W.P. de ROEVER
OPERATIONAL, MATHEMATICAL AND AXIOMATIZED SEMANTICS
FOR RECURSIVE PROCEDURES AND DATA STRUCTURES
Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
ABSTRACT

The language PL for first-order recursive program schemes with call-by-value as parameter mechanism is developed, using models for sequential and independent parallel computation. The language MU for binary relations over cartesian products which has minimal fixed point operators is formally defined and the validity of the monotonicity, continuity and substitutivity properties and Scott's induction rule is proved. An injection between PL and MU is specified together with the conditions subject to which this injection induces a translation. Then MU is axiomatized using a many-sorted generalization of Tarski's axioms for binary relations, Scott's induction rule and fixed point axiom, and new axioms to characterize projection functions, whence, by the translation result, a calculus for first-order recursive program schemes is obtained. Next we define an operator composing relations with predicates, the so-called "o" operator, relate the properties of this operator axiomatically to the structure of the relations and predicates composed, and demonstrate the relevance of this operator to correctness proofs of programs in general and proofs involving the call-by-value parameter mechanism in particular. Axiomatic proofs are given of numerous properties of recursive program schemes, some of which involve different modular decompositions of a program. Our calculus is then applied to the axiomatic characterization of the natural numbers, lists, linear lists and ordered linear lists, and used to prove many properties relating the head, tail and append list-manipulation functions to each other. Finally both an informal and an axiomatic correctness proof is given of the well-known recursive solution of the Towers of Hanoi problem.
ACKNOWLEDGEMENTS

First of all I am grateful to J.W. de Bakker, Robin Milner, David Park and Dana Scott, who, by their respective works made my research in this direction possible.
I am deeply indebted to J.W. de Bakker for his continuous help, advice and criticism.
I thank (in alphabetical order) P.C. Baayen, Peter van Emde Boas, Joost Engelfriet, Michael Gordon, Peter Hitchcock, Giles Kahn, Erik Krabbe, Robin Milner, Maurice Nivat, David Park and Paul Vitányi for their various suggestions, and Astrid Schuyt-Fasen for the Sisyphean labor of typing my arduous manuscript.
CONTENTS

0. INTRODUCTION
 0.1. Objectives
 0.2. Structure of the paper
 0.3. Related work

1. A FRAMEWORK FOR PROGRAM CORRECTNESS
 1.1. Introduction
 1.2. A framework for program correctness
 1.3. The formulation of specific correctness properties of programs

2. THE PROGRAM SCHEME LANGUAGE PL
 2.1. Definition of PL
 2.2. The union theorem

3. THE CORRECTNESS LANGUAGE MU
 3.1. Definition of MU
 3.2. Validity of Scott's induction rule and the translation theorem
 3.3. Rebuttal to Manna and Vuillemin on call-by-value

4. AXIOMATIZATION OF MU
 4.1. Axiomatization of typed binary relations
 4.2. Axiomatization of Boolean relation constants
 4.3. Axiomatization of binary relations over cartesian products
 4.4. Axiomatization of the "\(\nu_i \)" operators

5. APPLICATIONS
 5.1. An equivalence due to Morris
 5.2. An equivalence involving nested while statements
 5.3. Wright's regularization of linear procedures
 5.4. Axiomatization of the natural numbers
 5.5. The primitive recursion theorem
6. AXIOMATIC LIST PROCESSING
 6.1. Lists, linear lists and ordered linear lists 59
 6.2. Properties of head and tail 65
 6.3. Correctness of the TOWERS OF HANOI 68
 6.3.a. Informal part 68
 6.3.b. An axiomatic correctness proof for the TOWERS OF HANOI 71

7. CONCLUSION 77

APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS 79
APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY 89
APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES 96
REFERENCES 99
0. INTRODUCTION

0.1. Objectives

The objectives of the present paper are to provide a self-contained description of:

1. A conceptually attractive framework for studying the foundations of program correctness.

2. An expedient axiomatization of the properties of first-order recursive programs with call-by-value as parameter mechanism.

Ad 1.

In reasoning about programs and their properties one is always confronted with the following two aspects:

1.1 A program serves to describe a class of computations on a possibly idealized computer. In consequence, a programmer always conceptualizes its execution. Whether this conceptualization figures on the very concrete level of bit manipulation or on the very abstract level of an ALGOL 68 machine, it always uses some model of computation as vehicle for the process of understanding a program. (However, the level on which this conceptualization takes place does matter when considering the ease with which one reasons about the outcome of a program: the less the amount of detail necessary to understand the operation of a program, the better the insight as to whether a program serves its purpose).

1.2 If we abstract from this variety in understanding a program, we arrive at the relational structure which embodies the mathematical essence of that program: its properties.

This leads one to consider two notions of meaning:

\begin{quote}
operational and mathematical semantics.
\end{quote}

How do these notions relate?
First one has to choose a language, whose operational semantics are defined by some interpreter. Then one decides which properties of the computations defined by this interpreter to investigate. Finally one gives an independent mathematical characterization of these properties.

Our choice has been in this paper

a. To introduce an idealized interpreter for a language for first-order recursive program schemes with call-by-value as parameter mechanism (first-order recursive programs manipulate neither labels nor procedures as values).

b. To consider the input-output behaviour of programs as property subject to investigation.

c. To use Scott's minimal fixed point characterization for the input-output behaviour of recursive procedures in the setting of binary relations and projection functions.

However, other choices are very well possible, e.g., Bekic [5], Blikle [6], Kahn [21] and Milner [32] incorporate also the intermediate stages of a computation into their mathematical semantics. *) This does not necessarily imply that then all properties of a computation have been taken into account (whence equivalence becomes equality). For instance, the two sequences \((A_1(A_2A_3))\) and \(((A_1A_2)A_3)\) may be considered equivalent, as their execution amounts to executing the same elementary statements in the same order: first \(A_1\), then \(A_2\) and finally \(A_3\), although these elementary statements are differently grouped together.

Ad 2.

Once the appropriate mathematical semantics have been defined, a proper framework for proving properties of programs is obtained. As the proofs of these properties may be quite cumbersome and lengthy, one might wish to investigate into the possibilities of computer assisted proofs, cf. King [23], Milner [31] and Weyrauch and Milner [45]. One then has to calculate

*) A possible approach in this direction is suggested in appendix I.
the correctness of a program, whence a formal system is needed. Our system is an extension of the one given in de Bakker and de Roever [2] in that we consider binary relations over cartesian products of domains, i.e., our domains are structured.

Other formal systems are considered in Milner [31], which axiomatizes higher order recursive functionals with call-by-name as parameter mechanism, and Scott [40], which contains an axiomatization of the universal λ-calculus model called "logical space".

0.2. Structure of the paper

Chapter 1

Expression of properties of programs as properties of relations. Introduction to the correctness operator "ω" between relational terms and predicates: ξ satisfies $X\omega p$ iff X terminates for input ξ with output η and output η satisfies p.

Chapter 2

Formal definition of PL, a language for first-order recursive program schemes with call-by-value as parameter mechanism, which allows for mutually dependent recursive declarations. Rigorous investigation of the input-output behaviour ω of the program schemes of PL, consisting of proofs for (1) ω is a homomorphism with respect to the algebraic structure of PL, (2) the main theorem, the union theorem, using monotonicity, substitutivity and transformation of a computation into a normal form, (3) the modularity property, using the minimal fixed point property; the modularity property relates to the modular design of program schemes and is applied to yield a two-line proof for the tree traversal result of section 4.5 of de Bakker and de Roever [2].

This chapter is a generalization of chapter 3 of de Bakker and Meertens [3].
Chapter 3

Formal definition of μ, a language for binary relations over cartesian products, which has "simultaneous" minimal fixed point operators. Rigorous investigation of the mathematical semantics of μ, consisting of proofs for (1) the monotonicity, substitutivity and continuity properties, (2) the union theorem (3) validity of Scott's induction rule (4) the translation theorem, which relates the input-output behaviour σ of the recursive program schemes defined in chapter 2 to the mathematical interpretation of certain terms of μ. Rebuttal to Manna and Vuillemin [27] on the subject of call-by-value.

Chapter 4

Axiomatization of μ in four successive stages: (1) a many-sorted version of Tarski's axioms for binary relations; derivation of, amongst others, the fundamental lemma $\vdash R ; S \cap T = R ; (\bar{R} ; T \cap S) \cap T$, (2) axiomatization of boolean relation constants; derivation of the properties of the "=σ" operator, (3) axiomatization of projection functions; derivation of another characterization of the converse of a relation, involving the application of the conversion operator to projection functions, but not to that relation, (4) axiomatization of the minimal fixed point operators μ_i, resulting in a calculus for first-order recursive program schemes with call-by-value as parameter mechanism; derivation of the monotonicity, fixed point, minimal fixed point, iteration and modularity properties; statement of a result on functionality of terms.

This chapter is a generalization of chapter 4 of de Bakker and de Roever [2].

Chapter 5

Application of the calculus for recursive program schemes developed in chapter 4 to the formal derivation of (1) an equivalence due to Morris [33], (2) a property involving nested while statements, contained in sec-
tion 5.1 of de Bakker and de Roever [2], using modular decomposition and simultaneous μ-terms, (3) the regularization of linear procedures following Wright [47]. An applied calculus for the natural numbers N featuring an improved axiom system for N and a derivation of the characterizing property of the equality relation between natural numbers.

Chapter 6

Formal list manipulation, applied calculi for lists, linear lists and ordered linear lists. Linear lists are a special case of ordered linear lists. Proofs for (1) a characterization of termination of and associativity of the concatenation function with ordered linear lists as arguments, (2) many properties relating the head, tail and concatenation functions with ordered linear lists as arguments to each other, (3) both informal and formal versions of correctness of the Towers of Hanoi program.

Chapter 7.

Conclusion consisting of (1) a listing of the four main (technical) accomplishments of this paper and (2) three open problems.

0.3. Related work

First we discuss the relational approach to program correctness. Dominant in this approach is the minimal fixed point characterization, which is initiated by Scott and de Bakker in [41], elaborated by de Bakker in [1,48] and crossbred with Tarski's algebra of relations [43] in de Bakker and de Roever [2] to yield an axiomatic framework for proving equivalence, partial correctness and termination of first-order recursive program schemes with one variable. The present paper amplifies on the latter in that (1) the restriction to one variable is removed by considering arbitrary subdivisions of the state and (2) the distinction on the one hand and the connection on the other between operational and mathematical semantics has been clarified. In de Roever [36] relational calculi are developed for recursive procedures, of which each parameter may be either
called-by-value or called-by-name, with the restriction that at least one parameter is called-by-value; in case all parameters are called-by-name the \(\lambda\)-calculus oriented approach of Manna and Vuillemin [27] should be used. Subdivisions of the state are incorporated within the relational framework by considering relations over cartesian products of domains; these were introduced in unpublished work of Milner [30] and Park [35]. The connection between induction rules and termination proofs is described by Hitchcock and Park in [18] and elaborated in Hitchcock's dissertation [17], which also contains a correctness proof of a translation of recursive programs into flowcharts with stacks and clarifies the notion of representation of (recursive) data structures.

Maximal fixed points, introduced by Park in [34], are applied in Mazurkiewicz [28] to obtain a mathematical characterization of divergent computations and may lead to the axiomatization of Hitchcock and Park's results within an extension of our framework.

In a different setting Blikle and Mazurkiewicz [7] also use an algebra of relations to investigate programs.

The equivalence between the method of inductive assertions and the minimal fixed point characterization is the subject of de Bakker and Meertens [3]. In general, the number of inductive assertions required to characterize a system of mutually dependent recursive procedures turns out to be infinite; however, in the regular case this number is finite, as proved in Fokkinga [50]. The completeness of the method of inductive assertions for general recursive procedures, as opposed to the merely regular ones, is the subject of de Bakker and Meertens [49].

The relation between the minimal fixed point characterization and various rules of computation is studied by Manna, Cadiou, Ness and Vuillemin in a number of papers: Manna and Cadiou [25], Manna, Ness and Vuillemin [26], Manna and Vuillemin [27], Cadiou [9] and Vuillemin [44]. In section 3.3 we demonstrate that Manna and Vuillemin are mistaken in their conclusion that call-by-value does not lead to the computation of minimal fixed points; de Roever [36] explains the reason why.
The *distinction* between operational and mathematical semantics and the *need* for mathematical semantics has been convincingly argued in Scott [38,39] and Scott and Strachey [42].

Rosen [37] studies conditions under which *normal forms* for computations exist; implicitly, normal forms are used in appendix I to derive the "difficult" half of the union theorem.

The works of Dijkstra [10,11], Hoare [19,20] and Wirth [46] relate to the present paper in that we provide a possible axiomatic basis for some techniques of structured programming; e.g., our correctness operator "o" is independently described in Dijkstra [12].
1. A FRAMEWORK FOR PROGRAM CORRECTNESS

1.1. Introduction

This report is devoted to a calculus for recursive programs written in a simple first-order programming language, i.e., a language in which neither procedures nor labels occur as values. In order to express and prove properties of these programs such as equivalence, correctness and termination, one needs a more comprehensive language. We shall abstract in that language from the usual meaning of programs (characterized by sequences of computations) by considering only the input-output relationships established by their execution. Thus we are interested only in the binary relation described by a program, its input-output behaviour:

the collection of all pairs of an initial state of the memory, for which this program terminates, and its corresponding final state of the memory.

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and final states.

a. The undefined statement L: goto L describes the empty relation Ω over D.
b. The dummy statement describes the identity relation E over D.
c. Define the composition \(R_1; R_2 \) of relations \(R_1 \) and \(R_2 \) by

\[
R_1; R_2 = \{ <x,y> \mid \exists z <x,z> \in R_1 \text{ and } <z,y> \in R_2 \}.
\]

In order to express the input-output behaviour of the conditional if \(p \) then \(S_1 \) else \(S_2 \) one first has to transliterate \(p \): Let \(D_1 \) be \(p^{-1} (true) \) and \(D_2 \) be \(p^{-1} (false) \) then the predicate \(p \) is uniquely determined by the pair \(<p,p'> \) of disjoint subsets of the identity relation defined by:

\(<x,x> \in p \) iff \(x \in D_1 \), and \(<x,x> \in p' \) iff \(x \in D_2 \). This way of looking at predicates is attributed to Karp [22]. If \(R_i \) is the input-output behaviour of \(S_i \), \(i = 1,2 \), the relation described by the conditional above is \(p; R_1 \cup p'; R_2 \).
d. Let $\pi_i : D^n \to D$ be the projection function of D^n on its i-th component, $i = 1, \ldots, n$, let the converse \bar{R} of a relation R be defined by

$$\bar{R} = \{<x,y> \mid <y,x> \in R\}$$

and let R_1, \ldots, R_n be arbitrary relations over D. Consider

$$R_1;\bar{\pi_1} \cap \ldots \cap R_n;\bar{\pi_n} \quad (\ast).$$

This relation consists exactly of those pairs $<x, <y_1, \ldots, y_n> >$ such that $<x, y_i> \in R_i$ for $i = 1, \ldots, n$. Thus (\ast) terminates in x iff all its components R_i terminate in x. Observe the analogy with the following: The evaluation of a list of parameters called-by-value terminates iff the evaluation of all its constituent actual parameters terminates. This suggests the possibility of describing the call-by-value parameter mechanism relationally, an idea which will be realized in chapters 2 and 3.

Note that the input-output behaviour of recursive procedures has not been expressed above; this will be catered for by extending the language for binary relations with minimal fixed point operators, introduced by Scott and de Bakker in [41].

Once the input-output behaviour of a program has been described in relational terms, its correctness properties should be proved within a relational framework, e.g., properties of conditionals such as listed in McCarthy [29] are proved as properties of $p;R_1 \cup p';R_2$.

Suitably rich programming- and relational languages, called PL and MU, and a precise formulation of the connections between the two by means of a translation will be specified in the next section and will justify that the axiomatization of MU results in a calculus for recursive programs.

The problem which correctness properties of programs can be formulated within MU will be discussed in section 1.3 and is closely related to the expressiveness of this language itself.

EXAMPLE 1.2. With D as above, let the universal relation U be defined by $U = D \times D$.

a. $R_1 \subseteq R_2$ and $R_2 \subseteq R_1$ together express equality of R_1 and R_2, and will be
abbreviated by \(R_1 = R_2 \). If programs \(S_1 \) and \(S_2 \) have input-output behaviour \(R_1 \) and \(R_2 \), respectively, then \(S_1 \) and \(S_2 \) are called equivalent iff \(R_1 = R_2 \).

b. \(E \subseteq R;\tilde{R} \) and \(E \subseteq R;U \) both express totality of \(R \).

c. \(R;R \subseteq R \) expresses transitivity of \(R \).

d. \(\tilde{R};R \subseteq E \) expresses that \(R \) describes the graph of a function, i.e., functionality of \(R \).

e. \(R;\tilde{R} \cap E = \{ <x,y> \mid <x,y> \in E \text{ and } <x,y> \in R;\tilde{R} \} \)
 \[= \{ <x,y> \mid x = y \text{ and } \exists z[<x,z> \in R \text{ and } <z,y> \in \tilde{R}] \} \]
 \[= \{ <x,x> \mid \exists z[<x,z> \in R] \}. \]

Hence \(R;\tilde{R} \cap E \) determines that subset of \(E \) which consists of all pairs \(<x,x> \) such that there exists some \(z \) with \(<x,z> \in R \): this indicates a correspondence with a predicate expressing the domain of convergence of \(R \). Note that \(R;\tilde{R} \cap E = R;U \cap E \).

f. Let \(p \subseteq E \). Then \(p;U \cap U;p \subseteq p \) expresses that \(p \) contains one pair \(<a,a> \) only. This can be understood by deriving a contradiction from the assumption that both \(<a,a> \in p \) and \(<b,b> \in p \) for different \(a \) and \(b \): for that implies that both \(<a,b> \in p;U \) and \(<a,b> \in U;p \), whence \(<a,b> \in p;U \cap U;p \) and therefore \(<a,b> \in p \) for different \(a \) and \(b \), contradicting \(p \subseteq E \). This requirement therefore states the correspondence of \(p \) with the characteristic function of an atom. *)

The axiomatization of \(\mathfrak{M}U \) proceeds in several stages.

First a sublanguage for binary relations over cartesian products is axiomatized by adding the following two axioms to typed versions of Tarski's axioms for binary relations (see [43]):

\[C_1 : \pi_1;\tilde{\pi}_1 \cap \ldots \cap \pi_n;\tilde{\pi}_n = E \]

\[C_2 : R_1;S_1 \cap \ldots \cap R_n;S_n = (R_1;\tilde{\pi}_1 \cap \ldots \cap R_n;\tilde{\pi}_n) ; (\pi_1;S_1 \cap \ldots \cap \pi_n;S_n) \]

*) This observation is due to Peter van Emde Boas.
with \(\pi_i \) denoting the projection function of an \(n \)-fold cartesian product on its \(i \)-th component, \(i = 1, \ldots, n \), and \(E \) the identity relation over this product.

In the resulting formal system one can derive properties such as
\[R = (R_1 \cap E) \cup R, \text{ obtained from example 1.2.e, and } R_1 \cap R_2 ; \bar{\pi}_2 = R_1 \cap R_2 ; \bar{\pi}_2 , \]
\[= (R_1 ; \bar{\pi}_1 \cap E) \cup (R_2 ; \bar{\pi}_2 \cap E) \cup (R_1 \cap R_2 ; \bar{\pi}_2) , \]
obtained by combining examples 1.1.d and 1.2.e.

Secondly we axiomatize the minimal fixed point operators by (1) Scott's induction rule and (2) an axiom stating essentially the fixed point property of terms containing these operators. Both of these were formulated for the first time in [41].

The addition of further axioms to the system for \(MU \) yields various applied calculi, used, e.g., for the characterization of a number of special domains such as: finite domains with a fixed number of elements (axiomatized below), finite domains ([17]), natural numbers (chapter 5) and various kinds of lists (chapter 6).

EXAMPLE 1.3. Following example 1.2.f an atom \(a \) is characterized by

\[a = E \quad \text{and} \quad a ; U \cap U ; a \leq a . \]

Now \(D \) contains precisely \(n \) elements iff \(E \leq D \times D \) is the disjoint union of \(n \) atoms \(a_1, \ldots, a_n \), i.e., iff

1. \(a_i ; U \cap U ; a_i \leq a_i \), \(i = 1, \ldots, n \),
2. \(a_1 \cup a_2 \cup \ldots \cup a_n = E \),
3. \(a_i \cap a_j = \emptyset \), \(1 \leq i < j \leq n \).

1.2. A framework for program correctness

In the previous section we discussed program correctness as follows: Starting with a scheme \(T \), one considers its input–output behaviour and realizes that this is a relation, whence its properties should be expressed and deduced within a relational framework.
The present section presents an outline of the formalization of this point of view as contained in chapters 2 and 3.

In section 2.1 we define PL, a language for first-order recursive program schemata.

First-order recursive program schemata are abstractions of certain classes of programs. The statements contained in these programs operate upon a state whose components are isolated by projection functions; a new state is obtained by (1) execution of elementary statements, the dummy statement or projection functions (2) calls of previously declared and possibly recursive procedures (3) execution of conditional statements (4) the parallel and independent execution of statements S_1, \ldots, S_n in the call-by-value product $[S_1, \ldots, S_n]$, a novel construct which unifies properties of the assignment statement and the call-by-value parameter mechanism and allows for the expression of both of these concepts and (5) composition of statements by the ";" operator.

The definition of the operational semantics of these schemata involves an abstraction from the actual processes taking place within a computer by describing a model for the computations evoked by execution of a program. This leads to the characterization of the input-output behaviour or operational interpretation $o(T)$ of a program scheme T.

In section 3.1 we define \mathcal{MU}, a language for binary relations over cartesian products which has minimal fixed point operators in order to characterize the input-output behaviour of recursive programs.

As the binary relations considered are subsets of the cartesian product of one domain or cartesian product of domains and another domain or cartesian product of domains, terms denoting these relations have to be typed for the definition of operations.

Elementary terms are individual relation constants, boolean relation constants, logical relation constants (for the empty, identity, and universal relations \emptyset, \mathbb{E}, \mathbb{U} and projection functions π_i) and relation variables. Compound terms are constructed by means of the operators ";" (relational or Peirce product), "|" (union), "\cap" (intersection), "\rightarrow" (converse) and "\neg" (complementation) and the minimal fixed point operators "μ_i", which bind
for $i = 1, \ldots, n$, n different relation variables in n-tuples of terms provided none of these variables occurs in any complemented subterm, i.e., these terms are syntactically continuous in these variables.

Terms of MU are elementary or compound terms.

The well-formed formulae of MU are called assertions and are of the form $\phi \vdash \psi$, where ϕ and ψ are sets of inclusions between terms.

A mathematical interpretation m of MU is defined by:

1. providing arbitrary (type-consistent) interpretations for the individual relation constants and relation variables, interpreting pairs $<p, p'>$ of boolean relation constants as pairs $<m(p), m(p')>$ of disjoint subsets of identity relations (cf. Karp [22]) and interpreting the logical relation constants as empty, identity and universal relations and projection functions,

2. interpreting ";", "∪", "∩", "¬" as usual,

3. interpreting μ-terms $\mu_i X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n]$ as the i-th component of the minimal fixed point of the functional $<\sigma_1, \ldots, \sigma_n>$ acting on n-tuples of relations.

An assertion $\phi \vdash \psi$ is valid provided for all m the following holds:

If the inclusions contained in ϕ are satisfied by m, then the inclusions contained in ψ are satisfied by m.

The precise correspondence between the operational semantics of PL and the mathematical semantics of MU is specified by the translation theorem of chapter 3:

After defining an injection tr between schemes and terms we prove that tr induces a meaning preserving mapping, i.e., a translation, provided the interpretation of the elementary statement constants and predicate symbols specified by o "agrees" with the interpretation of the individual relation constants and boolean relation constants specified by m. If these requirements are fulfilled the resulting correspondence between PL and MU is illustrated by
Thus we conclude that, in order to prove properties of T, it suffices to prove properties of $tr(T)$, whence axiomatization of MU leads to a calculus for first-order recursive program schemata.\footnote{By an abuse of language we suppress any mentioning of interpretations o and m satisfying $o(T) = m(tr(T))$.}

1.3. The formulation of specific correctness properties of programs

Globally, in order to formulate the correctness of a program one has to state certain criteria which have to be satisfied in a specific environment. If these criteria depend on input-output behaviour only, one might hope to express them in the present formalism. Sometimes this condition is not satisfied. Then these criteria concern intrinsic properties of the computation processes involved. As these are the very features we abstracted from, one cannot expect to formulate them in MU. For instance, when trying to formulate the correctness criteria for the TOWERS OF HANOI program discussed in chapter 6, it turns out that the requirement of moving one disc at a time cannot be expressed in our language. Accordingly we restrict ourselves to criteria which can be formulated in terms of input-output behaviour only.

These may be subdivided as follows:

(a) Equivalence of or inclusions between programs.

(b) Termination provided some input condition is satisfied.

(c) Correctness in the sense of Hoare [19]:

Given partial predicates p and q and a relation $tr(T)$ describing (the input-output behaviour of) a program T, this criterion is expressed by

$$\forall x,y[p(x) \land x \ tr(T) \ y \to q(y)]$$
and amounts to

\[\text{if } x \text{ satisfies } p \text{ and } T \text{ terminates for } x \text{ with output } y, \text{ then } y \text{ satisfies } q. \ast \]

These criteria can all be formulated as inclusion between terms:

For (a) this is evident. As to (b): Let \(p \) be represented by \(\langle p, p' \rangle \) satisfying \(p \subseteq E, \ p' \subseteq E \) and \(p \cap p' = \Omega \), and \(\text{tr}(T) \) describe program \(T \), then

\[p \subseteq \text{tr}(T); \text{tr}(T) \]

or, equivalently,

\[p \subseteq \text{tr}(T); U \]

both express (b) (note that \(p \subseteq R; \bar{R} \) is equivalent to \(p \subseteq R; U \)).

As to (c): Let \(p \) and \(q \) be represented by \(\langle p, p' \rangle \) and \(\langle q, q' \rangle \), then (c) is expressed by

\[p; \text{tr}(T) \subseteq \text{tr}(T); q. \]

It will be clear that the underlying supposition for the expression of these criteria is that we are able to express all the predicates involved indeed. This was not the case in the formalism described by Scott and de Bakker in [41] in which predicates were only expressible by primitive symbols, no operations on these symbols or other ways of constructing them being available.

Our main vehicle for the construction of new predicates is the "\(\cdot \)" operator defined by

\[\forall x [(X \cdot p)(x) \longleftrightarrow \exists y [xXy \text{ and } p(y)]]. \ast \ast \]

\ast) This corresponds with \(p(T)q \) in Hoare's notation and with \(\{p\}T\{q\} \) in Dijkstra's notation (cf. [11]).

\ast\ast) Let \(X \) denote the function \(f \), then \((X \cdot p)(x) = p(f(x)) \).
Accordingly, if $X = \text{tr}(T)$ then $(\text{tr}(T) \cdot p)(x)$ is \text{true} iff T produces for input x some output y which satisfies p.

In the present formalism $X \cdot p$ can be expressed by

$$X \cdot p = X; p; U \cap E.$$

In example 1.2 we showed that $X; \overline{X} \cap E = X; U \cap E = X \cdot E$ describes the domain of convergence of X. Thus $X \cdot E$ is the minimal predicate p satisfying $X = p; X$.

In Chapter 4 we obtain the following characterization of $X \cdot p$:

$$X \cdot p = \cap \{ q \mid X; p \leq q; X \}.$$

Therefore $X \cdot p$ is the minimal predicate q, sometimes called the \textit{weakest precondition}, satisfying $X; p \leq q; X$.

This observation raises the following question: When does

$$X; p = X \cdot p ; X$$

hold?

We shall prove that $(*)$ holds iff $\overline{X}; X \leq E$, i.e., X denotes the graph of a function.

