A Proposal for Definitions in ALGOL

by - :}{;;

B.A, Galler and A.J., Perlis

Abstract

An extension to ALGOL is proposed for adding new data types and
operators to the language. Definitions may occur in any block heading and
terminate with the block. They are an integral part of the program and
are not fixed in the language. Even the behavior of existing operators
may be redefined. The processing of text containing defined contexts
features a "replacement rule" that eliminates unnecessary iterations and
temporary storage. Examples of definition sets are given for real and

complex matrices, complex numbers, file processing, and list manipulation.

MATHEMATISCH CENTRUM

- AMSTERDAM

Errata for "A Proposal for Definitions in ALGOL"
by B.A. Galler and A.J. Perlis

Title page Insert as l.-1 March 29, 1966

P

po

6

T

10

[N

1k

15

16

21

1.11 (<arithmetic expression>)) | <e.e.>

1. 1 (5) The revision ...
.. k
1.-10 ... [i,j] represents (A)ij'

1.-3 such <procedure>s ...

1. 3 « oo <actual parameter>] <8t .S.p.>

Insert <actual type set parameter (a.t.s.p.)> ::=

after 1.6 <a.t.> | <c.t.s.n.>

1.10 veo <B:t.> | <ast.s.p.>array ...
1.16 <operators(o.)> ::= ...
1.17 .+ | <relational operator> |, |+|® ")

Move footnote from page 15 to page 9.

1..9 ceo <Cuteie> | <ast.s.p.> Ebrogra@l

1.16 ves <rot.><string> | <c.> = <r.t.> |

1.=2 «so ignore it since <delimiter> has no ...

lu 2 as's <c0ntext>50 1) ot;

le=2 ... every <context definition> which has a <string> and
<result

1. 1 (¢);

Delete footnote here after moving it to p. 9.

eses Units let LX be the ... legal strings in

ATGOL x. To each D there ... analyzer AD which has ...
»e. that : if pely then AD(p) = t(p), where t(p)eL,,
or t(p)

S S
L)
@ = o

1.14 «» s necessity ... when AL
1.17 .«+ The analyzer AD’ for one of <arithmetic ...

1-7

BIBLIOTHEER MA‘THEMA‘TISCH CENTRUM
~—~;—_;"“bb

AMSTERDAM

l.-b,...,=1 This.program requires only 2n+2 locations for temporary

p. 21
l--2
p. 25 1.1k
1,15
p. 27 1.18
1.19
1.20
-'-)'l'
p. 28 1.3
po 29 v ln_9
P. 31 0_5
o-)-l'
P. 33 10_1
Pe 3T 1ol
p. 38

p. 39

storage, but it takes more time. Should one wish to produce
the faster code, definitions could be written to generate

the full temporary storage required. The key definitions would
reflect. a "bottom-up" syntax analysis. For example:

matrix(u,v)a x matrix(v,w)b := matrix(u,w) 'matrix(u,w)

b array PD" is 1 v], Qﬁ v, 1 w] ‘P :=a3"Q := b3 b integer i,j,k;
real s 3. i->u doj>wdobs :=0;k +v do s :=

s + P[l,kl < Qfk, 3]s rfii] :=scee's

Some of .the transitional states of the tree for the second
expansion were as follows (nﬁmbers in parentheses refer to
definitions invoked):

.o follows (numbers in ...

ove real'real b real c; ...

c :=c + if a[il -
(10) op (F)f of list x ...
(11) op (F)f of op (G)g := ...
(12) list y of op (F)f := ...
such as op (H)h, the ...

else E(car f, (pic of ...

oeo 'complex (a x bD], a X b[2])';

tion.5. Then a <context definition> and <declaration>
are:

complexmatrix (b,c)a := complexmatrix 'b,c';

matrix (cggplex, m, m) means array [ﬁ:m, 1:m,'1:é];

.+ naming techniques, as in COMIT and SNOBOL, for
example.

Insert after 1.11 (ii) Create another <context definition> using

the <result type> v of Q:

Y[program] [[bound pair llSt]] =
Now for each <context definition> use ...
(iii) If there is already

(iv) Represent P ...

Successive replacements ...

A Proposal for Definitions in ALGOL

by

*)
B,A, Galler

University of Michigan and Mathematisch Centrum, Amsterdam

and

, det)
A.J. Perlis

[

Carnegie Institute of Technology and Mathematisch Centrum, Amsterdam

1. Introduction

This paper describes a technlque for programming definitions
w1th1n an ALGOL=-like programmlng language. Though the approach is
applicable to most languages which possess compilers, this paper de=-
scribes in detail the technique for one language, ALGOL C, a variant
of ALGOL 60 [110 The variation, as described in section 2, does no
violence to the important basic concepts of ALGOL 60,

It is believed that the inclusion of definition making in pro-
gramming is a natural development to be expected from the increasing
sophistication of language design. In any event, programming of de-
finitions is to be preferred to the current pastime of tediously
redesigning programming languages to handle newly arisen, apparent-
1y unforeseen,operators and operands,

Curiously, definitions in some programming languages have been

in use for some time, e.g., macro systems in assembly languages, and

) The work presented here was supported in part by the National
Science Foundation (GP = 4538) and the Air Force Office of
Scientific Research (AF - AFOSR = 1017=66).

3¢)

The work presented here was supported in part by the Advanced
Research Project Agency of the Office of the Secretary of Defense
(sD ~ 146),

-2 -

through the fluently applicable but weak device of procedures in
all languages. But there has not been any general exploitation of
the macro concept in algebraic languages.

The MAD language [é] permits the definition of new operators
with unary and binary "contexts", but requires their definition to
be in assembly language, and provides little interaction between
definitions. CDC Fortran 63 [3] allows up to three additional types
of arithmetic with existing operators, but the definitions merely
produce calls on procedures. This paper attempts a more general ex-

ploitation of the macro concept, albeit an incomplete one, since
it has nothing to contribute to the problem of diversification of
control through definitions.

As is custqmary4in other macro systems, the processing of de=-
finitions follows the simple pattern: Take a language x, extend its
syntax to a language x' to include that syntax necessary for phrasing
and using definitions, and then reduce a text in the extended syn=-
tax to an "equivalent" one in language x. We beg the reader's for-
giveness for giving in this paper neither a precise definition of
"equivalence" nor even an informal proof that given such & reasonable
definition the reduction process does yield an equivalent program.
But such has not yet been_given for the translators that map ALGOL

programs into machine code, either!

As mentioned above; it is convenient to look upon definitions
as altering the syntax of a programming language, i.e., certain
syntax units are assumed varisble, While a range of choice is pos-
sible, this paper limits its treatment to variability of the syntax
units: <block head>; <type>, <assignment statement>, <arithmetic
expression>, and <Boolean expression>, This level of variability
permits the definition of new operators and new data structures.

For example, one who works extensively with matrix arithmetic writes
K=cxT((A x TB) x T(G + D)) wherexgyis the transpose operator,

c is a scalar, A and B are n X n matrices, and D, G, and K are

m x n matrices. The level of detail, i.e., iterations and subscrip=-
, .

-3 e

tion sequences, needed to carry out this computation on the ele=
ments of the matrices should be generated by the processor. Another
person might wish to redefine real multiplication so as to force a
non-standard rounding.

Furthermore, an implementation of the techniques described in
this paper should be possible within the general framework of any
ALGOL 60 translator., Analogous techniques can obviously be given
for other algebraic languages.

A set of definitions assigns a syntax to the above-mentioned

bfive syntactic units and defines, much as ALGOL 60 and 3
ALGOL C are defined, the syntax of a langusge called ALGOL D. Thus
there are many ALGOL D's, In order to give each an interpretation,
the technique developed here gives a reduction of any of them to
one fixed language, ALGOL C. The scope of definition of an ALGOL D
is dynamically controlled by block boundaries in the following way.

") and fix the

five variable syntax units for the block having that heading, i.e.,

define an ALGOL D over that <block>.

On exit from a <block>, the syntax of the five variable syntax

The definitions occur only in a <block head>

units reverts to that which was in effect on entry to the <block>,
i.e., a reversion to a previous ALGOL D. The interaction of new
definitions with those in effect on <block> entry will be described
in section 3. It will be seen that only one ALGOL D is in effect;
i.e., defined, at any one time in the processing of a program.

The most important feature of the implementation described

here is that both the number of iterations and the amount of tempo=-

rary storage needed for intermediate results in the evaluation of

expressions are drastically reduced by the use of a replacement

rule which avoids any unnecessery introduction into the code of ite-

rations and "workspace" arrays. This is particularly important with

1)

Throughout this paper the <> notation, such as in <block head>,

is used to assign a technical intent to the bracketed words

"vlock head", i.e., as one of & set of legal strings (not <string>s)
defined by the syntax precisely as in ALGOL 60,

- b o

arrays, for example, and is difficult to achieve when working with
collections of individual <procedurers. This effect will be demon=
strated by the examples in section 5.

