s introduced in III make additional <context definition>s

and <declaration>s necessaryg

(8) ~(v)a g= row(v)b g= ,rn(v) 9,£_ integer, j; j + v ..9£
a [j] g = b [j] .!;, 9 ,; (from (1))

(9) ~(v)a ! ,rn(v)b g= ~(v) 9~(v) h integer j;

j + v ..9£ .rm iE [j] g = a [.j] ! b [j]l ~ v ;

(from (3))

(10) arith a x~(v)b g= row(v) '~(v) l2, integer j,

j + v ~ ~ fa: [j] : = a x b [j]l .!;. 9
;

(from (4))
rn(m) means array [1 gm]; ~(n) means array [1 rn];

(11) ,rn,(u)a x matrix(u~v)b g=~(v) Y~(v) .£. integer j;

j + v ~ ~ L~:[j] g= a x (1,1)) [j]l .!;,'·;
(from (5))

Vo Additional <context definition>s arise from the <string>s in IV:

(12) ~(v)a[integer jJ g= ~ 9*a[j]'; (from (8))

(13) row{v)a x ,rn(v)b ~= ~ 9~ ,12. integer j; ~ s;

s : = O; j + v ..9£ s : = s + a [j] x b [j] ; !. : = S e V 0 - .,
(from (11))

- 20 -

VIo Additional <context>s arise when one <context> with <result type> y

is substituted for an occurrence of a <context typed identifier> with

<context type> yin another <context>o Only those need be listed for

which a special <string> is desiredg

(14) l, (matrix(u,v)a,A matrix(u,v}b) g= matrix(v,u)

°,!_a ! _! b 9
; (f:rom:· (3),' into (6))

{15) ! (matrix(u,v)a x matrix(v,w)b) := matrix(w 9u)
vTb x Tav. - - , (from (5) into (6))

(16) T (T matrix(u,v)a) := matrix(u,v) Va V, (from (6) into (6))

(17) T (I matrix(u,u}a) := matrix(u,u) 9 I(Ta) v • (from (7) into (6)) - - -- '
(from (7) into ·(7))

(19) matrix(u 51 v)a [integer i] [integer j) := ~ 9*a[i,j] P;

(from (1) into (12))

(20) (! matrix(u 9 v)a) [integer i] [integer j} := ~ 0 a[j] [i] v,

This set of <context definition>s does not provide a correct ALGOL C

program when a matrix appears on both sides of the~= symbol, and on the

right side in a context other than as the left-most factor in a producto

For example, A~= B :=Ax Bx C would give incorrect results for A and B9

but A~= Ax Bx C would work correctly.

It is interesting to note that definition (5) could be written:

matrix(uiv)a x matrix(v$w)b := matrix(uiw)
0matrix(u,w) ,!! integer i; i ~ u ~

!£!(w)i::[i] g= a[i] x blv;

This would eliminate the allocation of the temporary storage fort, but

some elements would be computed several times in some expressionso

An example of the use of this definition set is:

~ c; matrix(m,n)K, G, D; matrix(n,n)A, B;

Kg= c x ! ((A X1'_B) x! (G + D));

A straightforward ALGOL C program for this computation would be:

- 21 -

~ c; array K, G, D [1gm, 1m], A9 B [1m, 1m];

_£ integer ill j, k; array P [1 rn, 1 gn], Q [1 gm, 1 rn]; ~ s;

i + n do j + n do b s g = 0; k + n do s g = s + A [i ,k] x B [j 11 k] ; - -- ~
P[i,j] g= S!:_;

i + m ~ j + n ~ Q[i,j] g= G[i,j] + D[i,j];

i + m do j + n do£ s g=,O; k + n .9:2.
s g= s + p [j ,k] X Q[i,k]!:_;

K [i, j] g = c x s e e

2 This program requires n +nm+ 1 locations for temporary storageo The

expansion via the definition set, using the replacement rule, isg

~ c, array Kil G, D [1 gm 11 1 gn]; array A, B [1 rn, 1 gn];

b integer i; i + m ~ _£ array t [1 rn];

b integer j; j + n ~ t[j] g= G[i ,j] + D[i,j] e· _,
b integer j; j + n .2:2,~ array z [1 gn];

b integer k; k + n ~ z[k] ·- A[j ,k] e· .- _,
b integer _k; ~ s; s := O;

k + n ~ ~ integer h; ~ x; x g = 0;

h + n do x g= x + z [h] x B[k 9h]; -
s g= s + t [k] XX e• _,

K[i,j] g= c x s e e e e e; -----
This program requires only 2n + 2 locations for temporary storage and

,will execute in less timec Some of the transitional states of the tree

for this expansion were as follows (number in parentheses refe~ to defi

nitions invoked)g

_ 22 -

(2) :

A

(4) ➔ (15) ➔ (5):

A integer 1

A

- 23 -

I (16) + (3) + (8) + (19) + (12): II (8) + (19) + (4) + (11):.