Therefore the translation theorem implies that

\textit{one is allowed to retract predicates occurring in between statements on input conditions provided these statements describe functions, i.e., are deterministic.}
2. THE PROGRAM SCHEME LANGUAGE PL

2.1. Definition of PL

PL is a language for first-order recursive program schemes using call-by-value as parameter mechanism. A statement scheme of PL is constructed from basic symbols using the sequencing, conditional, call-by-value product operations and recursion, and contains a type indication in the form of a superscript \(\langle \eta, \xi \rangle \) in order to distinguish between input domain \(D_\eta \) and output domain \(D_\xi \). The call-by-value product \([S_1, \ldots, S_n]\) expresses the independent parallel execution of statements \(S_1, \ldots, S_n \), yielding for input \(x \) an output \(\langle y_1, \ldots, y_n \rangle \) composed of the individual outputs of \(S_i, i = 1, \ldots, n \), and is used to describe the assignment statement and the call-by-value parameter mechanism as follows:

Assignment statement. An assignment statement \(x_i := f(x_{i1}, \ldots, x_{im}) \) occurring in an environment \(x_1, \ldots, x_n \) of variables is expressed by

\[[x_1, \ldots, x_i-1, [x_{i1}, \ldots, x_{im}]; S, x_{i+1}, \ldots, x_n \], \]

where \(S \) denotes \(f \).

Call-by-value parameter mechanism. A procedure call

\(\text{proc}(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)) \) with parameters which are called-by-value is expressed by \([S_1, \ldots, S_n]; P \), were \(S_k \) denotes \(f_k \), for \(k = 1, \ldots, n \), and \(P \) declares \(\text{proc} \).

A **declaration** scheme of PL is a possibly empty collection of pairs

\(P_j \rightleftharpoons S_j \) which are indexed by some index set \(J \); for each \(j \in J \) such a pair contains a procedure symbol \(P_j \) and a statement scheme \(S_j \) of the same type as \(P_j \).

A **program** scheme of PL is a pair consisting of a declaration and a statement scheme.

The well-formed formulae of PL are called assertions.

DEFINITION 2.1 (Syntax of PL) *)

Types. Let \(G \) be the collection \(\{ \alpha, \alpha_1, \ldots, \beta, \beta_1, \ldots \} \) of possibly subscripted

*) Sections 2.1 and 2.2 follow closely section 3 of de Bakker and Meertens [3] which deals, however, with schemes operating upon one variable.
greek letters. A domain type is (1) an element of \(G \), (2) any string
\((\xi_1 \times \ldots \times \xi_n)\), where \(\xi_1, \ldots, \xi_n \) are domain types. A type is a pair \(<\eta, \xi>\) of domain types.

Basic symbols. The class of basic symbols is the union of the classes of relation and procedure symbols.

Relation symbols. The class of relation symbols \(R \) is the union of the classes of elementary statement symbols, predicate symbols, constant symbols and variable symbols.

a. The class of **elementary statement symbols** \(A \) contains for all types \(<\eta, \xi>\) the symbols \(A^{\eta, \xi}, A_1^{\eta, \xi}, \ldots \).

b. The class of **predicate symbols** \(B \) contains for all \(\eta \) the symbols
\(p^{\eta}, p_1^{\eta}, \ldots, q^{\eta}, q_1^{\eta}, \ldots \).

c. The class of **constant symbols** \(C \) contains the symbols \(\Omega^{\eta, \xi} \) for all types \(<\eta, \xi>\), \(\Xi^{\eta, \xi} \) for all \(\eta \) and \(\pi_1^{\eta, \xi}, \ldots, \pi_n^{\eta, \xi} \) for all types \(\eta_1, \ldots, \eta_n \).

d. The class of **variable symbols** \(X \), introduced for purposes of substitution, contains for all types \(<\eta, \xi>\) the symbols \(X^{\eta, \xi}, X_1^{\eta, \xi}, \ldots, Y^{\eta, \xi}, \ldots, Z^{\eta, \xi}, \ldots \).

Procedure symbols. The class of procedure symbols \(P \) contains for all types \(<\eta, \xi>\) the symbols \(P^{\eta, \xi}, P_1^{\eta, \xi}, \ldots \).

Schemes.

a. **Statement schemes.** The class of statement schemes \(SS \) (arbitrary elements \(s^{\eta, \xi}, s_1^{\eta, \xi}, \ldots, v^{\eta, \xi}, \ldots, w^{\eta, \xi}, \ldots \)) is defined as follows:

1. \(A \cup C \cup X \cup P \subseteq SS. \)

2. If \(s_1^{\eta, \xi}, s_2^{\eta, \xi} \in SS \) then \((s_1; s_2)^{\eta, \xi} \in SS. \)

3. If \(p^{\eta, \xi} \in B \) and \(s_1^{\eta, \xi}, s_2^{\eta, \xi} \in SS \) then \((p \Rightarrow s_1; s_2)^{\eta, \xi} \in SS. \)

4. If \(s_1^{\eta, \xi}, \ldots, s_n^{\eta, \xi} \in SS \) then \([s_1, \ldots, s_n]^{\eta, \xi_1 \times \ldots \times \xi_n} \in SS. \)

*) Hence, a predicate symbol is no statement scheme.

**\) These parentheses will be often deleted, using the following conventions: (1) the outer pair of parentheses is suppressed, (2) right preferent parenthetical insertion in case of adjacent occurrences of the ";" operator. E.g., \(s_1; s_2 \) stands for \((s_1; s_2)\) and \(s_1; s_2; s_3 \) stands for \(s_1; (s_2; s_3) \) which stands on its turn for \((s_1; s_2; s_3)\).
b. Declaration schemes. The class of declaration schemes \(\mathcal{DS} \) (arbitrary elements \(D, D_1, \ldots \)) contains all sets \(\{ P^n_j \subseteq S_j \} \subseteq J \) with \(J \) any index set, and, for each \(j \in J \), \(P_j \in \mathcal{P} \) and \(S_j \in \mathcal{SS} \), such that no \(S_j \) contains any \(X \in X \).

c. Program schemes. The class of program schemes \(\mathcal{DS} \) (arbitrary elements \(T, T_1, \ldots \)) contains all pairs \(\langle D, S \rangle \) with \(D \in \mathcal{DS} \) and \(S \in \mathcal{SS} \). If \(D = \emptyset \), \(\langle D, S \rangle \) will be written as \(S \).

Assertions. An atomic formula is of the form \(T_1 \leq T_2 \) with \(T_1, T_2 \in \mathcal{PS} \). A formula is a set of atomic formulae \(\{ T_{1,1} \leq T_{2,1} \} \subseteq L \) with \(L \) any index set. An assertion is of the form \(\emptyset \models \psi \) with \(\emptyset \) and \(\psi \) formulae.

Remarks. 1. \(T_1 = T_2 \) will be used as abbreviation for \(T_1 \leq T_2, T_2 \leq T_1 \).
2. Any type indication will be omitted if no confusion arises.

Definition 2.2. (Substitution)

Substitution operator. Let \(S \in \mathcal{SS} \) and \(J \) be any nonempty index set such that, for \(j \in J \), \(R_j \in X \cup \mathcal{P} \) and \(V_j \in \mathcal{SS} \) are of the same type, then \(S[V_j / R_j] \subseteq J \) is defined as follows:

a. If \(S = R_j \) for some \(j \in J \), then \(S[V_j / R_j] \subseteq J = V_j \).

b. If \(S = R \) and, for all \(j \in J \), \(R \neq R_j \), then \(S[V_j / R_j] \subseteq J = R \).

c. If \(S = S_1 ; S_2 \), \((p \rightarrow S_1, S_2) \) or \([S_1, \ldots, S_n] \), then \(S[V_j / R_j] \subseteq J = S_1[V_j / R_j] ; S_2[V_j / R_j] \subseteq J \), \(p \rightarrow S_1[V_j / R_j] ; S_2[V_j / R_j] \subseteq J \) or \([S_1[V_j / R_j] ; S_2[V_j / R_j] ; \ldots ; S_n[V_j / R_j]] \subseteq J \), respectively.

\(\tilde{S} \). \(S \) is defined as \(S[X_j / P_j] \).

Closed. If no \(X \in X \) occurs in \(S \in \mathcal{SS} \), \(S \) is called closed.

Remarks. 1. From now on the substitution operator is used in the following forms: taking for \(J \) the index set of some declaration scheme, we (a) restrict ourselves to \(R_j \in X \), for \(j \in J \), and (b) reserve the "\(\cdot \)" operator for substitution with \(R_j \in \mathcal{P} \) and \(V_j \in X \), for \(j \in J \). Hence, explicit substitution in \(S \) is performed as in (a). This explains our notion of closed statement scheme.

2. The substitution operator can be generalized to formulae by writing \(\{ V_{1,1} \leq V_{2,1} \} \subseteq L \) \([V_j / X_j] \subseteq J \) for \(\{ V_{1,1} [V_j / X_j] \subseteq V_{2,1} [V_j / X_j] \subseteq L \} \subseteq J \), restricting ourselves as above.
3. If $J = \{1, \ldots, n\}$, $S[V_j / X_j]_{j \in J}$ is written as $S[V_j / X_j]_{j=1, \ldots, n}$ or $S(V_1, \ldots, V_n)$. If $J = \{1\}$ we also use $S[V/X]$.

4. $S[V_j / X_j]_{j \in J}$ is defined according to the complexity of S. Therefore properties such as the chain rule, $S[V_j / X_j]_{j \in J}[W_j / X_j]_{j \in J} = S[V_j / X_j]_{j \in J}[W_j / X_j]_{j \in J}$ can be proved by induction on the complexity of S.

An interpretation of the schemes of PL is determined by an initial interpretation o_0 which extends to an operational interpretation o of program schemes using models for sequential and independent parallel (to characterize the call-by-value product) computation.

DEFINITION 2.3. (Initial interpretation). An initial interpretation is a function o_0, such that

a. For each $\eta \in G$, $o_0(\eta)$ is a set denoted by D_{η}, and for each compound domain type $(\eta_1 \times \ldots \times \eta_n)$, $o_0(\eta_1 \times \ldots \times \eta_n)$ is the cartesian product of $o_0(\eta_1), \ldots, o_0(\eta_n)$.

b. For $A^{\eta, \xi} \in A$ and $X^{\eta, \xi} \in X$, $o_0(A^{\eta, \xi})$ and $o_0(X^{\eta, \xi})$ are subsets of $o_0(\eta) \times o_0(\xi)$.

c. For $p^{\eta, \eta} \in B$, $o_0(p^{\eta, \eta})$ is a partial predicate with arguments in $o_0(\eta)$.

d. For each projection function symbol $\pi_i^{\eta_1 \times \ldots \times \eta_n}$, $o_0(\pi_i^{\eta_1 \times \ldots \times \eta_n})$ is the projection function of $o_0(\eta_1) \times \ldots \times o_0(\eta_n)$ on its i-th constituent coordinate.

e. For all constants $\eta^{\eta, \xi}$ and $E^{\eta, \eta}$, $o_0(\eta^{\eta, \xi})$ and $o_0(E^{\eta, \eta})$ are the empty subset of $o_0(\eta) \times o_0(\xi)$ and the identity relation over $o_0(\eta)$, respectively.

The main problem in defining the semantics of a program scheme operationally is the fact that the resulting computation cannot be represented serially in any natural fashion: factors S_1, \ldots, S_n of a product $[S_1, \ldots, S_n]$ first all have to be executed independent of another, before the computation can continue. Therefore the computations involved are described as a parallel and sequentially structured hierarchy of actions, a computation model.
At the first level of such a hierarchy any execution of a factor of a product is delegated to the second level; assuming this results in an output, this output becomes available as a component of the input for the still-to-be-executed part of the original scheme, if present. When all these components have been computed, the remaining computation at the first level, if present, is initiated on the resulting vector. The same holds, mutatis mutandis, for the relative dependency between computations on any n-th and n+1-st level of this hierarchy, if present.

Provided one has a finite computation, this delegating will end on a certain level. On that level the execution (of a factor of a product on a previous level) does not anymore involve the computation of any product on a state, whence this computation can be characterized by a sequence of, in our model, atomic actions of the following forms: (1) computation of a by-some-initial-interpretation-interpreted relation symbol (2) replacing a procedure symbol by its body, without changing the current state and (3) making a choice between two possible continuations of a computation, depending on whether a by-some-initial-interpretation-interpreted predicate symbol is true or false on the current state.

The extension of an initial interpretation \(\sigma_0 \) to an operational interpretation \(\sigma \) is defined in

DEFINITION 2.4. (Computation model).

Relative to an initial interpretation \(\sigma_0 \) and a declaration scheme D, a computation model for \(xS y \) is pair \(<x_1 S_1 x_2 \cdots x_n S_n x_{n+1}, CM> \) with \(S_i \in SS \) for \(i = 1, \ldots, n \), \(S_1 = S \), \(x_1 = x \) and \(x_{n+1} = y \), consisting of a computation sequence and a set of computation models relative to \(\sigma_0 \) and D, called associated computation models, satisfying the following conditions:

a. If \(S_i = R \) or \(S_i = R; V \) with \(R \in A \cup C \cup X \), \(<x_1, x_{i+1}> \in \sigma_0(R) \) and \(i = n \) or \(S_{i+1} = V \).

\((*) \) As described in appendix 1, this definition implies that the set of computation models can be structured as an algebra. This superposition of structure allows for simple proofs about certain transformations, by induction arguments on the complexity of these models, in case these transformations are morphisms w.r.t. this structure.
b. If \(S_i = P_j \) or \(S_i = P_j; V \) and \(P_j \leftarrow S_j \in D \), then \(x_{i+1} = x_i \) and \(S_{i+1} = S_j \) or \(S_{i+1} = S_j; V \).

c. If \(S_i = (V_1; V_2); V_3 \) then CM contains a computation model for \(x_i; V_1; V_2; x_{i+1} \) and \(S_{i+1} = V_2 \).

d. If \(S_i = (p \rightarrow V_1, V_2) \) or \(S_i = (p \rightarrow V_1, V_2); V_3 \) and \(o_0(p)(x_i) \) is either true or false, then \(x_{i+1} = x_i \) and, if \(o_0(p)(x_i) = \text{true} \) then \(S_{i+1} = V_1 \) or \(S_{i+1} = V_1; V_3 \), and, if \(o_0(p)(x_i) = \text{false} \) then \(S_{i+1} = V_2 \) or \(S_{i+1} = V_2; V_3 \).

e. If \(S_i = [V_1, \ldots, V_k] \) or \(S_i = [V_1, \ldots, V_k]; V, x_{i+1} = <y_1, \ldots, y_k> \) such that CM contains computation models for \(x_i; V; y_1, \ldots, V; x_{i+1} \) for \(l = 1, \ldots, k \), and \(i = n \) or \(S_{i+1} = V \).

Remark. A computation model represents the entire computation of program \(\langle D, S \rangle \) on input \(x = x_1 \) resulting in output \(y = x_{n+1} \), for some \(n \). At each step of its constituent computation sequence, \(S_i \) is the statement which remains to be executed on the current state \(x_i \). Clause a describes the execution of elementary statements, clause b reflects the copy rule for procedures, clause c describes preference in execution order, clause d describes the conditional and clause e describes the independent execution of statements, terminating iff all its constituent statements have terminated. The meaning of \(; \) is expressed by clause c and the second part of clauses a, b, d and e, and expresses continuation of a computation with appointed successor.

Suppose one defines a computation model as a set of computation sequences such that each "delegated" computation sequence occurs in this set. This leads to undesirable results, as demonstrated by the program scheme \(T = \langle P_i \leftarrow [P_i, P_i]; \pi_1, P_i \rangle \). Clearly, \(T \) defines \(\Omega \). However the set \(\{xP_i[P_i, P_i]; \pi_1<x, x\pi_1>x\} \) is a computation model for \(xTx \) in the sense of this definition (P. van Emde Boas).

DEFINITION 2.5.

Operational interpretation. Let \(T = \langle D, S^n, E \rangle \) be a program scheme and \(o_0 \) be an initial interpretation. Then the operational interpretation of this scheme is the relation \(o(T) \) defined as follows: for each \(<x, y> \in o_0(n) \times o_0(\xi) \), \(<x, y> \in o(T) \) iff there exists a computation model w.r.t. \(o_0 \) and \(D \) for \(xSy \).
Validity.

a. \(T_1 \subseteq T_2 \) satisfies \(\sigma \) iff \(o(T_1) \subseteq o(T_2) \) holds. If \(T_1 \subseteq T_2 \) satisfies all \(\sigma \), it is called valid.

b. \(\phi \) satisfies \(\sigma \) (is valid) iff all its inclusions satisfy \(\sigma \) (are valid).

c. An assertion \(\phi \vdash \psi \) such that, for all \(\sigma \), if \(\phi \) satisfies \(\sigma \), then \(\psi \) satisfies \(\sigma \), is called valid.

2.2. The union theorem

First we mention properties of the operational interpretation \(o \) such as \(o(S_1;S_2) = o(S_1);o(S_2), \) \(o(p \rightarrow S_1;S_2) = m(p);o(S_1) \cup m(p');o(S_2), \) \(o([S_1,\ldots,S_n]) = o(S_1);\overline{\sigma(\pi_1)} \land \ldots \land o(S_n);\overline{\sigma(\pi_n)}, \) the fixed point property \(o(P_j) = o(S_j) \) and the monotonicity property. Then the union theorem is proved as a culmination of these results. Finally we establish the minimal fixed point property, which is a generalization of McCarthy's induction rule (cf. [29]), and prove a lemma legitimating the modular design of program schemes.

Lemma 2.1.

a. If \(S \in A \cup C \cup X \) then \(o_0(S) = o(S) \).

b. \(o(S_1;S_2) = o(S_1);o(S_2) \).

c. \(o(p \rightarrow S_1;S_2) = m(p);o(S_1) \cup m(p');o(S_2), \) with \(m(p) \) and \(m(p') \) defined as follows: \(\langle x,x \rangle \in m(p) \) iff \(o_0(p)(x) = \text{true} \) and \(\langle x,x \rangle \in m(p') \) iff \(o_0(p)(x) = \text{false} \).

d. \(o([S_1,\ldots,S_n]) = o(S_1);\overline{\sigma(\pi_1)} \land \ldots \land o(S_n);\overline{\sigma(\pi_n)} \).

e. (Fixed point property, fpp) \(o(P_j) = o(S_j) \), for each \(j \in J \).

Proof. By induction on the complexity of the statement schemes concerned.

Corollary 2.1. \(o((S_1;S_2);S_3) = o(S_1;(S_2;S_3)) \).

Remarks. 1. From the definitions and parts a, b, c and d of lemma 2.1 the validity of standard properties of program schemes, such as the validity
of $\Omega \subseteq S$ and $E; S = S$ easily follows. These and similar properties will be used without explicit mentioning.

2. As execution of $[S_1, \ldots, S_n]$ corresponds to computation of a list of a actual parameters which are called-by-value, part d of lemma 2.1 implies the relational description of the call-by-value parameter mechanism.

Lemma 2.2. (Monotonicity).

$$\{V_1, j \subseteq V_2, j \}_{j \in J} \vdash S[V_1, j/X_j]_{j \in J} \subseteq S[V_2, j/X_j]_{j \in J}.$$

Proof. By induction on the complexity of S.

a. $S = X_j$, then $o(S[V_1, j/X_j]_{j \in J}) = o(V_1, j) \subseteq o(V_2, j) = o(S[V_2, j/X_j]_{j \in J}).$

b. $S = (R \cup P) - \{X_j\}_{j \in J}$, then $o(S[V_1, j/X_j]_{j \in J}) = o(S[V_2, j/X_j]_{j \in J}).$

c. $S = S_1; S_2$, then $o((S_1; S_2)[V_1, j/X_j]_{j \in J}) = o(S_1[V_1, j/X_j]_{j \in J} ; S_1[V_1, j/X_j]_{j \in J}) = (\text{induction hypothesis})$

Corollary 2.2. (Substitutivity rule).

$$\{V_1, j = V_2, j \}_{j \in J} \vdash S[V_1, j/X_j]_{j \in J} = S[V_2, j/X_j]_{j \in J}.$$

Next we state a technical result concerning substitution.

Lemma 2.3.

a. For closed S, $\widehat{S[P_j/X_j]}_{j \in J} = S$.

b. For arbitrary S, $\{V_j \subseteq P_j\}_{j \in J} \vdash S[P_j/X_j]_{j \in J} \subseteq S[V_j/X_j]_{j \in J}.$

c. For arbitrary S, $\widehat{S[V_j/X_j]}_{j \in J} = S[\overline{V}_j/X_j]_{j \in J}.$

Proof. Follows from the definitions, properties of substitution and monotonicity, by induction on the complexity of S.

Informally, if a recursive procedure \(P^\eta,^\xi \) terminates for a given argument, this happens after a finite number of "inner calls" of this procedure. We may think of these calls as being nested (where a call on a deeper level is invoked by a call on a previous level). By the recursion depth of the original call we mean the depth of this nesting. At the innermost level, calls of \(P^\eta,^\xi \) are not executed again, whence they may be replaced by \(\Omega^\eta,^\xi \) without affecting the computation.

This process of replacement can be generalized to calls of simultaneously declared recursive procedures: Let \(S^{\theta,^\zeta} \) be a statement scheme. Then \(S^{(n)} \) is obtained from \(S \) by uniformly replacing calls of \(P^\eta,^\xi \) at level \(n \) by \(\Omega^\eta,^\xi \) for \(j \in J \) with \(S^{(0)} \) defined as \(\theta^{\theta,^\zeta} \). We may think of \(o(S^{(n)}) \) as restricting \(o(S) \) to those arguments which during execution of \(S \) cause execution of calls of \(P_j \) with recursion depth less than \(n \).

Thus we conclude that

\[
x \circ(S) \ y \iff \exists n \circ(S^{(n)}) \ y.
\]

THEOREM 2.1. (Union theorem). Let \(S \) be a closed statement scheme. Then, for all operational interpretations \(o \),

\[
o(S) = \bigcup_{n=0}^{\infty} o(S^{(n)}).
\]

In order to prove the union theorem we need some auxiliary definitions characterizing (1) which occurrences of procedure symbols are executed in a computation model, (2) the relation between occurrences of the same procedure symbol in proceeding computations, (3) statement schemes obtained by successive uniform replacement of procedure calls by their bodies and (4) \(S^{(n)} \).

DEFINITION 2.6.

Executable occurrence. A procedure symbol \(P_j \) occurs executable in a computation model \(CM \) if it occurs in some computation sequence \(x_1 S_1 x_2 \ldots \ldots x_n S_n x_{n+1} \) contained in \(CM \), such that for some \(i, 1 \leq i \leq n, S_i = P_j \) or \(S_i = P_j : S \).
To identify. Let CM be a computation model with constituent sequence \(x_1 S_1 x_2 \ldots x_n S_n x_{n+1} \). Consider an occurrence of \(P_j \) in some \(S \), with \(S \) occurring in \(S_i \), \(1 \leq i \leq n \). This occurrence directly identifies the corresponding occurrence of \(P_j \) in \(S \) occurring in \(S_{i+1} \) or \(S_i' \) below, in each of the following cases:

(a) \(S_i = R; S \) and \(S_{i+1} = S \) with \(R \in A \cup C \cup X \),
(b) \(S_i = P_k; S \) and \(S_{i+1} = S_k; S \), \(k \in J \),
(c1) \(S_i = (S); V_j \) and \(S \) occurs as first statement \(S_i' \) of the associated computation model for \(x_i S x_{i+1} \),
(c2) \(S_i = (V_1; V_2); S \) and \(S_{i+1} = S \),
(d1) \(S_i = (p \rightarrow S, V) \) or \(S_i = (p \rightarrow V, S) \), and \(S_{i+1} = S \),
(d2) \(S_i = (p \rightarrow S, V_1); V_2 \) or \(S_i = (p \rightarrow V_1, S); V_2 \), and \(S_{i+1} = S; V_2 \),
(d3) \(S_i = (p \rightarrow V_1, V_2); S \) and \(S_{i+1} = V_1; S \) or \(S_{i+1} = V_2; S \),
(e1) \(S_i = [V_1, \ldots, V_m] \) or \(S_i = [V_1, \ldots, V_m]; V \), and \(S = V_k \) for some \(k \), \(1 \leq k \leq m \), CM contains an associated computation model \(CM' \) for \(x_i S x_{i+1} \), and \(S \) occurs as first statement \(S_i' \) of the constituent computation sequence of \(CM' \),
(e2) \(S_i = [V_1, \ldots, V_m]; S \) and \(S_{i+1} = S \).

The relationship to identify is defined as the reflexive and transitive closure of the relationship to identify directly, defined above. *)

\[S^{[n]} \cdot S[0] = S, S^{[k+1]} = S[S^{[k]} J_j \in J \] for \(k = 0, 1, 2, \ldots \).

\[S^{(n)} \cdot S(0) = \Omega, S(k+1) = S[S^{(k)} J_j \in J \] for \(k = 0, 1, 2, \ldots \).

The connections between \(S^{(n+1)}, S^{(n)} \) and \(S^{[n]} \) are established in

Lemma 2.4. Let \(n \) be a natural number. Then \(S^{(n+1)} = S_j^{(n)}, S^{(n+1)} = S_j^{[n]} \Omega_j X_j \] \(J_j \in J \) and \(S^{[k+1]} = S^{[k]} [1] \).

Proof. We prove the second result only. Use induction on \(n \).

1. \(k = 0 \). \(S^{(1)} = S[S^{[0]} \Omega_j X_j \] \(J_j \in J \) = \(S^{[0]} \Omega_j X_j \] \(J_j \in J \).

*) Hence, if \(S_i = P_j \) or \(S_i = P_j; V \), the only or first occurrence, respectively, of \(P_j \) in \(S_i \) identifies no occurrence in \(S_{i+1} \).

**) Hence, for some \(V_1 \) and \(V_2, S = V_1; V_2 \).
2. Assume the result for \(n = k \). We have

\[
\tilde{S}[s[k+1]/x_j]_{j \in J} = \tilde{S}[s[k]/x_j]_{j \in J} [\Omega_j/x_j]_{j \in J} = (\text{Lemma 2.3})
\]

\[
= (\text{chain rule}) \tilde{S}[s[k]/x_j]_{j \in J} [\Omega_j/x_j]_{j \in J} / x_j = (\text{induction hypothesis}) \tilde{S}[s[k+1]/x_j]_{j \in J} = S^{(k+2)}.
\]

In order to prove \(o(S) \leq \sum_{n=0}^{\infty} o(S^{(n)}) \) we shall transform a computation model for \(xSy \) for some \(n \) into a computation model for \(xS^{(n)}y \).

Let \(S \) be closed and \(CM \) be a computation model for \(xSy \) with constituent sequence \(x_1 S_1 x_2 \ldots x_n S_{n+1} x_{n+1} \). If no occurrences of \(P_j \) in \(S \) are executed to compute \(y \), all occurrences of \(P_j \) identified by occurrences of \(P_j \) in \(S_1 \) may be replaced by arbitrary statements of appropriate type for all \(j \in J \) without affecting the computation of \(y \):

Lemma 2.5. Let \(CM \) and \(S \) be as stated above. If \(CM \) contains no executable occurrences of \(P_j \), the following holds: If statement schemes \(V_j \) are of the same type as \(P_j \) for all \(j \in J \), there exists a computation model for \(xS[V_j/x_j]_{j \in J}y \).

Observe as a corollary that by choosing \(\Omega \) for \(V_j \) one obtains a computation model for \(xS^{(1)}y \). If \(P_j \) is executed in \(CM \), there exists at least one occurrence of \(P_j \) identifying an earliest executable occurrence of \(P_j \) with respect to a certain order. \(CM \) can then be transformed into a computation model in which all occurrences of \(P_j \) in \(CM \) identified by such an occurrence are replaced by \(S_j \), except the executable one, which is deleted together with the \(x_i S_i \) part in which it is contained. The resulting model still computes the same output as \(CM \), but contains at least one executable occurrence of some \(P_j \) less than \(CM \), as at least one application of the copy-rule has been dealt with:

Lemma 2.6. (van Emde Boas). Let \(CM \) and \(S \) be as stated above. If for some \(j \in J \) an occurrence of \(P_j \) in \(S_1 \) identifies an executable occurrence of \(P_j \), there exists a computation model for \(xS^{[1]}y \) which contains at least one executable occurrence of \(P_j \) less than \(CM \).
As $s^{[k][1]}[1] = s^[k+1]$ by lemma 2.4, repeated application of lemma 2.6 leads finally to a computation model for $x s^[n]y$ in which all executable occurrences of P_j have been removed for all $j \in J$. Therefore lemma 2.5 applies, yielding a computation model for $x s^[n][\Omega_j/P_j]_{j \in J}y$ and hence, by lemma 2.4, for $x s^[n+1]y$.

Lemma 2.7. Let CM and S be as stated above. Then there exists for some n a computation model for $x s^[n]y$.

The proofs of these three lemmas are contained in appendix 1.