Section 2 describes ALGOL C by listing its differences from
ALGOL 60, Section 3 describes the syntax common to all ALGOL D's,
concentrating primarily on the new constructions needed to write
definitions. This discussion of syntax is followed by a description
of the processing to be carried out on each of the new constructions
and the: generation of a new ALGOL D from the results of this proces=-

sing. This process, when applied to the definitions of Figure 1,
generates the syntax of<arithmetic expression»<Boolean expressiony,
andééssignment statementyof ALGOL C. Once a new ALGOL D is gen-
erated, the process of determining the "legal" expressions in this
language is ** | discussed. Section h_iéfgoncerned with the proces-
sing of declarations and text once an ALdOL D has been defined. A
"replacement rule" is given which reduces ALGOL D text to ALGOL C
text. In section 5 several examples are given of definition sets:
matrix arithmetic, file processing, and list processing. In the ma-
trix set, the stfategy for obtaining a useful set of definitions is
presented, as well as the detailed application of all of the major
features of this paper. Section 6 deals with the generalization
possible with sets of definitions. Complex arithmetic definitions
are introduced here, leading to a combined set of definitions for

complex and real matrix arithmetic.

2. Description of ALGOL C

ALGOL C coincides with ALGOL 60 (revised) [1] except for the
following:

(1) The addition of six standard functions:

name argument type value type
name of <procedure identifier>, integer

<grray identifier>, real,

Boolean, integer

1)

rc of

integer real
Be of integer Boolean
A ic of integer integer
pic of integer <procedure identifier>
aic of integer <grray identifier>

The value name of(x) will always be a positive integer and may be
interpreted as the index of x in a vector consisting of some segment
of storage. The arguments of the five other functions must always
be positive integers, since they are intended to apply to values

which could be produced by the procedure name of.
(2) The addition of <structured expression>:

It will be required of ALGOL C that <arithmetic expression>s
and <Boolean expression>s be able to have an array of values. Accor=

dingly, the value of a function designator may need to be an array

of values, also.

Syntax:
2),

l<progrgm>[%bound pair listﬁj|<type><program>l<program>

<program expression (p.e.) ::= <type><program> [<bound pair list>]

<function expression (f.e.)>::= <function designator [(pic of(<arithmetic
expression>))

<list of arithmetic expressions (l.a.e.)>::= <arithmetic expression>|

<l.a.e.>, <arithmetic expression>

1)

These represent real contents of, Boolean contents of, integer
contents of, procedure identifier contents of, and array iden-
tifier contents of, resp.

2) ‘s . . s

Abbreviations introduced in syntax definitions will be used in other
syntax definitions, but not in text.

-6 -

<list of Boolean expressions (1.B.e.)>::= <Boolean expression>|
<l.B.e,>, <Boolean expression>

<arithmetic type>::= integer | real

<enumerated arithmetic expression (e.a.e.)>:3:= <arithmetic type>
(<l.m.e.>) [<bound pair list>||<arithmetic type>(<arithmetic
expression>) | (<arithmetic expression>)|(<1°aoea>)[<bound pair listS]
<enumerated Boolean expression (e.Bo.e.)>::= Boolean (<l.B.e.>)
[<vound pair 1ist>] |Boolean (<Boolean expression>)
<enumerated expression (e.e.)>::= <e.@.e.>|<e.Boec>
<structured expression (s.e.)>::= <p.e.>|<function designator>|(aic of

(<arithmetic expression>))
(3) The revision of <procedure declaration>:

<procedure declaration>::= <prologue><procedure heading><procedure
body>

and the addition of:
<prefix>;s= <type>|<type> arrax[%bound pair listQ]Iarraz[?bound pair
listi]
<prologue>::= 2rocedure|<prefix> procedure
(k) The revision of <function designator>, <actual parameter>, <subscripted

variable>:

<function designator>::=. <procedure identifier><actual parameter part>|
(pic of(<arithmetic expression>))<actual parameter part>
<gectual parameter>::= <string>|<expression>|<array identifiers>|<switch

identifier>|<procedure identifier>|<s.e.>

<subscripted variable>:s= <array identifier>[}subscript list>]|<s.e.>
[?subscript list%]

- T =

(6) The revision of <left part> in <assignment statement>:

<left part>::= <variable>:= l<procedure identifier>:= |<procedure

identifier>[<subscript 1ist>]:= LE o= Lg[ksubscript list>] o=

The. value assigned to a <program expréssion?\is the value on
exit from that <program expression> of a variable r which occurs in
it. In each <program expression> Q there must be exactly one occur-
rence of the variablegg exterior to any other <program expression>
contained in Q. This occurrence may be subscripted and must be the
only variable in the <left part list> of an <assignment statement>,

If the <type> of a <structured expression> is omitted, it is
real. The omission of the <bound pair list> allocates to the value
of a <program expression> the structure of an individual variable
of its <type>. Thus the <bound pair list> and the <type> specify
the amount and organization of the storage to be allocated to the

value of the <program expression> each time it is computed,

Example: (i) £ggi(x9y)[1:2j[j] may represent the real or imaginary
part of the complex number x + iy,
(ii) {Program to compute the elements of the KB power of a real
n x n matrix A}[1:n,1:n)[1,5]-

Tﬁe gzﬁggtkbound pair list?] in the <prologue> of a <procedure
~ declaration> specifies the amount and organization of the storage
to be allocated to the value of the procedure. In general such de=-
clarations are to be used in the context of <function designatoy>s
and a component of the value is accessed with a <function exﬁressioggcf
Along with the agreement required by the actual=formal correspondencé,
such procedures require an agreement of the number of subscripts in

the <function expression> with that predicated by the <bound pair

list> in the <procedure declaration>.

- 8 =

o 2 2 - i ~ e o § [Y s s
Example: real array[.CQ%YErggggﬁge rationaladd{x v); array X,y;
}l cxz 83

[

oo rationaladd(w, (t + 3,h = T}E@zi})i@]c:c

3. Definitions in ALGOL D

Even though we have indicated that there will be many ALGOL D's,
they are actually almost identical, the exception being the defini-
tions of the five syntax units listed in 1) below. The common syntax
bof all ALGOL D's is:

1) that of ALGOL C with the syntax definitions of <block head>,
<type>, <arithmetic expression>, <Boolean expression>, and <assignment
statement> deleted,

and 2) the following additions:
a) The syntax for <block head>:

<declaration list>::= <declaration>|<declaration list>; <decYaration>

<new syntax element>:¢= <primitive representation>l<context defini-
tion>|<set definition>|<new operator declaration>

<new syntax list>::= <new syntax element>|{<new syntax list>; <new
syntax element>

<block head>::= begin <new syntax list>; <declaration list>;|be§in

<declaration list>;lbe§in <new syntax list>;
b) The syntax for <type>:

<boldface character (b.ch.)>::= a|blclalelflglnlililkliinlnlelplgl

pep ged g Preod B = il Qe s e
oo Ve lam Ve b = selanl il o imlioimial i liaigioicsia 2ol =

Tl el am lame Paldn e el VS VeV o Ve

<boldface symbol (b.s.)>:s=u<b.ch,>|<b.s.><b.ch.> 2)

1) The symbols b and e are used throughout to represent begin and

end, resp.
2)

In this paper the leading character (iJ) will be suppressed
where no ambiguity is possible.

-9 =

<fixed type (f.t.)>::= real | Boolean | integer

<basic new type (bonot,)>ss= <bes.>|<foto>

<actual type parameter (a.t.p.)>::= <actual parameter>!<aote>

<actual type parameter 1list (a.t.p.lc)>::= <a.top.>|<act.p.le>,
<Botopo?