integer j

D i j

II (16) + (5): A B

III (8) + (19) + (12):

integer j

array

z

K

B

- 24 -

IV (13h V (11) + (16) + (12) + (13) + (19) + (12)g

k h

z B

- 25 -

2. ,!~ Processing Definition~

B ~= (A,V); ,! := (+,- 9 x,/,¾,:=);
R := (=,~,<,!,>,~);
arith := (~, integer); ,!!i :=

_, ~ means array [1 :m];

~ means array [1 : n] ; ·

!Y. means Boolean array [I :m];

fili a finteger i] [integer j] :=

!ili. a [integer i] := m;
~ a [integer j] : = ~;

!Y. a [integer i] : = Boolean;

.£m. = -t;

countoif. < on· _,

(arith, attr(j)); -

~ 're of(a[i] + j - 1)';

countof .!Y. a:=~•~ b ~ c; integer i; c := 0; i + m .2,2

C : = _£ + il a [i] ~ 1 ~ 9 j !, : = C !:. ' ;

Boolean a $ ·.!lli. x : = !Y. '!Y. .12, integer i; i + m .9£.
Boolean£:: [i] := a_ ,£m. x [i]l !:.' ;

m_ a .£m. .!lli. X : = ~ 1 _!ili .12, integer i ; i + fil .9£.
~!,~ [i] := a £n, x [i]l !:.';

(Boolean a 11 Boolean b) ,£m. m c : = Boolean 'a £n, c 11 b ,£m. _c' ;

(,Boolean b} 2!l m c := Boolean '7(b 2!l c) 9
;

(!:!li a 11 ,m b) ,£m. ~ c := Boolean 'a £n. c]_ b .£m. c';

<m a A. m b) .Q!l ~ C := ~ 'a on C A b -2!!. CV ;

~(j) a ,2ll. ~ c := ~ •c[j] ';
arith a £n. m c := arith 'a';

(if Boolean a then rat b else rat c) on rec x := _,.... _____ --==--- -- --

~ 'i!. a £n. X ~ b .Q!l X ~ C £n. x';

m a 11 ~ b := Boolean;

£& a ! ~ b := ~;

.!lli. a : = .!lli. b : = .!lli. 1 .12, integer i ; i + m .9£. a [i]_ : = b [;.} !:. 9 ;

m a := ~ b := ~ 1b integer j; j + n .9£, a[j] := b[j] .!t';

!Y. a :=!Yb := !Y. 'E. integer i; i + m .9£. a[i] := b[i] .!t';

- 26 -

The access functiong re of (a[i] + j - 1) and the <primitive representa

tion>s used give a data structure of a vector of m record nameso Each

record is a vector of n entrieso However, no other context depends on the

choice of data structureo

Exampleg ~ x; array A[1 gm, 1 gn]; ~(1) name; .!ll!:,(2) sex; ~(3) height;

~ cnt;

E. integer i; !£!: i -+ m .2:,2 x [i] g= name of (A[i 9 1]);

0 0 0

cnt g= countof(sex = 1 A height ~ 6) 2.!!. x;

0 0 0

The example expands tog

array x [1 gm]; array A[1 gm, 1 gn];

E. integer i; !2!, i -+ m .2£ x[i] g= name of{A[i, 1]);

0 0 0

E.~ c; integer i; cg= O;

i -+ m do c g= c + if re of(x[i] + 2 - 1) = 1 A

re of(x [i] + 3 - 1) ~ 6 ~ 1 ~ 0;

cnt g= c .=,;
0 0 0

It is assumed here that A is stored by rowso

3o ~ Definition ~

The following set of definitions is based on the LISP [5] primitiveso

The basic LISP predicates "atom" and "eq" are assumed to have been defined

as Boolean proceduresg

Boolean procedure atom(x); .ili! x;

atom g= ~ x = O;

Boolean procedure eq(x 9y); .ili! x,y;

eq g= .£!:!: x = ~ y A atom(x) /\ atom(y);

9NILv in LISP is represented here by Oo The following definitions are used

to organize lists as structures of nameso

- 27 -

(1) list means integer array [1 : 2] ;

(2)

(3)

(4)
(5)

(6)

COnS = Xo - ,
.£!::!. > ~;

cdr = car; - ~

of< cons; - -
list a cons list b

==- -
(7) .£!::!. ~ a : = lli1
(8) cdr list a g= list _...........,... -

g= list - 9list(a b) 9 • - , ,
Va [1} 9 ;

va[2]v,
(9) integer a g= ~ b g= integer 9 a g= name of(b) 9

~

Note that the conditions usually taken as necessary for the internal con

sistency of .£!!:,9 ~ 11 and~. are satisfied hereg

c = car a cons cdr a= list(car a 11 cdr a) - ~ - ~ ~ - .