Next we prove $\bigcup_{n=0}^{\infty} o(s^[n]) \subseteq o(S)$:

First we show that for each $j \in J$ and each k, $P_j^{(k)} \subseteq P_j$. Use induction on k.

1. $k = 0$. Clear.

2. Assume the result for k. $P_j^{(k+1)} = (\text{lemma 2.4}) S_j^{(k)} = \tilde{s}_j[s^{(k-1)}_j/x_j]_{j \in J} = \tilde{s}_j[p_j^{(k)}/x_j]_{j \in J} \subseteq \text{(induction hypothesis and lemma 2.2)} - s_j[p_j/x_j]_{j \in J} = s_j = (\text{lemma 2.1}) P_j$.

Next we show that $s^{(k)} \subseteq S : s^{(k)} = \tilde{s}_j[s^{(k-1)}_j/x_j]_{j \in J} = \tilde{s}_j[p_j^{(k)}/x_j]_{j \in J} \subseteq \text{(lemma 2.2)} - \tilde{s}_j[p_j/x_j]_{j \in J} = (\text{lemma 2.3}) S$.

Thus $\bigcup_{n=0}^{\infty} s^[n] \subseteq S$ follows.

Remark. In the sequel we abbreviate "For all o, $o(S) = \bigcup_{n=0}^{\infty} o(s^[n])$" to $S = \bigcup_{n=0}^{\infty} s^[n]$.

As a corollary to theorem 2.1 we immediately obtain the minimal fixed point property (called mfpp) of procedures:

Corollary 2.3. $\{\tilde{s}_j[v_j/x_j]_{j \in J} \subseteq v_j\}_{j \in J} \vdash \{p_j \in v_j\}_{j \in J}$.

Proof. Use $P_j = \bigcup_{k=0}^{\infty} P_j^{(k)}$ and induction on k.

1. $P_j^{(0)} \subseteq V_j$ is clear.
2. Assume the result for k, then $p_{j}^{(k+1)} = s_{j}^{(k)} = \tilde{s}_{j}[p_{j}^{(k)} / x_{j}]_{j \in J} \subseteq \tilde{s}_{j}[v_{j} / x_{j}]_{j \in J} \subseteq v_{j}$.

Remark. Combination of the fixed point and minimal fixed point properties yields, for all $i \in J$,

$$\sigma(P_{i}) = \langle \sigma(v_{j}) \rangle_{k \in J} \mid \sigma(s_{j}[v_{j} / x_{j}]_{j \in J}) \subseteq \sigma(v_{k}), \text{ for all } k \in J\rangle_{i},$$

where $\langle \sigma(v_{k}) \rangle_{k \in J}$ denotes the sequence with elements $\sigma(v_{k}), k \in J$, and $\langle \sigma(v_{i}) \rangle_{i}$ denotes the i-th component $\sigma(v_{i})$ of this sequence.

This characterization of $\sigma(P_{i})$ is the key to the definition of the mathematical interpretation of μ-terms in the next section.

The following lemma legitimizes the modular approach to programming and is a simple consequence of fpp (lemma 2.1.e), the substitutivity rule (corollary 2.2) and mfpp (corollary 2.3).

LEMMA 2.8. (Modularity lemma). Let J and K be disjoint index sets, let s_{j} for all $j \in J$ be a closed statement scheme of which the procedure symbols are indexed by K, and let s and, for all $<j,k> \in J \times K$, $s_{j,k}$ be closed statement schemes the procedure symbols of which are indexed by J, then

$$<p_{j} \leftarrow \tilde{s}_{j}[s_{j,k} / x_{j}]_{j \in J}, s> =
\begin{align*}
&= <p_{j,k} \leftarrow \tilde{s}_{j,k}[\tilde{s}_{j}[p_{j} / x_{j}]_{j \in J} / x_{j}]_{j \in J}, s> <j,k> \in J \times K, \tilde{s}_{j}[p_{j} / x_{j}]_{j \in J} / x_{j}]_{j \in J}>
\end{align*}
$$

is valid.

PROOF. The case $J = \{0\}$ and $K = \{1,2\}$ is considered to be representative.

Then one has to prove $<p_{0} \leftarrow s_{0}(s_{1}(P_{0}), S_{2}(P_{0})), P_{0}>$ = $<p_{1} \leftarrow s_{1}(s_{0}(P_{1}, P_{2})), P_{2} \leftarrow s_{2}(s_{0}(P_{1}, P_{2})), s_{0}(P_{1}, P_{2})>$. Consider the following declaration scheme:

$$\begin{align*}
&P_{0} \leftarrow s_{0}(s_{1}(P_{0}), S_{2}(P_{0})), P_{1} \leftarrow s_{1}(s_{0}(P_{1}, P_{2})), P_{2} \leftarrow s_{2}(s_{0}(P_{1}, P_{2})), \\
P_{3} &\leftarrow s_{0}(P_{1}, P_{2}), P_{4} \leftarrow s_{1}(P_{0}), P_{5} \leftarrow s_{2}(P_{0}).
\end{align*}$$

With respect to this declaration scheme one proves $P_{0} = P_{3}$ by applying mfpp on $\{P_{0} \subseteq P_{3}, P_{1} \subseteq P_{4}, P_{2} \subseteq P_{5}, P_{3} \subseteq P_{0}, P_{4} \subseteq P_{1}, P_{5} \subseteq P_{2}\}$.
E.g., \(S_0(S_1(P_3), S_2(P_3)) \subseteq P_3 \) is derived by \(S_0(S_1(P_1), S_2(P_2)) = (\text{fpp and substitution rule}) \ S_0(S_1(S_0(P_1), P_2), S_2(S_0(P_1), P_2)) = (\text{similarly}) \ S_0(P_1, P_2) = (\text{fpp}) P_3. \)
As \(P_3 = (\text{fpp}) S_0(P_1, P_2) \), the desired result is obtained by deleting declarations for uncalled procedures.

First the following convention is introduced: Calls of recursive procedures \(P \), with \(P \) declared by \(P \leftarrow (p \rightarrow S; P, E) \), are written as \(p * S \). Hence declarations of such \(P \) are omitted.

Next we demonstrate how to apply this lemma to obtain a simple proof for a tree-traversal result in de Bakker and de Roever [2], section 4.5, and mention that the equivalences between certain procedures which do not have the form of while statements and nested while statements, contained in the same paper, section 5.1, can be proved as simple application of modularity, too. We quote, mutatis mutandis:

"The following problem, which at first sight appeared to be a problem of tree searching, was suggested to us ... by J.D. Alanen.
Suppose one wishes to perform a certain action \(A \) in all nodes of all trees of a forest (in the sense of Knuth [24], pp. 305-307). Let, for \(x \) any node, \(s(x) \) be interpreted as "has \(x \) a son?", and \(b(x) \) as "has \(x \) a brother?". Let \(S(x) \) be: "Visit the first son of \(x \)", \(B(x) \) be: "Visit the first brother of \(x \)", \(F(x) \): "Visit the father of \(x \)". The problem posed to us can then be formulated as:

\[
\left\langle P \leftarrow A; (s \rightarrow S; P; F, E); (b \rightarrow B; P, E), P \right\rangle = \left\langle P \leftarrow A; (s \rightarrow S; P; b \rightarrow (B; P); F, E), P; b \rightarrow (B; P) \right\rangle.\]
\]

This equivalence can be obtained from lemma 2.8 by taking \(P_1; P_2 \) for \(S_0 \), \(A; (s \rightarrow S; P_0; F, E) \) for \(S_1 \) and \((b \rightarrow B; P_0; E) \) for \(S_2 \).
3. THE CORRECTNESS LANGUAGE MU

3.1. Definition of MU

MU is a formal language for binary relations over cartesian products which has minimal fixed point operators in order to characterize the input-output behaviour of recursive program schemes. Its semantics will be described using elementary model-theoretic concepts. This involves a mathematical, as opposed to operational, characterization of its semantics, and results in a rigorous definition of its interpretations \(m \), which will be axiomatized in the next chapter.

DEFINITION 3.1. (Syntax of MU)

Basic symbols. The class of basic symbols is the union of the classes of symbols for individual relation constants, boolean relation constants, logical relation constants and relation variables.

a. The class of individual relation constant symbols \(A \) contains for all types \(\langle n, \xi \rangle \) the symbols \(A_n^\xi, A_1^\xi, \ldots, A_i^\xi, \ldots \).

b. The class of boolean relation constant symbols \(B \) contains for all \(n \) the symbols \(p_n^\xi, p_1^\xi, \ldots, q_n^\xi, \ldots \) and \(p_1^n, p_1^n, \ldots, q_1^n, \ldots \).

c. The class of logical relation constant symbols \(C \) contains for all types concerned the symbols \(\wedge_n^\xi, \vee_n^\xi, \exists_n^\xi, \forall_n^\xi, \neg_n^\xi, \wedge_1^\xi, \ldots \).

d. The class of relation variable symbols \(X \) contains for all types \(\langle n, \xi \rangle \) the symbols \(X_1^\xi, X_1^\xi, \ldots, Y_n^\xi, \ldots, Z_n^\xi, \ldots \).

Terms. The class of terms \(T \), with arbitrary elements \(\sigma_n^\xi, \sigma_1^\xi, \ldots, \tau_n^\xi, \ldots \), is defined as follows:

a. \(A \cup B \cup C \cup X \subseteq T \)

b. If \(\sigma_n^\xi \in T \), then \(\sigma_n^\xi \) and \(\sigma_n^\xi \) \(\in T \).

c. If \(\sigma_n^\xi, \tau_n^\xi, \theta \in T \) then \(\langle \sigma \cup \tau \rangle_n^\xi \in T \), and if \(\sigma_n^\xi, \tau_n^\xi \in T \) then \((\sigma \cup \tau)_{n^\xi} \in T \). (*)

(*) In accordance with the convention, that ";" binds stronger than "\(" and "\)", the parentheses around \(\sigma \cup \tau \), \(\sigma \cap \tau \) and \(\sigma \cup \tau \) will be often deleted. If the reader so wishes, he may stipulate any convention for parenthesis insertion in case the same binary operators occur adjacently. However, by associativity of these operators, the need for this is limited.
d. If \(\sigma_1^{\xi_1}, \ldots, \sigma_n^{\xi_n} \in T \) and \(X_1^{\xi_1}, \ldots, X_n^{\xi_n} \in T \) then
\[
\mu_i^X \ldots X[n_{\sigma_1}^{\xi_1}, \ldots, \sigma_n^{\xi_n}] \in T, \text{ for } i = 1, \ldots, n.
\]

Free variables. An occurrence of a relation variable \(X \) is free in \(\sigma \) iff it occurs in no subterm of \(\sigma \) of the form \(\mu_i^X \ldots X \).

Syntactically continuous. A term \(\sigma \) is syntactically continuous in \(X \) if no free occurrence of \(X \) in \(\sigma \) lies within any subterm \(\overline{t} \) or within any subterm \(\mu_i^X \ldots X[n_{\tau_1}^{\xi_1}, \ldots, \tau_n^{\xi_n}] \) with some \(\tau_j \) not syntactically continuous in \(X_k \), \(k = 1, \ldots, n \).

Well-formed terms. A term \(\sigma \) is well-formed if, for all terms
\[
\mu_i^X \ldots X[n_{\sigma_1}^{\xi_1}, \ldots, \sigma_n^{\xi_n}] \text{ occurring as subterms of } \sigma, \text{ each } \sigma_j \text{ is syntactically continuous in each } X_k, \text{ } j, k = 1, \ldots, n.
\]

Assertions. An atomic formula is of the form \(\sigma_1 \leq \sigma_2 \) with \(\sigma_1, \sigma_2 \in T \). A formula is a set of atomic formulae \(\{\sigma_1^{1_1}, \ldots, \sigma_1^{1_l} \}_{1 \in L} \) with \(L \) any index set. An assertion is of the form \(\phi \models \psi \) with \(\phi \) and \(\psi \) formulae.

Remarks. 1. \(\sigma_1 = \sigma_2 \) is an abbreviation for \(\sigma_1 \leq \sigma_2, \sigma_2 \leq \sigma_1 \) and \(\mu_1^X[\sigma_1] \)
is written as \(\mu X[\sigma] \).

2. For empty \(\phi \), \(\phi \models \psi \) is written as \(\models \psi \).

DEFINITION 3.2. (Substitution)

Let \(\sigma \in T \) and \(J \) be any index set such that, for \(j \in J \), \(X_j \in X \) and \(\tau_j \in T \) are of the same type, then \(\sigma[\tau_j/X_j]_{j \in J} \) is defined as follows:

a. If \(\sigma = X_j \) for some \(j \in J \) then \(\sigma[\tau_j/X_j] = \tau_j \).

b. If \(J = \emptyset \) or \(\sigma \in A \cup B \cup C \cup (X - \{X_j\}_{j \in J}) \) then \(\sigma[\tau_j/X_j]_{j \in J} = \sigma \).

c. If \(\sigma = \overline{\sigma} \) and \(\overline{\sigma} \) then \(\sigma[\tau_j/X_j]_{j \in J} = \overline{\sigma[\tau_j/X_j]_{j \in J}} \) or \(\sigma[\tau_j/X_j]_{j \in J} = \overline{\sigma[\tau_j/X_j]_{j \in J}} \), respectively.

d. If \(\sigma = \sigma_1 \sigma_2, \sigma_1 \cup \sigma_2 \) or \(\sigma_1 \cap \sigma_2 \) then \(\sigma[\tau_j/X_j]_{j \in J} = \sigma[\tau_j/X_j]_{j \in J} \sigma_2[\tau_j/X_j]_{j \in J} \sigma_1[\tau_j/X_j]_{j \in J} \sigma_1[\tau_j/X_j]_{j \in J} \sigma_2[\tau_j/X_j]_{j \in J} \), respectively.
e. If \(\sigma = \mu_1 X_1 \ldots X_n[\sigma_1, \ldots, \sigma_n] \) then

\[
\sigma[\tau_j/X_j]_{j \in J} = \mu_1 Y_1 \ldots Y_n[\sigma_1[Y_1/X_1]_{1 \in \{1, \ldots, n\}}[\tau_j/X_j]_{j \in J^*}, \ldots, \sigma_n[Y_n/X_n]_{1 \in \{1, \ldots, n\}}[\tau_j/X_j]_{j \in J^*}],
\]

for \(i = 1, \ldots, n, \) where \(J^* = J - \{1, \ldots, n\}, \) whence \(\{X_j\}_{j \in J^*} = \{X_j\}_{j \in J} - \{X_1, \ldots, X_n\}, \) and \(Y_1, \ldots, Y_n \) are any relation variables different from any \(X_j, j \in J, \) and which do not occur in any \(\sigma_k, k = 1, \ldots, n, \) or \(\tau_j, j \in J^*. \)

Remarks. 1. Thus \(\sigma[\tau_j/X_j]_{j \in J} \) is obtained from \(\sigma \) by simultaneous substitution of \(\tau_j \) for \(X_j, \) replacing bound variables whenever necessary in order to prevent binding of free occurrences of \(X_k \) in any substituted \(\tau_j, \) and omitting substitution for bound variables (cf. Hindley, Rogers and Seldin [16], definition 1.4), for \(j \in J. \)

2. Definition 3.2 is extended to formulae by writing

\[
\{\sigma_1, 1 \leq \sigma_2, 1 \leq \tau_j/X_j, j \in J\} \subseteq \{\sigma_1, 1 \leq \tau_j/X_j, j \in J\}
\]

3. Properties involving the substitution operator such as the chain rule can be proved by induction on the complexity of \(\sigma. \)

4. If \(J = \{1, \ldots, n\}, \) \(\sigma[\tau_j/X_j]_{j \in J} \) is written as \(\sigma[\tau_j/X_j]_{1 \leq j \leq n} \) or \(\sigma(\tau_1, \ldots, \tau_n). \) If \(J = \{\} \) we also use \(\sigma[\tau/X]. \)

Compared with the everyday relational language the \(\mu \)-terms

\[
\mu_1 X_1 \ldots X_n[\tau_1, \ldots, \tau_n]
\]

represent the only new feature of \(\mathbf{MU} \) and its predecessors (cf. Scott and de Bakker [41], de Bakker [1] and de Bakker and de Roever [2]). In order to explain their interpretation we first describe the concept of continuity.

A term \(\tau \) induces upon interpretation of its constants a functional of tuples of relations to relations by selecting a fixed component of these tuples as interpretation for each free variable occurring in \(\tau. \) Therefore interpretations of variables, called variable valuations \(v, \) have to be separated from interpretations of constants, called initial interpretations \(i. \) Thus a pair \(\langle \tau, i \rangle \) determines a functional; this functional is called model function and denoted by \(\phi \langle \tau \rangle. \)

Continuity of \(\phi \langle \tau \rangle \) in \(X_1, \ldots, X_n \) can now be defined as follows: Let \(\tau \) be a term, \(X_1, \ldots, X_n \) be variables, \(i \) be an initial interpretation and \(v \) and, for
each \(j \in \mathbb{N} \), \(v_{j} \), be variable valuations satisfying, for \(i = 1, \ldots, n \),
\(v(X_{j}) = \bigcup_{j=0}^{\infty} v_{j}(X_{j}) \), \(v_{j}(X_{j}) \subseteq v_{j+1}(X_{j}) \) and \(v(X) = v_{1}(X) \) for \(X \) different from
\(X_{j} \), for all \(j \). Then \(\phi_{1}^{\tau} \) is continuous in \(X_{1}, \ldots, X_{n} \) iff \(\phi_{1}^{\tau}(v) =
\bigcup_{j=0}^{\infty} \phi_{j}^{\tau}(v_{j}) \) for all \(v \) and \(\bigcup_{j=0}^{\infty} \) considered above and all \(i \).
This concept derives its importance from the fact that only if
\(\phi_{1}^{\tau}, \ldots, \phi_{n}^{\tau} \) are continuous in \(X_{1}, \ldots, X_{n} \), Scott's induction rule for
establishing properties of \(\phi_{1}^{\mu_{1}X_{1}\ldots X_{n}[\tau_{1}, \ldots, \tau_{n}]}(v) \) is valid.
A syntactically sufficient, although not necessary condition for continuity
of \(\phi_{1}^{\tau} \) in \(X_{1}, \ldots, X_{n} \), is the following one: free occurrences of \(X_{1}, \ldots, X_{n} \)
are not contained in complemented subterms of \(\tau \), i.e., \(\tau \) is syntactically
continuous in \(X_{1}, \ldots, X_{n} \).
We therefore define the interpretation of \(\mu_{1}X_{1}\ldots X_{n}[\tau_{1}, \ldots, \tau_{n}] \) only if
\(\tau_{1}, \ldots, \tau_{n} \) are syntactically continuous in \(X_{1}, \ldots, X_{n} \), and refer to Hitchcock
and Park [18] for more general considerations.

DEFINITION 3.3. (Semantics of \(\mu \))

Assignment of types. An initial assignment of types is a function
\(t_{0} : G \rightarrow D \), where \(G \) is the collection of possibly subscripted greek letters
and \(D \) is a class of domains. An assignment of types, relative to a given
initial assignment of types \(t_{0} \), is a function \(t \) defined by (1) for \(\eta \in G \),
\(t(\eta) = t_{0}(\eta) \), and (2) for any compound (domain type, cf. definition 2.1)
\((\eta_{1} \times \ldots \times \eta_{n}) \), \(t(\eta) = t(\eta_{1}) \times \ldots \times t(\eta_{n}) \). For \(\eta \in G \), \(t(\eta) \) will be referred
to as \(D^{\eta} \), and for \(\eta = (\eta_{1} \times \ldots \times \eta_{n}) \) with \(\eta_{i} \in G \), \(i = 1, \ldots, n \), \(t(\eta) \) will be
referred to as \(D^{\eta_{1}} \times \ldots \times D^{\eta_{n}} \).

Initial interpretation. Relative to a given assignment of types \(t \), an ini-
tial interpretation is a function \(\iota : A \cup B \cup C \rightarrow D^{1 \times D^{2}} \), for all types involved.
a. \(\iota(\eta^{1}, \xi) \subseteq t(\eta) \times t(\xi) \).
b. For \(\eta^{1}, \eta^{2}, \eta^{3} \in B \), \(\iota(\eta^{1}, \eta^{2}) \) and \(\iota(\eta^{1}, \eta^{3}) \) are disjoint subsets of the
identity relation over \(t(\eta) \).
c. \(\iota(\eta^{1}, \xi) \) is the empty subset of \(t(\eta) \times t(\xi) \), \(\iota(\eta^{1}, \eta^{2}) \) is the identity
relation over \(t(\eta) \), \(\iota(\eta^{1}, \xi) \) is \(t(\eta) \times t(\xi) \) itself and \(\iota(\eta^{1} \times \ldots \times \eta^{n}, \eta^{1} \times \ldots \times \eta^{n}) \).
is the projection function of \(t(\eta_1) \times \ldots \times t(\eta_n) \) on its \(i \)-th constituent component.

Variable valuation. Relative to a given assignment of types \(t \), the class of variable valuations \(V \) contains the functions \(v : X \to \bigcup_{D_1, D_2 \in D} \prod_{D_1, D_2 \subseteq D} \), satisfying \(v(x^{\eta}, \xi) \leq t(\eta) \times t(\xi) \) for all \(x^{\eta}, \xi \in X \).

Model function. Relative to a given assignment of types \(t \) and an initial interpretation \(1 \), the model function \(\phi_1 : V \to 2^{\eta_{\xi}} \) is defined as follows for well-formed terms \(\sigma^{\eta}, \xi \):

a. \(\phi_1(\sigma_{R})(v) = 1(R) \), \(R \in A \cup B \cup C \).

b. \(\phi_1(\sigma_{X})(v) = v(X), X \in X \).

c. \(\phi_1(\sigma_1 \cdot \sigma_2)(v) = \phi_1(\sigma_1)(v) \cdot \phi_1(\sigma_2)(v), \phi_1(\sigma_1 \cup \sigma_2)(v) = \phi_1(\sigma_1)(v) \cup \phi_1(\sigma_2)(v), \)
 \(\phi_1(\sigma_1 \cap \sigma_2)(v) = \phi_1(\sigma_1)(v) \cap \phi_1(\sigma_2)(v), \phi_1(\neg \sigma)(v) = \neg \phi_1(\sigma)(v), \)
 \(\phi_1(\neg \sigma)(v) = \phi_1(\sigma)(v). \)

d. \(\phi_1(\mu_{x_1 \ldots x_n \sigma_1^1 \ldots \sigma_n})(v) = (\forall \{v'(x_k)\}_{k=1}^n | \phi_1(\sigma_k)(v') \leq v'(x_k), k=1, \ldots, n, \text{ and } v'(X) = v(X) \text{ for } X \subset X - \{x_1, \ldots, x_n\})_1. \)

Interpretation of terms. An interpretation of terms is a triple \(\langle t_0, 1, v \rangle \) where each term \(\sigma \) is interpreted as \(\phi_1(\sigma)(v) \). This triple will often be referred to as \(m \). Then \(\phi_1(\sigma)(v) \) is abbreviated by \(m(\sigma). \)

Satisfaction. An atomic formula \(\sigma_1 \equiv \sigma_2 \) satisfies an interpretation of terms \(m \) iff \(m(\sigma_1) \equiv m(\sigma_2) \). A formula \(\{\sigma_1 \equiv \sigma_2\}_1 \) \(L \) satisfies an interpretation of terms \(m \) iff \(\sigma_{1,1} \equiv \sigma_{2,1} \) \(L \) satisfies \(m \) for all \(1 \in L \).

Validity. An assertion \(\Phi \models \Psi \) is valid iff for every interpretation of terms \(m \) such that \(\Phi \) satisfies \(m \), \(\Psi \) satisfies \(m \).

Remark. The definition of \(\mu \)-terms can be straightforwardly generalized to the case where the \(\mu \)-operators bind an infinite number of variables in an infinite sequence of terms.

The results of the next section are formulated and proved in such a way that they still apply if this generalization is effected.

*) In the sequel \(m \) is often called the *mathematical* interpretation, as opposed to \(\sigma \), the operational interpretation.
3.2. Validity of Scott's induction rule and the translation theorem.

First the union theorem for \(MU\) is proved. This theorem is then applied to proving (1) validity of Scott's induction rule and (2) the translation theorem.

The reader who has followed the technical development of the previous chapter will observe a certain analogy between the results contained therein and the results of the present section. Notably, monotonicity is used in both chapters in proving union theorems. The substitutivity property, however, plays a more important role in this section and the continuity property is only defined in section 3.1. We state these properties in the following lemmas and refer to appendix 2 for proofs.

Lemma 3.1. (Monotonicity). *) Let \(J\) be any index set, \(\{X_j\}_{j \in J} \subseteq X\), \(\sigma \in T\) be syntactically continuous in \(X_j\), \(j \in J\), and variable valuations \(v_1\) and \(v_2\) satisfy (1) \(v_1(X_j) \leq v_2(X_j)\) for \(j \in J\) and (2) \(v_1(X) = v_2(X)\) for \(X \in X - \{X_j\}_{j \in J}\). Then the following holds:

\[
\phi^{<\sigma>} (v_1) \leq \phi^{<\sigma>} (v_2).
\]

Lemma 3.2. (Continuity). Let \(J\) be any index set, \(\{X_j\}_{j \in J} \subseteq X\), \(\sigma \in T\) be syntactically continuous in \(X_j\), \(j \in J\), and \(v\) and, for \(i \in N\), \(v_i\) be variable valuations which satisfy, for \(i \in N\) and \(j \in J\), (1) \(v_i(X_j) = \lim_{i=0} v_i(X_j)\), (2) \(v_i(X_j) \leq v_i+1(X_j)\) and (3) \(v(X) = v_i(X)\) for \(X \in X - \{X_j\}_{j \in J}\). Then the following holds:

\[
\phi^{<\sigma>} (v) = \bigcup_{i=0}^{\infty} \phi^{<\sigma>} (v_i).
\]

Lemma 3.3. (Substitutivity). Let \(J\) be any index set, \(\sigma \in T\), \(X_j \in X\) and \(\tau_j \in T\) for \(j \in J\), and variable valuations \(v_1\) and \(v_2\) satisfy (1) \(v_1(X_j) = \phi^{<\tau_j>} (v_2)\) for \(j \in J\) and (2) \(v_1(X) = v_2(X)\) for \(X \in X - \{X_j\}_{j \in J}\). Then the following holds:

\[
\phi^{<\sigma>} (v_1) = \phi^{<\sigma[\tau_j/X_j]_{j \in J}>} (v_2).
\]

*) Reference to a given initial interpretation is tacitly assumed. Accordingly, \(\phi^{<\sigma>}\) will be written as \(\phi^{<\sigma>}\).
COROLLARY 3.1. (Change of bound variables). If \(Y_1, \ldots, Y_n \) do not occur free in \(\sigma_1, \ldots, \sigma_n \),

\[
\phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v) =
\]

\[
= \phi_{\mu_i} Y_1 \ldots Y_n [Y_1 / X_1][1 = 1, \ldots, n] \ldots [\sigma_1 / Y_1][1 = 1, \ldots, n] (v).
\]

Proof. Follows by definition 3.2 from lemma 3.3.

The union theorem for \(MU \) states that minimal fixed points \(\phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v), \ldots, \phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v) \) of continuous functionals \(\lambda v \phi_{\sigma_i} (v), \ldots, \phi_{\sigma_i} (v) \) can be obtained as unions of sequences of finite approximations \(\phi_{\sigma_i} (v), \ldots, \phi_{\sigma_i} (v), \) \(i = 0, \ldots, \), with \(\sigma_k \) similarly defined as \(S_k (i), k = 1, \ldots, n, \) cf. definition 2.6.

DEFINITION 3.4. \(\sigma_k \). Let \(X_1^{\eta_1} \xi_1, \ldots, X_n^{\eta_n} \xi_n \in X \) be the free variables in \(\sigma_1, \ldots, \sigma_n \in T \), then \(\sigma_k \) is defined by (1) \(\sigma_k = \eta_k \xi_k \) and (2) \(\sigma_k^{i+1} = \sigma_k [\alpha_i / X_1][1 = 1, \ldots, n] \), for \(k = 1, \ldots, n \).