<actual type (@.to)>:¢= <beneto>|<boso>(<@ctopole>)
¢) The syntax for <new syntax element>:

(i) for <primitive representation>:

<new type (not.)>::= <bos.>|<beso>(<aotopole>)
<representation>;::= <aoto>l<aoto> array [<bound pair list>]
<primitive representation>::= <n.t.> meansg <representation>|

<c.to.S.n.> means <representation>

Example: matrix(m,n) means array [1:m,1:n];

(ii) for <new operator declaration>:

<precedence relation (p.r.)>s:= <|=|>

<operator (0.)>:s= <b,s.>|<arithmetic operator>|<logical opera-
tor> | <relational operator>|

<current operator (c.o.)>::= <o0.>

<new operator (n.o.)>:s= <o0.>

<new operator declaration (n.0.d.)>::= <N.0,><P.ro><C.00>|<0.8.n,>

LPoro><Co0s >
Example: T > x3

(iii) for <set definition>:

<operator set name (o0.son.)>::= <bos.>

<operator list element (o0.l.e.)>s:= <0o>| := |<c.seno>
<operator 1ist (0.1,)>:3= <0ol.€0>|<0o1o>, <0oloes>
<operator set definition (0.s.d.)>::= <0.s.n.>:= (<0.1,>)
<context type list (ec.t.l.)>:s= <CQto>!<c°tclo>9 <c.t.>
<context type set name (cotoscn.)>::= <b,s.>

<context type set definition (cotos.d.)>:= <coto.sono>i= (<cotol.>)

<get definition>::= <OoSedo>l<CctOSOdo>

- 10 =

Examples R := (=,#,<,5,>,2)3
(iv) for <context definition>:

<formal type parameter (f.t.p.)>::= <formal parameter>|<a.t.p.>

<formal type paremeter list (fotopolo)>ss= <Fotopo>|<Fotopole>, <Ffotopo>

<context type (coto)>::= <boneto>|<bose>(<fotopele>)|<cotosone>

<result type (rot.)>si= <cot.>

<context typed identifier (c.t.i.)>ss= <e.t.><identifier>

<current context operator (c.c.0.)>23= <€,0.>|<00.5.n0>

<basic context (boc.)>:ss= <cotoio>l<aoto>_l;program1 [Ebound pair list;l]
(<co>)

<subscripted context (s.c.)>zs= <boco>|<boco>[}cotoio%]l<seco>[kcotoini]

<context (co.)>:s= <SoCo>[<COCQOO><Scc°>I<SoCo><COCo°c><Soc°>l if <eo>

1)1

then <s.c.> else <c,.>
<left side (loso)>3:= <Cotoio>|<los.>[<subscript 1list>]
<assignment context (a.c.)>33= <1l,s.>2= <co>

<context definition (c.d.)>:3= <co>:= <r°to><string>‘<co>:= r.to>

<8,Co>2= <roto.><string>|<a.c.>:= <r.t.>

Example: row(u)a x row(u)b := real 'real b integer j;

The alphabet of ALGOL C contains certain characters which are, to
say the least, difficult to distinguish from certain seqﬁences of
characters from the set of <boldface character>s; e.g., if and for. To
remove this conflict, this paper will not contain any <boldface symbol>
which resembles a character present in ALGOL 60,

In a <block> any <current context operator> occurring in a <basic

1)

The boldfaced brackets indicate an ALGOL C syntax unit, for whose
analysis the ALGOL C analyzer will have to be called upon.

&

= 11 =

context> must have already been defined either by appearing as a. <new
operator> in an earlier <new operator declaration> or by being an <arith-
metic operator>, <relational operator>, or <logical operator> of ALGOL C.
Any occurrence of an <actual type> appearing in a-<representation> must
have been preceded by its occurrence as a <new type> in a <primitive re-
presentation>, unless it is a <fixed type>. Any <context type> must appear
as either a <new type> in & <primitive representation>, or as the <result
type> in a <context definition>,

Naturally, it is not intended that the <string> appearing in a
<context definition> be amorphous. As will be clear in section b, it is
a form which, after certain specific editing operations are performed,
must be a "legal" <arithmetic expression>, <Boolean expression>, or
<assignment statement> for some ALGOL D, In addition, there may appear
in the <string> the following:

(i) A single pair of matching boldfaced parentheses such that‘L is

immediately preceded by a <result type>, and

(ii) an assignment to a subscripted r contained between the matching

boldfaced parentheses. (As will be seen, this structure will
have disappeared before the <string> is processed with an ALGOL D
syntax.)
1)
(A variable declared to be of a <new type> has two <type>s
agsociated with it: its <new type> in ALGOL D and its ALGOL c

(iii) An asterisk (*) preceding some occurrences of variables,

<type> derived from the expansion of its <primitive representa-
tion>, described in detail later in this section. The program-
mer may indicate that an occurrence of a variable has its
ALGOL C <type> in a context definition (i.e., in the <string>)

by preceding that occurrence by an asterisk,)

1)

Strictly speaking,<delimiter> must also be redefined to include (,),
. and means. We ignore it since <separator> has no contact with any
of the concepts treated here.

Fs

- 12 -

Furthermore, the«string>may not be perfectly general in the sense
that, when parsed, no structures of the form <new syntax element> may be
encountered, i.e., no definitions may contain other definitions. (This
is a recognized limitation, and could be eliminated at the expense of
some extra complexity in the performance of the replacement rule of sec=-
tion L)

)

1 . . . '
Example: ‘matrix{u,v)a + matrix(u,v)b := matrix(u,v)
'matrix(u,v) b integer i; for i := 1 step 1 until u

do row(v)(rli] = afi] + v[i]) e';

The relation of an ALGOL D to ALGOL C can now be made clear:

Upon entry to a block, two tables are assumed to exist:
1) a type table,
2) a context table containing two sub~tables: the table of expression
contexts and the table of assignment contexts, whose lines are labelled
by operators. The assignment context table contains only that line of
the context table labelled by :=. The expression context table consists
of the remaining lines.

The contents of the two tables determine a syntax for each of:
<type>, <block head>, <assignment statement>, <arithmetic expression>,
and <Boolean expression>. These, together with the common syntax of all
ALGOL D's, yield the syntax of the ALGOL D which is in force throughout
the processing of the <new syntax list> of the <block> just entered.
When the <block> is entered, copies of these two tables are made, and
the <new syntax list> of the new <block> may alter these copies. A ge=
neral description of the processing of the <new syntax list> is given
here; details will be found in Appendix A,

<Set definition>s\are used to generate copies of other <new syntax
element>s. Each generated copy contains a different representative from
the set chosen in all possible ways. The <primitive representation> causes
an entry to be made in the type table. These are later used to allocate
storage for varisbles declared to have the <new type> involved, since
each <primitive representation> describes its <new type> in terms of

ALGOL C arrays. This may involve a chain of reductions, such as

&

1)

The examples used here are generally taken from the more complete
examples in sections 5 and 6,

- 13 =

matrix(complex,m,m) means complex array |[1:m,1:m];

complex means array {ﬁzzjg

which leads to the entries in the type table:

matrix{complex,m,m) means array [13m91:m91:2];

complex means array [1:2];

Only <type>s in the type table are allowed in <declaration>s. A <new
operator declaration> establishes a precedence for a <new operator>
relative to existing operators, and it also labels a line in the context
table with that operator. <Context definition>s involving that <new opegp-

ator> as their principal operator will be placed in the line which it
labels.

A <context> is an occurrence of one or more <operator>s, together
with the <type>*s of their operands. <Context>s are the natural unit of
definition for <assignment statement>s and expressions, since it is al-
ways necessary to determine the <context> in which an operator occurs
before one can replace it with "code". This is true even for ALGOL C,
since there are quite different definitions fors real x/real v,

real x/integer y, integer x/real y, and integer x/integer y. In a

<context definition> a <result type> is given as the <type> of the va-
lue of the expression represented by the <context>, and the associated
<string> is the "definition" of the <context>; i.e., text to replace an
occurrence of the <context> during the reduction of ALGOL D text into
ALGOL C text. (When no <string> is present, recognition of the <context>
in a piece of text induces no change in the text.) The <string> need
not be itself in the ALGOL C language; it merely reduces the ALGOL D
text to something "closer” to ALGOL C. There may be <context>s in the
<gtring> which will need replacement by other <string>s in turn.

During the processing of the <new syntax list> in a <block head>,
any <context definition>s that are encountered are entered into a line
of the context table determined by the relative precedence of the
<context>'s principal operator among the set of <current context oper-
ator*s; i.e., among those operators which have appeared in ALGOL C or

in <new operator declaration>s. Some <context definition>s generate

Fa

e 14 =

others by means of the "boldface parentheses" notation, which is a de=

)

vice for implying subscription<nontexts§ For example, the <context de=

finition>s

matrix & + matrix b := matrix 'matrix

b integer i; for i := 1 step 1 until n do

row(r[i] = ali] + o[i]) e's

would lead to two entries (which no longer contain (and)):
for subscription:

{matrix a + matrix b)[integer i} := TOW

eli] = ali] + b(i]'s

for +:¢

matrix a + matrix b ¢= matrix ‘matrix b integer i;

for i = 1 step 1 until n do
prli] e=ali] + bli] ee’s

As indicated below, when the last declaration in the <new syntax list>

LT

has been examined, the two modified tables define the syntax of the five
variable syntax entities which is to remain in force for the duration of
the current block. A possibly new ALGOL D has been defined. Finally, on
exit from this block, the tables are reconstituted as they were on entry,
and the ALGOL D in effect on entry to the block is reinstituted as the
current ALGOL D. Appendix B describes in detail how to generate the set
of "legal" ALGOL D expressions and <agsignment statement>s from the type
and context tables., In general, these expressions and <assignment state=~
ment>s are just what one would expect to obtain from adding new opera-
tors to ALGOL C. They are generated by listing first those <eontext>s
which are directly definable in ALGOL C, then those definable in terms
of the <context*s already chosen, and so on. When the <context typed
identifier>s are replaced in these <context>s by actual <identifier>s of
the correct <type>, legal expressions in ALGOL D are obtained,

