STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

Criteria for the Design of a Language.
« .

B.A. Galler
and

" A.J. Perlis

1966



Criteria for the Design of a Language

B.A. Galler and A.J. Perlis

Because of the rapid development and dissemination of ideas 1in pro-
gramming, the exact source of important concepts is difficult to
identify. Most of the ideas outlined here did not originate with the
authors of this paper, or even the papers in which they came to the
authors' attention -~ nor does it matter that this is so. However, the
immediate stimulus for this paper came from ALGOL X proposals de-
scribed in lectures at the Mathematisch Centrum, Amsterdam, by A. van
Wijngaarden.

We propose here some criteria for language design. These criteria
are used as guidelines (although not always explicitly) in specifying
a part of an ALGOL-like language. The criteria are:

(1) Minimization of the number of concepts.

(2) Uniformity of treatment of concepts, when possible.

(3) Scope of application of operators, declarations, etc., determined
dynamically rather than lexicographically.

(4) The order in which things happen must be known and taken into
account ; concurrent computation occurs only when explicitly in-
dicated.

(5) In place of any construction its name may be used; and conversely.

(6) Wherever a name occurs, it does so as a variable, for which an

appropriate set of operations and a structure for its value should

be provided.

(7) The attributes of a variable shall be available to the program and
shall be interpreted dynamically when necessary.,

(8) The description of the language should distinguish carefully
between temporal and lexicographic sequenclng. We shall use
"vefore", "after", "precede", "follow", "predecessor", "successor"
for temporal sequencing; and "above", "below", "left", "right" and

"next" for lexicographic sequencing.



- D =

The basic idea is that execution of a program is Jjust the evalua-
tion of an expression via evaluation of its subexpressions. During the
evaluation of one expression a postponement of an activity may occur
while another (and yet another) expression is evaluated. Thus, the
language must provide for "pushing" and "popping” the status of certain
variables when needed. It is also necessary to have a rule indicating
the next expression to be evaluated whenever one such evaluation 18
completed., The computation ceases only when no successor can be found.
It is usual to distinguish between two kinds of computations:
(1) manipulation of values of variables introduced in the program, and
(2) manipulation of variables known only to the system, such as the
type of declared variables, or storage allocation and accessling in-
formation. It is clearly undesirable to continue this distinction,
since it adds greatly to the power of the programming language if the
"program" can access the system variables. The use of declarations has
enforced this distinction by suppressing all names for system variables.
Declarations have also been treated as quite static relative to the
computation; although they may be invoked dynamically in ALGOL, they
remain in force over the life of a block and may not be changed in the
block. We assume instead the existence of a set of system variables
(known as "bar variables" since they all have the form |n, where n is
"an integer), which are interpreted by the system and computable by the
program.,

Related to the bar variables (in that they are interpreted by the
system) are the "attributes" of declared variables. A variable is
"declared" by assigning to the system variable new (which could be one

of the bar variables) a list of names. If a declaration, such as real,

precedes a name, 1t shall be an initial assignment for that attribute
for all variables to the right of it in the list, until another value
for that attribute occurs in the list. With each declaration any pre-
vious values and/or asttributes of the variables on the list are
"pushed down", and a new set of values and attributes is created for

each, They will have initial "default" assignments, but these may be

manipulated by references to type of x, etc. The program may create




:m3

additional attributes of i1ts own by using the operators attr 1, attr 2,

etc. These may be assigned arbitrary values of type real, provided the

variable so referenced has been declared new. All variables declared

Ao - e

new since a given 'push” are "popped” (along with all values and

sttributes) when the corresponding "pop" oecurs.