THEOREM 3.1. (Union theorem for \(MU \)). Let \(\sigma_1, \ldots, \sigma_n \in T \) be syntactically continuous in \(X_1, \ldots, X_n \in X \). Then the following holds for all variable valuations \(v \):

\[
\phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v) = \bigcup_{i=0}^{\infty} \phi_{\sigma_i} (v), \quad k = 1, \ldots, n.
\]

Proof. The proof splits into three parts. In the first part we prove \(\phi_{\sigma_i} (v) \subseteq \phi_{\sigma_i}^{i+1} (v) \) for \(i \in N \), in the second part

\[
\phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v) \subseteq \bigcup_{i=0}^{\infty} \phi_{\sigma_i} (v), \text{ and in the third part}
\]

\[
\phi_{\mu_i} X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] (v) \supseteq \bigcup_{i=0}^{\infty} \phi_{\sigma_i} (v) \quad (\text{the reverse inclusion}).
\]

Part 1. By induction on \(i \). Obviously, \(\phi_{\sigma_k^0} (v) \subseteq \phi_{\sigma_k^i} (v) \).

Assume by hypothesis \(\phi_{\sigma_k^i} (v) \subseteq \phi_{\sigma_k^i} (v) \) and prove \(\phi_{\sigma_k^i} (v) \subseteq \phi_{\sigma_k^i+1} (v) \), \(k = 1, \ldots, n \). Define variable valuation \(v_1 \) by \(v_1 (X_k) = \phi_{\sigma_k^i} (v) \) for
\(k = 1, \ldots, n \) and \(v_1(X) = v(X), \) otherwise.

Then \(\phi^{\langle i+1 \rangle}_k(v) = \phi^{\langle \sigma^i_k \rangle}_{i}[\frac{i}{X_l}]_{l=1, \ldots, n}(v) = (\text{substitutivity}) \phi^{\langle \sigma^i_k \rangle}_k(v_i). \)

Similarly, \(\phi^{\langle i \rangle}_k(v) = \phi^{\langle \sigma^i_k \rangle}_k(v_2) \) with \(v_2 \) defined by \(v_2(X_l) = \phi^{\langle i-1 \rangle}_k(v) \) for \(k = 1, \ldots, n \) and \(v_2(X) = v(X), \) otherwise.

As \(\sigma^1, \ldots, \sigma^n \) are syntactically continuous, \(\phi^{\langle \sigma^i_k \rangle}_k(v) = \phi^{\langle \sigma^i_k \rangle}_k(v_2) \leq \)

\(\subseteq (\text{monotonicity and hypothesis}) \phi^{\langle \sigma^i_k \rangle}_k(v_1) = \phi^{\langle \sigma^i_k \rangle}_{i+1}(v), \) for \(k = 1, \ldots, n. \)

\[\text{Part 2.} \subseteq: \text{Define variable valuations } v' \text{ and, for } i \in \mathbb{N}, v_i, \text{ as follows:} \]
\[v'(X_l) = \sum_{i=0}^{\infty} \phi^{\langle \sigma^i_k \rangle}_k(v) \text{ for } k = 1, \ldots, n, \text{ and } v'(X) = v(X), \text{ otherwise, and} \]

\[\text{similarly } v_i(X_l) = \phi^{\langle \sigma^i_k \rangle}_k(v) \text{ for } k = 1, \ldots, n, \text{ and } v_i(X) = v(X), \text{ otherwise.} \]

Then \(v'(X_l) = \sum_{i=0}^{\infty} \phi^{\langle \sigma^i_k \rangle}_k(X) \) for \(k = 1, \ldots, n \) and \(v'(X) = v_i(X), \) otherwise. In \npart 1 we proved \(\phi^{\langle \sigma^i_k \rangle}_k(v) \leq \phi^{\langle \sigma^i_k \rangle}_{i+1}(v), \) whence \(v_i(X_l) \leq v_{i+1}(X_l). \)

As \(\sigma^i_k \) is syntactically continuous in \(X_1, \ldots, X_n, \) the assumptions for continuity are fulfilled, whence \(\phi^{\langle \sigma^i_k \rangle}_k(v) = \sum_{i=0}^{\infty} \phi^{\langle \sigma^i_k \rangle}_k(v) = (\text{substitutivity}) \)

\[\phi^{\langle \sigma^i_k \rangle}_k(v) = \phi^{\langle \sigma^i_k \rangle}_k(v) = \phi^{\langle \sigma^i_k \rangle}_k(X_l). \text{ Thus } v' \text{ satisfies } \phi^{\langle \sigma^i_k \rangle}_k(v) \subseteq v'(X_l) \]

\[\text{for } k = 1, \ldots, n \text{ and } v'(X) = v(X), \text{ otherwise, whence} \]

\[\forall\{v''(X_l) \in \mathbb{N} \mid \phi^{\langle \sigma^i_k \rangle}_k(v'') \leq v''(X_l), \text{ } l = 1, \ldots, n, \text{ and } v''(X) = v(X) \}
\]

\[\text{for } X \in \mathbb{N} - \{X_1, \ldots, X_n\} \}
\]

\[\quad \subseteq v'(X_l) = \sum_{i=0}^{\infty} \phi^{\langle \sigma^i_k \rangle}_k(v) . \]

\[\text{Part 3.} \text{\forall: Let } v' \text{ satisfy } \phi^{\langle \sigma^i_k \rangle}_k(v') \subseteq v'(X_l) \text{ for } k = 1, \ldots, n \text{ and } v'(X) = v(X), \text{ otherwise.} \]

Then we prove \(\phi^{\langle \sigma^i_k \rangle}_k(v') \subseteq v'(X_l) \) for \(i \in \mathbb{N} \) by induction on \(i. \) Obviously,

\[\phi^{\langle \sigma^0_k \rangle}_k(v') \subseteq v'(X_l) . \]

Assume by hypothesis \(\phi^{\langle \sigma^0_k \rangle}_k(v') \subseteq v'(X_l) \) and prove \(\phi^{\langle \sigma^i_k \rangle}_{i+1}(v') \subseteq v'(X_l), \)
\n\[k = 1, \ldots, n. \]

Define variable valuation \(v'' \) by \(v''(X_l) = \phi^{\langle \sigma^i_k \rangle}_k(v') \) for \(k = 1, \ldots, n \) and \(v''(X) = v'(X), \text{ otherwise.} \)

Then \(\phi^{\langle i+1 \rangle}_k(v') = \phi^{\langle \sigma^i_k \rangle}_k[\frac{i}{X_l}]_{l=1, \ldots, n}(v') = (\text{substitutivity}) \phi^{\langle \sigma^i_k \rangle}_k(v') \)

\[\subseteq (\text{monotonicity, as } v''(X_l) = \phi^{\langle \sigma^i_k \rangle}_k(v') \subseteq v'(X_l) \text{ by hypothesis and } v''(X) = v'(X), \text{ otherwise}) \phi^{\langle \sigma^i_k \rangle}_k(v') \subseteq v'(X_l). \]

\[\text{Thus } \sum_{i=0}^{\infty} \phi^{\langle \sigma^i_k \rangle}_k(v') = (X_1, \ldots, X_n \text{ not occurring in } \sigma^i_k \text{ for } i = 0, \ldots, \infty) \phi^{\langle \sigma^i_k \rangle}_k(v') \subseteq v'(X_l). \text{ As this holds for all } v' \text{ considered above,} \]
\[u \phi^{i \sigma^i_{\xi}}_k (v) \subseteq \]
\[\bigcap_{i=0}^{\infty} \phi^{i \sigma^i_{\xi}}_k (v) \subseteq v'(X_1), \quad 1 \leq i \leq n, \quad \text{and} \quad v'(X) = v(X) \]
\[\quad \text{for} \quad X \in X - \{X_1, \ldots, X_n\}, \]

Scott's induction rule is the main innovation of Scott and de Bakker [41], represents a general formulation for inductive arguments which does not assume any knowledge of the integers, and unifies methods for proof by induction such as recursion induction (McCarthy [29]), structural induction (BurSTALL [8]) and computational induction (Manna and Vuillemin [27]).

Its formulation is given by

\[I: \quad \phi \vdash \psi[\Omega_k^{\xi_k} / X_k^{\xi_k}]_{k=1}^{n,} \]
\[\phi, \psi \vdash \psi[\sigma_k^{\xi_k} / X_k^{\xi_k}]_{k=1}^{n,} \]
\[\phi \vdash \psi[\mu_{X_1} \ldots X_n^{\sigma_1, \ldots, \sigma_n}]_{k=1}^{n,} \]

with \(\phi \) only containing occurrences of \(X_i \) which are bound (i.e., not free) and \(\psi \) only containing occurrences of \(X_i \) which are not complemented.

Theorem 3.2. (Validity of Scott's induction rule, I). If \(\phi \) and \(\psi \) are formulae such that \(\phi \) does not contain any free occurrence of \(X_k^i \), \(k = 1, \ldots, n \), and all terms contained in \(\psi \) are syntactically continuous in \(X_k^i \), \(k = 1, \ldots, n \), then \(I \) is valid.

Proof. Let \(v \) be any variable valuation satisfying \(\phi \), let \(v' \) be defined by \(v'(X_i) = \phi^{\mu_X} / X_n^{\sigma_1, \ldots, \sigma_n}(v) \) for \(k = 1, \ldots, n \) and \(v'(X) = v(X) \), otherwise, and let \(\tau_{1,1} \leq \tau_{2,1} \) be any atomic formula contained in \(\psi = \{\tau_{1,1} \leq \tau_{2,1}\}_{1 \in L'} \).

We prove \(\phi^{\tau_{1,1}} \leq \phi^{\tau_{2,1}} \).

By substitutivity, \(\phi^{\tau_{j,1}} \leq \phi^{\tau_{j,1}}(v') \), \(j = 1, 2 \).
By the union theorem for $\mathcal{M}U$, $\nu'(X_k) = \phi_{\mu_k}X_1\ldots X_n[\sigma_1,\ldots,\sigma_n](v) = \bigcup_{i=0}^{\infty} \phi_{\sigma_i}^{\mathcal{M}}(v)$.

Let variable valuations v_i be defined by $v_i(X_k) = \phi_{\sigma_i}^{\mathcal{M}}(v)$ for $k = 1,\ldots,n$, and $v_i(X) = v(X)$, otherwise, $i \in N$.

Then $\phi_{\tau_{i+1}}(v') = \bigcup_{i=0}^{\infty} \phi_{\tau_i}(v_i)$, $j = 1,2$, by continuity.

Therefore we must prove $\bigcup_{i=0}^{\infty} \phi_{\tau_i}(v_i) \leq \bigcup_{i=0}^{\infty} \phi_{\tau_{i+1}}(v_i)$ in order to obtain the desired result.

It is sufficient to prove $\phi_{\tau_i}(v_i) \leq \phi_{\tau_{i+1}}(v_i)$ by induction on i.

For $i = 0$, $\sigma_i = \Omega_{k=1}^{n} \xi_k$, whence $\phi_{\tau_i}(v_0) \leq \phi_{\tau_{i+1}}(v_0)$ follows by substitutivity from validity of $\phi \vdash \psi[\Omega_{k=1}^{n} \xi_k/\Omega_{k=1}^{n} \xi_k]k = 1,\ldots,n'$ as (1) v and v_0 differ only in their assignments of relations to X_1,\ldots,X_n, (2) ϕ satisfies v and X_1,\ldots,X_n do not occur free within ψ, whence (3) ψ satisfies v_0.

Assume by hypothesis $\phi_{\tau_i}(v_i) \leq \phi_{\tau_{i+1}}(v_i)$ and prove $\phi_{\tau_i}(v_{i+1}) \leq \phi_{\tau_{i+1}}(v_{i+1})$.

Validity of $\phi,\psi \vdash \psi[\sigma_i/X_k]k = 1,\ldots,n$ implies in particular that if ϕ and ψ satisfy v_i, $\psi[\sigma_i/X_k]k = 1,\ldots,n$ satisfies v_i. Now ϕ satisfies v_i by an argument similar to the one above for $i = 0$. By hypothesis, ψ satisfies v_i.

Therefore we conclude that $\phi_{\tau_i}(v_i) \leq \phi_{\tau_{i+1}}(v_{i+1})$. By definitions of v_{i+1} and σ_i, $\phi_{\sigma_i}(v_i) = \phi_{\tau_i}(v_{i+1})$ follows by substitutivity, whence $\phi_{\tau_j}(v_{i+1}) = \phi_{\tau_j}(v_{i+1})$, $j = 1,2$, by substitutivity, too.

Thus we conclude $\phi_{\tau_i}(v_{i+1}) \leq \phi_{\tau_{i+1}}(v_{i+1})$ for $1 \in L$.

Finally we define the mapping $tr : PL \rightarrow \mathcal{M}U$ (compare section 1.2) and prove the translation theorem.

Definition 3.5. (tr). The mapping tr of program schemes of PL into terms of $\mathcal{M}U$ is defined as follows: consider a program scheme

$T = \langle P_k \leftarrow S_k \rangle_{k=1,\ldots,n}, S \rangle$, then $tr(T)$ is inductively defined by

1. $tr(R) = R$, for $R \in A \cup C \cup X$.

2. $tr(P_i) = v_iX_1\ldots X_n[tr(S_1),\ldots,tr(S_n)]$, $i = 1,\ldots,n$.

c. \(\text{tr}(S_1;S_2, S_3) = \text{tr}(S_1, S_2, S_3)\), \(\text{tr}(p \rightarrow S_1, S_2) = p; \text{tr}(S_1) \cup p'; \text{tr}(S_2)\) and
\[\text{tr}([S_1, \ldots, S_n]) = \text{tr}(S_1); \overline{\pi} \cup \ldots \cup \text{tr}(S_n); \overline{\pi}, \text{ with } \pi_i \text{ of type } \langle \xi_1, \ldots, \xi_n, \xi_i \rangle, \ i = 1, \ldots, n.\]

COROLLARY 3.2. \(\text{tr}(S[V_j/x_j]_{j \in J}) = \text{tr}(S[\text{tr}(V_j)/x_j]_{j \in J}).\)

THEOREM 3.3. (Translation theorem). Let 0 be an operational interpretation of PL, \(m\) be a mathematical interpretation of ML, and 0 and \(m\) satisfy (1) if \(R \in A \cup C \cup X\) then \(o(R) = m(R)\) and (2) if \(p \in B\) then \(o(p)(x) = \text{true iff } <x,x> \in m(p)\) and \(o(p)(x) = \text{false iff } <x,x> \in m(p').\) Then \(o(T) = m(\text{tr}(T))\) for all \(T \in PS, i.e., \text{tr}\) is meaning preserving relative to 0 and \(m.\)

Proof. By induction on the values under a certain measure of the complexities of the program schemes concerned and relative to some declaration scheme \(D = \{P_j \leftarrow S_j\}_{j=1,\ldots,n}.\) Let \(N \cup N \times \{0\}\) be well-ordered by \(\prec,\) with \(\prec\) defined by:

(1) \(x \prec y\) iff \(x \in N \text{ and } y \in N \text{ and } x \leq y,\) or (2) \(x \in N \text{ and } y \in N \times \{0\},\) or (3) \(x = <u,0>\) and \(y = <v,0>\) and \(u \leq v.\)

Then this measure of complexity is the function \(c : PS \rightarrow N \cup N \times \{0\},\)

Proof. By induction on the values under a certain measure of the complexities of the program schemes concerned and relative to some declaration scheme \(D = \{P_j \leftarrow S_j\}_{j=1,\ldots,n}.\) Let \(N \cup N \times \{0\}\) be well-ordered by \(\prec,\) with \(\prec\) defined by:

a. If \(S \in A \cup C \cup X\) then \(c(S) = 1.\)
b. If \(S \in P,\) then \(c(P) = <0,0>.\)
c. If \(S = S_1; S_2, S = (p \rightarrow S_1, S_2),\) let \(x\) or \(<x,0>\) be the maximum of \(c(S_1)\) and \(c(S_2)\) under the well-order. Then \(c(S_1; S_2)\) and \(c(p \rightarrow S_1, S_2)\) are defined as \(x+1\) or \(<x+1,0>.\)
d. If \(S = [S_1, \ldots, S_n]\) let \(x\) or \(<x,0>\) be the maximum of \(c(S_1), \ldots, c(S_n)\) under the well-order \(\prec.\) Then \(c(S_1, \ldots, S_n)\) is defined as \(x+1\) or \(<x+1,0>.\)

Thus \(c(S_i) \neq c(S_1; S_2)\) and \(c(S_i) \neq c(p \rightarrow S_1, S_2)\) for \(i = 1, 2,\)
\(c(S_i) \neq c([S_1, \ldots, S_n]), i = 1, \ldots, n,\) and \(c(S_j(k)) \neq c(P_j)\) for \(k \in N\) and \(j = 1, \ldots, n.\)
Hence c provides the basis for the inductive proof of the translation theorem below:

a. If $S \in A \cup C \cup X$ then $\sigma(S) = m(\text{tr}(S))$ is obvious.

b. If $S = S_1;S_2$ then $\sigma(S_1;S_2) = (\text{induction hypothesis}) m(\text{tr}(S_1);m(\text{tr}(S_2)) = m(\text{tr}(S_1;\text{tr}(S_2))) = m(\text{tr}(S_1;S_2))$.

c. If $S = (p \rightarrow S_1,S_2)$ then $\sigma(p \rightarrow S_1,S_2) = (\text{induction hypothesis}) m(p);\sigma(S_1) \cup$

$\cup m(p');\sigma(S_2) = m(\text{tr}(S_1) \cup p';\text{tr}(S_2)) = m(\text{tr}(p \rightarrow S_1,S_2))$.

d. If $S = [S_1,...,S_n]$ then $\sigma(S) = (\text{induction hypothesis}) m(\text{tr}(S_1);m(\text{tr}(S_2)) \cap \ldots \cap$

$\cap m(\text{tr}(S_n)) = m(\text{tr}([S_1,...,S_n]))$.

e. If $S = P_{j}$ then $\sigma(P_{j}) = (\text{union theorem for PL}) \cup_{i=0}^{\infty} \sigma(P_{j}^{(i)}) = (\text{induction hypothesis}) \cup_{i=0}^{\infty} m(\text{tr}(P_{j}^{(i)}))$. Using corollary 3.2,

$\text{tr}(P_{j}^{(i)}) = \text{tr}([\overline{s}_j^{(i)}])$ is easily proved by induction on i. Hence,

$\cup_{i=0}^{\infty} m(\text{tr}(P_{j}^{(i)})) = \cup_{i=0}^{\infty} m(\text{tr}([\overline{s}_j^{(i)}])) = (\text{union theorem for MU})$

$\cup_{i=0}^{\infty} m(\text{tr}(P_{j}^{(i)})) = m(\text{tr}(P_{j}), j = 1,...,n)$.

3.3. Rebuttal of Manna and Vuillemin on call-by-value

In [27] Manna and Vuillemin discard call-by-value as a computation rule, because, in their opinion, it does not lead to computation of the minimal fixed point. Clearly, our translation theorem invalidates their conclusion. As it happens, they work with a formal system in which minimal fixed points coincide with recursive solutions computed with call-by-name as rule of computation; this has been demonstrated in de Roever [36]. Quite correctly they observe that within such a system call-by-value does not necessarily lead to computation of minimal fixed points. We may point out that observations like this one hardly justify discarding call-by-value as rule of computation in general.

For more remarks on the topic of parameter mechanisms (or rules of computation) and minimal fixed point operators we refer to de Roever [36].
4. AXIOMATIZATION OF $M\bar{U}$

The axiomatization of $M\bar{U}$ proceeds in four successive stages:
1. In section 4.1 we develop the axiomatization of typed binary relations.
2. This axiomatization is extended in section 4.2 to boolean constants.
3. The axiomatization of projection functions in section 4.3 then results in the axiomatization of binary relations over cartesian products.
4. The additional axiomatization of μ-terms in section 4.4 completes the axiomatization of $M\bar{U}$.

4.1. Axiomatization of typed binary relations

Consider the following sublanguage of $M\bar{U}$, called $M\bar{U}_{0}$:

The elementary terms of $M\bar{U}_{0}$ are restricted to the individual relation constants, relation variables and logical constants $\Omega^n, \xi, \mathbb{E}^n, \eta$ and \mathbb{U}^n, ξ of $M\bar{U}$, i.e., boolean constants and projection functions are excluded.

The compound terms of $M\bar{U}_{0}$ are those terms of $M\bar{U}$ which are constructed using these basic terms and the ";", "∪", "∩", "−" and "¬" operators, i.e., the "μ_i" operators are excluded.

The assertions of $M\bar{U}_{0}$ are those assertions of $M\bar{U}$ whose atomic formulae are inclusions between terms of $M\bar{U}_{0}$.

$M\bar{U}_{0}$ is axiomatized by the following axioms and rules:

1. The typed versions of the axioms and rules of boolean algebra.
2. The typed versions of Tarski's axioms for binary relations (cf. [43]):

\[T_1 : \models \left(X^n, \theta ; Y^\theta, \xi \right) \cap Z^\xi, \xi = X^n, \theta \upharpoonright (Y^\theta, \xi ; Z^\xi, \xi) \]

\[T_2 : \models \hat{X}^n, \xi = X^n, \xi \]

\[T_3 : \models \left(X^n, \theta ; Y^\theta, \xi \right) \supset \equiv = \hat{Y}^\theta, \xi ; \hat{X}^n, \theta \]

\[T_4 : \models \left(X^n, \theta ; E^\xi, \xi \right) = X^n, \xi \]

\[T_5 : \left(X^n, \theta ; Y^\theta, \xi \right) \cap Z^\xi, \xi = \Omega^n, \xi \upharpoonright (Y^\theta, \xi ; Z^\xi, \xi) \cap \hat{X}^n, \theta = \Omega^n, \theta \]

3. \[U : \models \mathbb{U}^n, \xi \subseteq \mathbb{U}^n, \theta ; U^\theta, \xi \]
In the sequel we omit parentheses in our formulae, based on the associativity of binary operators and on the convention that ";" has priority over "\n", which has in turn priority over "\u".

Lemma 4.1.

a. \(x^\eta, \xi \subseteq y^\eta, \xi \vdash x^\eta, \xi \subseteq y^\eta, \xi, x^\eta, \xi ; z^\theta, \eta \subseteq y^\eta, \xi ; z^\theta, \eta, x^\eta, \xi \subseteq z^\theta, \eta, y^\eta, \xi \)

b. \(\vdash \Omega^\eta, \xi ; x^\theta, \xi = \Omega^\eta, \xi, x^\eta, \xi ; \Omega^\eta, \xi, \xi = \Omega^\eta, \xi \)

c. \(\vdash E^\eta, \eta ; x^\eta, \xi = x^\eta, \xi \)

d. \(\vdash \psi^\eta, \xi ; \psi^\theta, \xi = \psi^\eta, \theta \)

e. \(\vdash \psi^\eta, \xi = \psi^\eta, \eta, \psi^\eta, \eta = E^\eta, \eta, \psi^\eta, \xi = \psi^\eta, \xi \)

f. \(\vdash x^\eta, \xi ; (y^\eta, \theta \cup z^\theta, \eta) = x^\eta, \xi ; y^\eta, \theta \cup x^\eta, \xi ; z^\theta, \eta, (x^\eta, \theta \cup y^\eta, \theta) ; z^\theta, \eta = x^\eta, \theta \cup z^\theta, \eta \cup y^\eta, \theta ; z^\theta, \eta \)

g. \(\vdash (x^\eta, \xi \cup y^\eta, \xi) = x^\eta, \xi \cup y^\eta, \xi, (x^\eta, \xi \cap y^\eta, \xi) = x^\eta, \xi \cap y^\eta, \xi, x^\eta, \xi \cap y^\eta, \xi = x^\eta, \xi \)

Proof. Except for the proof of lemma 4.1.d which is obtained using \(\psi \) and a law of boolean algebra, the proofs for the typed case are similar to the proofs for the untyped case as contained in Tarski [43].

Lemma 4.1.a expresses monotonicity of "\n" and "\u". Together with the obvious monotonicity of "\u" and "\n", this will be used in lemma 4.9 to establish monotonicity of syntactically continuous terms in general.

Remarks. 1. Henceforward the laws of boolean algebra are used without explicit reference.

2. Type indications are omitted provided no confusion arises.

Lemma 4.2. \(\vdash X ; Y \cap Z = X ; (\overline{X} ; Z \cap Y) \cap Z \).

Proof. \(X ; Y \cap Z = X ; (U \cap Y) \cap Z = X ; (X ; Z \cap Y) \cap Z =

= \{X ; (\overline{X} ; Z \cap Y) \cap Z\} \cup \{X ; (\overline{X} ; Z \cap Y) \cap Z\}. \) Also \(\overline{z} ; X \cap \overline{z} ; X = \Omega \), whence by \(T_5 \), \(X ; (\overline{z} ; X) \cap \overline{z} = \Omega \), thus by \(T_2, T_3 \) and lemma 4.1, \((X ; \overline{X} ; Z) \cap Z = \Omega \).

Therefore, \(X ; (X ; Z \cap Y) \cap Z = \Omega \), whence \(X ; Y \cap Z = X ; (X ; Z \cap Y) \cap Z \) follows.
The first applications of lemma 4.2 follow in the proof of lemma 4.3, in which a number of useful properties of relations and functions are formally derived. Remember that \(X^o \) \(\) has been defined as \(X;U \cap E \) (section 1.3). By convention the "\(<>\)" operator has a higher priority than the "\(;\)" operator.

Lemma 4.3.

a. \(\bar{x};x \subseteq E \vdash x;(y \cap z) = x; y \cap x;z \)

b. \(x \subseteq E \vdash x = \bar{x} \)

c. \(x = x^o \cap x; x = x; \bar{x}^o \cap x; x \cap x = x^o \cap x; u = x^o \cap x; u \)

d. \(x \subseteq y; \bar{y}; y \subseteq E \vdash x^o \cap y = x \)

e. \(\prod_{i=1}^{n} x_i^o \cap y_1 = x^o \cap y = \prod_{i=1}^{n} x_i^o \cap y \cap y \)

Proof.

a. \(x; y \cap x; z = (\text{lemma 4.2}) x; (\bar{x}; x; z \cap y) \cap x; z \subseteq (\text{assumption}) x; (y \cap z) \)

b. \(x \subseteq x \cap E = (\text{lemma 4.2}) x; (\bar{x}; x \cap E) \cap E \subseteq x; \bar{x} \subseteq \bar{x}. \text{ Thus } x \subseteq \bar{x}, \text{ whence } \bar{x} \subseteq \bar{x} = x \)

c. \(x = x^o \cap x; \bar{x} \cap u = (\text{lemma 4.2}) x; (x; u \cap E) \cap u = \bar{x}; (x; u \cap E) \)

Thus, by \(T_3 \), \(x = (x; u \cap E) \cap u = (\text{part b}) x^o \cap x; \)

\(x^o \cap e = x; \bar{x} \cap e; \text{ Direct from lemma 4.2.} \)

\(x; u = x^o \cap u \cap u = (\text{from above}) x; u \cap E; x; u \subseteq \text{ (lemma 4.1) } x^o \cap u \subseteq \subseteq x; u \cap u = x; u \)

d. \(x \subseteq y \implies \bar{y}; x \subseteq \bar{y}; y \subseteq (\text{assumption}) E; x; \bar{x}; y \subseteq (\text{part b and } T_3) \)

\(x \) and \(x; \bar{x} \cap e; y \subseteq x; \bar{x}; y \subseteq x \).

\(\leq \). Immediate from part c.

e. We prove \(x; y \cap z = x^o \cap (x; y \cap z) \) only. \(\geq \). Obvious.

\(\geq \). \(x; y \cap z = (\text{part c}) x^o \cap x; y \cap z = (\text{part b and lemma 4.2}) \)

\(x^o \cap (x^o \cap z \cap x; y) \cap z \subseteq x^o \cap (z \cap y) \).

4.2. Axiomatization of boolean relation constants

Partial predicates are represented within \(MU \) by pairs \(<p^{\bar{a}}, p^{\bar{b}}> \)
whose interpretation is restricted to pairs of disjoint subsets of the identity relation corresponding to inverse images of true and false. \mathcal{MU}_0 is extended to \mathcal{MU}_1 by adding the boolean relation constants of \mathcal{MU} to the basic terms of \mathcal{MU}_0. \mathcal{MU}_1 is axiomatized by adding the following two axioms to those of \mathcal{MU}_0:

$$
P_1 : \vdash p^n \rightarrow E^n \in \mathcal{E}^n, p^n \rightarrow E^n \in \mathcal{E}^n;
$$

$$
P_2 : \vdash p^n \rightarrow p \cap q = p \cap q.
$$

The translation theorem implies $o(p + S_1, S_2) = m(p; tr(S_1) \cup p; tr(S_2))$, provided $o(S_1) = m(tr(S_1)), i = 1, 2$, and $o(p)$ is represented by $\langle m(p), m(p') \rangle$. Thus leads axiomatization of \mathcal{MU}_1 to a theory of conditionals. This will be demonstrated by deriving the usual axioms for conditionals, cf. McCarthy [29], as a corollary from

LEMMA 4.4. $\vdash \neg p = p, p; q = p \cap q$.