Initially, the context table contains four empty, but labelled lines:

FIaY

i} ooy s .
’ Moreover, every context definition which has a string and result
type> vy generates a <context definition>:y[progra@][Ebound pair 1isﬁ]]z= Yo

- 15 =

.y 1)

() s

(if then else):
(program expression):

(no operator):

The type table contains real, integer, and Boolean. We assume the exis-

tence of an outermost block supplied by the "environment", which con-

tains the definition set for ALGOL C, This is given in Figure 1,

arith := (real, integer); smy := (arith, Boolean); M 3= (%,#); M1 s= (x,/);
A= (#,=)5 BRI = (7,=5,2,5,#)5 R := (R1,<)5 B = (A,V,2,3);
@> 4; 4+ < ¥y X < by t =%y [/ = X3 4 < X3 o= 43 < <43 Rl =<5 7 < <3

A}<"7‘°9 V<I\g 3

A
RS
it

<3;9<5

any a{®arith b := anxg any a @® Boolean b := any;

amy a ¥ arith b := any;

arith a + arith b := resl;

arith a Mi arith b := real;

integer a M integer b := integer;

arith a A arith b := real;

integer a A integer b := integer;
A erith a := arith;

arith a R arith b := Boolean;
7 Boolean a := Boolean;

Boolean a B Boolean b := Boolean;
if Boolean a then Boclean b else Boolean ¢ := Boolean;

Af Boolean & then arith b else arith c s= reals
if Boolean a then integer b else integer ¢ 3= integer;
Boolean a := Boolean b ¢= Boolean;
resl a := grith b := reals
integer a s= arith b ¢= integers
any 8, any b 3= reals
(any =) 1= any;
any Eprogramg [L‘bound pair 1ist_:_!] s= any;

Figure 1 The Definition Set for ALGOL C.

1)

The Bymbol ¥ represents subscription, treated as a binar operator,
Similarly, @ represents function evaluation. The ALGOL 60 (implied)
forms will alsoc be acceptable.

- 16 =

4, The reduction of an ALGOL D program to an ALGOL C program

- Since the syntax of an ALGOL D program is that of ALGOL C with the

- exception of <arithmetic expression>, <Boolean expression>; <assignment
statement>; <block head>;, and <type>; an ALGOL D program can be parsed

by the syntax of ALGOL C, except for these five syntax units., For each

of these units let Lx(s) be the set of legal strings having syntax s in
ALGOL x, To each s there corresponds an analyzer AD(S p) which has the
property that: if QEFD(S) then A (s,p) = t(p), where t(p)EL (s), or t(p)

is the null string. We w1sh to glve the algorlthm'by which t(p) is produced.

The processing 1n.<block head> of <new syntax list> has already been
described (section 3) and no ALGOL C text is produced from this processing.
Following the parsing of <new syntax list>, the ALGOL D for the current
block is completely defined, The processing of <declaration>s by ALGOL C
is interrupted only by the necessaty of analyzing <type>s, when AD(<type>,3)
replaces an ocecurrence of an <actual type> by its <representation> as
given in the type table, Otherwise <declaration>s are parsed by the ALGOL C
parser., The analyzer AD(sgp)9 for an s which is one of <arithmetic ex-
pression>, <Boolean expression>, or <assignment statement> operates as
follows:

Since an ALGOL D is defined, any text p of one of these three kinds
can be parsed using the context tables for that ALGOL D. This parsing yields
a tree representation for p. The terminals are identifiers and the nodes
are operators and delimiters, such as b, 4; .+, and instances of <for
clause>s. The tree has either zero, one, two, or three branches 1> emang.-
ting from any node. Furthermore, each node and terminal element is labeled
with an <actual type>. Similarly, any <context> in the context table can
be parsed into a tree (called a "context tree") whose terminals are

<context typed identifier>s,

4

1)

The conditional expression will be represented as a single node with
three branches labelled if, then, and else, resp.

.

- 17 =

Suppose, then, that some text p has been encountered in the block
which is an <assignment statement> or expression. The reduction of p to
ALGOL C text comsists of the following steps (given in detail in Appen-
dix C):

(1) Parse p into a tree with labelled nodes, as described above,

(2) Select a sub=tree for which a matching context exists in the
context table,

(3) Using the <string> associated with the selected <context>, con-
struct its tree representation, and replace <context typed
identifier>s in this tree by their correspondents (via the match)
from o, ' o

() Substitute the new tree for the sub-tree selected in (2).

Sinée each <context définition> thus invoked is written to provide a
<string> which is "closérf to ALGOL C, repeated substitutions such as are
described in steps (2) to:(h) eventually lead to the desired t(p),

. Although care must be taken in the details of "matching" trees with
<context>s, the rule given in Appendix C would be much simpler if it were
not also.concerned with avoiding the introduction of unnecessary iterations

-and temporary storage allocations. As an example of the technique used for

this, suppose that the text being processed at some stage is:

w(i] = x[i] + y[i] + (v x 2)[i];
where w, X, ¥, V, and z are matrices, and w[i] is the i-th row of w. Suppose,
also, that the following <context definition> is selected by the matching
process: .

(matrix a * matrix b)[integer i] s= row 'row b row t;

t = a[ﬁ];(ﬁ 3=t x b e’

While a straightforward substitution produces:
wﬁi] g= x[i:] +'y[i:] +row b row t3 t s= v[ij];i 3=t X z e3

the replacement rule generates the following, eliminating the need for a

row of temporary storage for r:

b row t; t := v[i]; w[i] = x[i] + y[}] +t x 2 e3

Additiénal examples will be found in section 5.

- 18 =

5. Examples of definition sets

1. A Matrix Arithmetic Definition Set

As an example of the development of a definition set, we consider
the definitions necessary to allow arithmetic expressions and assignment
statements involving matrices with dimensions m *my, m X n;, n X m, and
n ¥ n (where m and n are non=local). The set is developed in stages, as

follows:
I. The <primitive representation>s are givens:

matrix(m,m) meens array [1:m, 1:m];
matrix(mgn) means array [1:m, 1:n];
matrix(n,m) means array [1:n, 1:m];
matrix(n,n) means array [1:n, 1:n];

II. The <new operator>s are declared:

T>x; I=T;

These represent the transpose and inverse operators.

III. The desired <context definition>s are listed:

(1) matrix(u,v) a := matrix(u,v) 'matrix(u,v) b integer i;
° 1)
]

i+ u do row(v) (z[i] 3= a[il)_ e’
(2) matrix(u,v) a := matrix(u,v) b := matrix(u,v)
‘b integer i3 i + u do a[i] 3= b[i] e's
A = (+s"’)§
(3) matrix(u,v) a A matrix(u,v) b := matrix(u,v) 'matrix(u,v)
b integer i; i + u do row(v) ,(,EEJ =

ali] A o[i]) e's

arith := (real, integer);

1)

The notation 1 + u is an abbreviation for: for 1 := 1 step 1 until u.

- 19 -

(4) arith a * matrix(u,v)b := matrix(u,v) ‘matrix(u,v)

b integer i3 i > u do row(v)(r[l] 2=
a X b[_l]) e"y

(5) matrix(u,v)a X matrix(v,w)b := matrix(u,w)
'matrix(u,w) b integer iy i > u do
row(w) (b row(v)t; t := alil;
g[i] s=1t X b) e';

(6) T matrix(u,v)a := matrix(v,u);

(7) I matrix(u,u)a := matrix(uyu) "inv(a,u)’;

IV. The <string>s introduced in III meke additional <context definition>s

and <declaration>s necessary:

(8) row(v)a := row(v)b := row(v) 'b integer j; j > v do
al5] := b[j] e's (from (1)) .
(9) row(v)a A row(v)b := row(v) ‘row(v) b integer j;
j v doresd (x5l s= ali] A v[3]) es
(from (3))

(‘EO) arith a % row(v)b s= row(v) °‘row(v) b integer js;
j ~ v do real (r[g] i= a xb[j]) e e“
(from (L))
row(m) means array [1:m); row(n) means array [1:n];

(11) row(u)a * matrix(u,v)b := row(v) ‘row(v) b intéger Js
> v o rest (s3] = & * (@) o'
(from (5))

H

V. Additional <context definition>s arise from the <string>s in IV:

(12) =;;g_g;rﬂ(v)a!in’ceger j:l := real "*a[j]'; (from (8))