= ~(a [1] 11 a[2])
so o = a; ioe 09 e[1] = a[1] and c[2] = a[2]o

Alsoi ~(a~ b) = (.ll!l(a 11b)) [1]

= a

and ~(a ~ b) = bo

(10) 2"Q. f(F) .2f list x g= list 9E(~(name of(F) ,o) ,x) v;

(11) 2"Q. f(F) .2f 2"Q. g(G) g= list 9 list(name of(F) 11 name of(G)) 9
;

(12) list y of~ f(F) g= ili,i 9 list(y 9 name of(F)) 9 ;

(13) ili,i y .2f list x := llru?. 9 E(y 9x) 9 ;

Context definitions (10) through (13) provide an efficient rule for

sequencing through a composition of operations on lists 11 each one of which

operates only on atoms to produce atoms or even listso The procedure Eis

organized so that as each atom of data is encountered the remaining opera

tors in the composition are applied to ito Thus the lists are not totally

decomposed and composed for each succesive operatoro In a <declaration>

such as op(H)i the <actual type parameter> H represents the <procedure>

to be used to apply h to a listo

The block containing these list definitions must also contain the pro

cedure Eg

- 28 -

~ procedure E(f 11x); ~ f ,x;

E g= if atom(x) then (if atom(f) then (pie of(car f))(x)
~ ~~ ~ ~

~ E(~ f; (pie of(~ f)(x)))) ~

E(f, car x) cons E(f 9 cdr x); - - -
Exampleg

begin 2J2,(F)f; ~(G)g; integer c; ~ a 9 bll d 9 h~ k;

0 0 0

integer procedure sub st (x ,Y 9 z) ; .1!-!l x ,Y 9 z; subst g =

if atom(z) then (if eq(z,y) then x else z)
~ ~ -=- ~ ~

~ subst(x,Y,£!!, z) ~ subst(x,y,~ z);

24!i procedure F(x); ~ x; F g= subst(a,k,x);

~ procedure G(x); ~ x; G g= subst(d 9 h 9x);

c g: (f .2£ g) .ef, b ~;

60 Programming Definitions

Suppose we have a definition set for some application, eogo 9 the

arithmetic of ~so We wish now to construct a collection for an arith

metic which generalizes~ arithmetic 9 eogo 9 complex arithmetico We know

that the field of~ numbers can be mapped isomorphically into the field

of complex numbers~ and this provides a clue to one method of programming

definitions g

(i) Give a <primitive representation> for a complex numbero

(ii) Assume all ~s are mapped into their corresponding complex

representationso

(iii) Give the arithmetic as a set of definitions whose <context>s

involve only complex quantitieso

(iv) The definitions involve manipulations of complex numbers in

terms of their <primitive representation>s 9 ioeo, as ALGOL C ~So

(v) Define a predicate to determine whether any complex number is

in fact ~ 9 so that, eogo 9 x > y can be gi.ven its ~ interpretation

when x and y are ~o

This approach has the virtue of simplicityo However 9 in applications

- 29 -

where much of the arithmetic and/or the data is ~ 9 a grotesque in

efficiency of execution time and storage use can occuro This method is

thus inaJlpropriate for nrogrammine-

Alternatively;i define not only complex arithmetic but mixed

arithmetico Any identifier may now be declared to be either complex or

realo Such a definition set isg
, """""""'

! g= (+»-h .,QJ2, g= (arg 11 conj~ magsq. itimes, isreal);

a.rith ~: (~11 integer)~ complex means array [1 g 2];

mag > t;

~ = mag9

complex a [integer i] g = ~;

complex a ! complex b g = complex 9 complex (a [1] ! b [1] 11

a [2] !, b [2]) 0 ;

complex a x complex b g= complex 9 complex(a[1] x b[1] - a[2] x b[2] 11

a[2] x b[1] + a[1] x b[2])';

complex a/ complex b ~ = complex O
(a x con.j b) /magsg b O

;

magsg complex a g= ~ 0 a[1] t 2 + a[2] t 2°;

arg complex a g= ~ 0_a.rg_(a) 0 ;

con.j complex a g= complex 0complex(a[1] 9 - a[2]) 0 ;

itimes complex a g= complex 0 complex(...,a[2] 11 a[1]) 0 ;

itimes,!f,,tt.h a g= complex 0 complex(0 11 a) 0 ,

mag complex a g= ~ 0 sq_rt{magsg a) 0 ;

.£l!h a! complex b g = com;gle~ 0 complex(a !, b [1] 9 ! b [2]) 0
;

complex b !,arith a g= complex 0 complex(b[1] ! a 11 b[2]) 0 ;

,!!'gh,a x complex b g= complex 0 complex(a. x J:>[1]
9

a:x:b[2])';

complex b x _§.ri t]! a g = complex O a x b o ;

comple:x:b/a,rjth a g= complex 0 complex(b[1]/a;i b[2]/a) 0 ;

ari~J!a/complex b g= complex 0 (a x con,j b)/magsg b 9 ;

complex at integer b g= complex 0 ciexp(a9 b) 0 ;

complex a t~b ·-.- CO!!relex 0crexp(a,b) 0 ;

complex a t com12lex b ·-.- complex 0 ccexp(a 11b) 0 ;

inteser a t complex b ~= com;elex 0 icexp (ail b) 9 ;

~at com:12le:x: b ·-.- com12lex 9 rcexp(a 11b) 0 ;

