
•

STICHTING

2e BOERHAA VESTRAA T 49
AMSTERDAM

Criteria for the Design of a Language.
,,('

•

•

B.A .. Galler

and

A.J. Perlis

1966

'

1

'

Criteria for the Design of a Language

B.A. Galler and A.J. Perlis

Because of the rapid development and dissernination of ideas in pro .. ,

grarnming, the exact source of important concepts is difficult to

identifyo Most of the ideas outlined here did not originate with the

authors of this pa.per, or even the papers in which they came to the

authors' attention *"-- nor does it matter that this is so. However, the

i:minediate stimulus for this paper c&r1e from ALGOL X proposals de ...

scribed in lectures at the Mathernatisch Centrurn, Amsterda.m, by A"' van

Wijngaarden.

We propose here some criteria for language designo

are used as guidelines (although not always explicitly)

a part of an ALGOL-like language. The criteria are:

Minimization of the nurnber of conceptsa ·

Uniforrnity of treatment of concepts, when possd.ble~
•

.. . ,_
These cr·1.ter1.a

in specifying

(1)

(2)

(3) Scope of application of operators, declarations, etc., determined

dynamically rather than 1exicographicallyo
'

(4) The order in which things happen must be known and taken into

acco11nt; conc,1rrent computation occu:1·s only when explicitly in­

dicated.

(5) In place of any construction its name may be used; and conversely~

(6) Wherever a name occurs 1 it does so as a variable, for which an

appropriate set of operations and a structure :f'or its value should

be provided.

{ 7) The attributes of a variable shall be available to the prograxn and

shall be interpreted dynamically when necessary~

(8) The description of the language should distinguish carefully

between temporal and lexicographic sequencing. We shall use

''before'', ''aft-er'', ''precede.'', ''follow'', ''predecessor'1
t ''successor''

for terr1pora1 sequencing; and ''above'', ''below'', ''le:ft '', ''right'' and

''next'' for lexicographic sequencingo

•

- 2

The basic idea is that execution of' a. progrea:n is just the evaluag;,

tion of an expression via evaluation of its subexpressionso D1.11°ing the

evaluation of one expression a postponement of an activity may OCCll4r

while another (and yet another) expression is evaluatedo Thus© the

language must provide f'or ''pushing'' and ''popping'' the status of certain

variables when neededo It is also necessary to have a rule indicating
•

the next expression to be evaluated whenever one such evaluation is

completedo The computation ceases only when no successor can be fou.ndo

It is usual to distinguish between two kinds of computationi

(1) manipulation of values of variables introduced in the progrexo 8 and

(2) manipulation of variables known only to the systemS> such as the

tl!:J?e of declared variables, or storage allocation and

for111ationo It is clearly \)~desirable to continue this

since it adds greatly to the power of the programming

" <? accessing 1.n.-
q Q " d1.st1.nct1.on,

lan.guage if the

''program'' can access the system variableso The use o-.f decla111a.tions has

enforced this distinction by suppressing all naines for system variablesQ

Decl.a.·,~ations have also been treated as quite static relative to the

computation; although they may be invoked dynamically in ALGOL 9 they

remain in :force over the li:re of a block and may not be changed in the

blocko We assm11e instead the existence of a set of systera va,tiables

(known as ''bar variables'' since they all have the forr·n n" where n is

· an integer) $ which a:re interpreted by the systetr1. and computable by the

programo

Related to the bar variables (in that they are interpreted by the

syste,n) a.t•e the ''attributes'' of declared variableso A variable is

''declared'' by assigning to the system variable new (which could be one

of' the bar variables) a list of na,ries o Ir a declaration i such as rea.l 1

precedes a name, it shall. be an initial assignrnent for that attribute

for all variables to the right of' it in the list 9 until another value

for that attribute occurs in the listo With each declaration pre=

vious values and/or attributes of the variables on the list are

''pushed down'', and a new set of values and attributes is created for

eacho They will have initial 9
' default v, assignments ;1 but these may be

.manipulated by references to ,:t,ll?_e of x, etco The progranl may create

<Ii«• 3 Qa;;t)

additional attributes of' its ovn by using the operators attr 1 9 attr 2i)

etc o These may be assigned Et,rbitrary values or type real$ provided the

variable so re~erenced has been declared newo All variables declared

new since a given 9'push9
' are ''poppedi' (along with a11 values and

attributes) when the corresponding ''pop11
' oocurso

Variables have a type~ real 9 Boolean t) aC:9!1Pt-ce?C,9 ,;p.j;,:~S~r i tortrl e

strinfi.i) etc o i) and a structu:re j such as indi vidua.1?) row® ,:~:.E&.i> etc Q