(13) rowl(v)a x row(v)b := real 'real b integer j; real s;

sg=0;j+vg£s:=s+a[j]Xb[j];z‘_:=se';

(from (11))

= 20 =

VI, Additional <context>s arise when one <context> with <result type> Y
is substituted for an occurrence of a <context typed identifier> with
<context type> Y in another <context>. Only those need be listed for

which a special <string> is desired:

(14) T (matrix(u,v)a A matrix(u,v)b) := matrix(v,u)

"Ta AT b's (from-(3}'into (6))
(15) T (matrix(u,v)a * matrix(v,w)b) := matrix(w,u)

"Tb x Ta's (from (5) into (6))
(16) T (T matrix(u,v)a) := matrix(u,v) ‘a’; (from (6) into (6))

(17) T (I matrix(u,u)a) := matrix(u,u) 'I(Ta)*;(from (7) into (6))
(18) I (I matrix(usu)a) := matrix(u,u) 'a’; (from (7) into (7))

(19) metrix(u,v)a [integer i]linteger 5] = real '#a[i,3]*;
(from (1) into (12))

(20) (T matrix(u,v)a) [integer i]linteger 5] = real 'al3][il";

This set of <context definition>s does not provide a correct ALGOL C

program when a matrix appears-on:both sides of the := symbol, and on the
right side in a context other than as the left-most factor in & product.
For example, A := B := A X B X C would give incorrect results for A and B,
but A := A x B % C would work correctly.

It is interesting to note that definition (5) could be written:

matrix(u,v)a x matrix(v,w)b := matrix(u,w)
‘matrix(u,w) b integer i; i + u do

ggz(W)ig[i] := ali] x b)s

This would eliminate the allocation of the temporary storage for t, but
some elements would be computed several times in some expressions.

An example of the use of this definition set is:

real c¢; matrix(m,n)K, G, D; matrix(n,n)A, B;
Ks=cxT((AxTB) T (G +D));

A straightforward ALGOL C program for this computation would be:

w 21 =

real c3 array K, G, D [13m5, 1zn], A, B [Hn, lsn];
b integer i, j, k; array P [:‘I:ni, 1:n], Q D:m, 1:n]3 real s

i+*ndoj>ndobs =03 k>ndos:=s+A[ik] xB[jx;

P[igj] = 5 e3
i+mdo j+ngdoqfi,i] :=cfi,i] +pfi.il;
i+*mdo j*ndobs :=;0; k*+*ndo
s =85 + P[j,k] x Q[i,k]g;

KEi,j] i=¢c Xsee

This program requires n2 + nm + 4 locations for temporary storage. The

expansion via the definition set, using the replacement rule, iss

real c¢; array K, G, D [‘ﬂ::m9 1zn]; array A, B D:n, 1:n];
b integer i; i - m do b array t [‘lsn];

b integer j3 § > n do t[3] := ¢[i,5] + p[i,5] e;
b integer j; j + n do b array =z [:1:n:[;

b integer k; k > n do z[k] i = A[j,k] e3

b integer k; real s; s := 03

k > n do b integer h; real x; x = 03
h+ndox :=x + z[h] x Blk,h];

This program requires only 2n + 2 locations for temporary storage and
will execute in less time. Some of the transitional states of the tree

for this expansion were as follows (number in parentheses refer to defi-

nitions invoked):

- 22 =

(&) » (15) > (5):

»
3

i integer i

(2)

- 23 -

I (16) > (3) » (8) » (19) » (12): IT (8) = (19) » (b)) -+ (11)s

integer Jj integer j

IT (16) » (5):

IIT (8) » (19) » (12)3
integer j

integer k

- 24 -

I (13): v (11) » (16) » (12) = (13) + (19) = (12):

jor

integer h

- 25 -

!
o
foed
[¢]

Processing Definition Set

]

E (A9V)§ A = ("'9‘9’(’/9%;3:);
(=n#9<$§9>9;)3

arith := (real, integer); rat := (arith, attr(j));

o
°

i I

file means array []:m:l;

rec means array [Hn:[;'

TV means Boolean array D:m:l;

 file a [integer i] [integer j] := real 're Qf(a[i] + 5 =1)"

" file a ‘in‘beger :'L:l := rec;

rec a |integer 5] := real;

IV a linteger i] ¢= Boolean;

on = ¥3

countof. < onj

countof TV a := real 'real b real c¢; integer i3 ¢ := 03 1 + m do
o R .+ *laen 3 ? s g0

= b + i_t_‘_a[i] then 1 else O3 r 1= c g';

c
" Boolean a on file x := IV 'TV b integer i; i » m do

Boolean_(_g[i] $= a on x[il)_ e's
rat a on file x := file 'file b integer i; i > m do
rec(r[i] := a on x[i]) e"s

(Boolean a B Boolean b) on rec ¢ := Boolean ‘a on c Bb on c's
(7Boolean b) on rec ¢ := Boolean '7(b on e¢)°;
(&agﬁb)'_o_g__@_g'_c s= Boolean 'aon c Rbon c';
(zat = A rat b) on rec ¢ :=rec 'aoncAb onc's
attr(j) a on rec ¢ := real 'c[i]';
arith e on rec c := grith 'a's
(if Boolean a then rat b else rat c) on rec x :=

. Xxeal 'if a on x then b on x else ¢ on x';
rat a R rat b := Boolean;
rat a A rat b := real;

file a := file b := file 'b integer i; i +m do a[i] := b[i] e's

&

- 26 =

The access function: rc of (a[i] + j = 1) and the <primitive representa-
tion>s used give a data structure of a vector of m record names. Each
record is a vector of n entries. However, no other context depends on the

choice of data structure.

Exemple: file x; array Al1:m, 1:n]; attr(1) name; attr(2) sex; attr(3) height;
real cntg
b integer i; for i > m do x[i] := name of (a5,

ent := countof(sex = 1Aheight 2 6) on x;

000

The example expands tos

array x [hmJ; array AD :m, 1zn:l;

b integer i; for i » m do x[i] := name of(a[i,1]);

000

b real c; integer i; ¢ := O3

i+migc:=c+j£rcof(x[i]+2=1)=1/\
re of(x[i] + 3 = 1) 2 6 then 1 else 03
cnt = c e3

[-

It is assumed here that A is stored by rows.

3. List Definition Set

The following set of definitions is based on the LISP [5] primitives,
The basic LISP predicates "atom" and "eq" are assumed to have been defined

as Boolean procedures:

Boolean procedure atom(x); list x3

atom := cdr x = 03
Boolean procedure eq(x,y); list x,y;

eq = car x = car y A atom(x) A atom(y);

'NIL® in LISP is represented here by O. The following definitions are used

to organize lists as structures of names,

&

- 27 =

(1) list means integer array [1:2];

(2) coms = x3

(3) car > coms;

(4) cdr = car;

(5) of < cons;

(6) list a cons list b := list 'list(a,b)’;

(7) car list a := list val1]0;

(8) cdr list a := list 1a2] s

(9) integer a := list b := integer 'a := name of(b)';

Note that the conditions usually taken as necessary for the internal con-
sistency of car, cdr, and cons are satisfied here:
¢ = car a cons cdr a = list(car a, cdr a)
= ;Li_s;_t‘(a[ﬂga[?ﬂ)
50 ¢ = a3 i.e., c[1:| = a[ﬂ and c[2_] = a[2]o
(1ist(a,b)) [1]
a

bo

Also, car(a cons b)

and cdr(a cons b)

(10) op £(F) of list x := list *E(list(name of(F),0),x)’;
(11) op £f(F) of op g(G) := list °*list(name of(F), name of(G))';
(12) list y of op f(F) := list "list(y, name of(F))’;

(13) list y of list x := list 'E(y,x)';

Context definitions (10) through (13) provide an efficient rule for
sequencing through a composition of operations on lists, each one of which
operstes only on atoms to produce atoms or even lists. The procedure E is
organized so that as eaéh atom of data is encountered the remaining opera-
tors in the composition are applied to it. Thus the lists are not totally
decomposed and composed for each succesive operator. In a <declaration>
such as op(H), the <actual type parameter> H represents the <procedure>
to be used to apply h to a list,

The block containing these list definitions must also contain the Pro=

cedure E:

- 28 =

list procedure E(f,x); list f,x;

E := if atom(x) then (if atom(f) then (pic of(car f))(x)
else E(car f£3 (pic of(cdr £)(x)))) else
E(f, car x) cons E(f,edr x);

Example:
begin op(F)f; op(G)gs integer cs list a, b, d, h, k;

coo

integer procedure subst(x,y,z); list x,y,z; subst :=

if atom(z) then (if eq(z,y) then x else z)

else subst(x,y,car z) cons subst(x,y,cdr z);

list procedure F(x); list x; F := subst(a,k,x);
G

list procedure G(x); list x; G := subst(d,h,x);

¢ := (f of g) of b end;

6. Programming Definitions

Suppose we have a definition set for some application, e.g., the
arithmetic of reals. We wish now to construct a collection for an arith-
metic which generalizes real arithmetic, e.g., complex arithmetic. We know
that the field of real numbers can be mapped isomorphically into the field
of complex numbers, and this provides a clue to one method of programming
definitions:

(i) Give a <primitive representation> for a complex number.