"

complex a g= complex b g= complex 01!, a [1] g= b [1],
a [2] g = b [2] ,!;, 0 ;

complex b g= arith a g= complex 91!, b [1] g= a; b [2] g=

arith a g= complex b g= arith 0a g= mag b 0 ;

complex a = complex b g = Boolean ° a [1] = b [1] /\ a [2] =

isreal complex a _g= Boolean °a[2] = 0 9
;

Note that the number of contexts required is of the order of the square

of those needed by the first approacho However, since <identifier>s of

both types are permissible, better use of the computer will resulto

Figure 2 shows the type table and the initial part of the context table

after the initial ALGOL C definitions and these complex arithmetic defi

nitions have been processedo

Type Table

~;

integer;

Boolean;

complex means array [1 g 2] ,

Context Table

~ a@~ b g= ~; ~ a@integer b g= ~;

integer a @ ~ b g = integer;

integer a @ integer b g = integer;

Boolean a@ ~ b g = Boolean;

Boolean a @ integer b g = Boolean;

~ a @ Boolean b i= ~;

integer a@ Boolean b g= integer;

Boolean a @ Boolean b g = Boolean;

~ a + ~ b g= ~; ~ a + integer b g= ~;

integer a + ~ b g = integer;

integer a+ integer b g= integer;

Boolean a + ~ b g = Boolean;

Boolean a+ integer b g= Boolean;

= 31 -

(mag~ arg~ con.i., mag complex a g= ~ 0 sqrt(magsq a) u;

magsq~ itimes~ isreal)g arg complex a g= ~ 0 arg(a) 0
;

con.j complex a g= complex 0complex(a[1] ,-a[2]) v;

magsq complex a g= ~ 0a[1] t 2 + a[2] t 2 9
;

itimes complex a g= complex 0 complex(-ajj] 11 a[1]) 0 ;

itimes ~ a g= complex 0 complex(O,a) 9 ;

isreal complex a g= Boolean 9 a[2] = 0°;

real at real b g= real; real at integer b,t=
~ ~ ~~ -

~; integer a t ~ b g = ~;

integer at integer b g= ~;

complex at integer b g= complex
9 ciexp(a,b) u; complex a t ~ b g=

complex 0crexp(al)b) 0 ,

complex at complex b g= complex 0ccexp(a,b)';

integer at complex b g= complex 0 icexp(a 9b) 9 ;

~at complex b g= complex 0 rcexp(a,b) 9 ;

~ a x ~ b g= ~; ~ a x integer b g= ~;

integer ax~ b g= ~;

integer ax integer b g= integer;

Figure 2o The type table and the initial part of the context tableo

Suppose, now that both the~ and complex sets are available and we

wish to develop a collection for~ and complex matrix arithmetico

Again several choices are openg

Ao Construct a definition set for real matrices, as was done in sec

tion 5o Then represent a_s,omple~rix asg

complexmatrix(b 9 c) a:= complexmatrix 9 complexmatrix(bic) 0
;

matrix x 9y; complexmatrix(x 9y) z~

ioeo® as a pair of real matriceso Unfortunately 9 it will turn out that

iterations over the elements of each matrix will arise and will be

- 32 -

executed separatelyo Thus 9 the replacement rule will not be as well

employed as it mighto Furthermore 9 no mention of the actual complexmatrix

will occur in the final ALGOL C programo

Bo Construct a definition set for matrices of complex elementso This

definition set is very much like the real matrix definition set, and

indeed is so because real and complex operations are instances of a set

of operati0ns over a field Vo This points up the following still better

approacho

Co Construct a definition set for a field _!o Then let v be a set de

finition9 eogo, .! g= (~, complex) 11 and provide a <formal type parameter>

pin <declaration>s whose <actual type parameter> would be~ or complexo

The v-matrix definition set would beg -
.! g= (~I) complex);

matrix(_!,m,m} means v array [1 gm 11 1 im]; -
matrix(;!_,m,n) means.! array [1 gm, 1 rn];

matrix(,! 9 n ,m) means .! array [1 gn, 1 im];

matrix(,!,n,n) means.! array [1 in 9 1 rn];

T > x, I= T0
CIIID , ==:, ,:;s,,:;,,

(1) matrix(p,u 9v) a g= matrix(p 9u 5v) 9matrix(p,usv) J?. integer i;

i + u ~ ~(p,v)~[i] i= a[i]l ~ 9
;

(2) matrix(p,u 9v) a i= matrix(p,u 9v) b g= matrix(pllu,v)
0J?. integer i; i + u ~ a[i] g= b [i] !2,,0 ;

! g= (+I)-);

(3) matrix(p 9u 9v) a! matrix(pgu 9v) b g= matrix(p,u,v)
9matrix(pllU 9V) ,2, integer i; i + U ~£2:r(p9V)

(r[i] g= a[i] ! b[i]l ~•;

arith g= (!,,integer),

(4) arith ax matrix(p 9u 9v) bi= matrix(p 9u 9v) 0matrix(p,u 9v)

J?. integer i; i + u ~ rn(pllv)i_::[i] g= a X b[i]l !2,,v;