Proof. $\neg p = p$: Follows from lemma 4.3.b, and axiom P_1.

$p; q = p \cap q$: \subseteq. Since $\vdash p \subseteq E, q \subseteq E$, monotonicity implies $\vdash p; q \subseteq q; p; q \subseteq p$. Thus $\vdash p; q \subseteq p \cap q$. \supseteq. $\vdash p \cap q = (\text{lemma 4.2}) p; \neg p; q \in E \cap q \subseteq p; \neg p; q \in E \subseteq p; \neg p; q \subseteq p; q$.

COROLLARY 4.1. Using the notation $(p \rightarrow X, Y) = p; X \cup p; Y$, we have $\vdash (p \rightarrow (p \rightarrow X, Y), Z) = (p \rightarrow X, Z), (p \rightarrow X, (p \rightarrow Y, Z)) = (p \rightarrow X, Z), (p \rightarrow (q \rightarrow X_1, X_2), (q \rightarrow Y_1, Z_2)) = (q \rightarrow (p \rightarrow X_1, Y_1), (p \rightarrow X_2, Y_2))$.

Proof. Immediate from lemma 4.4, using P_1 and P_2.

COROLLARY 4.2. $\vdash p; X \cap Y = p; (X \cap Y)$.

Proof. $p; X \cap Y = (\text{lemma 4.2}) p; \neg p; Y \cap X \cap Y = (\text{lemmas 4.3.a and 4.4}) p; Y \cap p; X = (\text{lemma 4.3.a}) p; (X \cap Y)$.

In section 1.3 we already mentioned the "o" operator, defined by $X_o p = X; p; U \cap E$. The basic properties of this operator are collected in *).

*) Some connections between μ-terms and the "o" operator are collected in section 5.3.
LEMMA 4.5.

a. \(\vdash (X;Y)\circ p = X; Y; p; U \cap E \) and \(X; (Y; p; U \cap E); U \cap E \). Since by lemma 4.3.c \(\vdash X; p; U = (X; p; U \cap E); U \), the result follows.

b. Immediate from the definitions and lemma 4.1.

c. \(X; p; \tilde{Y} \cap E = (\text{lemmas 4.2 and 4.4}) X; p; (p; \tilde{X} \cap \tilde{Y}) \cap E = (\text{corollary 4.2 and lemma 4.4}) X; p; (\tilde{X} \cap \tilde{Y}) \cap E = (\text{lemma 4.3.b}) (X \cap Y); p; \tilde{X} \cap E = \text{monotonicity and lemma 4.3.c}) (X \cap Y); p; U \cap E.

d. Applying lemma 4.3.c we obtain \(\vdash X; p = (X; p; U \cap E); X; p \subseteq (X; p; U \cap E); X = X; p \cap X \).

e. By part d above.

g. \(X; p; \circ X = (\text{lemmas 4.2 and 4.4}) X; p; (\tilde{X}; X; p; U \cap E) \subseteq (\text{lemma 4.3.c}) X; (\tilde{X}; X; p; U \cap E) \subseteq (\text{assumption}) X; (p; U \cap E) = (\text{corollary 4.2}) X; p.

f. Assume \(X; p \subseteq q; X \). Then \(\vdash X; p = X; p; U \cap E \subseteq q; X; U \cap E \subseteq (\text{corollary 4.2}) q \).

Observe that from parts d and f of lemma 4.5, we obtain that the following equality holds in all interpretations (compare section 1.3):

\[X; p = \cap \{q \mid X; p \subseteq q; X\} \].

4.3. Axiomatization of binary relations over cartesian products

The language \(MU_2 \) for binary relations over cartesian products is obtained from \(MU_1 \) by adding, for \(i = 1, \ldots, n \), projection function symbols
\(\pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \) to the basic terms of \(M\hat{u}_1 \), for all types concerned. \(M\hat{u}_2 \) is axiomatized by adding the following two axiom schemes to the axioms and rules of \(M\hat{u}_1 \):

\[
C_1 : \vdash \pi_1^1 \; \ldots \; \pi_i \; \ldots \; \pi_n \; \pi_i^1 = E
\]

\[
C_2 : \vdash X_1 \; Y_1 \; \ldots \; X_i \; Y_i = (X_1 \; \pi_i^1 \; \ldots \; X_i \; \pi_i^1; Y_1 \; \ldots \; X_i \; \pi_i^1; Y_i),
\]

where \(\pi_i \) is of type \(\langle \eta_1, \ldots, \eta_n, \xi \rangle \), \(E \) stands for \(\eta_1^1 \times \ldots \times \eta_n^1, \eta_1^1 \times \ldots \times \eta_n^1 \) and \(X_1 \) and \(Y_i \) are of types \(\langle \theta, \eta_i \rangle \) and \(\langle \eta_i, \xi \rangle \), respectively.

An assignment \(x_i := f(x_1, \ldots, x_n) \) is expressed by a statement scheme \(V \) of the form \([\pi_1, \ldots, \pi_i-1, S, \pi_i, \pi_i+1, \ldots, \pi_n] \). Hence Hoare's axiom for the assignment (cf. [19])

\[\vdash \{ p(x_1, \ldots, x_i-1, f(x_1, \ldots, x_n), x_i+1, \ldots, x_n) \} x_i := f(x_1, \ldots, x_n) \{ p(x_1, \ldots, x_n) \} \]

corresponds with the assertion \(\vdash \tau(V)p \; \tau(V) \subseteq \tau(V)p \), as \(q_1 \) \(q_2 \) is expressed by \(q_1 \); \(\tau(V) \subseteq \tau(V)q_2 \), and \(\tau(V)p \)(\(x_1, \ldots, x_n \)) =

\[= p(x_1, \ldots, x_i-1, f(x_1, \ldots, x_n), x_i+1, \ldots, x_n) \] (compare section 1.3). As functionality of \(f \) implies \(\tau(V) ; \tau(V) \subseteq E \) by lemma 4.11 below, this assertion follows from (the more general) lemma 4.5.e. Thus leads the axiomatization of \(M\hat{u}_2 \) to a theory of assignments.

The following lemma establishes some necessary relationships between projection functions and the \(E \) and \(U \) constants.

Lemma 4.6. For \(i=1, \ldots, n \):

\[\pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1, \eta_i^1 \]

\[a. \vdash \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \pi_i^1 = E \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \times \ldots \times \eta_n \]

\[b. \vdash \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \pi_i^1 = U \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \]

\[c. \vdash \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \pi_i^1 = E \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \]

\[d. \vdash \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \pi_i^1 = U \pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1, \eta_i^1 , \] \(i \neq j \), \(j = 1, \ldots, n \).

Proof. a. Let \(E_n \) denote \(\pi_i^1 \times \ldots \times \pi_i^m, \eta_i^1 \times \ldots \times \eta_n \), then \(E_n = (C_1 \pi_i^1 ; \pi_i^1 \cap E_n = (\text{lemma } 4.3.c) \pi_i^1 = E_n \).
b. \(\pi_1: U \xrightarrow{\eta_1, \xi} (\text{lemma } 4.3, \gamma) \pi_1\circ E \xrightarrow{\eta_1, \eta_1; \eta_1\times \cdots \times \eta_n, \xi} (\text{part a above}) \eta_1\times \cdots \times \eta_n, \xi \);

\(U \).

c. Consider, e.g., \(n = 2 \) and \(i = 1 \):

\(\eta_1, \eta_1 \xrightarrow{\eta_1; \eta_1} \eta_1, \eta_1 \xrightarrow{\eta_1; \eta_1; \eta_1; \eta_1; \eta_1; \eta_1; \eta_1; \eta_1} \eta_1, \eta_1 \)

\(E \xrightarrow{E} E \xrightarrow{E} E \xrightarrow{E} E \xrightarrow{E} E \xrightarrow{E} E \xrightarrow{E} E \).

\[... = (\text{C}_{2}) \left((\pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1) = \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1 \right) = \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1. \]

\(= (\text{lemma } 4.1 \text{ and part b above}) \pi_1; \pi_1 \).

d. Consider, e.g., \(n = 2, i = 1 \) and \(j = 2 \):

\(\eta_1, \eta_2 \xrightarrow{E} \eta_1, \eta_1 \xrightarrow{E} \eta_1, \eta_2 \xrightarrow{E} \eta_2, \eta_2 \)

\(\eta_1, \eta_1 \xrightarrow{E} \eta_1, \eta_1 \xrightarrow{E} \eta_1, \eta_2 \xrightarrow{E} \eta_2, \eta_2 \)

\[... = (\text{C}_{2}) \left((\pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1) = (\pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1) \right) = (\pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1; \pi_1). \]

\(= (\text{part b above}) \pi_1; \pi_2 \).

Already in example 1.1 we signalled the analogy between \(\frac{n}{i=1} X_i; \pi_i \) and a list of parameters called-by-value. From this point of view properties such as \(\left(\frac{n}{i=1} X_i; \pi_i \right) \circ E \xrightarrow{\eta_1, \eta_1; \cdots; \eta_1, \eta_1; \cdots; \eta_1, \eta_1; \cdots; \eta_1, \eta_1} \frac{n}{i=1} X_i; \pi_i \) - the computation of such a list terminates iff the computations of its individual members terminates - and \(\left(\frac{n}{i=1} X_i; \pi_i \right); \pi_j = \left(\frac{n}{i=1} X_i; \pi_i \right); \pi_j \) - the request for the value of a parameter contained in such a list amounts to computation of the individual value of this parameter plus termination of the computations of the other parameters - are intuitively evident. These and similar properties follow from the following lemma and its corollary.

Lemma 4.7. For \(k, 1 \leq n, \)

\[\vdash X_{i_1}; E; \ldots; X_{i_k}; E; (\frac{n}{i=1} X_i; Y_i); \frac{n}{t=1} \frac{k}{j=1} \frac{s}{j=1} \frac{r}{j=1} \frac{t=1} X_{i_j}; Y_{i_j}; E; \ldots; \frac{n}{t=1} \frac{k}{j=1} \frac{s}{j=1} \frac{r}{j=1} \frac{t=1} X_{i_j}; Y_{i_j}; E; \ldots; \]

\[= \left(\frac{n}{i=1} X_i; \pi_i \right); \frac{n}{j=1} \frac{s}{j=1} \frac{t=1} Y_{i_j}, \text{ with } \pi_i \text{ of type } \eta_1, \eta_1; \cdots; \eta_1, \eta_1 >, \text{ and } X_{i_j} \]

and \(Y_{i_j} \) of types \(\theta, \eta_1 > \) and \(\eta_s, \xi >, \) respectively.
Proof. The case of \(n = 3, k = 1 = 2, i_1 = 1, i_2 = 2, s_1 = 2, s_2 = 3 \) is representative. Hence we prove

\[
X_1 \circ E; X_2 \circ E; X_2 \circ Y_2; Y_1 \circ E; Y_3 \circ E = (X_1; Y_1 \cap X_2; Y_2); (\pi_2; Y_2 \cap \pi_3; Y_3).
\]

By lemma 4.6, \((X_1; Y_1 \cap X_2; Y_2) = X_1; Y_1 \cap X_2; Y_2 \cup \eta_3; Y_3 \) and

\[
\pi_2; Y_2 \cap \pi_3; Y_3 = \pi_1; U \cap \pi_2; Y_2 \cap \pi_3; Y_3,
\]

whence

\[
(C_2) X_1; U \cap X_2; Y_2 \cup \eta_3; Y_3 \Rightarrow \eta_1, \theta \cap X_2; Y_2 \cup \eta_3; Y_3 \Rightarrow \eta_1, \theta
\]

\[
... = (\text{lemma 4.3.c}) X_1 \circ E; U^{\theta, \xi} \cap X_2; Y_2 \cup U^{\theta, \xi}; Y_3 \circ E
\]

\[
... = (\text{lemma 4.3.e})
X_1 \circ E; X_2 \circ E; (X_2 \circ E; U^{\theta, \xi} \cap X_2; Y_2 \cup U^{\theta, \xi}; Y_3 \circ E) \Rightarrow Y_2 \circ E; Y_3 \circ E.
\]

By corollary 4.2, \(X_1 \circ E; U^{\theta, \xi} \cap X_2; Y_2 \cup U^{\theta, \xi}; Y_3 \circ E = X_1 \circ E; X_2; Y_2; Y_3 \circ E, \)

whence the result follows by lemma 4.4.

COROLLARY 4.3. \(\vdash (\cap_{i=1}^n X_i; \tilde{Y}_i)^2 \cap (\cap_{i=1}^n \pi_i; p_i; \tilde{w}_i) = X_1 \circ p_1; \ldots; X_n \circ p_n \) with \(X_i \)

of type \(\eta_1, \eta_1 \) and \(p_i \) of type \(\eta_1, \eta_1 \).

Proof. \((\cap_{i=1}^n X_i; \tilde{Y}_i)^2 \cap (\cap_{i=1}^n \pi_i; p_i; \tilde{w}_i) = (C_2) (\cap_{i=1}^n X_i; p_i; \tilde{w}_i); U \cap \eta_1 \times \eta_n, \theta \cap E^{0, \theta} \)

... = (lemma 4.6.b) \((\cap_{i=1}^n X_i; p_i; \tilde{w}_i); \pi_1; U \cap E^{0, \theta} \theta = \)

... = (lemma 4.7) \((X_1; p_1) \circ E; \ldots; (X_n; p_n) \circ E \cap X_i; p_1; U \cap E^{0, \theta} \theta \)

... = (corollary 4.2 and lemma 4.5.a) \(X_1 \circ p_1; \ldots; X_n \circ p_n \).

One of the consequences of lemma 4.7 is

\[
\vdash (\cap_{i=1}^{n-1} X_i; \tilde{Y}_i); (\cap_{i=1}^{n-1} \pi_i; Y_i) = \cap_{i=1}^{n-1} X_i; Y_i,
\]

with \(\pi_i, X_i \) and \(Y_i \) of types \(\eta_1 \times \ldots \times \eta_n, \eta_1 \), \(\theta, \eta_1 \) and \(\eta_1, \xi \), respectively.

Assume \(\eta_1 = \eta_2 = \ldots = \eta_n \) for simplicity, then, apart from the intended
interpretation of π_1 as special subset of $D^n \times D$,

"axiom C_2 for $n-1$, in which π_1, \ldots, π_{n-1} are interpreted as subsets of $D^{n-1} \times D"$ follows from" axiom C_2 for $n, n > 2$.

This line of thought may be pursued as follows:

Change the definition of type in that only compounds $(\eta_1 \times \eta_2)$ are considered, and introduce projection function symbols $\pi_1(n \times \xi), \eta$ and $\pi_2(n \times \xi), \xi$ only. For $n > 2$ define $(\eta_1 \times \ldots \times \eta_{n-1})$ as $((\eta_1 \times \eta_2) \times \eta_3) \times \ldots \times \eta_{n-1}$ and π_1 as $((\pi_1 \times \eta_2) \times \eta_3), (\pi_1 \times \eta_3), \eta_3$.

Then it is a simple exercise to deduce C_1 and C_2 for $n = 3$ from axioms C_1 and C_2 for $n = 2$. This indicates that our original approach may be conceived of as a "sugared" version of the more fundamental set-up suggested above. These considerations are related to the work of Hotz on X-categories (cf. Hotz [51]).

Arbitrary applications of the "\wedge" operator can be restricted to projection functions, as demonstrated below; this result will be used in section 5.3 to prove Wright's result on the regularization of linear procedures.

Lemma 4.8. $\vdash \tilde{X} = \tilde{\nu}_2; (E \cap \pi_1; X; \tilde{\nu}_2); \pi_1$.

Proof. We prove $X = \tilde{\nu}_1; (E \cap \pi_1; X; \tilde{\nu}_2); \pi_2$. The result then follows by lemma 4.3.b.

\[
\pi_1; X; \tilde{\nu}_2 \cap E = (C_1) \pi_1; X; \tilde{\nu}_2 \cap \pi_1; \tilde{\nu}_1 \cap \pi_2; \tilde{\nu}_2 =
\]

\[
= (\text{lemmas 4.6.c and 4.3.a}) \pi_1; (X; \tilde{\nu}_2 \cap \tilde{\nu}_1) \cap \pi_2; \tilde{\nu}_2.
\]

Hence, $\tilde{\nu}_1; (\pi_1; X; \tilde{\nu}_2 \cap E); \pi_2 = (\text{lemma 4.7}) (X; \tilde{\nu}_2 \cap \tilde{\nu}_1); \pi_2 = (\text{lemma 4.7 again}) X.$
4.4. Axiomatization of the "\(\mu\)" operators

\(\mu\) is obtained from \(\mu_2\) by introducing the "\(\mu\)" operators, and is axiomatized by adding Scott's induction rule, formulated in section 3.2 and referred to as \(I\), and the following axiom scheme to the axioms and rules of \(\mu_2\):

\[
M : \vdash \{\sigma_j \mu_i x_1 \ldots x_n [\sigma_1, \ldots, \sigma_n] / x_i\}_{i=1, \ldots, n} \subseteq \\
\subseteq \mu_j x_1 \ldots x_n [\sigma_1, \ldots, \sigma_n] \}
\]

The axiomatization of \(\mu\) is motivated by the need to provide a convenient axiomatization of \(PL\). Thus one expects axiomatic proofs of (the translations of) properties of \(PL\) such as the fixed point (lemma 2.1.e) and minimal fixed point (corollary 2.3) properties, monotonicity (lemma 2.2) and modularity (lemma 2.8), as the union theorem is embodied in Scott's induction rule and substitution is by lemma 3.3 a valid rule of inference. These proofs are provided by the following lemmas:

Lemma 4.9.

a. If \(\tau_1 (x_1, \ldots, x_n, y), \ldots, \tau_n (x_1, \ldots, x_n, y)\) are monotonic in \(x_1, \ldots, x_n\) and \(y\), i.e., \(A_1 \subseteq B_1, \ldots, A_{n+1} \subseteq B_{n+1}\) \(\vdash \tau_1 (A_1, \ldots, A_{n+1}) \subseteq \tau_2 (B_1, \ldots, B_{n+1})\),

then \(Y_1 \subseteq Y_2 \vdash \{\mu_j x_1 \ldots x_n [\tau_1 (x_1, \ldots, x_n, y_1) \ldots \tau_n (x_1, \ldots, x_n, y_1)] \}
\subseteq \\
\subseteq \mu_j x_1 \ldots x_n [\tau_1 (x_1, \ldots, x_n, y_2) \ldots \tau_n (x_1, \ldots, x_n, y_2)] \}
\]

b. (Monotonicity). If \(\tau (x_1, \ldots, x_n)\) is syntactically continuous in \(x_1, \ldots, x_n\) then \(\tau\) is monotonic in \(x_1, \ldots, x_n\), i.e.,

\(X_1 \subseteq Y_1, \ldots, X_n \subseteq Y_n \vdash \tau (x_1, \ldots, x_n) \subseteq \tau (y_1, \ldots, y_n)\).

c. (Fixed point property). \(\vdash \{\mu_j x_1 \ldots x_n [\tau_1, \ldots, \tau_n] / x_i\}_{i=1, \ldots, n} = \mu_j x_1 \ldots x_n [\tau_1, \ldots, \tau_n] \}
\]

d. (Minimal fixed point property, Park [34]).

\(\{\tau_j (y_1, \ldots, y_n) \subseteq y_j\}_{j=1, \ldots, n} \vdash \{\mu_j x_1 \ldots x_n [\tau_1, \ldots, \tau_n] \subseteq y_j\}_{j=1, \ldots, n}\)

Proof. a. Use \(I\), taking \(Y_j \subseteq Y_2\) for \(\phi\) and

\(\{X_j \subseteq \mu_j x_1 \ldots x_n [\tau_1 (x_1, \ldots, x_n, y_1), \ldots, \tau_n (x_1, \ldots, x_n, y_1)] \}
\]
and $\tau_j(X_1, \ldots, X_n, Y_1)$ for σ_j, $j = 1, \ldots, n$.

1. $\vdash \{\mu_j \leq \nu_j X_1 \ldots X_n [\tau_1(X_1, \ldots, X_n, Y_2), \ldots, \tau_n(X_1, \ldots, X_n, Y_2)]\}_{j=1, \ldots, n}$.
 Obvious.

2. $\phi, \psi \vdash \{\tau_j(X_1, \ldots, X_n, Y_1) \leq \nu_j X_1 \ldots X_n [\tau_1(X_1, \ldots, X_n, Y_2), \ldots, \tau_n(X_1, \ldots, X_n, Y_2)]\}_{j=1, \ldots, n}$.
 By monotonicity of τ_j in X_1, \ldots, X_n and Y_1 and M.

b. Follows by induction on the complexity of τ, using lemma 4.1.a. and part a above.

c. \subseteq. Use I, with ϕ empty and taking $\{X_j \leq \tau_j(X_1, \ldots, X_n)\}_{j=1, \ldots, n}$ for ψ, proving the induction step with part b above.

c. \supseteq. M.

d. Use I, taking $\{\tau_j(Y_1, \ldots, Y_n) \leq Y_j\}_{j=1, \ldots, n}$ for ϕ and $\{X_j \leq Y_j\}_{j=1, \ldots, n}$ for ψ, proving the induction step with part b above.

Modularity is but one of the many consequences of the iteration lemma below. This lemma asserts that simultaneous minimalization by ν_i-terms is equivalent to successive singular minimalization by μ-terms. Its proof and the proof of modularity, corollary 4.4, are both contained in appendix 3.

Lemma 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).

\[\vdash \mu_j X_1 \ldots X_{j-1} X_j X_{j+1} \ldots X_n [\sigma_1, \ldots, \sigma_{j-1}, \sigma_j, \sigma_{j+1}, \ldots, \sigma_n] = \mu X_1 [\sigma_i X_1 \ldots X_{j-1} X_j X_{j+1} \ldots X_n [\sigma_1, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_n] / X_1]_{i \in I}, \]

with $I = \{1, \ldots, j-1, j+1, \ldots, n\}$.

Proof. By application of the minimal fixed point and fixed point properties and substitutivity (cf. [18]).

Corollary 4.4. (Modularity)

Define $\hat{\mu}_i$ by $\mu_i X_1 \ldots X_n [\sigma_i(\sigma_1(X_1, \ldots, X_n), \ldots, \sigma_{i-1}(X_1, \ldots, X_n)), \ldots, \sigma_n(X_1, \ldots, X_n)]$ and $\hat{\mu}_{ij}$ by $\mu_{ij} X_1 \ldots X_{n-1} X_n [\sigma_i(\sigma_1(X_1, \ldots, X_n), \ldots, \sigma_{i-1}(X_1, \ldots, X_n)), \ldots, \sigma_{ij}(\sigma_i(X_1, \ldots, X_n), \ldots, \sigma_{i-1}(X_1, \ldots, X_n), \ldots, \sigma_n(X_1, \ldots, X_n))]$. Then the following holds, for $i = 1, \ldots, n$.

Modularity itself has some interesting applications, too, e.g., corollary 4.5 below and the tree-traversal result of de Bakker and de Roever [2]. The proof of this result, using modularity in MU, is a straightforward transformation of the proof given at the end of section 2.2, which uses modularity in PL.

COROLLARY 4.5. \(\vdash \{ \nu_i X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] \}^\nu = \mu_i X_1 \ldots X_n [\sigma_1(\tilde{x}_1, \ldots, \tilde{x}_n), \ldots, \sigma_n(\tilde{x}_1, \ldots, \tilde{x}_n)] \}_{i=1, \ldots, n}. \)

Proof. Let \(\tau(X) \) be \(\tilde{x} \) and \(\tau_i(X_1, \ldots, X_n) \) be \(\sigma_i(\tilde{x}_1, \ldots, \tilde{x}_n) \), \(i = 1, \ldots, n \). Then corollary 4.5 can be formulated as the following consequence of modularity:

\[
\vdash \tau(\mu_i X_1 \ldots X_n [\tau_1(\tau(X_1)), \ldots, \tau(X_n)), \ldots, \tau_n(\tau(X_1), \ldots, \tau(X_n))] = \mu_i X_1 \ldots X_n [\tau_1(\tau(X_1), \ldots, \tau(X_n)), \ldots, \tau_n(\tau(X_1), \ldots, \tau(X_n))].
\]

The last lemma of this chapter states some sufficient conditions for provability of \(\phi \vdash \sigma; \sigma \in E \), i.e., *functionality* of \(\sigma \), and is frequently applied in combination with lemma 4.5.e \(\bar{x} ; X \in E \vdash X ; p = X ; p ; X \).

LEMMA 4.11. (Functionality). The assertion \(\phi \vdash \sigma; \sigma \in E \) is provable if one of the following assertions is provable:

a. If \(\sigma = \sum_{i=1}^n \sigma_i \) then \(\phi \vdash \sigma; \sigma \in E \) and \(\sum_{i<j}^{n} \sigma_i \sigma_j \in E \) u \(\{ \bar{\sigma}_i ; \sigma_i \in E \} \) i=1, \ldots, n.

b. If \(\sigma = \sigma_1 ; \ldots ; \sigma_n \) then \(\phi \vdash \sigma; \sigma \in E \).

c. If \(\sigma = \sigma_1 ; \sigma_2 \) then \(\phi \vdash \sigma_1 ; \sigma_1 \in E \), \(\bar{\sigma}_2 \sigma_2 \in E \).

d. If \(\sigma = \sigma_1 \sigma_2 \) then \(\phi \vdash \sigma_1 ; \sigma_1 \in E \) or \(\phi \vdash \sigma_2 ; \sigma_2 \in E \) or \(\phi \vdash \sigma_1 ; \sigma_2 ; \sigma_2 \in E \).

e. If \(\sigma = \mu_i X_1 \ldots X_n [\sigma_1, \ldots, \sigma_n] \) then \(\phi, \{ \bar{x}_i ; X_i \in E \} \) i=1, \ldots, n \vdash \{ \bar{\sigma}_i ; \sigma_i \in E \} \) i=1, \ldots, n.

Proof. Straightforward.
In the following chapters we shall often use the following notations:

1. $[\sigma_1, \ldots, \sigma_n]$ for $\pi_1^{\sigma_1} \cap \ldots \cap \pi_n^{\sigma_n}$.

2. $[\sigma_1 | \ldots | \sigma_n]$ for $\pi_1^{\sigma_1} \updownarrow \ldots \updownarrow \pi_n^{\sigma_n}$.
5. APPLICATIONS

5.1. An equivalence due to Morris

In [33] Morris proves equivalence of the following two recursive program schemes:

\[f(x,y) \equiv \text{if } p(x) \text{ then } y \text{ else } h(f(k(x),y)) \]

and

\[g(x,y) \equiv \text{if } p(x) \text{ then } y \text{ else } g(k(x),h(y)). \]

We present a proof in our framework.

The following equivalence is stated without proof:

Lemma 5.1. \(\vdash [A_1|\ldots|A_{i-1}|A_i^1|A_{i+1}^1|\ldots|A_n];\pi \equiv [A_1|\ldots|A_{i-1}|E|A_{i+1}^1|\ldots|A_n];\pi:A_i^1. \)

Theorem 5.1. (Morris)

Let \(F \equiv \mu X [[p|E];\pi_2 \cup [p'|E];[K|E];X;H] \) and \(G \equiv \mu X [[p|E];\pi_2 \cup [p'|E];[K|H];X]. \)

Then

\(\vdash F = G, [E|H];G = G;H. \)

Proof. Let \(\phi \) be empty, \(\psi(X,Y) \equiv \{X = Y, [E|H];Y = Y;H\}, \)
\(\sigma(X) \equiv [p|E];\pi_2 \cup [p'|E];[K|E];X;H \) and \(\tau(Y) \equiv [p|E];\pi_2 \cup [p'|E];[K|H];Y. \)

Hence, we must prove

\(\vdash \psi(\mu X[\sigma(X)], \mu Y[\tau(Y)]) \equiv \ldots \) \hspace{1cm} (5.1.1)

We intend to use Scott's induction rule. Unfortunately, this rule (as formulated in section 3.1) does not apply to (5.1.1), as, in case of a simultaneous induction argument, it only yields results about components of one simultaneous \(\mu \)-term.