Default values of type and structure are rea1 a.nd individuals, respo

The default value o-f a variable is undefinedo Expressions will be

constructed as in OL from these types and structuresQ In addition~

where x is any va111 iable and £ o is an arithmeti.c expressionQ These
1

unary operators ar·e to have a very low precedence ranking relative to

all other operatorso Thus, the parsing a+ (bg (c + (d~ ••= (e + f))))

is in~plied on the expression

a+ b~ C + d~ e +

and the value of the expression is a + c + e + f, while d1.1•rcing the
••

evaluation the values e + f and c + e + f would be stored ind and b 1

respectivelyo Components of a row-structured variable x may be selected

by the use of subscript expressions. using any combination or the two

notationsi xi t x i~j , i o~ x, j of i of xi etco The combina=

tion (j of i of x k,l) m_ is equivalent to writing x k,l~isjsm a

(The symbol of may a}sor11me-i~ollli-6tedo ~.. ·: expl:i:ci_t ,row<-Qstrucitu:r~-pd; ·ex~_,
0

pl'es-sion bas the f 1onn
'

The type symbol is omitted in. declax·ationso

Subscripts may be used on explici~ly written row

any row, .. ,structured qua.ntity must allow component

Q Q

expressions~ since

se1ectiono Since an
explicit row, .. ,struct1J.red expression is preceded by a type symbol® any

operation to be perforrtted on the expression other than subscription is

not per:fo1·111ed component=wise 9 but according to the appropriate treat=

ment of a quantity of that typeo Thus g the co1nplex n,1xnber 3 + 4i would
Q"JSW>

be written ,comp~ex (3 9 4)~ as ing

.•. 4

··-- ... - - --· -·

.

Eval~~~-~o:q of p;:epre=ssions

.. ,. .. " 1 _._ ',l d E!xpress1ons not containing sem1,·-co ons, comvi.as 0 or per10 s a.re

evaluated according to the precedence ranking imposed by the ALGOL

syntax specifications~ Evaluation of a parenthesized expression is
•

considered a postponement o:r activity 51 as is any computation needed to

produce a value for an identifiero The postponement ends when a value

is produced, and at that tjrne a.ny lists assigned as values to the

variable new dt1ring the postponement a.t"'e ''popped'' so that the va.l.ue

-- .. --<
of new is the same as it was be:fore the postponement Q If, d11ring a

postponement, a sub-expression is completely evaluated 1 then if there

is a period or right pa,1•enthesis to its right, the (most recent) post~

ponement is ter1ninatedi rett1t~ning as value the value of the last sub<ff;I

expression evaluatedo If it is followed by a semi co1on, the next sub~

expression to be evaluated is tnat next to the righto In evaluating an

E2~

etco In this way n values will be produced, as then components of the

row,--structu1·ed expressiono

Iteration
•

The construction

(1) • vhi.le £ 1 do £ 2

where e2
follows~

contains no ''zero--level'' sexnicaacolons,, will be interpreted as

The symbols while and do act as left and right parentheses

a Boolean value~

and so onQ

the successor o-f the while construction is deterxnined as if the con--

•

I I 5 CS?

abbreviation for

0

The construction

(2)
l ') .

. ' ..

is equivalent to

The constructions

until
(3) for n g

while

where n is the name (possibly subscripted) of a variable, are equiva=

lent to

until

while
-- -· ... ' -- -· -

0
0 n

Parts of these iterated constructions may be omittedi} with the following

default .. 0 interpretations~

Omitted

whil.e
In (1) or (2) g

In (3) ~

..
until

... --~ ----·.