(5) matrix(p,u 9v) a :x matrix(p,v,w) b g= matrix(pilu 9w}
0matrix(pllu,w) J?. integer i; i + u ,92£2:r(p,w)

.t~ £2;!(p 9v) t; t g= a[i]; !,[i] g= t x bl !;_ 9
;

(6) ,! matrix(p 9u 9 v) a g= matrix(p,v,u);

- 33 =

(8) !£!,(p 11v) a g= row(p,v) b g= row(p 11v) 812, integer j;

j -+ v ~ a [j] g= b [j] ~o,
(9) !£!,(p 8v) a! row(p 9v) b g= row(p,iv) 0 row(p,v) 12, integer j;

j -+ v ~ P[!:[j] z= a[j] ! bLl]l ~0
;

(10) arith ax row(p 9 v) b g= row(p 9v) 0~(p 9v) 12, integer j,

j + v do p(r[j] g= ax b[j]) e 0 ; = =n,;a, i:::mi:m=

£.2:!(,!,m) means ,!, array [1 gm] ; !,2!!(,Y,9n) means ,Y, array [1 g n] ,

(11) row(p 9u) a x matrix(p 9u,v) b g= row(pllv) 8£2j!(p 9 v) 12, integer j;

j ~ v ~ p£::[J] g= a x (,!b) Ll]l .,El0 ,

(13) !2!,(p,v) ax row(p 9v) b g= p vp 12, integer j; p s; s g= O;

j + V 2£, s g= s + a[j] X b [J]; !. g= s ~v;

(14) ,! (matrix(p 9u 9v) a! matrix(p 9u,v) b) g= matrix(p 9 ~ 9 u) 0!, a,!! b 0 ;

(15) ,! (matrix(p,u,v) ax matrix(p 9v,w) b) g= matrix(p 9w,u) 0!, bx!, a 0 ,

(16) T (T matrix(p 9u 11 v) a) g= matrix(p,u,v) 0 a 0 , - -~--
(17) ,! (l, matrix(p 9 u,u) a) g= matrix(pr,u,u) 0l, (!, a) 0 ,

(18) l (l, matrix(p,u,u) a) g= matrix(p 9u 9u) 0 a 0 ;

(20) (!, matrix(p ,u 9 v) a) [integer i] [integer j] g = p O a [j] [i] 0 ;

Additional <context definition>s must be provided for those which imply

specific connections to the underlying fieldg

(7) l matrix(~j)uj)u) a g= matrix(~9u 11 u) 0 inv(a,u) 0 ;

l matrix(complex 9 u 11 u) a g= matrix(complex 9u,u) 0cinv{a 9u) 9 ;

(12) ,!2!(~9 u) a [integer j] g = ~ 0 ~ [JJ O ,

!2!,(complexvu) a[integer j] g= complex;

!2J!(complexllu) a[integer j] [integer k] g= 0~a[j ,k] 0
;

(19) matrix(~ 9 u 11v) a[integer i] [integer j] g=_ ~ 9#a[i_11 j] ';
matrix(complexllullv) a[integer i] [integer j] g= complex;

matrix(complex 9ullv) a[integer i] [integer J] [integer k] g=

real 0*a[i J
0

k] 0 0

.,,,,,..===, j) z) ,

We assume that this definition set will be preceded by the definition set

for complex arithmetic given aboveo Since~ arithmetic is primitive in

ALGOL ell it is not necessary to provid~ a~ arithmetic definition seto

Note that the first <primitive representation> will expand to includeg

niatrix(_~omplexj)mj)m) means r;al array [1g~~. 1gm& 1g2];

As a final example,i suppose that the <assignment statement> expanded

above were written for complex matricesg

complex c; matrix(complex,msn) K, G9 D; matrix(complex 9n,n) A9 B;
K g = C X ! ((A X !,B) X ! (G + D)) ;

The expansion will proceed as before, but the final tree of the expansion

will have many nodes labelled complex, and these ~ill induce further ex

pansionso The fully expanded program now becomesg

array c [1 g2]; array K, G9 D [1 gm, 1 gnit 1 g2]; array

A, B [1 g n 11 1 g n, 1 g 2] ;

_£ integer i; i -+ m ,22. _£ array t [1 rn,i 1 g2];

£ integer j; j + n ,9£.£ tLlit1] g= G[i,j 11 1] + D[i,js1J,

t[j,2] g= GLi,j,2] + D[i,js2] ~~;
.£ integer j; j + n ,9.;2 E. array z [1 rn 11 1 g2];

_£ integer k, k + n ££.E. z[k,1] z= A[jsk,1],

z [kl)2] g= A[j ,ki.2] ~ ~;

bintegerk;arrays[1g2];]2,s[1] g=O; s[2] g=O~;

k + n ,22. E. integer h; arra;y; x[1 g2];

E. x[1] g= o, x[2] g= 0 ~;

h + n .22.E. x[1J g= x[1] + z[h 9 1] x

BLlti.h 11 1] = z[h.i2] x B[k 11h,,2],
x [2] g= x[2] + z [hil2] x B [k,h, 1]