However, the observation that
\[\vdash \mu X Y[\sigma(X), \tau(Y)] = \mu X[\sigma(X)] \]

and

\[\vdash \mu Y X[\sigma(X), \tau(Y)] = \mu Y[\tau(Y)] \]

are straightforward applications of the iteration lemma (lemma 4.10), gives us the equivalent assertion

\[\vdash \Psi(\mu X Y[\sigma(X), \tau(Y)], \mu Y X[\sigma(X), \tau(Y)]) \]

to which Scott's induction rule does apply.

Henceforth, such transitions will be tacitly assumed.

Thus, we have to prove:

1. \[\vdash \Psi(\varepsilon, \varepsilon). \] Obvious.

2. X = Y, [E|H]; Y = Y; H \[\vdash \sigma(X) = \tau(Y), [E|H]; \tau(Y) = \tau(Y); H. \]

 a. \[\sigma(X) = \tau(Y) : [p|E]; \pi \varepsilon \sqcup [p'|E]; [k|E]; x; h = (hyp.) \]
 \[[p|E]; \pi \varepsilon \sqcup [p'|E]; [k|E]; y; h = (hyp.) \]
 \[[p|E]; \pi \varepsilon \sqcup [p'|E]; [k|E]; [e|H]; y = (C_2) \]
 \[[p|E]; \pi \varepsilon \sqcup [p'|E]; [k|H]; y. \]

 b. \[[e|H]; \tau(Y) = \tau(Y); h : [e|H]; ([p|E]; \pi \varepsilon \sqcup [p'|E]; [k|H]; y) = \]
 \[= [e|H]; [p|E]; \pi \varepsilon \sqcup [e|H]; [p'|E]; [k|H]; y = (C_2) \]
 \[= [p|H]; \pi \varepsilon \sqcup [p'|k|H]; y = \]
 \[= (\text{lemma 5.1}) [p|E]; \pi \varepsilon \sqcup [p'|k|H]; [e|H]; y = \]
 \[= (hyp.) [p|E]; \pi \varepsilon \sqcup [p'|E]; [k|H]; y; h = \]
 \[= ([p|E]; \pi \varepsilon \sqcup [p'|E]; [k|H]; y); h. \]
5.2. An equivalence involving nested while statements

A proof of the following equivalence appeared, in a slightly different formulation, in [2]:

\[\mu X[A_1; X \cup A_2; X \cup E] = A_1 \ast E \cdot (A_2; A_1 \ast E) \ast E, \quad \ldots \] \hspace{1cm} (5.2.1)

where \(\ast E\) stands for \(\mu X[A; X \cup E]\) and "\(\ast\)" has priority over ";".

The present author feels, however, that the proof contained therein obscures some of the issues involved; these are: modular decomposition and the use of simultaneous recursion (compare modularity: lemma 2.8 and corollary 4.4). This can be understood as follows:

1. The modular decomposition of \(A_1; X \cup A_2; X \cup E\) as \(\sigma_1(X, \sigma_2(X))\), with \(\sigma_1(X, Y) \equiv A_1; X \cup Y\) and \(\sigma_2(X) \equiv A_2; X \cup E\), leads to
 \[\mu_1 XY[A_1; X \cup Y, A_2; X \cup E] = (\text{iteration}) \mu X[A_1; X \cup \mu Y[A_2; X \cup E]] = \]
 \[= (\text{fpp}) \mu X[A_1; X \cup A_2; X \cup E]. \]

2. \(A_1 \ast E \cdot (A_2; A_1 \ast E) \ast E = \mu_1 XY[A_1; X \cup E, A_2; X; Y \cup E]; \mu_2 XY[A_1; X \cup E, A_2; X; Y \cup E],\)
 which is also a consequence of iteration (lemma 4.10).

These observations suggest that (5.2.1) is a consequence of the following equivalence:

THEOREM 5.2. \(\vdash\) \(\mu_1 = \bar{\nu}_1; \bar{\nu}_2, \mu_2 = \bar{\nu}_2,\)

with \(\mu_i \equiv \mu_1 XY[A_1; X \cup Y, A_2; X \cup E]\) and \(\bar{\nu}_i \equiv \mu_1 XY[A_1; X \cup E, A_2; X; Y \cup E],\) \(i = 1, 2.\)

Proof. \(\subseteq:\) Follows by the minimal fixed point property (lemma 4.9.c) from:

a. \(\sigma_1(\bar{\nu}_1; \bar{\nu}_2; \bar{\nu}_2) = A_1; \bar{\nu}_1; \bar{\nu}_2 \cup \bar{\nu}_2 = (A_1; \bar{\nu}_1 \cup E); \bar{\nu}_2 = (\text{fpp}) \bar{\nu}_1; \bar{\nu}_2,\)

b. \(\sigma_2(\bar{\nu}_1; \bar{\nu}_2) = A_2; \bar{\nu}_1; \bar{\nu}_2 \cup E = (\text{fpp}) \bar{\nu}_2.\)

\(\supseteq:\) We prove \(\vdash\) \(\bar{\nu}_1; \mu_2 \leq \mu_1, \bar{\nu}_2 \leq \mu_2,\)

with \(\bar{\nu}_1; \bar{\nu}_2 \leq \bar{\nu}_1; \mu_2 \leq \mu_1\) as obvious consequence.
Let $\tau_1(X) = A_1; X \cup E$ and $\tau_2(X, Y) = A_2; X; Y \cup E$. Then we must prove, using Scott's induction rule:

1. $\Omega \subseteq \mu_2$, $\Omega; \mu_2 \subseteq \mu_1$. Obvious.

2. $X; \mu_2 \subseteq \mu_1$, $Y \subseteq \mu_2 \vdash \tau_1(X); \mu_2 \subseteq \mu_1$, $\tau_2(X, Y) \subseteq \mu_2$.
 a. $\tau_1(X); \mu_2 = (A_1; X \cup E); \mu_2 \subseteq (\text{hyp.}) A_1; \mu_1 \cup \mu_2 = (\text{fpp}) \mu_1$.
 b. $\tau_2(X, Y) = A_2; X; Y \cup E \subseteq (\text{hyp.}) A_2; X; \mu_2 \cup E \subseteq (\text{hyp.}) A_2; \mu_1 \cup E = (\text{fpp}) \mu_2$.

5.3. Wright's regularization of linear procedures

In [47] Wright obtains the following results:

a. The class of recursively enumerable subsets of \mathbb{N}_2^2 is the smallest class of sets with the successor relation S as member and closed under the operations \sim^ω, \sim^ω, and "$\mu X[Q \cup P; X; R]"$, where Q, P and R are subsets of \mathbb{N}_2^2 which are contained in this class.

b. In the proof of part a the main auxiliary result can be generalized to a setting in which N is replaced by any abstract domain D. This generalization is:

$$\vdash \mu X[Q \cup P; X; R] = \pi_1; \mu Y[E \cup \{P|R\}; Y] \circ (E \cap \pi_1; Q; \pi_2); \pi_2 \quad \ldots \quad (5.3.1)$$

In the present calculus (5.3.1) can be proved axiomatically.

The following two auxiliary lemmas are needed:

LEMMA 5.2. $\vdash [A|B]_{op} = E \cap \pi_1; A; \pi_1; p; \pi_2; \pi_2$.

Proof. Straightforward from lemma 4.5.c.

LEMMA 5.3. $\vdash \mu X[A; X \cup B]_{op} = \mu X[A \circ X \cup B_{op}]$.

Proof. Amounts to a straightforward application of Scott's induction rule.

Now Wright's result (5.3.1) follows by applying lemma 5.3 twice from
Theorem 5.3. (Wright)

\[
\vdash L \frac{\mu X.Q \cup P;X;R}{\pi_1;\mu X.(E \cap \pi_1;Q;\tilde{\pi}_2) \cup [P|\tilde{R}];X;\circ E \circ \pi_2}
\]

Proof. \(\subseteq\): Follows by the minimal fixed point property from:

- \(\tilde{\pi}_1;R E;\pi_2 = (fpp) \tilde{\pi}_1;(E \cap \pi_1;Q;\tilde{\pi}_2) \cup [P|\tilde{R}];R;\circ E;\pi_2 = \) (lemma 4.5.a)
- \(\tilde{\pi}_1;(E \cap \pi_1;Q;\tilde{\pi}_2);\pi_2 \cup \tilde{\pi}_1;[P|\tilde{R}];(R E);\pi_2 = \) (lemma 4.8)
- \(Q \cup \tilde{\pi}_1;[P|\tilde{R}];(R E);\pi_2 = \) (lemma 5.2)
- \(Q \cup \tilde{\pi}_1;(E \cap \pi_1;P;\tilde{\pi}_1;R E;\pi_2;R;\tilde{\pi}_2);\pi_2 = \) (lemma 4.8)
- \(Q \cup P;\tilde{\pi}_1;R E;\pi_2;R.\)

\(\supseteq\): One derives by similar techniques:

- \(\tilde{\pi}_1;(E \cap \pi_1;Q;\tilde{\pi}_2) \cup [P|\tilde{R}];(E \cap \pi_1;L;\tilde{\pi}_2);\pi_2 = L,\)

whence by lemmas 4.8 and 5.2

- \((E \cap \pi_1;Q;\tilde{\pi}_2) \cup [P|\tilde{R}];(E \cap \pi_1;L;\tilde{\pi}_2) \subseteq E \cap \pi_1;L;\tilde{\pi}_2,\)

and by the minimal fixed point property

- \(R E \subseteq E \cap \pi_1;L;\tilde{\pi}_2 \subseteq \pi_1;L;\tilde{\pi}_2,\)

By lemma 4.6.c one therefore obtains

- \(\tilde{\pi}_1;R E;\pi_2 \subseteq L.\)

The reader might notice that \(\tilde{\pi}_1;\mu X.(\pi_1;Q;\tilde{\pi}_2 \cap E) \cup [P|\tilde{R}];X;\circ E \circ \pi_2\) does not correspond with any program scheme. Using work of Luckham and Garland [14] this has been remedied in I. Guisarian [15] by replacing this term by an equivalent one which does correspond with a program scheme.

5.4. Axiomatization of the natural numbers

In general, programs manipulate data of a special structure, such as natural numbers, lists and trees. Consequently, proofs about the input-
output relationships of these programs often make use of the specific structural properties of these data. In order to axiomatize such proofs, we have to axiomatize relations over special domains. This is effected by adding certain axioms, characterizing the structural properties of these data as properties of certain relation constants (cf. example 1.3), to the general system of chapter 4. As the relational language \(M \) \(\mu \) is particularly suited to express induction arguments, the sequel is devoted to (1) the axiomatization of domains satisfying some induction rule and (2) the axiomatic derivation of properties of recursive programs manipulating data which belong to these domains.

To begin with, we discuss below an axiom system for the natural numbers \(N \) which improves on a similar system described in de Bakker and de Roever [2]. In the next section an axiomatic proof of the primitive recursion theorem is presented involving a simple termination argument; the reader should consult Hitchcock and Park [18] for a more elaborate theory of termination. Chapter 6 contains axiom systems for various types of trees and correctness proofs of programs, such as the TOWERS OF HANOI, which manipulate these structures.

In [2] the natural numbers \(N \) were axiomatized as follows:

Nonlogical constants are a boolean relation constant \(p_0^n \) and an individual relation constant \(S^n \). These satisfy:

\[
\begin{align*}
N_1 : & \quad \vdash S \cap p_0 = \Omega. \\
N_2 : & \quad \vdash S \subseteq E, \\
N_3 : & \quad \vdash S \cdot S = E, \\
N_4^* : & \quad \vdash E \subseteq \mu X[p_0 \cup S \cdot X; S].
\end{align*}
\]

Clearly, the intended interpretation of \(p_0 \) is \(\{<0,0>\} \) and of \(S \) is \(\{<n,n+1> \mid n \in N\} \). However, these axioms model also any number of disjoint copies of \(N \):
Let J be any nonempty index set, D_J be the disjoint union $\bigvee_{j \in J} N_j$ of $|J|$ copies of N, $m_j(p_0)$ be $\{<0, j>, <0, j> \mid j \in J\}$ and $m_j(S)$ be $\{<n, j>, <n+1, j> \mid n \in N, j \in J\}$.

Then $D_J, m_j(p_0), m_j(S)$ satisfies N_1, N_2, N_3 and $N_4^*.$

Let $R^* \equiv \mu X[R; X \cup E]$. Note that

$$\vdash \mu X[R; X \cup E] = \mu X[X; R \cup E] \quad \ldots \quad (5.4.1)$$

is a consequence of Scott's induction rule.

Then we exclude disjoint copies of N from being models by replacing N_4^* by

$$N_4 : \vdash U \subseteq S^* ; p_0 ; S^* .$$

This can be understood as follows:

Assume to the contrary that the underlying domain of some model for N_1, N_2, N_3 and N_4 contains two disjoint copies of N, say N_a and N_b. Certainly $<0_a, 0_b> \in U$, whence N_4 implies $<0_a, 0_b> \in S^* ; p_0 ; S^*$. By N_1 and N_2, $<0_a, 0_a> \in S^*$ and $<0_b, 0_b> \in S^*$ are the only pairs contained in S^* and S^* with 0_a as first and 0_b as second element, respectively. Therefore, by definition of $"; "$, $<0_a, 0_b> \in p_0$, and this contradicts $p_0 \subseteq E$.

Henceforth, N designates the type of the natural numbers, i.e., of any structure satisfying N_1, N_2, N_3 and N_4^*.

As first consequence of these axioms atomicity of p_0 is derived. Following example 1.2.f this is expressed by

Lemma 5.4. $\vdash p_0 ; U \cap U ; p_0 \subseteq p_0^*$

Proof. $p_0 ; U \cap U ; p_0 = (\text{lemma 4.3.e}) \ p_0 ; U ; p_0 \subseteq (N_4) \ p_0 ; S^* ; p_0 ; S^* ; p_0 = \
= (\text{fpp and (5.4.1)}) \ p_0 ; (S^* ; U \cup E) ; p_0 ; (S^* ; S \cup E) ; p_0 = \
= (N_1 \text{ and } N_2) \ p_0 ; p_0 ; p_0 = (\text{lemma 4.4}) \ p_0^*.$
Secondly, N_4^\times follows from

Lemma 5.5. $\vdash E = \mu X[p_0 \cup \ddot{s};X;S]$.

Proof. \subseteq: Derive $\vdash E \cap \ddot{s};p_0;S^* \subseteq \mu X[p_0 \cup \ddot{s};X;S]$ by Scott's induction rule.

Then the result follows from N_4.

We prove

$$E \cap X;p_0;S^* \subseteq \mu X[p_0 \cup \ddot{s};X;S] \vdash E \cap (\ddot{s};X \cup E);p_0;S^* \subseteq \mu X[p_0 \cup \ddot{s};X;S].$$

As

$$E \cap (\ddot{s};X \cup E);p_0;S^* = (E \cap \ddot{s};X;p_0;S^*) \cup (E \cap p_0;S^*),$$

the proof of this splits into two parts:

a. $E \cap p_0;S^* = (\text{Lemma 4.3.e}) p_0 \cap p_0;S^* \subseteq p_0 \subseteq (\text{fpp}) \mu X[p_0 \cup \ddot{s};X;S]$.

b. $E \cap \ddot{s};X;p_0;S^* = (N_1 \text{ and } N_2, (5.4.1) \text{ and fpp}) \ddot{s};S \cap \ddot{s};X;p_0;(S^*;S \cup E) = (N_1) \ddot{s};S \cap \ddot{s};X;p_0;S^*;S \subseteq (\text{hyp., Lemma 4.3.a}) \ddot{s};X[p_0 \cup \ddot{s};X;S];S \subseteq (\text{fpp}) \mu X[p_0 \cup \ddot{s};X;S]$.

\supseteq: Straightforward from Scott's induction rule.

Let eq stand for $\mu X[[p_0;p_0] \cup [\ddot{s};\ddot{s}];X;[S,S]]$.

Clearly, $\langle<n,m>,<n,m>\rangle \in eq$ iff $n = m$. In relational formulation, this amounts to

Lemma 5.6. $\vdash eq;\pi_1 = \pi_2$

(5.4.2)

Proof. First we prove $\vdash [p_0;p_0];\pi_1 = [p_0;p_0];\pi_2$

(5.4.3)

a. $[p_0;p_0];\pi_1 = (\text{Lemma 4.6.b}) (\pi_1;p_0;\pi_1 \cap \pi_2;p_0;\pi_2);(\pi_1 \cap \pi_2;U) = (\text{C}_2) \pi_1;p_0 \cap \pi_2;p_0;U = (\text{Lemma 4.3.e}) \pi_1;p_0 \cap \pi_2;p_0;U;p_0 = (\text{Lemma 5.4 and monotonicity}) \pi_1;p_0 \cap \pi_2;p_0$.

b. $[p_0;p_0];\pi_2 = \pi_1;p_0 \cap \pi_2;p_0$ is similarly derived.

c. Combination of parts a and b then yields (5.4.3).
Next we prove (5.4.2).
\[\subseteq \text{ Use Scott's induction rule on eq. By lemma 5.5 we have to prove parts } \]
d \text{ and } e \text{ below:}
\[d. \vdash \left[S \mid p_0 \mid p_0 \right] \pi_1 \subseteq \{ u \mid u \mid p_0 \cup S ; S \}\mid u \mid p_0 \cup S ; S \}; \pi_2 \]

\[\text{Use (5.4.2) and the fixed point property in } L. \]
\[e. x; \pi_1 \subseteq L; \pi_2 \mid [S \mid S]; x; [S \mid S]; \pi_1 \subseteq L; \pi_2. \]
\[[S \mid S]; x; [S \mid S]; \pi_1 = [S \mid S]; x; \pi_1; S \subseteq (\text{hyp.}) [S \mid S]; L; \pi_2; S = \]
\[= [S \mid S]; L; [S \mid S]; \pi_2 \subseteq (\text{fpp}) L; \pi_2. \]

\[\supseteq \text{ Similarly.} \]

5.5. The primitive recursion theorem

This is the following theorem:

THEOREM 5.4. Let \(G : N^N \to N \) and \(H : N^{n+2} \to N \) be primitive recursive func-
tions. Then there exists an unique total function \(F : N^{n+1} \to N \) such that,
for all \(x_1, \ldots, x_n, y \in N \):

\[F(x_1, \ldots, x_n, y) = \text{if } y = 0 \text{ then } G(x_1, \ldots, x_n) \text{ else } \]
\[H(x_1, \ldots, x_n, y-1, F(x_1, \ldots, x_n, y-1)) \]

\[\ldots \quad (5.5.1) \]

Proof. To simplify the notation we take \(n = 1 \).
The minimal solution of (5.5.1) is

\[\mu x [\pi_2 \circ p_0 ; \pi_1 ; G \cup [\pi_1, \pi_2, S, [E[S]; X]; H]. \]

We prove below that \(\mu F \) is total. By the minimal fixed point property, then
certainly \(\mu F \subseteq F \), if \(F \) is any solution of (5.5.1). If \(F \) is a function, then
\(\mu \tau \subseteq F \) implies by lemma 4.3.c that \(\mu \tau = \mu \tau \circ E; F \), whence \(\mu \tau = F \) follows from totality of \(\mu \tau \). It remains to be demonstrated that such an \(F \) exists, i.e., \(\mu \tau \) is functional; this follows from Scott's induction rule by repeated application of lemma 4.11.

Lemma 5.7. \(\Gamma \vdash E^1,1 = E^1,1 \), \(H \vdash E^1,1 = E^3,3 \) \(\vdash E^2,2 \subseteq \mu \tau ; U^1,2 \),

with \(\sigma^{j,k} \equiv \sigma \underbrace{N \times N \times \ldots \times N}_{j \text{ times}} \underbrace{N \times N \times \ldots \times N}_{k \text{ times}} \).

Proof. Assume \(\Gamma \vdash E^1,1 = E^1,1 \) and \(H \vdash E^1,1 = E^3,3 \)

Then

\[\vdash E^2,2 = [E^1,1|\mu X[p_0 \cup \tilde{s};X;S]] \]

holds by lemma 5.5 and

\[\vdash [E^1,1|\mu X[p_0 \cup \tilde{s};X;S]] \subseteq \mu \tau ; U^1,2 \]

follows from Scott's induction rule as proved below, whence the result.

We prove the induction step only:

\[[E^1,1|X] \subseteq \mu \tau ; U^1,2 \rightarrow [E^1,1|p_0 \cup \tilde{s};X;S] \subseteq \mu \tau ; U^1,2. \]

\(\mu \tau ; U^1,2 = (fpp) [E|p_0]; \pi_1; G; U^1,2 \cup [\pi_1; \pi_2; \tilde{s}; [E|\tilde{s}]; \mu \tau]; H; U^1,2 \)

\[\ldots = (\text{lemma 4.3.c by totality of } \pi_1, G \text{ and } H) \]

\[[E|p_0]; U^2,2 \cup [\pi_1; \pi_2; \tilde{s}; [E|\tilde{s}]; \mu \tau]; U^3,2 \]

\[\ldots = (\text{lemma 4.6.b}) \]

\[[E|p_0]; U^2,2 \cup (\pi_2; \tilde{s}; U^1,2 \cap [E|\tilde{s}]; \mu \tau ; U^1,2) \]

\[\ldots \geq [E|p_0]; U^2,2 \cup [E|\tilde{s}]; \mu \tau ; U^1,2; [E|S] \]

\[\ldots \geq (\text{hyp.}) [E|p_0 \cup \tilde{s};X;S]. \]

Remark. Since in the proof above the induction argument applies to the very structure of the underlying domain, we run here up against the axiomatic counterpart of Burstall's *structural induction* (cf. [8]).
6. AXIOMATIC LIST PROCESSING

6.1. Lists, linear lists and ordered linear lists

For our purpose it is sufficient to characterize a domain of lists as a collection of binary trees which is closed w.r.t. the following operations:

1. taking a binary tree t apart by applying the car and cdr functions, resulting in its constituent subtrees $\text{car}(t)$ and $\text{cdr}(t)$, if possible; otherwise, t is an atom and satisfies the predicate $\text{at}(t)$, whence $\text{at}(t) = t$.

2. constructing a new binary tree from two old ones by application of the function cons,

where car, cdr and cons are related by $\text{car} = \text{cons};\pi_1$ and $\text{cdr} = \text{cons};\pi_2$.

Thus we introduce one (applied) individual constant $\text{cons}^{\eta \times \eta};\eta$ and one (applied) boolean constant $\text{at}^{\eta};\eta$ and postulate these to satisfy the following axioms:

\[
\begin{align*}
L_1 : & \vdash \text{cons};\text{cons} = E^{\eta \times \eta},\eta \\
L_2 : & \vdash \text{cons};\text{cons} \subseteq E^{\eta},\eta \\
L_3 : & \vdash \text{at};\text{cons};\text{cons} = \Omega^{\eta},\eta \\
L_4 : & \vdash E^{\eta},\eta \subseteq \mu X[\text{at} \cup [\text{cons};\pi_1;X,\text{cons};\pi_2;X];\text{cons}].
\end{align*}
\]

Remarks. 1. L_1 implies that cons is total and cons, whence cons;\pi_1 and cons;\pi_2 (by lemma 4.11), are functions, L_2 that cons is a function, L_3 that an atom can never be taken apart and L_4 that any list is either an atom or can be first taken apart and then fitted together again.

2. Satisfaction of these axioms establishes $\langle D_{\eta};\text{at},\text{cons} \rangle$ as a structure of lists. This leads us to introduce a new type, L, reserved for lists, resulting in $\langle L,L \rangle$ and $\langle L \times L,L \rangle$ as new types for at and cons. If there is no confusion between different domains of lists, L is also used to indicate a domain of lists.

3. cons;\pi_1 and cons;\pi_2 will be referred to as car and cdr. ... (6.1.1)
Linear lists are lists with the additional property that \(\text{car}(l) \) is always an atom. Thus we obtain axioms for linear lists by replacing \(L_1 \) by

\[
LL_1 : \vdash \text{cons} ; \text{cons} = [\pi_1 ; \text{at}, \pi_2],
\]

postulating \(L_2 \) and \(L_3 \), and replacing \(L_4 \) by

\[
LL_4 : \vdash \nu^n \eta \subseteq \nu X [\text{at} \cup [\text{car}, \text{cdr}; X]; \text{cons}].
\]

\(LL \) is then introduced as type for linear lists.

With linear lists as domain and range some interesting properties can be proved, such as

1. if \(\text{conc} \) stands for \(\nu X [\text{cons} \cup [\pi_1 ; \text{car}, [\pi_1 ; \text{cdr}, \pi_2]; X]; \text{cons}] \), i.e.,
 \[
 \text{conc}(l_1, l_2) \iff \begin{cases} \text{atom}(l_1) \text{ then conc}(l_1, l_2) \text{ else conc(car}(l_1), \\
 \text{conc(cdr}(l_1), l_2)) \end{cases},
 \]
 then \(\text{conc} \) is associative, i.e., \(\text{conc} (\text{conc}(l_1, l_2), l_3) = \text{conc}(l_1, \text{conc}(l_2, l_3)) \), cf. McCarthy [29],
 ...(6.1.2)

2. if \(\text{first} \) and \(\text{last} \) stand for \((\text{at} \cup \text{car}) \) and \(\nu X [\text{at} \cup \text{cdr}; X] \), ...
 ...(6.1.3)
 respectively, then \(\text{conc} ; \text{first} = \pi_1 ; \text{first} \) and \(\text{conc} ; \text{last} = \pi_2 ; \text{last} \),

3. \(\text{conc} \) is a total function.

It is proved in lemma 6.3 that these properties of linear lists can be obtained as corollaries of the analogous properties for ordered linear lists.

Ordered Linear lists are linear lists with the additional property that some relation holds between the subsequent atoms of these lists. For convenience, we do not use a relation \(\prec' \), holding, e.g., between \(l_1 \) and \(l_2 \); \(l_1 \prec' l_2 \), but introduce the characteristic predicate \(\prec \) of this relation:

\[
\prec\langle l_1, l_2 \rangle \iff \prec\langle l_1, l_2 \rangle, \text{ i.e., } \prec = \pi_1 ; \prec' ; \pi_2 \cap E.
\]

...(6.1.4)

In principle \(\prec' \) need not be a partial order at all; many interesting properties can be proved without this requirement: theorems 6.1 and 6.3 establish (1) and a variant of (2) above for ordered linear lists and theorem 6.2 establishes \(\text{conc} ; E = \prec \), i.e., \(\text{conc}(l_1, l_2) \) is defined iff \(l_1 \prec l_2 \).
In order to axiomatize ordered linear lists we introduce therefore a
boolean constant $\llcorner n \times n, n \times n \lrcorner$, replace LL_1 by $\vdash \text{cons;}\text{cons} = [\pi_1; \text{at}, \pi_2]; \llcorner$, i.e.,
$\langle \text{car}(1), \text{cdr}(1) \rangle \llcorner \langle \text{car}(1), \text{cdr}(1) \rangle$, and stipulate that $\langle \text{at}_i, \text{at}_{i+1} \rangle \llcorner$
$\langle \text{at}_i, \text{at}_{i+1} \rangle$ holds for all subsequent atoms at_i and at_{i+1} which constitute
an ordered linear list. This leads to the following axioms for ordered
linear lists:

$$OLL_1 : \vdash \text{cons;}\text{cons} = [\pi_1; \text{at}, \pi_2]; \llcorner$$
$$OLL_2 : \vdash \text{cons;}\text{cons} \subseteq E^{n, n}$$
$$OLL_3 : \vdash \text{at} \cap \text{cons;}\text{cons} = \Omega^{n, n}$$
$$OLL_4 : \vdash E^{n, n} \subseteq \mu X [\text{at} \cup [\text{car}, \text{cdr}; X]; \text{cons}]$$
$$OLL_5 : \vdash \llcorner = [\pi_1; \text{last}, \pi_2; \text{first}]_0 \llcorner,$$

with last and first as defined in (6.1.3).

Remarks. OLL is introduced as type for ordered linear lists and
$(\text{at} \cup [\text{car}, \text{cdr}; X]; \text{cons})$ will be referred to as τ_{OLL}. Then OLL_4 reads as
$\vdash E^{n, n} \subseteq \mu X [\tau_{OLL}]$.

First some simple properties of at, car, cdr, cons and \llcorner are collected in

Lemma 6.1. Let at' denote $[\text{car}, \text{cdr}; \text{cons}$ (or $\text{cons};\text{cons}$, which is equivalent) then the following properties hold for

a. **Lists:** $\vdash E = \mu X [\text{at} \cup [\text{car}; X, \text{cdr}; X]; \text{cons}]$, at $\cup at' = E$, cons; at' = cons,
 cons; at = Ω.

b. **Linear lists:** $\vdash E = \mu X [\text{at} \cup [\text{car}, \text{cdr}; X]; \text{cons}]$, cons; $\text{cons} = \pi_1 \circ \text{at}$,
 car; at = car, car; at' = Ω.

c. **Ordered linear lists:** $\vdash \text{cons;}\text{cons} = \pi_1 \circ \text{at}; \llcorner$.