• •

n O -
0 -

0
0

I

.~::,e £2

until

while

for

.Inter_Eretat ion

while

until
E 1 do;

\

until
-== -

fork
0 while

•

where k is an internal terctporary

variableo

for n 0 -
0 - .. -- .

for n ~ =

0 0 0 ste~

for n g

n ste 0 0 0 ' = :·,,

" £ 2 11nt1.l false do 0 0 0

..
1mt1l

0

while

•

Conditional

The construction

if

Boolean
• • • • is interpreted as if • it had

6

and £ 2 contains

been written

of

no '' zero.,.,level '' condi tiona.l 9

where f'~rst a-r is a unary operator which applies to Boolean .. lii"valued

row-structured variables to produce the index of the :first component

(in order of listing from left to right) which is truea

Simultaneous Elaboration

The construction

also ooo also e: n

where E is free o:f '1zero•!level '' setni•· ,colons 9 is interpreted as follows~
n

The simul.taneous
- , .. 0 • - .. evaluation of £ 1 ,ooo 9 E 1s carried outo The value of . n

the construction is that o:f e 1 , and the successor is that which would

be the norrnal successor if the construction were contained in parenthe=

seso

been evaluatedo If the evaluation of more than one of the £0 references
1

the ~ame variable, no interference will result, but no provision is

made for knowing the order in which these re~erences are madeo We do

postulate that~

1) Two accesses to the value of a variable can not occur si,nultaneousl.yo

2) There is a procedure get-and-set (x,y) such that if the access to

the value of x is by this procedure, then access to x other than

fro1n within the procedure_ is inhibited 11ntil the proced1.1re ter1ninates))

returning the value of x and assigning the value o~ y to Xo •

•

7

The Prime Notation

In any expression various subexpressions may be ''prj_1ned'' (with

one or more primes) o An expression containing prj xr1ed subexpressions is
•

called a forrtto A variable of' type forrn may be assigned forrr1 values or
. - -- ...

real value.s, and in the assignment process values are used for al.l un=

primed sub .. -expressions, and simplifications ai·e

cording to the indicated expression structureo

..
made when possible ac•·=

. " No substitution of

values is made for pri,·ned subexpressions, although unpri1z1ed components

within thttn do receive values~ An explicit row-structu1eed forn1 need

not be preceded by the type symbol fornio Removal of pri1nes is acc01n­

plished by application of the eval operatoro This has the explicit

forr 0 _,fi 0

' . '

• a into f eval £

where £ contains no '' zero level'' semi-colons, and a and f are row-10

struct111·ed va.1·iables (with the satne nur11ber of components) such that

the values of a are for1ns, and the values of f are na,nes of variables

which are primed in Eo The action of eval in this case isg (i) Decla1·e
. . ' ~

the elements off to be new, (ii) assign them their correspondents in

a 1 (iii) remove one prjrue from each sub-expression in e:, (iv) evaluate

the resulting fo:i:·1no

A variable· whose type is set to fo1·111 acquires automatically two

additional attributes of type forrn and structure row ~ for1n.al a.nd

actualo The default values of both attributes are the empty list Ao

The notation L : e: will be an abbreviation for (i) a dee] a.ration at

the beginning of the progra.m new L; _tl£e 5=>f L ~ :forrr1; and (ii)

----*" ...

replacement of· L. ·~ £ by L :- E' o At any tj1·ne the forina.l and actual

attributes of L may be assigned values as described for a and fin the

preceding sectiono The notation Lf ~ £, where f is a row-struct11red

va1·iable (or explicit row structured expression), is an abbreviation

for L g (formal of L ~= f;e:)o If the expression £ doesn 11 t need a n.arne,

'

'

8

perhaps because it appears in a list of forrns to be used as actual

p0.ra1neters, but '•it needs its own fonnal paraJneters, one may omit the

naJ11e L and write f ~ e o An occ1~1:rrence of L in an expression is an

abbreviation forg

0

actual of L into for1r1al of L eval L

If one writes explicitly~

•
..

a into f eval L

then this is an abbreviation for:

- . .,

actual of L ~- a; formal of Lg;:: f; L

If either a or into f is omitted here. the corresponding assignment is

omittedo Finally, the notation La is an abbreviation for

a eval L

ALGOL facilities
• J J IT I r, ;