Variables have a type: real, Boolean, complex, integ

K oo o iR Bl — e~ - A bl TR R R T o oE Rl

s TOW,

i s

string, etc., and a structure, such as individual

v i omge - W, ol . - A - YT e L ia x A g s v - -E

Default values of type and structure are real and individual

v R i i, 1. A by e it o i G e

s respq

The default value of a variable is undefined. Expressions will be
constructed as in ALGOL from these types and structures, In addition,
we define a class of unary operators: x: = and x{e,ﬁ > Egpoacy En] 3 =
where x 1s any variable and € is an arithmetic expression., These
unary operators are to have a very low precedence ranking relative to
all other operatbrso Thus, the parsing a + (b: = (¢ + (ds = (e + £))))

1s 1mplied on the expression
8a + b =c¢c +ds =e + T

and the value of the expression is a + ¢ + e + f, while during the
evaluation the values e + f and ¢ + e + f would be stored in d and b,
respectively. Components of a row=structured variable x may be selected
by the use of subscript expressions, using any combination of the two
notations: x[i] ) x[ii.,j] o [1] of x, [,3] of [i] of x, etc. The combina=
tion ( [J] of i of x[k,1]) [m] is equivalent to writing x|k,1,1,3,m]
(The symbol of may a:sombe’cditited.¢ .Ahiexplicit rou=structures ex-.
pression has the form

. #Fygi gypbelf (Fjg €2§?QQ9 Gn)o
The type symbol is omitted in declarations.
Subscripts may be used on explicitly written row expressions, since
any row=structured quantity musﬁ allow component selection. Since an
explicit roﬁm-:s%ﬁc;tured expression 1s preceded by a type symbol, any
operation to be performed on the expression other than subscription is
not performed component=wise, but according to the appropriate treat-=

ment of a quantity of that type. Thus, the complex number 3 + hi would
be written complex (3,4), as ins



- U =

mplex W,z3; w: = z + complex (3,4)

Expressions not containing semi=colons, commas, Or periods are
evaluated according to the precedence ranking imposed by the ALGOL
syntax specifications, Evaluation of a parenthesized expression 1is
considered a postponement of activity, as is any computation needed to
produce a value for an identifier. The postponement ends when a value
is produced, and at that time any lists assigned as values to the
variable new during the postponement are “popped" so that the value

of new is the same as it was before the postponement, If, during a
postponement, a sub-expression is completely evaluated, then if there
is a period or right parenthesis to its right, the (most recent) poste
ponement is terminated, returning as value the value of the last sub=~
expression evaluated., If it is followed by a semi=colon, the next sub=
expression to be evaluated is that next to the right, In evaluating an
explicit row-structured expression, such as <type symbol> (¢ 15 Eppaaas

En)9 the evaluation of €, will be followed by the evaluation of e X

1
etco In this way n values will be produced, as the n components of the

row=structured expression.

The construction

(1) while £ 4 do €

where e, contains no ",ero=level" semi-colons, will be interpreted as

follows: The symbols while and do act as left and right parentheses

2

for €., respectively. First, € is evaluated to produce a Boolean value.

]
If true, ¢

is evaluated, and then e, 1s evaluated again, and so on.

2 1

If €, ever produces the value false, the evaluation 1s terminated and

the successor of the while construction 1s determined as if the con=

struction had been enclosed in parentheses. If €, 1s a row=structured

expression, say (611 s €E1ns000) E‘ln)’ then the construction above is an



abbreviation for

(while €44 do €Ers whlle €40 do Espo00s whlle €10 do € )

The construction

(2) until > do €

2

1s equivalent to

while 7e., do €

] = 2
The constructions
until
(3) 59an=61§‘33282 | E3EE=€1+
whille

where n is the name (possibly subscripted) of a variable, are equiva=
lent to

(untail
n*w“s:,!;{ € gg(sh;nz:n+eg);n
while

Parts of these iterated constructions may be omitted, with the following

default interpretations:

1 2
o while
do €. €. do;
2 until %
, until
In (3): n s= ff:)rk:i;ﬂe;,i step £, 8333
while |
wvhere k 1s an internal temporary
v&riablEO
g:gi fornzwnsteg Q0 O
step 52 for n : = E‘i step Oooo
unt1l ‘
q 53 c0oo Step 52 unti1l false Qg 60 o
while

until
for gg_ Eh for n s = E‘B step 52{ 53 do

while




The construction

3.;£. e:,l then 62 else ¢

3

where € 5 1s of type Boolean and € 5

1s 1nterpreted as if it had been written

contains no "zero-level' conditional,

... “,.. (61 9761 )] ,9_,2 ( 82963)

where is a ﬁnary operator which applies to Boolean=valued
row=structured variables to produce the index of the first component

(in order of listing from left to right) which is true.

The construction

£ 8l1s0O €. 8180 ... 8l80 €

1 - 2 n
where €_ is free of "zero+level" semi~colons, is interpreted as follows:
The simultaneous evaluation of € 5000y € 1s carried out. The value of

the construction 1s that of €1 and the successor 1s that which would
be the normal successor if the construction were contained 1n parenthe-
ses., Passage to the successor 1s made only after all of €i90a0p € have
been evaluated. If the evaluation of more than one of the €+ references
the same variable, no interference will result,; but no provision 1s
made for knowing the order in which these references are made. We do

postulate that:

1) Two accesses to the value of a variable can not occur simultaneously.
2) There is a procedure get—and-set (x,y) such that if the access to

the value of x is by this procedure, then access to x other than

from within the procedure is inhibited until the procedure terminatesg

returning the value of x and assigning the value of y to x.



In any expression various subexpressions may be "primed" (with
one or more primes). An expression containing primed subexpressions is

called a form. A variable of type form may be assigned form values or

real values, and in the assignment process values are used for all un-

primed sub=expressions,and simplifications are made when possible ac-
cording to the indicated expression structure. No substitution of

values 1s made for primed subexpressions, although unprimed components

within them do receive values, An explicit row-structured form need

not be preceded by the type symbol form. Removal of primes is accom=

plished by application of the eval operator. This has the explicit
form:

a 1nto f eval ¢

where € contains no "zero-level" semi-colons, and a and f are row=
structured variables (with the same number of components) such that

the values of a are forms, and the values of f are names of variables

which are primed in €. The action of eval in this case is: (1) Declare
the elements of f to be new, (ii) assign them their correspondents in

a, (11i) remove one prime from each sub-expression in €, (iv) evaluate

the resulting form.

A variable whose type is set to form acquires automatically two

additional attributes of type form and structure row ¢ formal and

LTI 2.,

actual, The default values of both attributes are the empty list A,

The notation L : € will be an abbreviation for (i) a declaration at
the beginning of the program new L; type of L := form; and (ii)
replacement of L 2 € by L := €', At any time the formal and actual

attributes of L may be assigned values as described for a and f in the
preceding section. The notation Lf : €, where f 1s a row=-structured
variable (or explicit row=structured expression), is an abbreviation

for L : (formal of L := f3e). If the expression e doesn’t need a name,




- 8 -

perhaps because it appears 1n a list of forms to be used as actual

parameters, but ‘it needs its own formal parameters, one may omit the
name L and write f : €. An occurrence of L. in an expression 1s an

abbreviation for:

actual of L into formal of L eval L

If one writes explicitly:

a into f eval L

+hen thilis 1s an abbreviation for:

actual of L := a; formal of L := f; L

If either a or into f is omitted here, the corresponding assignment 1is

omitted., Finally, the notation La is an abbreviation for

a eval L

It is instructive to digress here and map some of the ALGOL
facilities into these constructions. The correspondents of the iteration
and conditional constructions in ALGOL should be clear. What needs
further explanation is the treatment of procedures, and the lack of
blocks, the go to statement, and a switch facility. The point of view