+ z[h,1] x B[k,h,2] ~;

.:£ s[1] g= s[1] + t[k, 1] x x[1] = t[k 9 2] x

x[2]; s [2] g= s [2] + t [kii2] x x[1]

+ t [k 9 1] x x[2] ~ ~,

b K[i,j\)1] g= c[1] x s[1] = c[2] x s[2];

K[i,j,2] g= c[2] x s[1] + c[1] x s[2] ~~~~~~;

Summing up we see that the following different approaches can be used

when one arithmetic a is included in another 8g

(i) Represent a in 8, provide for only 8 <context>s, but give the

<primitive representation>s of 8 in terms of a and those of a in terms of

ALGOL Co

(ii) Provide for operations over 8 in terms of those over a and include

these <context>s with those for ao Provide <primitive representation>s

for f3 as in (i) o

(iii) Generalize the operations to work for an arithmetic Y, con

taiulng both a and St and also provide for the <context>s linking

elements of f3 to those of ao

7o Conclusions

In the previous sections we have described a technique for programming

and processing definitions.

The technique, while complicated, does not seem to require programming

methods beyond what are now commonplace in compiler constructiono Although

ALGOL C was the "supporting language", it should be clear that others

having its capabilities could have servedo

It is contended that every new language should be capable of being

a supporting language; even more, it should permit the programming of

definitions on at least the sea.le described in this papero

While definition sets will enhance the use of "personal sub-languages",

the most important consequence of a definition facility in a language

will be the creation of a library of definition sets, whose programming

is an algorithmic activity comparable in value to the creation of proce

dureso The definition facility and the generated libraries will fulfill

the need for language change which all experience has shown is so necessaryo

In fact, a more rational basis for standardization will thereby resulto

Acknowledgmentg The authors acknowledge and appreciate very helpful

criticism by the refereeo

10 Po Naur edo

2o BoWo Ardenil

BoAo Galler 9 and

RoMo Graham

3o

4o BoAo Galler and

AoJo Perlis

5o Jo McCarthy 11

et alo

- 36 -

References

"Revised Report on the Algorithmic Language ALGOL

Numo Math. 4(1963), Po 420-453i and Commo AoCoMo 9

volo 6 (1963)'j Po 1-170

"Michigan Algorithm Decoder" 9

University of Michigan Press 9 Ann Arbor 11 Michigan,

19650

6011

•

"Fortran 63/General Information Manual, Control Data

Corporation Publication Noo 514t August 19620

"Compiling Matrix Operations",

Comm. A.C.Mo 9 volo 5 (1962) 5 po 590-5940

"LISP 1o5 Programmers Manual",

MIT, Cambridge, Masso, 19620

- 37 -

Appendix !,o Processing ~ ~ syntax list>

Ao If a <new- syntax- element> other than a <set definition> contains one

or more <operator set name>s or <context type set name>si this <new

syntax element> is replaced by the collection of <new syntax element>s

obtained by replacing each occurrence by a representative from its

set, chosen in all possible wayso Any <new syntax element> so obtained

may itself lead to a collection if it contains set nameso (It is

assUDled that sets are defined so that this process terminateso) A set

name may appear to the right of the g= in a <context definition> only

if it appears exactly once in the <context>\~herl the same set repre

sentative used in the <context> is also used to the right of the g=o

Bo If a <primitive representation> Q occurs, theng

(i) In the <representation> of Q replace its <actual type> y by the

<representation> of y as given in its own <primitive representation>o

If both of the <representation>s of y and Q have <bound pair list>s,

then append that of y to that of Q and delete one occurrence of arrayo

(ii) Reapply (i) to the resultant <primitive representation> until y

becomes ~,integer 9 or Boolean; ioeo, one of the ALGOL C <type>so

(iii) Enter the <new type> and its expanded <representation> into the

type table 9 replacing if necessary any previous entry for that <new

type>o

Co If a <new operator declaration> occurs, theng

1)

(i) If its <new operator> already labels a line in the context table,

delete the original occurrence of the <new operator> there 9 and delete

from the context table all contexts in which it occurso (It is assumed

that the <new operator> and the <current operator> are differento)