It is instructive to digress here and map some of the ALGOL

facilities into • these constructionso The correspondents of the iteration

What needs
a.nd conditional constructions in ALGOL should be clearo

:further explanation is the treatment of procedures a) and the lack of

blocks, the ~o ·to s·tate111ent, and a switch facilityo The point of view

adopted here unifies all of these under the dyna,mic assigninent of values

(including forxns) to names o-r varriables and their attributes~ and the

dyna1r1ic deter1ninations of scope; ioeo, the du1·ation of such assignmentso

The function of the block in

declarationso The procedure

substitutionsc All of these

OL was to delimit the scope of certain
0 0 • 0- ~ definition delJrnited the scope of' parameter

a:re now treated as dyna.1nic assignrr,ents?)

capable of redefinition, and each deterxnining - dynamically - its own

scopeo Thus, a FJO to state:rnent is no longer needed 1 since one ~i111ply

ns,rues the code to be evaluated next 9 say Lo This is a postponement of

activity at the point at which the nsr,,e L is invoked~ and one is free

to continue on when the postponexnent terrrainates (writing ''L; '') 1 or

indicate that nothing tber is .. intended here (writing ''Lo'') Q On the
'

'

'

,,.. 9 q ne

other handS) L is the n.alr1e of an expression!) so that it yields a value

when it returns$ and one can erabed the ''call'' for L into larger ex=-

pressions o The three concepts~ (1) ~o to, (2) ction call (or pro~

cedu:t"e call) with para,,meters i (3) function call (or procedti.re call)
•

w1 thout pa1·a.r11eters 9 now appea.r as one o

Own Variables

At times it is necessary to declare a va,,riable dt1.ring the evalua­

tion of an expression whose existence does not end (ioeoi it is not

''popped'') at the end of the C\lrrent postponemento It is usually in=

tended that its scope of definition coincide with that of some other

variable declared new ea.rliero This is accomplished by declaring the

variable just as with newj but with own instead, together with the

natrie of' the controlling va.riable (in brackets) a Thus 11 one would have~

{new 6~ (x); coo (own x g- (y), ooo) ooo)

and both x and y a:c·e ''popped'' at the saxne ti1neQ

•

•

•

Variables of type strin.a will be manipulated by the usual. opera<;\SI

tors, such as· concatenation, sub-string identification, extraction 9

and deletion~ and so ono In additioni rules for matching ann substitu~

tion simila1~ to those found in Markov algorithms, COMIT 1 or SNOBOL will

be usedo Such rules will be written~

(L ~
1

where Lef't and Right are strings 9 as in SNOBOL, f'or exa2aple 8 to be

matched against the contents of the string variable Xo First» the •

. ~

ruJ es given earlier relative to the se1111-colon ~ parentheses, and period o

If Left does not matchSJ the ''pop'' corresponding to the postponernent

0 0 6 t> 1n this situation

effects of the A"· 1 operatoro) The evaluation of the Al2.P+-l construe=
.. -- Q CJ t1on ter1r1·1nates in a no1:·rnal way when some rule bas no successorc.i Th.e

successor to the ,~Ee!;¥:. construction is deterrnined as if x were standing

aloneo

Definitions

A faci.lity will be provided by means of which types and structures

not yet provided for in the language may be defined by the programo

Contexts in the program involving defined constructions

panded into ordinary constructions at appropriate times

wi.11 be exi=
O 0

prior to their

evaluation as expressionso The pr:i1r1e notation :for indicating that such

code conversion must occur dynamically (and thus in an interpretive wa.y),

or statically~ so that the defined construction may be entirely re~

placed by its expanded definitiono

_ReJ?resentatio:n of' code as data

For some purposesi such as the application of editting operators 9

it is necessa,.:tDy that expressions no1,,1ally intended to be evaluated be

accessible as datao Thus 9 we may wish to select particular subexpres~
0 g_ 0 Q O

sions, perfc1~1n substitutions~ and replace themo Their representation

as evaluatable code ma.y be q·uite different :from that needed by the
,0 0 4,;l

e~1tt1ng operators~ howevero We may postulate one pair of operators to

convert 99 zero-,-•level 99 serni=,colons to commas and backi) thus allowing

selection of sub-expressions by subscript o A fur·ther conversion of the

text into some kind of string fo1Qu1 is probably necessary 2' also %1 de=

pending on the kind o~ modi~ications one anticipates◊ For instance~

replacement of identifiers or sub~expressions with others without dis=
'

0 ~ Q turbing the existing
0 0

the prime notation=

expressiun structure may be accomplished within

eval facility 2 a.nd so ono No specifications are

given here for these conversions 1 but the need must be recognizedo

•

- 11 .,.