(ii) Assume all reals are mapped into their corresponding complex
representations.

(iii) Give the arithmetic as a set of definitions whose <context>s
involve only complex quantities.

(iv) The definitions involve manipulations of complex numbers in
terms of their <primitive representation>s, i.e., as ALGOL C reals.

(v) Define a predicate to determine whether any complex number is
in fact real, so that, e.g., x > y can be given its real interpretation

when x and y are real.

This approach has the virtue of simplicity. However, in applications

- 29 =

where much of the arithmetic and/or the data is real, a grotesque in-
efficiency of execution time and storage use can occur. This method is

thus inappropriate for programming .

Alternatively, define not only complex arithmetic but mixed
arithmetic, Any identifier may now be declared to be either complex or

real, Such a definition set 1is:
. 2ead

A := (+,=); Op := (arg, conj, magsq, itimes, isreal);

‘arith = (real, integer)g complex means array [1:2];
mag > t;
Op = mags

complex & [integer 1] $= reals :

complex a A complex b := complex vcomgil.ex(a[ﬂ A b[ﬂ9
al2] A v[2])’;
complex a * complex b := complex 'comjg.ex(a[‘l] x b[‘i] = a[2] x b[2],
| al2] x o[1] + al1] x v[2])1;
complex a/complex b ¢= complex ‘(a X conj b)/magsg b';
magsq complex a = real 1] 42 + a[2] + 2t
arg complex a := real ‘arg(a)’;
conj complex a := complex ‘complex(al[1], - a[2])’;
itimes complex a := complex "complex(‘aal:EL a.[ﬂ)";

itimes arith a s= complex ‘complex(0,a)’;

mag complex a := real ",sq,rt}(magsg a)'s
aritha A complex b := complex ‘complex(a A b[_:'l], Ab[2])rs

complex b Aarith a := complex 'complex(b[1] A a, v[2])y

aritha x complex b := complex 'complex(s 3;11_] R a:x:b[_'g:!)v;
complex b Xarith a s= complex ‘a x b'y

complexb/arith a := complex "complex(b(1]/a, v2]/a) s

arithe/complex b s= complex '(a * conj b)/magsg b';
complex a + integer b := complex 'ciexp(a,b)’;

complex a * real b := complex ‘crexp(a,b)’s

complex a + complex b := complex "ccexp(a,b) s

integer a * complex b := complex 'icexp(a,b)’;
real a * complex b := complex 'rcexp(a,b)’;

&

- 30 =

éomglex a = coiﬁgiéx b ¢= complex ‘b a[‘i] 3= b[‘l]g
" al2] s=v[2] e

complex b ¢= arith a := complex ‘b b[‘l] = ag b[2] = 0 e's

ariin a := complex b := arith ‘a := mag b';
complex a = complex b := Boolean "a[‘u = b[‘l]/\a[Q] = b[2]";

isreal complex a -3= Boolean “a»[?] = 0%

Note that the number of contexts required is of the order of the square
of those needed by the first approach. However, since <identifier>s of
both types are permissible, better use of the computer will result,
Figure 2 shows the type table and the initial part of the context table
after the initial ALGOL C definitions and these complex arithmetic defi-

nitions have been processed,

Type Table
real;
integers
Booleans;

complex means array [132_];

Context Table

(®): real a @ real b := real; real a @ integer b := real;
integer a @ real b := integer;
integer a @ integer b := integer;
Boolean a® real b := Booleans
Boolean a ® integer b := Boolean;
real a ® Boolean b := reals
integer a @ Boolean b := integer;
Boolean a (® Boolean b := Boolean;
(+): R real a ¥ real b := real; real a + integer b := real;

integer a ¥ real b := integer;
integer a + integer b := integer;

Boolean a ¥ real b := Boolean;

. Boolean a ¥ integer b := Boolean;

=31 =

(mag, arg, conj, mag complex & 3= real 'sqrt(magsg a)’;
magsq, itimes, isreal): arg complex a := real ‘arg(a)’;

conj complex a := complex "co&lex(aﬁ] 9=a[2])";
magsq complex a := real Va[ﬂ + 2+ a[:2] 427

itimes complex a := complex ”comglex(-al}] 9za.[]])”;

itimes real a 3= complex ‘complex(0,a);

isreal complex a := Boolean ’a[é] = 0%

(4)s real a + real b s= real; real a 4 integer b i=

real; integer a 4 real b := reals

iﬁteggr a % integer b := real;
complex a + integer b := complex
‘ciexp(a,b)?; complex a + real b :=
complex ‘crexp(a;b)’;
complex a + complex b := complex ‘ccexp(a,b)?;
integer a + complex b 3= complex ‘icexp(a;b)’;
real a + complex b := complex "rcexp(a,b)’;

(x,%8,/)¢ real a X real b := real; real a X integer b := real;

integer a X real b := real;

integer a x integer b := integer;

Figure 2. The type table and the initial part of the context table,

Suppose, now that both the real and complex sets are available and we

wish to develop a collection for real and complex matrix arithmetic,

Again several choices are open:

A. Construct a definition set for real matrices, as was done in sec=

tion 5. Then represent a complexmatrix as:

complexmatrix(b,c) a := complexmatrix ‘complexmatrix(b,c)’s;

matrix x,y3 complexmatrix(x,y) z°

i.e., as a pair of real matrices, Unfortunately, it will turn out that

iterations over the elements of each matrix will arise and will be

- 32 =

executed separately. Thus, the replacement rule will not be as well

employed as it might., Furthermore, no mention of the actual complexmatrix

will ocecur in the final ALGOL C program,

B, Construct a definition set for matrices of complex elements. This
definition set is very much like the real matrix definition set, and
indeed is so because real and complex operations are instances of g set
of operations over a field v. This points up the following still better
approach,

Co Construct a definition set for a field v. Then let v be a set de-

finition, e.g., v &= (real, complex), and provide a <formal type parameter>

p in #decla.ration>s whose <actual type parameter> would be resl or complex.

The v-matrix definition set would bes

v 3= (real, complex);

matrix(v,m,m) means v array [1:m, 1:m];

matrix(v,m,n) means v array [1em, 1:n];

A
A

matrix(v,n,m) means v array l:lf,n9 1gm];
v

array [1 in, 1 sn] S

matrix(v,n,n) means

T>X;Q_£=c'£;

°

(1) matrix(p,u,v) a = matrix(p,u,v) °‘matrix(p,u,v) b integer i;
i+ u do rowlp,v)(r[i] := alil) e's
(2) matrix(p,u,v) a = matrix(p,u,v) b := matrix(p,u,v)
'b integer i3 i + u do a[i] 3= b[i] e's
A = (+,2)3 ;
(3) matrix(p,u,v) a A matrix(p,u,v) b s= matrix(p,u,v)
"matrix(p,u,v) b integer i; i + u do row(p,v)
Sﬁ[ﬂ g= a[i] A bl:ﬂm)‘ e's 7
arith s:= (v,integer);
(4) arith a x matrix(p,u,v) b := matrix(p,u,v) ‘matrix(p,u,v)
b integer ij i » u;&&(pgv)‘gz[ﬂ 3= g X b[i]a)_ e's
(5) matrix(p,u,v) a % matrix(p,v,w) b := matrix(p,u,w)
‘matrix(p,u,w) b integer i3 i + u do row(p,w)
(b row(p,v) t; t := alils uz_'*’[i] s=t x D) e's
(6) T matrix(p,u,v) a s= matrix(p,v,u);

£

- 33 =

(8) row(p,v) a 3= row(p,v) b := ﬁ(p,v) "b integer J;
j>vaoalf]l :=vl] e
(9) row(p,v) a A row(p,v) b 3= row(p,v) ‘row(p,v) b integer j;
5>vdop(xl3] :=ali]l av(5]) e
(10) arith a x row(p,v) b := row(p,v) 'row(p,v) b integer j;
i+ vdop(rl5] s=a xv[5]) e's
row(v,m) means v array (1eml; row(v,n) means v array [1:n];

(11) row(p,u) a x matrix(p,u,v) b := row(p,v) ‘row(p,v) b integer j;
i vdop[i]l :=ax (m)[5]) e

(13) row(p,v) a = row(p,v) b :=p 'p b integer js p s; s
J>*vdos z=s+a[j] Xb[,j’];g;z=se“;