Then the <new operator declaration> is treated as £ollowsg

(ii) If its <new operator> does not label a line in the table, and if

the <new operator> is declared to be(<,=,>) the <current operator>i

then (label with <new operator> a new, adjoin <new operator> as a

label to the, label with <new operator> a new) line in the context

table (immediately below, which is, immediately above) the line labelled

by the <current operator>o

This restriction could be relaxed by using well-known naming techniqueso

- 38 -

Do If a <context definition> Q containing·a·<string> occurs with

<context> P9 theng

(i) If the <string> in Q contains matching boldfaced parentheses, they

lliust occur in the context <result type>J..<open string>l, and the <open

string> must contain an assignment to!. which has integer subscripts

j 1, j 2 iooo 9 jp 9 (p > O)o From this context a new <context definition>

is created of the formg

(P) [integer j ,J [integer j 2] o o o [integer jp] g= <result type> v,£ <open

string> .!;,~o Furthermore, in Q itself this context is modified so that

a) the <result type> is deleted, and

b) J.. and l are replaced by.£_ and .!;_e respectivelyo

Now for each context defintion use the first one of the following rules

which applies, even if there is no <string>,

(ii) If there is already an entry in the context table whose <context>

is P 9 replace that entry by Qo

(iii) Represent Pas a tree as determined by the syntax of <context>

or <assignment context>o This is clearly uniquea Enter Q on the line

labelled by the operator attached to the root node of this tree (or

the line labelled "no operator", if there is none)a On that line enter

Q anywhere before any existing entry whose <context> or <assignment

context> is a sub-tree of the tree for Po

Appendix Jio Legal Expressions i!:, ALGOL 1?,o

Each entry in the type table is an <actual type>o Let there be N

entries: <actual type> 19 oao 9 <actual type>No Then, for this ALGOL D:

<type> gg= <actual type> 1l<actual type>2 loool<actual type>No

Furthermore, these are the only types which iay appear in the <decla

ration list> for this block, if there is oneo

The set of "legal" expressions in an ALGOL D may be defined as

followsg

We shall construct two sequences of sets { G. } and {E. } o The set
1 1

G. will contain those <context definition>s whose <string>s are
1

parsable by the <context>s available in G. 1o The set E. will contain
1- 1

those expressions and <assignment statement>s which can be generated

- 39 -

by the <context>s

tion>s within the

be that subset of

available in G.a Let S be the set of <context defini-
1

context table (including assignment contexts)o Let GO
S which has no <string>s or whose <string>s are legal

ALGCL C expressions and/or <assignment statement>so

We now cons~ruct from each set G.i i ~ o, the set E. and the set
].].

G. 1a A language ALGOL D.
i+].

is then obtained by using the type tables and

the <arithmetic expression>s 9 <Boolean expression>si and <assignment

statement>s of E., together with the common syntax of all ALGOL D9 so
].

Select a <type> from the type tableo Select any <context defini-

tion> Qin G. which has the formg
].

Pg= y<string>

where Pis a <context> and y is the selected <result type>o If Q is from

the expression context table, replace each of the <context typed identi

fier>s Sin P by either (a) an <identifier> of that <type>; or (b) a

<context> from a <context definition> Q' in G. whose <result type> is
].

the <type> of S, and which comes from the expression context tableo The

<context> is to be enclosed in parentheses if it comes from a lower line

in the table than Q, or if it comes from the same line as Q and Sis the

right operand of a binary <context>, or if Sis preceded by~ and Q9

has an i!-~~ context o If P is of the form <actual type> !j?rogramJ

[[bound pair list]] 9 then any ALGOL D. <program> and <bound pair list> - -].

may be substituted into Po

If Q is from the assignment context table, its left <context typed

identifier> is to be replaced by (a) an <identifier> of the same <type>,

or (b) the variable.!,, either possibly subscriptedo The right <context

typed identifier> is to be replaced by (a) another <context> from the

assignment context table, or (b) a <context> from the expression context

tableo

Succesive replacements continue until no typed identifiers remain in

the expansion of P 9 at which point the result is put in E.o The set of
].

all elements in E. is obtained by applying the above rule to all <type>si
].

declared variables, and Q and Qv in G. in all possible wayso
].

Suppose now that a subset G. of S has been constructed, along with
].

- 40 -

its expressions and/or <assignment statement>s Eio The set Gi+1 is ob

tained as the union of G. with those <context>s T. from S - G. whose
i i i

<string>s are in Ei. Let N be the smallest integer~ 0 such that TN is

empt;fo Then EN is the set of "legal" ALGOL D expressions and/or <assign

ment statement>so As an example, the {G.} (not the {E.}&) are given for
i i

the matrix definition set of section 5~

G
0

= fall <context definition>s of Figure 1} U {(6)1) (12), (19)}

G1 = G0 v {(8), (9) 9 (10), (13), (20)}

G
2

= G
1

u {(1a) 1)}

G3 = G2 V {(1b)w (2), (3), (4), (11)}

G4 = G3 U {(5), (7) 9 (14), (16), (18)}

G5 = G4 I.J {(15), (17)}

In this case, S - T
5

is empty, so there are no unusable <context>s.

Appendix.£•~ Replacement~•

To each sub-tree S we associate . a unique sub-tree max(S) with the

property of being the maximal sub-tree containing S such that it and all

of its sub-trees represent ALGOL D expressionso If Sis the tree of a

conditional expression whose~ and~ branches are T and E9 resp.,

then max(T) = max(E) = max(S). Define b(S) as the tree obtained by re

placing Sin max(S) by a special terminal character E.