Proof. a. $E = \mu X [\text{at} \cup [\text{car}; X, \text{cdr}; X]; \text{cons}] \subseteq \text{Axiom } L_4$.

b. Use I with ϕ empty, taking $[X \subseteq E]$ for ψ and $(\text{at} \cup [\text{car}; X, \text{cdr}; X]; \text{cons})$
 for σ.

 $\text{at} \cup at' = E : E = \mu X [\text{at} \cup [\text{car}; X, \text{cdr}; X]; \text{cons}]$
 $\quad \quad \quad \quad \quad \quad \quad \quad = (\text{fpp}) \text{ at} \cup [\text{car}, \text{cdr}]; \text{cons}$.

cons; at' = cons : cons; at' = cons; cons = (L_1) cons.
cons; at = \Omega : cons; at = cons; cons \cdot E ; at = (L_2) cons; (cons; cons \cap at) = (L_3) \Omega.

b. E = \mu X[\text{at } \cup \text{[car, cdr, X]; cons}]: Similar to above.
cons; cons = \pi_1 \cdot at : Obvious from LL_1.
car; at = car : cons; \pi_1; at = (lemma 4.5.e) cons; cons \cdot E \cdot \pi_1 \cdot at \cdot \pi_1 = (from above) cons; cons \cdot E \cdot \pi_1 = cons; \pi_1.
car; at' = \Omega : cons; \pi_1; at' = cons; [\pi_1; at, \pi_2; \pi_1; at] = cons; \pi_1; (at \cap at') = (L_3) \Omega.

In the proofs of this chapter the following property, lemma 4.5.e, is often implicitly applied: X;X \subseteq E \vdash X; p = X; p ; X. Functionality of the terms involved is proved by repeated application of lemma 4.11 and may require in the induction steps X; X \subseteq E as additional hypothesis and \tau_{\text{OLL}}(X); \tau_{\text{OLL}}(X) \subseteq E as additional conclusion.

Next we establish an auxiliary lemma.

Lemma 6.2. \(\vdash [\pi_1; at, \pi_2; cons, \pi_3]; \text{conc} = \)
\[= [\pi_1; at, \pi_2; cons, \pi_3]; \text{conc} = [\pi_1; at, \pi_2; cons, \pi_3]; \text{conc}. \]

Proof. \(\vdash [\pi_1; at, \pi_2; cons, \pi_3]; \text{conc} = \)
\[= [\pi_1; at, \pi_2; cons, \pi_3]; [\pi_1; car, [\pi_1; cdr, \pi_2]; \text{conc}; cons = [\pi_1; at, \pi_2; cons, cons, \pi_1, [\pi_1; at, \pi_2]; cons, cons, \pi_2, \pi_3]; \text{conc}; cons, as may be proved using C_2 and (6.1.1),
\]
\[\ldots = (OLL_1) [\pi_1; at, \pi_2]; \pi_1, [\pi_1; at, \pi_2]; \pi_2, \pi_3]; \text{conc}; cons, whence by lemma 4.5.e and cor. 4.2 the result follows. \]

The fundamental theorem of this section is

Theorem 6.1. \(\vdash \text{conc; first} = \pi_1; \text{first}, \text{conc; last} = \pi_2; \text{last}. \)

Proof. We derive \(\vdash \text{conc; first} = \pi_1; \text{first} \) as an example; the proof of \(\vdash \text{conc; last} = \pi_2; \text{last} \) uses similar techniques.
By lemma 6.1 it is sufficient to prove \(\vdash [\pi_1; \mu X[\tau_{OLL}], \pi_2]; \text{conc}; \text{first} = \\cdots \) \(\vdash \). Use I with \(\emptyset \) empty, taking
\(\{ [\pi_1; \pi_2]; \text{conc}; \text{first} = [\pi_1; \pi_2]; \ll; \pi_1; \text{first} \} \) for \(\Psi \) and \(\tau_{OLL} \) for \(\sigma \).

\(\vdash \Psi(\emptyset) \). Obvious.

\(\Psi(X) \vdash \Psi(\tau_{OLL}(X)). \)

1. \([\pi_1; \text{at}, \pi_2]; \text{conc}; \text{first} = (\text{lemma 6.1}) \ [\pi_1; \text{at}, \pi_2]; \text{conc}; \text{car} = \) \(\vdash \).

2. The nucleus of the proof:
\(\vdash \).

3. \([\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \text{conc}; \text{first} = (\text{lemmas 6.1 and 6.2}) \ [\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \text{conc}; \text{first} = \) \(\vdash \).

4. \([\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \ll; \pi_1; \text{first} = (\text{lemma 4.5.e}) \ [\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \ll; \pi_1; \text{car} = \) \(\vdash \).

5. \([\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \ll; \pi_1; \text{car} = (\text{OLL} _5 \text{ and cor. } 4.2) \ [\pi_1; \text{car}, \pi_1; \text{cdr}; X]; \text{cons}, \pi_2]; \ll; \pi_1; \text{car} = \) \(\vdash \).

6. The proof of the induction step follows from part 1 and
\(\vdash \).

We apply this theorem for the first time in

Theorem 6.2. \(\vdash \text{conc} \circ \text{E} = \ll. \)

\(* \) This corresponds with structural induction on the first coordinate, cf. section 5.5.
Proof.

1. $\text{conc} \circ E = (\text{fpp})$

 $$([\pi_1; \text{at}, \pi_2]; \text{cons} \cup [\pi_1; \text{car}, [\pi_1; \text{cdr}, \pi_2]; \text{conc}]; \text{cons}) \circ E.$$

2. $$([\pi_1; \text{at}, \pi_2]; \text{cons}) \circ E = [\pi_1; \text{at}, \pi_2] \circ \kappa.$$

3. $$([\pi_1; \text{car}, [\pi_1; \text{cdr}, \pi_2]; \text{conc}]; \text{cons}) \circ E =$$
 $$= (\text{OLL}_5 \text{ and theorem 6.1}) [\pi_1; \text{car}, [\pi_1; \text{cdr}, \pi_2]; \kappa; \pi_1] \circ \kappa =$$
 $$= [\pi_1; \text{car}, \pi_1; \text{cdr}] \circ \kappa; [\pi_1; \text{cdr}, \pi_2] \circ \kappa =$$
 $$= [\pi_1; \text{car}, \text{cdr}; \text{cons}, \pi_2] \circ \kappa.$$

By combining parts 1, 2 and 3 one obtains the result from lemmas 4.5.b and 6.1.

Next we prove the classical

THEOREM 6.3. (Associativity of conc).

$$\vdash [[[\pi_1; \pi_2]; \text{conc}, \pi_3]; \text{conc}] = [[[\pi_1; \pi_2; \pi_3]; \text{conc}]; \text{conc}].$$

Proof. By lemma 6.1 it is sufficient to prove

$$\vdash [[[\pi_1; \text{at}, \tau_{\text{OLL}}]; \pi_2]; \text{conc}, \pi_3]; \text{conc} = [[[\pi_1; \mu X[\tau_{\text{OLL}}], \pi_2; \pi_3]; \text{conc}]; \text{conc}].$$

Use I with ϕ empty, taking $\{[[\pi_1; \text{at}, \pi_2]; \text{conc}, \pi_3]; \text{conc} = [[[\pi_1; \text{at}, \pi_2; \pi_3]; \text{conc}]; \text{conc}\}$

for ψ and τ_{OLL} for σ.

$$\vdash \psi(\Omega).$$ Obvious.

$$\psi(\Omega) \vdash \psi(\tau_{\text{OLL}}(X)).$$ Follows from parts 1 and 2 below.

1. Lemma 6.2 and theorem 6.1 imply $[[[\pi_1; \text{at}, \pi_2]; \text{cons}, \pi_2]; \text{conc} =$$
 $$= [[[\pi_1; \text{at}, \pi_2; \pi_3]; \text{conc}]; \text{cons}]$$.

2. $[[[\pi_1; \text{car}, \pi_1; \text{cdr}, X]; \text{cons}, \pi_2]; \text{conc}, \pi_3]; \text{conc} =$
 $$= (\text{fpp, } \text{OLL}_5, \text{ theorem 6.1}) [[[\pi_1; \text{car}, [\pi_1; \text{cdr}, X; \pi_2]; \text{conc}]; \text{cons}, \pi_3]; \text{conc} =$$
 $$= (\text{similarly}) [\pi_1; \text{car}, [[[\pi_1; \text{cdr}, X; \pi_2]; \text{conc}], \pi_3]; \text{conc}; \text{cons} =$$
 $$= (\text{hypothesis}) [\pi_1; \text{car}, [\pi_1; \text{cdr}, X; [\pi_2; \pi_3]; \text{conc}]; \text{conc}; \text{cons} =$$
 $$= [[[\pi_1; \text{car}, \text{cdr}, X]; \text{cons}, [\pi_2; \pi_3]; \text{conc}]; \text{conc}].$$

Finally we observe that, although intuitively not obvious, linear
lists are a special case of ordered linear lists.

This follows from
(1) totality of last and first for linear lists, the proof of which is a matter of routine,

and

(2) the fact that substitution in \(\text{OLL}_1, \ldots, \text{OLL}_5\) of \(E^{n \times n}, n \times n\) for \(\prec^{n \times n}, n \times n\)

results in \(\text{LL}_1, \ldots, \text{LL}_4\) and \(\vdash E^{n \times n}, n \times n = [\pi_1; \text{last}, \pi_2; \text{first}] \circ E^{n \times n}, n \times n\),

which is proved by \([\pi_1; \text{last}, \pi_2; \text{first}] \circ E^{n \times n}, n \times n = (\text{corollary } 4.3)\)

\((\pi_1; \text{last}) \circ E^{n}, n ; (\pi_2; \text{first}) \circ E^{n}, n = \pi_1 \circ (\text{last} \circ E^{n}, n) ; \pi_2 \circ (\text{first} \circ E^{n}, n) =\)

\(= \text{(part 1 above)} \pi_1 \circ E^{n}, n ; \pi_2 \circ E^{n}, n = (\text{lemma } 4.6) E^{n \times n}, n \times n\).

Hence we have, a fortiori,

Lemma 6.3. Any property of ordered linear lists holds upon substitution of \(\prec\) by \(E^{\text{LL} \times \text{LL}}, \text{LL} \times \text{LL}\) for linear lists.

6.2. Properties of head and tail

The head and tail functions \(\text{hd}\) and \(\text{tl}\), both of type \(<\mathbb{N}^+ \times \text{OLL}, \text{OLL}>\),

where \(\mathbb{N}^+\) is the type of the positive natural numbers and \(\text{OLL}\) the type of ordered linear lists, are defined by

(1) \(\text{hd}(n,1)\) is the ordered linear list of \(n\) elements which constitutes the initial part of \(1\) of length \(n\), if extant, and

(2) \(\text{tl}(n,1)\) is the ordered linear list which constitutes the remainder of \(1\), after \(\text{hd}(n,1)\) has been chopped off, if possible.

If both sides are defined, clearly properties such as

\[\text{conc(\text{hd}(n,1),\text{tl}(n,1))} = 1, \ \text{tl}(n+1,1) = \text{cdr(\text{tl}(n,1))},\]

\[\text{conc(\text{hd}(n,1),\text{car(\text{tl}(n,1))})} = \text{hd}(n+1,1), \ \text{tl}(n,\text{conc(\text{hd}(n,1),l_2)}) = l_2 \text{ and}\]

\[\text{hd}(n,\text{conc(\text{hd}(n,1),l_2)}) = \text{hd}(n,l_1)\] are valid and therefore amenable to proof within our system.

First we observe that the axioms for \(\mathbb{N}^+\) are the axioms for \(\mathbb{N}\) which are modified by "renaming" \(p_0\) as \(p_1\) (\(p'_0\) is renamed as \(p'_1\), too).

Next we introduce some notation:
hd denotes $\mu X[\pi_1^{op_1};\pi_2^{car} \cup [\pi_2^{car},\pi_1;\bar{S},\pi_2^{cdr};X];\text{cons}]$, ... (6.2.1)
tl denotes $\mu X[\pi_1^{op_1};\pi_2^{cdr} \cup [\pi_1^{S},\pi_2^{cdr};X])$, ... (6.2.2)
$\pi_{i_1}, \ldots, \pi_{i_n}$ denotes $[\pi_{i_1}, \ldots, \pi_{i_n}]$. ... (6.2.3)

Then the above mentioned properties are established in

THEOREM 6.4.

a. $\vdash [hd, tl]; conc = [hd, tl]^{<} ; \pi_2$, of type $<N^+xOLL, OLL>$.
b. $\vdash tl; cdr = [\pi_1^{S}, \pi_2^{S}]; tl$, of type $<N^+xOLL, OLL>$.
c. $\vdash [hd, tl; car]; conc = [\pi_1^{S}, \pi_2^{S}]; hd$, of type $<N^+xOLL, OLL>$.
d. $\vdash [\pi_1^{S}, \pi_1^{S}; hd, \pi_3^{S}]; conc; tl = [\pi_1^{S}, \pi_1^{S}; hd, \pi_3^{S}]^{<} ; \pi_3$, of type $<N^+xOLLxOLL, OLL>$.
e. $\vdash [\pi_1^{S}, \pi_1^{S}; hd, \pi_3^{S}]; conc; hd = [\pi_1^{S}, \pi_1^{S}; hd, \pi_3^{S}]^{<} ; \pi_1^{S}; hd$, of type $<N^+xOLLxOLL, OLL>$.
f. $\vdash tl^{<E} = [hd, tl]^{<} \pi_2$, of type $<N^+xOLL, N^+xOLL>$.

Proof. The techniques required for proving this theorem are illustrated by proving parts a and e.

a. First we prove $\vdash [hd, tl]; conc \leq \pi_2$. Then the result follows from

$[hd, tl]; conc = (\text{lemma 4.3.d}) ([hd, tl]; conc)^{<E} ; \pi_2 = (\text{theorem 6.2})$

$[hd, tl]^{<} ; \pi_2$.

Apply I, with ϕ empty and taking $\{[hd, tl]; X \leq \pi_2\}$ for Ψ and (cons $\cup [\pi_1^{S}; car, [\pi_1^{S}; cdr, \pi_2^{S}]; X]; \text{cons}$) for σ. Then $\Psi(X) \vdash \Psi(\sigma(X))$ follows from parts 1 and 2 below.

1. $[hd, tl]; cons = (OLL_1) [hd; at, tl]; \leq; cons = (fpp$ and lemma 6.1)

$\pi_1^{op_1}; [\pi_2^{S}; car, \pi_2^{S}; cdr]; \leq; cons \leq (OLL_2) \pi_2$.

2. $[hd, tl]; [\pi_1^{S}; car, [\pi_1^{S}; cdr, \pi_2^{S}]; X]; cons = [hd; car, [hd; cdr, tl]; X]; cons =$

$\leq (fpp$ and lemma 6.1)

$[\pi_1^{S}; car, [[\pi_1^{S}; \pi_2^{S}; cdr]; hd, [\pi_1^{S}; \bar{S}, \pi_2^{S}; cdr]; tl]; X]; cons \leq \text{hypothesis}$

$[\pi_2^{S}; car, [[\pi_1^{S}; \bar{S}, \pi_2^{S}; cdr]; \pi_2]; cons \leq (OLL_2) \pi_2$.

e. Apply \(I\), with \(\emptyset\) empty, taking \([\pi_1;[\pi_1;\pi_2;\text{hd},\pi_3];\text{conc}];X = \[
\pi_1,2:\text{hd},\pi_3\] \prec; \pi_1,2:X\} \text{ for } \Psi \text{ and } (\pi_1;\text{op}_1;\text{car} \cup \[
\pi_2;\text{car},[\pi_1;\tilde{S},\pi_2;\text{cdr}];\text{X};\text{cons}\} \text{ for } \sigma. \text{ Then } \Psi(X) \vdash \Psi(\sigma(X)) \text{ follows from part } 1 \text{ and } 4 \text{ below.}

1. It follows from lemma 4.3.d that \([\pi_1,2;\text{hd},\pi_3];\text{conc};\text{car} \leq (\text{fpp}) \pi_2;\text{car}\) and \([\pi_1,2;\text{hd},\pi_3];\text{conc};\text{car} \circ \text{E} = [\pi_1,2;\text{hd},\pi_3] \circ (\text{conc} \circ \text{at}'\right) = (\text{fpp})\) \([\pi_1,2;\text{hd},\pi_3] \circ (\text{conc} \circ \text{E}) = (\text{theorem } 6.2) [\pi_1,2;\text{hd},\pi_3] \circ \prec \text{ together imply} \]

\([\pi_1,2;\text{hd},\pi_3];\text{conc};\text{car} = [\pi_1,2;\text{hd},\pi_3] \circ \prec ; \pi_2;\text{car}.

2. \([\pi_1,2;\text{hd},\pi_3];\text{conc};\text{cdr} = \[
\pi_1,2;\text{hd},\pi_3;\circ \prec ;(\pi_1;\text{op}_1;\pi_3 \cup \pi_1;\text{op}_1';[\pi_1,2;\text{hd};\text{cdr},\pi_3];\text{conc}) \text{ is proved similarly.}

3. \pi_1,2;\text{hd};\text{cdr} = (\text{fpp}) [\pi_1;\tilde{S},\pi_2;\text{cdr}] ;\text{hd}.

4. \([\pi_1;[\pi_1,2;\text{hd},\pi_3];\text{conc}];\pi_1;\text{op}_1;[\pi_2;\text{car},[\pi_1;\tilde{S},\pi_2;\text{cdr}];\text{X}];\text{cons} = \)

\(= (\text{parts } 1 \text{ and } 2) \]

\([\pi_1,2;\text{hd},\pi_3] \circ \prec ; \pi_1;\text{op}_1 ; \pi_2;\text{car},[\pi_1;\tilde{S},\pi_2;\text{hd},\pi_3];\text{conc};\text{X}];\text{cons} = \)

\(= (\text{part } 3) \]

\([\pi_1,2;\text{hd},\pi_3] \circ \prec ; \pi_1;\text{op}_1 ; \]

\([\pi_2;\text{car},[\pi_1;\tilde{S},\pi_2;\text{hd},\pi_3];\text{conc};\text{X}];\text{cons} = \)

\(= (\text{hypothesis}) [\pi_1,2;\text{hd},\pi_3] \circ \prec ; \pi_1;\text{op}_1 ;\pi_2;\text{car},[\pi_1;\tilde{S},\pi_2;\text{cdr};\text{X}];\text{cons}.

\text{Since } \prec = \pi_1;\prec' ; \tilde{\pi}_2 \cap \text{E} (6.1.4), \text{ transitivity of the relation } \prec', \text{ i.e., the property } \prec' ; \prec' \subseteq \prec', \text{ implies } \pi_1,2;\circ \prec ; \pi_2,3;\circ \prec \subseteq \pi_1,3;\circ \prec, \text{ transitivity of the predicate } \circ \text{ in its two arguments or transitivity of } \circ, \text{ for short. This follows from } \pi_1,2;\circ \prec ; \pi_2,3;\circ \prec = (\pi_1;\prec' ; \tilde{\pi}_2 \cap \text{E});(\pi_2;\prec' ; \tilde{\pi}_3 \cap \text{E}) = \)

\(\pi_1;\prec' ; \tilde{\pi}_2 \cap \pi_2;\prec' ; \tilde{\pi}_3 \cap \text{E} \subseteq \pi_1;\prec' ; \tilde{\pi}_3 \cap \text{E} \subseteq (\text{assumption}) \pi_1;\prec' ; \tilde{\pi}_3 \cap \text{E} = \pi_1,3;\circ \prec. \)

\text{... (6.2.1)}

\text{COROLLARY 6.1. Let } \prec \text{ be transitive (in its two arguments), then}

a. \(\vdash [\pi_1;\tilde{S},\pi_2];\text{hd},\pi_3] \circ \prec = \)

\(= [\pi_1,2;\text{hd},\pi_3;\text{tl};\text{car}] \circ \prec ; [\pi_1,2;\text{tl};\text{car},\pi_3] \circ \prec ; [\pi_1,2;\text{hd},\pi_3] \circ \prec.

b. \(\vdash ([\pi_1;\tilde{S},\pi_2];\text{tl}) \circ \text{E} = [\text{hd},\text{tl};\text{car}] \circ \prec ; [\text{tl};\text{car},\text{tl};\text{cdr}] \circ \prec ; [\text{hd},\text{tl};\text{cdr}] \circ \prec.\)
Proof.

a. $$[[\pi_1; S, \pi_2]; \text{hd}, \pi_3] \circ = \text{(theorem 6.4.c)} [[\pi_1, 2; \text{hd}, \pi_1, 2; \text{tl}; \text{car}; \conc, \pi_3] \circ = = \text{(theorem 6.1)} [\pi_1, 2; \text{hd}, \pi_1, 2; \text{tl}; \text{car}; \pi_3] \circ = [\pi_1, 2; \text{tl}; \pi_3 \circ]$$, whence the result can be deduced from the assumption.

b. $$([\pi_1; S, \pi_2]; \text{tl}) \circ E = \text{(theorem 6.4.f)} [[\pi_1; S, \pi_2]; \text{hd}, [\pi_1; S, \pi_2]; \text{tl}] \circ = = \text{(theorem 6.4.b and 6.4.c)} [[\text{hd}, \text{tl}; \text{car}; \conc, \text{tl}; \text{cdr}] \circ = \text{(theorem 6.1 and transitivity of } \circ) [\text{hd}, \text{tl}; \text{car}] \circ = [\text{tl}; \text{car}, \text{tl}; \text{cdr}] \circ = [\text{hd}, \text{tl}; \text{cdr}] \circ .$$

6.3. Correctness of the TOWERS OF HANOI

6.3.a. Informal part

We present an informal argument for the correctness of a certain version of the TOWERS OF HANOI program. This version looks in ALGOL-like notation as follows:

```algonly
procedure TVH(n,x,y,\ell_1,\ell_2,\ell_3); integer n,x,y; ordered linear list \ell_1,\ell_2,\ell_3;
    if n=1 then MOVE(n,x,y,\ell_1,\ell_2,\ell_3) else
    begin n:= n-1; y:= alt(x,y); TVH(n,x,y,\ell_1,\ell_2,\ell_3);
        y:= alt(x,y); MOVE(n,x,y,\ell_1,\ell_2,\ell_3); x:= alt(x,y);
        TVH(n,x,y,\ell_1,\ell_2,\ell_3); n:= n+1; x:= alt(x,y)
    end;

procedure MOVE(n,x,y,\ell_1,\ell_2,\ell_3); integer n,x,y; ordered linear list \ell_1,\ell_2,\ell_3;
    if x=1 \& y=2 then begin \ell_2:= \text{cons(car(\ell_1),\ell_2)}; \ell_1:= \text{cdr(\ell_1)} end else
        if x=1 \& y=3 then begin \ell_3:= \text{cons(car(\ell_1),\ell_3)}; \ell_1:= \text{cdr(\ell_1)} end else
            if x=2 \& y=3 then begin \ell_3:= \text{cons(car(\ell_2),\ell_3)}; \ell_2:= \text{cdr(\ell_2)} end else
                if x=2 \& y=1 then begin \ell_1:= \text{cons(car(\ell_2),\ell_1)}; \ell_2:= \text{cdr(\ell_2)} end else
                    if x=3 \& y=1 then begin \ell_1:= \text{cons(car(\ell_3),\ell_1)}; \ell_3:= \text{cdr(\ell_3)} end else
                        if x=3 \& y=2 then begin \ell_2:= \text{cons(car(\ell_3),\ell_2)}; \ell_3:= \text{cdr(\ell_3)} end else undefined;

integer procedure alt(x,y); integer x,y; if x\geq 1 \& x\leq 3 \& y\geq 1 \& y\leq 3 then
    alt:= 6-x-y else undefined
```

To which conditions does correctness of TVH amount?

First we have to assume the transitivity of the relation ordering the ordered linear lists considered above. We do not wish to elaborate this assumption in the present informal setting; for this the reader is referred to the next section.
Let us assume $x \neq y$, then execution of $TVH(n, x, y, \ell_1, \ell_2, \ell_3)$, if defined,

1. Has to result in the removal of the top n discs of the pin "identified by" x, to the pin identified by y.
2. These discs are moved in correct order, i.e., never a larger disc is placed on a smaller disc.
3. The discs are moved one at a time.

As to (3): we cannot formalize this requirement, as the present formalism deals only with input-output relationships and not with intermediate stages: cf. section 1.3.

As to (2): this condition is implicit in our approach as all functions are only defined for ordered linear lists. Thus, the question whether or not the order is disturbed amounts to whether or not the execution is defined.

As to (1): let us declare $R(n, x, y, \ell_1, \ell_2, \ell_3)$ by

```
procedure R(n, x, y, \ell_1, \ell_2, \ell_3); integer n, x, y; ordered linear list \ell_1, \ell_2, \ell_3;
  if x=1 \land y=2 then begin \ell_2 := conc(hd(n, \ell_1), \ell_2); \ell_1 := t1(n, \ell_1) end else
  if x=1 \land y=3 then begin \ell_3 := conc(hd(n, \ell_1), \ell_3); \ell_1 := t1(n, \ell_1) end else
  if x=2 \land y=3 then begin \ell_3 := conc(hd(n, \ell_2), \ell_3); \ell_2 := t1(n, \ell_2) end else
  if x=2 \land y=1 then begin \ell_1 := conc(hd(n, \ell_2), \ell_1); \ell_2 := t1(n, \ell_2) end else
  if x=3 \land y=1 then begin \ell_1 := conc(hd(n, \ell_3), \ell_1); \ell_2 := t1(n, \ell_3) end else
  if x=3 \land y=2 then begin \ell_2 := conc(hd(n, \ell_3), \ell_2); \ell_3 := t1(n, \ell_3) end else
    undefined.
```

If we assume $x \neq y$, (1) amounts to

$$TVH(n, x, y, \ell_1, \ell_2, \ell_3) = R(n, x, y, \ell_1, \ell_2, \ell_3),$$

provided both sides are defined.

As $TVH(1, x, y, \ell_1, \ell_2, \ell_3) = R(1, x, y, \ell_1, \ell_2, \ell_3)$ follows from the declarations, we concentrate on the case $n > 1$:

The induction hypothesis is $TVH(n-1, x, y, \ell_1, \ell_2, \ell_3) = R(n-1, x, y, \ell_1, \ell_2, \ell_3)$, provided both sides are defined. Start with statevector

$$\xi_0 = \langle n, 1, 2, \ell_1, \ell_2, \ell_3 \rangle.$$

1. Execution of $n := n-1; \ y := alt(x, y); TVH(n, x, y, \ell_1, \ell_2, \ell_3)$ with ξ_0 as input results in
\[\xi_1 \equiv <n-1,1,3,tl(n-1,\ell1),\ell2,\text{conc}(hd(n-1,\ell1),\ell3)>, \]

by the induction hypothesis.