Example 1 ~

quadratic
' .

if a~ O then (d g sqrt(b x b - 4 x ax c);

if d < 0 then Print (••no sol'') o

d)/(2 ~ (- b + d)/(2 x a);

Print

e1se if c #; 0 then Print (''one root'',, b/c)o

else if b :# 0 then Print (''one root'', 0) o
•

else ?r.~p.t (''no eq''))

• •

•

quadratic (a,b,c)~
. . .

first of (a,c,b,1) :/: 0 of
. . .. ' ..

(if d ~ sqrt(b x b - 4 x a. x c) < 0 then Print (''no sol'')

•

. - . . else Print ((- b - d)/(2 x a), (- b - d)/(2 x a)),

Print (''one root'', -b/ c)) ,

- ··· · Pri·nt (''one root'' 9 0) , ·•

Print { ''no eq '')) :

quadratic (a,b,c)~

(if d ~ sqrt(b X b 4 x ax c) < 0 then Print (''no sol'')

else Print ((- b - d)/(2 x a), (- b + d)/(2 x a))~

Print (''one root'', -b/c) i: Print (''one root'', 0)" .

Print (''no eq")) first of (a,c,b,1) :/: 0

.. .

- 12

EJtarnnle 4 ~ ,t...,_, __
N

The problecn~ ~a.n){ proced1u•es exist :for computing (a) C · as
~ k=O

an approximation to (b) for some integral No It is correct
k=O

to say that N- is a va.riable o:f use or call of the procedureo It is
. ..

interesting to design a procedure which prepares {a) from (b)o
•

f(N·) : (own_ f 0
0 (inte~er k; for111 U);

.. .. - - ..

V(r) ~ <computation of

for k ~ 0 s~el?.. 1 1.1ntil N' do C k ~ V (k);

f(X) g (new := (real_ g, ,~nte er
2
k); g : C Nv ;

fork~ N' - 1 ste -1 until Odo g ! Ck + g * X'))

Then, a :first call f (n) followed by calls of the forrn f(£) , where £ is
n k

an expression.~ provides values of Ck£ o
. . 0

E:x;a,•nple 4 o 2 o
- -

- .

f: ((N) g (own _f 0
0

U(r) ~ <computation o:f C >; own r

(intefier k; . f 01·1n V) ;

o- Mo Mo
0 , .L)L 0

fork~ 0 ste~ 1 until Nv do Ck g=V(k)),

(X) : (new ~=

:for k g ·· M 1 stee -1 1 til Odo g ~-Ck + g * X9
))

The calls would be 1 of f(n) or f 1 (n) and then successive calls

2 Of f'(E) Or 2 :f(E)o

Examnle 4o3o
-:;_ = ~

Suppose an n is not known. 9 but an £ >. 0 i·s provided such that (a)

is prepared for the least N > 0 such that
•

f(E) ~ (new~=

V(r) : • <computation of G > 0 r , U(O);

fork~- 1 steE 1 until abs ((h := U(k)) - g) < e 9) do
•

append (C,g ~= h); own

(di ~= contents of car (G); e i cdr(G));

f(X) : (new ~= (g,int.e~er. i); g ~= d k ; --:

for i := k - 1.s~e£ -1 until Odo g ~=di + g * X9))

N.ote: 1 :Append is a built-in proced1.1re for adding a component to a row

variable (which we may think of as represented by a list)o The

· > operator contents of is needed because it is assumed that in the

list representation naxues are used as list componentso

Note 2~The algorithm creates the array d to improve both storage and

tinie perf8iwr·nance of subsequent executions of'
0 • •

fo This is possible

because k has been computed and

calls of fo Note that the row e

• is assumed constant for future

dis~ppears after the first call

of f, and its storage is thereby, :re~easedo· 1 0t}.ei couilid.~. or course,·

dispense with d and use C directly by~

1) Rewriting the initial declarations as~

new ~= (h»g, in:t,eser k); own f ~ (row C);
'

2) Using prefix in place of append to produce the list in reve~se

ordero

3) Writing the last assignment to fas

f(X) ~ (new~= (g,h); g ~- contents of car (C); h ~= C;

until h ~ ... · cdr (h.} . · -undefined do

g g contents of car(h) + g * X')

' .

•