1)
(1a) refers to the <context definition> generated from (1) because of
the presence of (and) in the <string>. (1b) refers to the <context
definition> resulting from (1) when (and) are replaced by band e,
respectively. - - = -

- 41 -

A <context type> a and an <actual type> 8 are said to agree if

(i) they are the same <actual type>, or (ii} they have the same <boldface

symbol>, they have the same number of parametersi and the parameters of a

which are <actual type param.eter>s are identical as <string>s to the

corresponding parameters in Bo

A sub-tree T1 is said to match a context tree T2 if and only ifg

(i) The <type>s of their root nodes agree, and (ii) either the root of T2
is a terminalt or both root nodes are labelled with the same operator and

have the same number of branches and corresponding branches represent

matching sub-trees. Throughout the entire test for a match, all occurren

ces of a speci~ic <formal type parameter> must match the same <actual

type par~tftr>. In finding a·:mat~hing.context for a sub-tree, the scan

of the co~fe~t table is from top to bottom, and the first context reached

whose context tree matches the sub-tree is chosen.

The replacement rule now proceeds in the following stepsi

C1) Let S be any maximal <program expression>; i.e., a <program ex

pression> not contained in any other, iµch that S ~ max(S). If there are

none, carry out step (2). Let R be th"~ub-tree representing the

<assignment statement> in S whose left side contains the result r of s,
and whose right side is an expression$. Then do the following steps in

turng 1)

(i) Replac~ R by b(S).

(ii) The -I: introduced· by b(.S) is replaced' by $ o

Repeat step (1) as many times as possible.

(2) If there is a sub-tree of the form!. g= $ or·-.::_[<subscript

list>] g= $, replace this sub-tree by the tree for$ alone.

1) If Sis a sub-tree of either the Tor E branches of a conditional ex
pression~ say T, the other branch Eis converted to a <program ex
pression>9 if necessary, by replacing it with the tree for the <program
expression>g .:e,.::, g= E !;.• In any case, steps (i) and (ii) are carried
out on the two branches simultaneously.

- 42 -

(3) From the tree now under consideration 9 we select a sub-tree S

to be replaced, as followsg

(i) If there is a maximal sub-tree T whose root node is the sub=

scription operator, then (a) if there is a matching ~context> with a

<string> for T, then Sis taken to be To Otherwise, (b) we apply step (3)

to To Otherwise!)

(ii) select any maximal sub-tree whose matching <context· definition>

contains a <string>o (If the replacement of some sub-tree causes no

change in the tree (after any occurrence 6:frJ1as .been eliminated) , that - ~--

sub-tree is not to be selected for further replacemento)

(iii) If, by an application of (i)(b) just above, we have restricted

consideration to a sub-tree T for which no matching <context> can be

found, then (ii) is applied to the original treeo

(4) Let P be the matching contexto Remove the outer string quotes

from the <string> in P 0s <context definition>o Each occurrence of an

identifier with * is assigned its ALGOL C <type>j) and then all * 9s are

deletedo Any <declaration> involving a <new type> is replaced by the

appropriate ALGOL C <declaration> obtained via its <primitive representa-

tion> in the type table!) If the <open :string> for a <context> P has

the form of an <enumerated expression>, let its list of expressions (with

<bound pair list>) be Go If, after appending the <bound pair list> of the

<type> cif G (as given through a <primitive representation>) to the <bound

pair list> of G9 the resultant <bound pair list> has only <integer> bounds,

say i
1

g j
1 9 o o o, in g jn; and furthermore if the selected tree S occurs

subscripted by an <integer> k, then

(i) extract the sub-sequence of <arithmetic

<Boolean expression>s in G from position (k - 1) x

to position k x
n
IT {j - i + 1) 5 inclusiveo m m m=2

expression>s or
n
IT (j - i + 1) + 1

m=2 m m

(ii) Delete the leading <bound pair> and append the resulting <bound

pair list> to the sub-sequenceo Call this Go

(iii) Replace Sand its subscript k by Salone in the treeo

(iv) Repeat the process commencing with furthermore until it failso

Select Gas the <open string> to be parsedo

1
) This includes implied <declaration>s 9 such as complex(a 9b)j) which becomes

(a 11 b)[1g2]o

- 43 -

Example of step (4) g For complex w,z represent.ed as~ array [1 g2],

becomes

w z
w 1 z

instead of

w z 1 w 2 z 2

since w + z would normally be (w[1] + z [1Ji~ w[2] + z [2]) o (See section 6)o

- 44 -

(5) Parse the text as selected in (4) into a tree S using the current

ALGOL D syntax. If the <open string> is a <program expression>, only

that part representing <program> is parsed. There is an obvious correspon

dence between the <context typed identifier>s of P and the sub-trees of

s, which arises directly out of the matching processo (All identifiers

declared in S must be renamed so that no identifier in S has the same name

as an identifier occurring in max(S).) Using this correspondence, as well

as the formal-actual correspondence between <actual type>s and <context

type>s, we replace the occurrence of any <context typed identifier> in S

by its corresponding sub-tree from s. The resulting tree is substituted

for Sin the original tree.

(6) The replacement rule is applied to the resultant tree until no

sub-trees remain whose matching contexts have <string>s in their <context

definition>s; ioe., no sub-tree Scan be selected. The resulting tree is

the tree representation of an ALGOL C <arithmetic expression?, <Boolean

expression>, or <assignment statement>.

The matrix example in section 5 shows in detail how this rule is

applied.