(14) T (matrix(p,u,v) a A matrix(p,u,v) b) = matrix(p,v,u) °

(15) T (matrix(p,u,v) a x matrix(p,v,w) b) := matrix(p,w,u) °

(16) T (T matrix(p,u,v) a) s= matrix(p,u,v) ‘a’;

(17) T (I matrix(p,u,u) a) := matrix(p,u,u) °I (T a)°;

(18) I (I matrix(p,u,u) a) := matrix(p,u,u) ‘a’;

(20) (T matrix(p,u,v) a)[integer i] Iinteger i} =01 Va[j] [i]s

Additional <context definition>s must be provided for those which imply

specific connections to the underlying field:
(7) I matrix(real,u,u) a := matrix(real,u,u) ‘inv(a,u)’;

I matrix(complex,u,u) a := matrix(complex,u,u) ‘cinv(a,u)’;
(12) row(real,u) alinteger il = real "sa[3]";

row(complex,u) alinteger j] := complex;
row(complex,u) a[integer j] [integer k] ¢= "34-8.[5 ,k] '3

(19) matrix(real,u,v) a]integer i] [integer j] := real =a[i,j]';

matrix(complex u,v) a[integer i] [integer 51 := complexs

matrix(c_omplexsugv) al[integer i] [integer j’] [in‘teger k] o=

real "%a[iﬁjgk] s

We assume that this definition set will be preceded by the definition set
for complex arithmetic given above, Since real arithmetic is primitive in
ALGOL C, it is not necessary to provide a real arithmetic definition set.
Note that the first <primitive representation> will expand to include:

matrix(complex,m,m) means real array [‘i:m_,s‘ Temg ‘!32];

- 34 -

As a final example, suppose that the <assignment statement> expanded

above were written for complex matricess

complex c; matrix(complex,m,n) K, G, D3 matrix(complex,n,n) A, B;
Ks=cxT ((AxTB) xT (G + D))

The expansion will proceed as before, but the final tree of the expansion
will have many nodes labelled complex, and these will induce further ex-

pansions. The fully expanded program now becomes:

array ¢ [132]; array K, Gy D [:‘G:mi, 1en, ‘332:[; array
A, B D‘sn9 Tsn, 132];
b integer i3 i »m do b array t [1:n, 182:[;
b integer j3 j +n do b t[5,1] = a[i,5,1] + D[i,5,1]s
t[5,2] := eli,5,2] + 0[3,5,2] e es
b integer j3; j + n do b array z[1:n, 1:2];
b integer ks k + n do b z[k,1] := A[5,k,1];
z[k,,z] g= A[jgk92] e e;
Db integer k; array s[1:2] 5 b s[‘ﬂ] s= 03 s[2] 4
k »n do b integer h; array x[‘lgE];
b x[‘l] s= 03 x[2] 3= 0 e3
h+ndob x[1] :=x[1] + z[h,1] x
B{k,h,7] = z[h,2] x B[k,h,2];
x[2] = x[2] + 2[h,2] * Blk,h,1]
+ 2[b,1] x Bk,h,2] 5 |
b s[1] e=s[1] + t[k,1] *x x[1] = t[k,2] x
xl:2]; s[2] = 3[2] + t[k92:] X x[‘l]
+ k1] x x[2] o e
b K[5,5,1] 3= c[1] x s[1] = c[2] x s[2];

K[i,j,2] g= c[2] X s[‘l] + c[’ﬂ] x 5[2] eeeeee;

Summing up we see that the following different aspproaches can be used

]
o

jo

o

vhen one arithmetic o is included in another B:

(i) Represent a in B, provide for only B <context>s, but give the
<primitive representation>s of B in terms of a and those of a in terms of
ALGOL C.

(ii) Provide for operations over B in terms of those over a and include

&

- 35 =

these <context>s with those for o, Provide <primitive representation>s
for B as in (i),

(iii) Generalize the operations to work for an arithmetic v con-
taiuing both o and B, and also provide for the <context>s linking

elements of B to those of a,

T. Conelusions

In the previous sections we have described a technique for programming
and processing definitions.

The technique, while complicated, does not seem to require programming
methods beyond what are now commonplace in compiler construction. Although
ALGOL C was the "supporting language', it should be clear that others
having its capabilities could have served.

It is contended that every new language should be capable of being
a supporting language; even more, it should permit the programming of
definitions on at least the scale described in this paper.

While definition sets will enhance the use of "personal sub-languages",
the most important consequence of a definition facility in a language
will be the creation of a library of definition sets, whose programming
is an algorithmic activity comparable in value to the creation of proce-
dures, The definition facility and the generated libraries will fulfill
the need for language change which all experience has shown is so0 necessary.,
In fact, a more rational basis for standardization will thereby result.

Acknowledgment: The authors acknowledge and appreciate very helpful

criticism by the referee,

56

P. Naur ed.

B,W. Arden,
B.A. Galler, and
R.M. Graham
B.A. Galler and

A.J. Perlis

J. McCarthy,
et al,

- 36 =
References

"Revised Report on the Algorithmic Language ALGOL 60",
Num., Math, 4(1963), p. 420=453, and Comm. A.C.M.,
vol. 6 (1963), p. 1=17,

"Michigan Algorithm Decoder",
University of Michigan Press, Ann Arbor, Michigen,

1965

"Fortran 63/General Information Manual, Control Data

Corporation Publication No. 51k, August 1962,

"Compiling Matrix Operations",
Comm, A.C.M., volo 5 (1962), p. 590=59L,

"LISP 1.5 Programmers Manual",
MIT, Cambridge, Mass., 1962,

A,

B,

Co

- 37T =

Appendix A. Processing the <new syntax list>

If a <new syntax element> other than a <set definition> contains one
or more <operator set name>s or <context type set name>s, this <new
syntax element> is replaced by the collection of <new syntax element>s
obtained by replacing each occurrence by a representative from its
set, chosen in all possible ways. Any <new syntax element> so obtained
may itself lead to a collection if it contains set names. (It is
assumed that sets are defined so that this process terminates.) A set
name may appear to the right of the := in a <context definition> only
if it appears exactly once in the <context5E%heﬂ the same set repre-

sentative used in the <context> is also used to the right of the :=,

If a <primitive representation> Q occurs, then:

(i) In the <representation> of Q replace its <actual type> Y by the
<representation> of Yy as given in its own <primitive representation>.
If both of the <representation>s of y and Q have <bound pair list>s,
then append that of v to that of Q and delete one occurrence of array,
(ii) Reapply (i) to the resultaht <primitive representation> until y

becomes real ,integer, or Boolean; i.e., one of the ALGOL C <type>s.

(iii) Enter the <new type> and its expanded <representation> into the
type table, replacing if necessary any previous entry for that <new

type>.

If a <new operator declaration> occurs, then:

(i) If its <new operator> already labels a line in the context table,
delete the original occurrence of the <new operator> there, and delete
from the context table all contexts in which it occurs. (It is assumed
that the <new operator> and the <current operator> are different.)
Then the <new operator declaration> is treated as follows:

(ii) If its <new operator> does not label a line in the table, and if
the <new opera£0r> is declared to be (<;=;>) the <current operator>,
then (label with <new operator> a new, adjoin <new operator> as a
label to the, label with <new operator> a new) line in the context
table (immediately below, which is, immediately above) the line labelled

by the <current operator>.

£

1) . e . .
- This restriction could be relaxed by using well-known naming techniques.

- 38 -

D, If a <context definition> Q contaiﬁing'a”kstfing> oceurs with
<context> P, then:
(i) If the <string> in Q contains matching boldfaced parentheses, they
must occur in the context <result typeﬁi<open stringﬁl, and the <open
string> must contain an assignment to r which has integer subscripts
J1s dpsoces jp9 (p > 0). From this context a new <context definition>
is created of the form:
(P)[integer j1][integer 52] 0o linteger jp] 3= <result type> 'b <open
string> e'. Furthermore, in Q itself this context is modified so that

a) the <result type> is deleted, and

b) (and) are replaced by b and e, respectively.
Now for each context defintion use the first one of the following rules
which applies, even if there is no <string>.
(ii) If there is already an entry in the context table whose <context>
is P, replace that entry by Q.
(iii) Represent P as a tree as determined by the syntax of <context>
or <assignment context>, This is clearly unique. Enter Q on the line
labelled by the operator attached to the root node of this tree (or
the line labelled "no operator", if there is none). On that line enter
Q anywhere before any existing entry whose <context> or <assignment

context> is a sub-tree of the tree for P,

Appendix B. Legal Expressions in ALGOL D,

Each entry in the type table is an <actual type>. Let there be N
entries: <actual type> 5000, <actual type>yo Then, for this ALGOL D:

<type> ::= <actual type>1!<actual type> oool<actual type>

Furthermore, these are the only types wﬁich ﬁay appear in ghe <decla=
ration list> for this block, if there is one.