adopted here unifies all of these under the dynamic assignment of values

(including forms) to names of variables and their attributes, and the

dynamic determinations of scopej; 1l.e., the durat ion of such assignments.
The function of the block in ALGOL was to delimit the scope of certain
declarations. The procedure definition delimited the scope of parameter
substitutions. All of these are now treated as dynamic asslgnments,
capable of redefinition, and each determining = dynamically = 1ts own
scope. Thus, a go to statement 1is no longer needed, since one simply
names the code to be evaluated next, say L. This 1s a postponement of
activity at the point at which the name L is invoked, and one 1s free
to continue on when the postponement terminates (writing "L;"), or

indicate that nothing further is.intended here (writing "L."). On the



- 9 =

other hand; L 1s the name of an expression, so that it yields a value

when 1t returns, and one can embed the "call” for L into larger ex-

pressions., The three concepts: (1) go to, (2) function call (or pro-

cedure call) with parameters, (3) function call (or procedure call)

without parameters, now appear as one.

At times it is necessary to declare a variable during the evalua-

tion of an expression whose existence does not end (i.e., it is not
"popped") at the end of the current postponement. It is usually in-
tended that 1ts scope of definition coincide with that of some other
variable declared new earlier. This is accomplished by declaring the

variable Just as with new, but with own instead, together with the

name of the controlling variable (in brackets). Thus, one would have:

LRSI D

(new := (x); coo (own[x] = (¥); cco ) oo )

and both x and y are "popped" at the same time.

Variables of type string will be manipulated by the usual opera-

tors, such as concatenation, sub=string identification, extraction,
and deletion, and so on. In addition, rules for matching and substitu=-

tion similar to those found in Markov algorithms, COMIT, or SNOBOL will

be used. Such rules will be written:

Apply (L, : (Left » Right; L,) o Ly ¢ ( coe ) o ) to x

1 3

where Left and Right are strings, as in SNOBOL, for example, to be
matched against the contents of the string variable x. First, the
evaluation of L1 is begun. If Left matches in x, Right 1s substituted
as usual, and the procedure L2 is called., Sequencing 1is subject to the
rules given earlier relative to the semi-colon, parentheses, and period.

If Left does not match, the "pop" corresponding to the postponement

is effected, and L_ is called next. (The evaluation of L_

caused by L 3 3

1



- 10 =

in this situation and the initial evaluation of L. are the primary

1
effects of the Apply operator., ) The evaluation of the Apply construc=

tion terminates 1n a normal way when some rule has no successor. The

successor to the Apply

. )
L il g ¢ S +l4—-u.‘

construction 1s determined as i1f x were standing

alone,

Definitions

T . [ ™ il i e . il il - - s = S i -y

A facility will be provided by means of which types and structures
not yet provided for i1n the language may be defined by the program.
Contexts in the program involving defined constructions will be ex-
panded into ordinary constructions at appropriate times prior to their
evaluation as expressions. The prime notation for indicating that such
code conversion must occur dynamically (and thus in an interpretive way),

or statically, so that the defined construction may be entirely re-=

placed by 1ts expanded definition.,

For some purposes, such as the application of editting operators,
it 1s necessary that expressions normally i1ntended to be evaluated be
accessible as data. Thus, we may wish to select particular subexpres-
sions, perform substitutions, and replace them. Thelr representation
as evaluatable code may be quite different from that needed by the
editting operators, however. We may postulate one pair of operators to
convert "zero=level" semi-colons to commas and back, thus allowing
selection of sub-expressions by subscript. A further conversion of the
text into some kind of string form i1s probably necessary, also, de=
pending on the kind of modifications one anticipates. For 1instance,
replacement of identifiers or sub-expressions with others without dis=
turbing the existing expression structure may be accomplished within

the prime notation = eval facility, and so on. No specifications are

given here for these conversions, but the need must be recognized.



w 11 =

Examgle 13

quadratic (a,b,c):(new :=, (}r:‘1 ;xz);

if a # 0 then (d = sart(b x b = 4 x a x ¢);3

if d < O then Print ("no sol").