The set of "legal" expressions in an ALGOL D may be defined as
follows:

We shall construct two sequences of sets {Gi} and {Ei}o The set
Gi will contain those <context definition>s whose <string>s are

parsable by the <context>s available in Gi o The set Ei will contain

1
those expressions and <assignment statement>s which can be generated

&

- 39 -

by the <context>s available in Gio Let S be the set of <context defini-
tion>s within the context table (including assignment contexts). Let G,
be that subset of S which has no <string>s or whose <string>s are legal
ALGCL C expressions and/or <assignment statement>s,

We now construct from each set Gﬁ19 i 2 0, the set Ei and the set
Gi_'_.Io A language ALGOL Di is then obtained by using the type tables and
the <arithmetic expression>s, <Boolean expression>s, and <assignment
statement>s of Ei’ together with the common syntax of all ALGOL D's,

Select a <type> from the type table. Select any <context defini=

tion> Q in Gi which has the form:
P := y<gtring>

where P is a <context> and vy is the selected <result type>. If Q is from
the expression context table, replace each of the <context typed identi-
fier>s B in P by either (a) an <identifier> of that <type>; or (b) a
<context> from a <econtext definition> Q' in Gi whose <result type> is
the <type> of B, and which comes from the expression context table. The
<context> is to be enclosed in parentheses if it comes from a lower line
in the table than Q, or if it comes from the same line as Q and B is the
right operand of a binary <context>, or if B is preceded by then and Q°
has an iﬁﬁEEEE:SLEE context. If P is of the form <actual type>£prograng
[Ebound pair list;J]9 then any ALGOL Di <program> and <bound pair list>
may be substituted into P, ‘

If Q is from the assignment context table, its left <context typed
identifier> is to be replaced by (a) an <identifier> of the same <type>,
or (b) the variable r, either possibly subscripted. The right <context
typed identifier> is to be replaced by (a) another <context> from the
assignment context table, or (b) a <context> from the expression context
table, .

Succesive replacements continue until no typed identifiers remain in
the expansion of P, at which point the result is put in Eio The set of
all elements in Ei is obtained by applying the above rule to all <type>s,
declared variables, and Q and Q' in Gi in all possible ways.

Suppose now that a subset Gi of S has been constructed, along with

£

- U0 =

+1
tained as the union of Gi with those <context>s Ti from S - Gi whose

its expressions and/or <assignment statement>s Eio The set Gi is Ob=

N
is the set of "legal" ALGOL D expressions and/or <assign-

<gtring>s are in E.. Let N be the smallest integer > O such that T is
ampty. Then EN
ment statement>s. As an example, the {Gi} (not the {Ei}g) are given for

the matrix definition set of section 5:

G. = {all <context definition>s of Figure 1} U {(6), (12), (19)}

G, =G, v {(8), (9), (10), (13), (20)}
G, = G, v {(1a) RE

Gy =G, v {(1), (2), (3), (W), (1)}
G, = 63V {(5), (1), (14), (16), (18)}
Gg = Gh\J {(15), (17)}

In this case, S = T. is empty, so there are no unusable <context>s.

p

Appendix C. The Replacement Rule.

To each sub-tree S we associate . a unique sub-tree max(S) with the
property of being the maximal sub-tree containing S such that it and all
of its sub-trees represent ALGOL D expressions. If S is the tree of a
conditional expression whose then and else branches are T and E, resp.,
then max(T) = max(E) = max(8). Define b(8) as the tree obtained by re-

placing S in max(S) by a special terminal character I.

1) (1a) refers to the <context definition> generated from (1) because of
the presence of (and) in the <string>. (1b) refers to the <context
definition> resulting from (1) when (and) are replaced by b and e,
respectively.

-4 -

A <context type5 o and an <actual type> B are said to agree if
(i) fhéy are the same <actual type>, or (ii) they have the same <boldface
symbol>, they have the same number of parameters, and the parameters of a
which are <actual type parameter>s are identical as <string>s +to the
ecorresponding parameters in B, ’

A sub-tree T1 is said to match a context tree T2 if and only ifs
(i) The <type>s of their root nodes agree, and (ii) either the root of T,
is a terminal, or both root nodes are labelled with the same operator and
have the same number of branches and corresponding branches represent
matching sub=trees. Throughout the entire test for a match, all occurren-
ces of a speclflc <formal type parameter> must match the same <actual
type parama;gr> In flndlng a matchlng context for a sub=tree, the scan
of the context table is from top to bottom, and the first context reached
whose context tree matches the sub-tree is chosen.

The replacement rule now proceeds in the following steps:

(1) Let S be any maximal <program expression>; i.e., a <program ex-

pression> not contained in any other, such that S # max(S). If thére are

none, carry out step (2), Let R be th }ub;tree representing the

<assignment statement> in S whose left side contains the result r of §,

and whose right side is an expression Yy, Then do the following steps in
1)

(i) Replace R by b(8).

(ii) The I introducéd by b(S) is replaced by ¥,

turn:

Repeat step (1) as many times as possible.

(2) If there is a sub-tree of the form r = ¥ or;z[ﬁsubscript
list>] := §, replace this sub=tree by the tree for ¥ alone.

1)

If S is a sub=tree of either the T or E branches of a conditional ex-
pression, say T, the other branch E is converted to a <program ex-
pression>, if necessary, by replacing it with the tree for the <program
expression>: b r := E e. In any case, steps (i) and (ii) are carried
out on the two branches 81multaneouslyo :

&

- U2 -

(3) From the tree now under consideration, we select a sub=tree S
to be replaced, as follows:

(i) 1If there is a maximal sub=tree T whose root node is the sub=
scription operator, then (a) if there is a matching ¥context> with a
<string> for T, then S is taken to be T, Otherwise, (b) we apply step (3)
to T, Otherwise,

(ii) select any maximal sub-tree whose matching«context definitions
contains a <string>. (If the replacement of some sub-tree causes no
change in the tree (after any occurreneeéﬁghégbeeneliminated), that
sub-tree is not to be selected for further reéiacemento)

(iii) If, by an application of (i)(b) just above, we have restricted
consideration to a sub=tree T for which no matching <context> can be
found, then (ii) is applied to the original tree.

(L) Let P be the matching context. Remove the outer string quotes
from the <string> in P's <context definition>. Each occurrence of an
identifier with + is assigned its ALGOL C <type>, and then all *'s are
deleted. Any <declaration> involviang a <new type> is replaced by the
appropriste ALGOL C <declaration> obtained via its <primitive representa=-
tion> in the type tablez)lf the <open .string> for a <context> P has
the form 6f an <enumerated expression>, let its list of expressions (with
<bound pair list>) be G, If, after appending the <bound pair list> of the
<type> of G (as given througha <primitive representation>) to the <bound
pair list> of G, the resultant <bound pair 1ist> has only <integer> bounds,
say i1 : jigoOOg in g jn; and furthermore if the selected tree S occurs
subscripted by an <integer> k, then

(i) extract the sub-sequence of <arithmetic expression>s or

, n
<Boolean expression>s in G from position (k = 1) x I (jm - im + 1) + 1
m=2

n
to position k x I (j_ =i + 1), inclusive.
om=2 O m -

(ii) Déléte the leading <bound pair> and append the resulting <bound
pair list> to the sub-sequence. Call this G.

(iii) Replace S and its subscript k by S alone in the tree.

(iv) Repeat the process commencing with furthermore until it fails,

Select G as the <open string> to be parsed,

&

1)

?his)%?c%fdes implied <declaration>s, such as complex(a,b), which becomes
a,b)l1:2],

- 43 -

Example of step (4): For complex w,z represented as real array [132] .

becones

-

instead of

since w + z would normally be (w[1] + ’z[‘!.], w[2] + 2[2])0 (See section 6).

- bk -

(5) Parse the text as selected in (4) into a tree § using the current
ALGOL D syntax., If the <open string> is a <program expression>, only
that part representing <program> is parsed. There is an obvious correspon-
dence between the <context typed identifier>s of P and the sub-trees of
S, which arlses directly out of the matching process. (All identifiers
declared in S must be renamed so that no identifier in S has the same name
as an identifier occurring in max(S).) Using this correspondence, as well
as the formal-actual correspondence between <actual type>s and <context
type>s, we replace the occurrence of any <context typed identifier> in é
by its corresponding sub-tree from S. The resulting tree is substituted
for S in the original tree.

(6) The replacement rule is applied to the resultant tree until no
sub-trees remain whose matching contexts have <string>s in their <context
definition>s; i.e., no sub-tree S can be selected. The resulting tree is
the tree representation of an ALGOL C <arithmetic expression?, <Boolean
expression>, or <assignment statement>,

The matrix example in section 5 shows in detail how this rule is

applied.