else x, 2= (=b =4d)/(2 x a); x. :=(=Db + 4d)/(2 x a);

1
Print ()c,l 91:2) ) o

2

else if ¢ # O then Print ("one root", =b/c).

else if b # O then Print ("one root", 0).

else Print ("no eq"))

quadratic (a,b,c):
[first of (a;c,b,1) # 0] of

(if 4 3= sqrt(b x b = 4 x a x ¢) < O then Print ("no sol")

else Print ({(- b - d)/(2 xa), (=b =4a)/(2 x a)),

Print ("one root", -b/c)),
" Print ("one root", 0),

Print ("no eq")):

quadratic (a,b,c)s

(if 4 := sqrt(b x b = h x a x ¢) < 0 then Print ("no sol")

o

else Print ((- b - d)/(2 x a), (- b + d)/(2 x a)),

Print ("one root", =b/c),: Print ("one root", 0),

Print ("no eq")) [first of (a,c,b,1) # O]




- 10 -

Example 4:
N
The problem: Many procedures exist for computing (a) E Ck-)(k a.s
oo k=0
an approximation to (b) X dek , for some integral N. It is correct

k=0
to say that N 1s a variable of use or call of the procedure. It is

interesting to design a procedure which prepares (a) from (b).

Example holo
f(N) : (own [:f‘] o= (array C[‘l : N?]); new := (integer k; form U);

U(r) ¢ <computation of C_>;
r

for k := O step 1 until N* do Clk] :=U(k);

f(X) : (new := (real g, integer k); g := C[NE];

for k := N' = 1 step -1 until O do g := Cl[k] + g * X'))

Then, a first call f(n) followed by calls of the form f(e), where ¢ 1s

an expression, prowvides values of I Ckeka
- k=0

Example L.2,
£ : ((N) ¢ (own [£] := (array C[1 : N']); new :=

k; form U) 3

U(r) : <computation of Cr>; own [f] c= M3 M ¢= N’

for k := 0 step 1 until N° do C[k] :=U(k)),

(X) : (new := (real g, integer k); g := C[M];

for k ¢= M -~ 1 step -1 until 0 do g := C[k] + g »* X"))

The calls would be [1] of f(n) or f[1](n) and then successive calls
[2] of f(e) or [2]f(e).

Example 4.3,

Suppose an n is not known, but an € > 0 is provided such that (a)

is prepared for the least N > O such that ICN - Cy o1l < €



i:

3
- + - L T
w - -

f(€) : (new := (row C, real h,g, integer i); own [f] = (integer k;form U);

U(r) : <computation of Er>; C := g 3= U(0);

for k := 1 step 1 until abs ((h :=VU(k)) - g) < €') do

append (C,g := h); gwn [f] := array alo : k] 3

for i = O steB 1T until k QQ_

(a[i] := contents of car (€); € := car(C)):

f(X) ¢ (new := (gsinteger i); g = d[k];

for 1 := k = 1.step =1 until 0 do g := d[i] + g X'"))

Note .J {Append 1s a bullt-in procedure for adding a component to a row
variable (which we may think of as represented by a list). The
) operator 1s needed because 1t 1s assumed that in the

list representation names are used as list components.

Note 2:The algorithm creates the array 4 to improve both storage and
t ime béffzgmance of subsequent executions of f. This i1s possible
because k has been computed and 1s assumed constant for future
calls of f. Note that the row € disappears after the first call
of f, and 1ts storage 1s théreby released.'One couldy. of course,

dispense with 4 and use C directly by:

1) Rewriting the initial declarations as:

w o = (hggg inteaer k); owIn [f] ° == (row C);

2) Using prefix in place of append to produce the list in reverse

order.

3) Writing the last assigmnment to f as
£(X) : (new := (g,h); g := contents of car (C); h := C3
until h := cdr(h) = undefined do

g := contents of car(h) + g »* X')