2. Execution of \(y := \text{alt}(x,y); \text{MOVE}(n,x,y,\ell1,\ell2,\ell3) \) with \(\xi_1 \) as input results in

\[
\xi_2 \equiv <n-1,1,2,\text{cdr}(tl(n-1,\ell1)),\text{cons}(\text{car}(tl(n-1,\ell1)),\ell2),
\text{conc}(hd(n-1,\ell1),\ell3)>
\]

3. Execution of \(x := \text{alt}(x,y); \text{TVH}(n,x,y,\ell1,\ell2,\ell3); n := n+1; x := \text{alt}(x,y) \)

with \(\xi_2 \) as input results in

\[
\xi_2 \equiv <n,1,2,\frac{\text{cdr}(tl(n-1,\ell1))}{\text{Expr 1}},
\frac{\text{conc}(hd(n-1,\text{conc}(hd(n-1,\ell1),\ell3)),\text{cons}(\text{car}(tl(n-1,\ell1),\ell2)))}{\text{Expr 2}},
\text{tl}(n-1,\text{conc}(hd(n-1,\ell1),\ell3))>.\]

\[
\text{Expr 3}
\]

We demonstrate that, provided \(\xi_3 \) is defined, \(\xi_3 \) equals

\[<n,1,2,tl(n,\ell1),\text{conc}(hd(n,\ell1),\ell2),\ell3>. \]

\text{Expr 1}: \text{cdr}(tl(n-1,\ell1)) = tl(n,\ell1) \text{ by theorem 6.4.b.}

\text{Expr 2}: 1. \text{hd}(n-1,\text{conc}(hd(n-1,\ell1),\ell3)) = \text{if } \text{hd}(n-1,\ell1) < \ell3 \text{ then } \text{hd}(n-1,\ell1) \text{ else undefined,}

\text{by theorem 6.4.e.}

2. \text{conc}(hd(n-1,\ell1),\text{cons}(\text{car}(tl(n-1,\ell1)),\ell2)) =

\text{conc}(\text{conc}(hd(n-1,\ell1),\text{car}(tl(n-1,\ell1))),\ell2), \text{ by associativity of conc, theorem 6.3.}

3. \text{conc}(hd(n-1,\ell1),\text{car}(tl(n-1,\ell1))) = \text{hd}(n,\ell1), \text{ by theorem 6.4.c.}

Thus \text{Expr 2} = \text{if } \text{hd}(n-1,\ell1) < \ell3 \text{ then } \text{conc}(hd(n,\ell1),\ell2) \text{ else undefined.}

\text{Expr 3}: \text{tl}(n-1,\text{conc}(hd(n-1,\ell1),\ell3)) = \text{if } \text{hd}(n-1,\ell1) < \ell3 \text{ then } \ell3 \text{ else undefined,}

\text{by theorem 6.4.d.}

Thus \(\xi_3 = \text{if } \text{hd}(n-1,\ell1) < \ell3 \text{ then } <n,1,2,tl(n,\ell1),\text{conc}(hd(n,\ell1),\ell2),\ell3> \text{ else undefined, whence the result.} \)
6.3.b. An axiomatic correctness proof for the TOWERS OF HANOI

First we introduce some auxiliary notions:

By example 1.3 it is possible to axiomatize a three-element set \{a, b, c\} of type \(3\). Furthermore we need the function \(\text{alt}\) of type \(\langle 3, 3 \rangle\) defined by:
if \(x \neq y\) then \(\text{alt}(x, y) \in \{a, b, c\} - \{x, y\}\), and \(\text{alt}(x, y)\) is undefined, otherwise. Then \(\text{alt}\) has the following properties: \(\text{alt}(x, y) = \text{alt}(y, x)\), \(\text{alt}(\text{alt}(x, y), x) = y\) and \(\text{alt}(\text{alt}(x, y), y) = x\). The formal definition of \(\text{alt}\), using the predicates \(a, b\) and \(c\), and the subsequent derivation of these properties is a matter of routine.

\[
\pi_{i-1} \overset{\text{def}}{=} \pi_{i}, i+1, \ldots, j \quad \text{for } i < j.
\]

Secondly we define TVH, of type \(\langle N^+ \times 3 \times \text{OLL} \times \text{OLL} \times \text{OLL}, N^+ \times 3 \times \text{OLL} \times \text{OLL} \times \text{OLL} \rangle\), by

\[
\begin{align*}
\text{TVH} & \overset{\text{def}}{=} \mu X [\pi_1 \circ p_1 \circ \text{MOVE} \cup \pi_1 \circ p_1 \circ [\pi_1;S, \pi_2, \pi_3; \text{alt}, \pi_4; 6]; X; \\
& \quad \tau_0 \\
& [\pi_1; \pi_2, \pi_3; \text{alt}, \pi_4; 6]; \text{MOVE}; [\pi_1; \pi_2, \pi_3; \text{alt}, \pi_3; 6]; X; \\
& \quad \tau_1 \\
& [\pi_1; S, \pi_2, \pi_3; \text{alt}, \pi_3; 6] \\
& \quad \tau_2 \\
& \end{align*}
\]

... (6.3.1)

and

\[
\begin{align*}
\text{MOVE} & \overset{\text{def}}{=} p_{a, b} \circ [\pi_1; 3, \pi_4; \text{cdr}, [\pi_4; \text{car}, \pi_5]; \text{cons}, \pi_6] \cup \\
& \quad u p_{a, c} \circ [\pi_1; 3, \pi_4; \text{cdr}, [\pi_4; \text{car}, \pi_5]; \text{cons}, \pi_6] \cup \\
& \quad u p_{b, c} \circ [\pi_1; 4, \pi_5; \text{cdr}, [\pi_5; \text{car}, \pi_6]; \text{cons}] \cup \\
& \quad u p_{b, a} \circ [\pi_1; 3, [\pi_5; \text{car}, \pi_4]; \text{cons}, \pi_5; \text{cdr}, \pi_6] \cup \\
& \quad u p_{c, a} \circ [\pi_1; 3, [\pi_5; \text{car}, \pi_4]; \text{cons}, \pi_5; \pi_6; \text{cdr}] \cup \\
& \quad u p_{c, b} \circ [\pi_1; 4, [\pi_6; \text{car}, \pi_5]; \text{cons}, \pi_6; \text{cdr}].
\end{align*}
\]
with
\[p_{x,y} \overset{\text{def}}{=} \pi_2^{\circ x} ; \pi_3^{\circ y} \quad \text{for } x, y \in \{a, b, c\}. \ldots (6.3.2) \]

Thirdly we define \(p'_{\text{eq}} \), \(0 \) and \(R \) in order to express correctness of TVH:
\[p'_{\text{eq}} \overset{\text{def}}{=} x \uplus y \quad \text{cf. (6.3.2)} \]
\[0 \overset{\text{def}}{=} \pi^{\circ a} ; [\pi_{1,4}^{\circ} ; \hd^{\circ} ; \pi_5^{\circ}]^{\circ} ; [\pi_{1,4}^{\circ} ; \hd^{\circ} ; \pi_6^{\circ}]^{\circ} \quad \text{u}
\]
\[0_a \]
\[\quad \uplus \pi^{\circ b} ; [\pi_{1,5}^{\circ} ; \hd^{\circ} ; \pi_4^{\circ}]^{\circ} ; [\pi_{1,5}^{\circ} ; \hd^{\circ} ; \pi_6^{\circ}]^{\circ} \quad \text{u}
\]
\[0_b \]
\[\quad \uplus \pi^{\circ c} ; [\pi_{1,6}^{\circ} ; \hd^{\circ} ; \pi_4^{\circ}]^{\circ} ; [\pi_{1,6}^{\circ} ; \hd^{\circ} ; \pi_5^{\circ}]^{\circ} \quad \text{u}
\]
\[0_c \]
\[\ldots (6.3.3) \]

and
\[R \overset{\text{def}}{=} p_{a,b} ; [\pi_{1-3}^{\circ} ; \pi_{1,4}^{\circ} ; \tl] ; [\pi_{1,4}^{\circ} ; \hd^{\circ} ; \pi_5^{\circ}] ; \text{conc} ; \pi_6^{\circ} \quad \text{u}
\]
\[\quad \text{u} \quad p_{a,c} ; [\pi_{1-3}^{\circ} ; \pi_{1,4}^{\circ} ; \tl ; \pi_5^{\circ} ; [\pi_{1,4}^{\circ} ; \hd^{\circ} ; \pi_6^{\circ}] ; \text{conc}] \quad \text{u}
\]
\[\quad \text{u} \quad p_{b,c} ; [\pi_{1-4}^{\circ} ; \pi_{1,5}^{\circ} ; \tl ; [\pi_{1,5}^{\circ} ; \hd^{\circ} ; \pi_6^{\circ}] ; \text{conc}] \quad \text{u}
\]
\[\quad \text{u} \quad p_{b,a} ; [\pi_{1-3}^{\circ} ; [\pi_{1,5}^{\circ} ; \hd^{\circ} ; \pi_4^{\circ}] ; \text{conc} ; \pi_{1,5}^{\circ} ; \tl ; \pi_6^{\circ}] \quad \text{u}
\]
\[\quad \text{u} \quad p_{c,a} ; [\pi_{1-3}^{\circ} ; [\pi_{1,6}^{\circ} ; \hd^{\circ} ; \pi_4^{\circ}] ; \text{conc} ; \pi_{1,5}^{\circ} ; \tl ; \pi_6^{\circ}] \quad \text{u}
\]
\[\quad \text{u} \quad p_{c,b} ; [\pi_{1-4}^{\circ} ; [\pi_{1,6}^{\circ} ; \hd^{\circ} ; \pi_5^{\circ}] ; \text{conc} ; \pi_{1,6}^{\circ} ; \tl]. \]

Then the correctness of TVH is established by

THEOREM 6.5. (Correctness of TOWERS OF HANOI). Let \(\prec \) be transitive (in the sense indicated in (6.2.1)), then
\[\vdash p'_{\text{eq}} ; 0 ; \text{TVH} = p'_{\text{eq}} ; 0 ; R. \]

The proof of this theorem proceeds by induction on \(N^{+} \), i.e., we prove
\[\begin{align*}
\vdash p'_{eq} : & \mu X[p_1 \cup \bar{S};X;S],\pi_{2-6}]0;TVH = \\
= & p'_{eq} : [\pi_1 ; \mu X[p_1 \cup \bar{S};X;S],\pi_{2-6}]0;R \\
\end{align*} \]

by applying \(I \) as follows: let \(\varphi \) be empty, \(\psi \) be
\[\{ p'_{eq} : [\pi_1 ; X,\pi_{2-6}]0;TVH = p'_{eq} : [\pi_1 ; X,\pi_{2-6}]0;R \} \]
and \(\sigma \) be \((p_1 \cup \bar{S};X;S) \). Then
the result follows from \(\mu X[p_1 \cup \bar{S};X;S] = \mathbb{E}^{N^+}_N \), cf. lemma 5.5.

We adopt the following strategy:

Using the notation introduced in (6.3.1) we associate in the proof of the
induction step terms \(P_0, \ldots, P_3 \) and \(Q_0, \ldots, Q_3 \), which are defined below, with

\[p'_{eq} : [\pi_1 ; (p_1 \cup \bar{S};X;S),\pi_{2-6}]0;TVH = (fpp) \]

\[p'_{eq} : [\pi_1 ; \bar{S};X;S,\pi_{2-6}]0;\tau_1 ;TVH;\tau_2 ;TVH;\tau_3 \]

\[P_0 \quad Q_0 \]

\[P_1 \quad Q_1 \quad P_2 \quad Q_2 \quad P_3 \quad Q_3 \]

Then our correctness proof consists in proving, with \(\psi \) as hypothesis,

\[P_0 ; \tau_0 = Q_0 \quad \ldots \quad (6.3.4) \]

and

\[P_1 ; \tau_1 ; TVH;\tau_2 ;TVH;\tau_3 = \]

\[= (\text{parts 1 and 2}) \; Q_1 ; TVH;\tau_2 ;TVH;\tau_3 = \]

\[= (\text{part 3}) \; P_2 ;\tau_2 ;TVH;\tau_3 = \]

\[= (\text{parts 4, 5 and 6}) \; Q_2 ;TVH;\tau_3 = \]

\[= (\text{part 7}) \; P_3 ;\tau_3 = (\text{part 8}) \; Q_3 , \; ^* \]

\[\ldots \quad (6.3.5) \]

since \(p_0 \equiv p'_{eq} ; 0, \; Q_0 \equiv \pi_1 ; p_1 ; p'_{eq} ; 0;R, \; P_1 \equiv p'_{eq} ; [\pi_1 ; \bar{S};X;S,\pi_{2-6}]0;R \) and
\(Q_3 \equiv p'_{eq} ; [\pi_1 ; \bar{S};X;S,\pi_{2-6}]0;R \), whence (6.3.4) and (6.3.5) together imply

\[p'_{eq} ; [\pi_1 ; (p_1 \cup \bar{S};X;S),\pi_{2-6}]0;TVH = p'_{eq} ; [\pi_1 ; (p_1 \cup \bar{S};X;S),\pi_{2-6}]0;R. \]

\(^* \) Parts 1 to 8 refer to the formal proof at the end of this section.
Without of generality we prove

\[p_{eq}^i;[\pi_1;X,\pi_{2-6}];0;TVH = p_{eq}^i;[\pi_1;X,\pi_{2-6}];0;R \vdash \]

\[\vdash [\pi_1; (p_1 \cup \tilde{S};X;S),\pi_2; a, \pi_3; b, \pi_{4-6}];0_a;TVH = \]

\[= [\pi_1; (p_1 \cup \tilde{S};X;S),\pi_2; a, \pi_3; b, \pi_{4-6}];0_a;R. \]

Next terms \(P_i \) and \(Q_i \) are defined as below, \(i = 0, \ldots, 3 \).

Let \(O_a(X) \overset{\text{DEF}}{=} [[\pi_1;X,\pi_4];hd,\pi_5]^{\omega_<} ; [[\pi_1;X,\pi_4];hd,\pi_6]^{\omega_<} \), whence \(O_a(E) = 0_a \) (see (6.3.b)), and let \(O_{a,b} \overset{\text{DEF}}{=} \pi_1,4;hd,\pi_5]^{\omega_<} \) and \(O_{a,c} \overset{\text{DEF}}{=} \pi_1,4;hd,\pi_6]^{\omega_<} \), whence \(O_a = \pi_2 \circ a \circ_0 o_{a,b} o_{a,c} \). For \(O_b \) and \(O_c \) we introduce similar notations.

\[P_0 \overset{\text{DEF}}{=} [\pi_1;p_1,\pi_2; a, \pi_3; b, \pi_{4-6}];0_a. \]

\[Q_0 \overset{\text{DEF}}{=} [\pi_1;p_1,\pi_2; a, \pi_3; b, \pi_{4-6}];0_a;\text{MOVE}. \]

\[P_1 \overset{\text{DEF}}{=} [\pi_1;\tilde{S};X;S,\pi_2; a, \pi_3; b, \pi_{4-6}];0_a. \]

\[Q_1 \overset{\text{DEF}}{=} O_a(\tilde{S};X;S);\pi_1,\tilde{S},\pi_{2-6};[\pi_1;X,\pi_2; a, \pi_3; c, \pi_{4-6}];0_a. \]

\[P_2 \overset{\text{DEF}}{=} O_a(\tilde{S};X;S);\pi_1,\tilde{S},\pi_{2-6};[\pi_1;X,\pi_2; a, \pi_3; c, \pi_{4-6}];0_a. \]

\[Q_2 \overset{\text{DEF}}{=} O_a(\tilde{S};X;S);\pi_1,\tilde{S},\pi_{2-6};[\pi_1;X,\pi_2; c, \pi_3; b, \pi_1;X,\pi_4];t_1, \]

\[[\pi_1;X,\pi_4];t_1;\text{car},\pi_3];\text{cons},[[\pi_1;X,\pi_4];hd,\pi_6];\text{conc}; \]

\[[\pi_1;X,\pi_2; c, \pi_3; b, \pi_1;X,\pi_4];hd,\pi_6];\text{conc}]. \]

\[P_3 \overset{\text{DEF}}{=} O_a(\tilde{S};X;S);\pi_1,\tilde{S},\pi_{2-6};[\pi_1;X,\pi_2; c, \pi_3; b, \pi_1;X,\pi_4];t_1, \]

\[[\pi_1;X,\pi_4];t_1;\text{car},\pi_3];\text{cons};\text{conc}, \]

\[[\pi_1;X,\pi_4];t_1;\text{car},\pi_3];\text{cons};\text{conc}. \]

\[Q_3 \overset{\text{DEF}}{=} [\pi_1;\tilde{S};X;S,\pi_2; a, \pi_3; b, \pi_{4-6}];0_a;R. \]

Finally we prove the induction step as indicated in (6.3.4) and (6.3.5).

Assume transitivity of \(\omega_< \), i.e., \(\pi_{1,2}^{\omega_<} \pi_{2,3}^{\omega_<} \leq \pi_{1,3}^{\omega_<} \), and the induction hypothesis \(\psi \).
The proof of \(P_0;TVH = Q_0 \) is a matter of routine and therefore omitted.

1. \([\pi_1; \tilde{S}; X; S; \pi_2; a; \pi_3; b; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\([\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; b; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\([\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

2. \(P_1; \tau_1 = [\pi_1; \tilde{S}; X; S; \pi_2; a; \pi_3; b; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_1; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(P_2; \tau_2 = [\pi_1; \pi_2; a; \pi_3; b; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

3. \(Q_1; TVH = (\text{hypothesis}) \]
\(O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(P_2; \tau_2 = \)

4. \(P_2; \tau_2 = [\pi_1; \pi_2; a; \pi_3; b; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

5. \(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

6. \(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

By combining parts 4, 5 and (i), (ii) above, we obtain
\(P_2; \tau_2 = O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

7. \(Q_2; TVH = (\text{hypothesis}) \]

8. \(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

By combining parts 4, 5 and (i), (ii) above, we obtain
\(P_2; \tau_2 = O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

Thus we have \(P_2; \tau_2 = O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

Finally, we have
\(Q_2; TVH = (\text{hypothesis}) \]

By combining parts 4, 5 and (i), (ii) above, we obtain
\(P_2; \tau_2 = O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]
\(Q_2; [\pi_1; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

Thus we have \(P_2; \tau_2 = O_a (S; X; S); [\pi_1; \tilde{S}; \pi_2; \pi_3; \pi_4; \pi_4; \tau_1 = (S; \tilde{S} = E^N, N^+, \text{ cf. axiom } N_3) \]

Finally, we have
\(Q_2; TVH = (\text{hypothesis}) \]
(ii) $\pi_1;X,[[\pi_1;X,\pi_4];\text{hd},\pi_6];\text{conc}];t_1 = (\text{theorem 6.4})
[[\pi_1;X,\pi_4];\text{hd},\pi_6]^o \prec \pi_6 .

(iii) By part 6(ii), $O_a(\tilde{S};X;S);[\pi_1;\tilde{S},\pi_2;6] = \ldots ;[[\pi_1;X,\pi_4];\text{hd},\pi_6]^o \prec .$

By combining parts (i), (ii) and (iii) above, we obtain

$P_3 = O_a(\tilde{S};X;S);[\pi_1;\tilde{S},\pi_2;6];$

$$[[\pi_1;X,\pi_2];c,\pi_3;b,[[\pi_1;X,S,\pi_4];\text{hd},\pi_5];\text{conc},\pi_6],$$

whence $P_3;\tau_3 = [\pi_1;\tilde{S};X;S,\pi_2;a,\pi_3;b,\pi_4;6];O_a;R = Q_3 .$
7. CONCLUSION

The present investigation shows that:

1. A conceptually attractive framework for a mathematical theory of correctness of programs comprises:

1.1. The notion of execution of a program by introducing an idealized interpreter.

1.2. An operational semantic function \(o \) which abstracts the relevant information from the computations defined by this interpreter.

1.3. A mathematical language (with semantic function \(m \)) in which to express and derive properties of programs.

1.4. A translation \(\mathcal{T} \) between programs and terms of this mathematical language, i.e., a mapping satisfying

\[
o(T) = m(\mathcal{T}(T))
\]

for every program \(T \).

2. A theory of correctness of programs requires an operator describing the interaction between programs and predicates; in the present theory this is the "o" operator.

3. The "o" operator is crucial to an expedient axiomatization of the call-by-value parameter mechanism.

4. The axiomatization of correctness proofs of recursive programs can be applied to the axiomatization of recursive data structures; this leads to a unified theory of recursive programs and recursive data.

Our system of proof is based on the minimal fixed point characterization, as opposed to Floyd's method of inductive assertions [13]; the minimal fixed point characterization descends from McCarthy's recursion induction [29]. We restricted ourselves to the axiomatization of first-order programs with a particular parameter mechanism, call-by-value. Consequently, the following problems remain open:
1. An axiomatization of call-by-value for higher-order programs.

2. A comparison of formal systems for call-by-name, call-by-value and the like. *)

3. The equivalence of the minimal fixed point characterization with a generalization of the method of inductive assertions is proved by de Bakker and Meertens in [3] in case of a simple language for recursive programs with one variable.

Generalize this result to more complicated programming languages.

*) An attempt towards a solution of this problem has been made in de Roever [36].
APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS

Definition A.1.1 below imposes an algebraic structure upon the set of computation models relative to some initial interpretation o_0 and some declaration scheme D, thus making this set into an algebra. Next we propose an alternative to our method of defining the operational interpretation of a program scheme, an alternative which captures the whole structure of the computations involved in executing a statement scheme. Then we prove that certain transformations essential to the proofs of lemma 2.5, 2.6 and 2.7 are morphisms with respect to the algebra of computation models. These lemmas then follow as simple corollaries of this fact.

DEFINITION A.1.1. Let CM be a computation model relative to some initial interpretation o_0 and some declaration scheme D.

a. If CM is a computation model for $x V_1 ; V_2 \ y$ with $V_1 = R, P_j, (p + W_1, W_2)$ or $[W_1, \ldots, W_n]$, then $CM = CM_1 ; CM_2$ with CM_1 a computation model for
 $x V_1 z$ and CM_2 a computation model for $z V_2 y$, where z is the intermediate state in the computation of $V_1 ; V_2$ described by CM, which results
 from executing V_1 on input x.

b. If CM is a computation model for $x (V_1 ; V_2) ; V_3 y$, then $CM = (CM_1) ; CM_2$
 with CM_1 a computation model for $x V_1 ; V_2 z$ and CM_2 a computation model
 for $z V_3 y$, where z is the intermediate state in the computation of
 $(V_1 ; V_2) ; V_3$ described by CM, which results from executing $V_1 ; V_2$ on input x.

c. If CM is a computation model for $x (p + V_1, V_2) y$, then
 (1) if $o_0 (p) (x)$ is true, $CM = (o_0 (p) \rightarrow CM_1 , V_2)$ with CM_1 a computation
 model for $x V_1 y$.
 (2) if $o_0 (p) (x)$ is false, $CM = (o_0 (p) \rightarrow V_1 , CM_2)$ with CM_2 a computation
 model for $x V_2 y$.

d. If CM is a computation model for $x [V_1, \ldots, V_n] <y_1, \ldots, y_n>$ then $CM =
 [CM_1, \ldots, CM_n]$ with CM_i a computation model for $x V_i y_i$, $i = 1, \ldots, n$.
Remark. With definition A.1.1 in mind, one may conceive of the following notion of operational interpretation, which differs from the one defined in def. 2.5:

The operational interpretation $\psi_D^{<S>}(o_0)$ of a statement scheme S relative to the initial interpretation o_0 and the declaration scheme D is the set

$$\{CM \mid \exists x, y[CM \text{ is, relative } o_0 \text{ and } D, a \text{ computation model for } x S y]\}.$$

This definition captures the whole structure of the computations involved in executing S and resembles the method of defining the semantics of MU as given in def. 3.3, in that both ψ_D and $\psi_D^{<S>}$ are conceived of as functions. Definition 2.5 of the operational interpretation $\sigma(S)$ of a statement scheme S relative to o_0 and D can be recovered from $\psi_D^{<S>}(o_0)$ by forgetting the internal structure of the computation models constituting $\psi_D^{<S>}(o_0)$ and preserving the external input-output relationship of these models.

After defining the appropriate operations one can establish results such as:

$$\psi_D^{<S_1; S_2>}(o_0) = \psi_D^{<S_1>(o_0)}; \psi_D^{<S_2>}(o_0)$$
$$\psi_D^{<(S_1; S_2); S_3>}(o_0) = (\psi_D^{<S_1; S_2>}(o_0)); \psi_D^{<S_3>}(o_0)$$
$$\psi_D^{<(p \cdot S_1; S_2)>}(o_0) = (o_0(p) + \psi_D^{<S_1>(o_0)}; S_2) \cup (o_0(p) + S_1; \psi_D^{<S_2>}(o_0))$$
$$\psi_D^{<[S_1, \ldots, S_n]>}(o_0) = [\psi_D^{<S_1>(o_0)}, \ldots, \psi_D^{<S_n>}(o_0)]$$

from which the proofs of parts b, c and d of lemma 2.1 can be derived.

Let us now analyse how the notions "to identify" and "executable occurrence", defined in def. 2.6, relate to this way of structuring computation models:

a. $CM = CM_1; CM_2$:

$$CM_1 = \langle x_1 V_1 x_2 V_2 \ldots x_n V_n x_{n+1}, CM_1 \rangle,$$

$\xrightarrow{cs_1}$

$$CM_2 = \langle y_1 W_1 y_2 W_2 \ldots y_m W_m y_{m+1}, CM_2 \rangle, x_{n+1} = y_1 \text{ and }$$

$\xrightarrow{cs_2}$

$$CM = \langle x_1 V_1; W_1 x_2 V_2; W_2 \ldots x_n V_n; W_n x_{n+1} W_1 y_2 W_2 \ldots y_m W_m y_{m+1}, CM_1 \cup CM_2 \rangle.$$

$\xrightarrow{cs_1}$

$\xrightarrow{cs_2}$
It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both contained in CM_1, identify each other w.r.t. CM_1 iff the corresponding occurrences in CM, i.e., in cs^*_i or CM_1, identify each other w.r.t. CM, $i = 1, 2$; an occurrence of some procedure symbol contained in W_1 identifies also the corresponding occurrences of this symbol in the n copies of W_1 contained in cs^*_1.

(2) An occurrence of some procedure symbol contained in CM_1 is executable w.r.t. CM_1 iff the corresponding occurrence in cs^*_i or CM_1 is executable, $i = 1, 2$; these are the only executable occurrences.

b. $CM = (CM_1); CM_2$:

$$CM_1 = \langle x_1 \; V_1 \; x_2 \; V_2 \; \ldots \; x_n \; V_n \; x_{n+1}, \; CM_1 \rangle, \; V_1 = V; W \; \text{for some statement} \; \overleftarrow{cs_1} \rightarrow \text{schemes V and W},$$

$$CM_2 = \langle y_1 \; W_1 \; y_2 \; W_2 \; \ldots \; y_m \; W_m \; y_{m+1}, \; CM_2 \rangle, \; x_{n+1} = y_1 \; \text{and} \; \overleftarrow{cs_2} \rightarrow \text{scheme} \; \text{s}$$

$$CM = \langle x_1 \; (V_1); W_1 \; y_1 \; W_1 \; \ldots \; y_m \; W_m \; y_{m+1}, \; \{CM_1\} \cup CM_2 \rangle, \; \overleftarrow{cs^*_2} \rightarrow \text{scheme} \; \text{s}$$

It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both contained in CM_1 (or CM_2) identify each other w.r.t. CM_1 (or CM_2) iff these occurrences (or, the corresponding occurrences contained in cs^*_2 or CM_2) identify each other w.r.t. CM; an occurrence of some procedure symbol contained in V_1 or W_1 also identifies the corresponding occurrence of this symbol in $(V_1); W_1$.

(2) An occurrence of some procedure symbol contained in CM_1 (or CM_2) is executable w.r.t. CM_1 (or CM_2) iff this occurrence as contained in CM (or, its corresponding occurrence in cs^*_2 or CM_2) is executable w.r.t. CM; these are the only executable occurrences.
c. $CM = (o_0(p) \rightarrow CM_1, V_2)$ (the case $CM = (o_0(p) \rightarrow V_1, CM_2)$ is similar):

$$CM_1 = \langle y_1 \ W_1 \ y_2 \ W_2 \ \ldots \ y_n \ W_n \ y_n+1, \ CM_1 \rangle,$$
$$CM = \langle x \ (p \rightarrow W_1, W_2) \ y_1 \ W_1 \ \ldots \ y_n \ W_n \ y_n+1, \ CM_1 \rangle$$ and $x = y_1$.

It follows from the definitions that

(1) Two occurrences of some procedure symbol which are both contained in CM_1 identify each other w.r.t. CM_1 iff the corresponding occurrences in CS_1 or CM_1 identify each other w.r.t. CM; an occurrence of some procedure symbol in W_1 identifies also the corresponding occurrence of this symbol in $(p \rightarrow W_1, V_2)$.

(2) An occurrence of some procedure symbol contained in CM_1 is executable w.r.t. CM_1 iff its corresponding occurrence in CS_1 or CM_1 is executable w.r.t. CM; these are the only executable occurrences.

d. $CM = [CM_1, \ldots, CM_n]$:

$$CM_j = \langle x_j, 1 \ V_j, 1 \ x_j, 2 \ V_j, 2 \ \ldots \ x_j, m_j \ V_j, m_j \ x_j, m_j+1, \ CM_j \rangle, \ j = 1, \ldots, n,$$
$$CM = \langle x_1[V_1, 1, \ldots, V_n, 1] \langle x_1, m_1+1, \ldots, x_n, m_n+1 \rangle, \{CM_1, \ldots, CM_n\} \rangle$$

and $x_1 = x_j, 1, \ j = 1, \ldots, n$.

It follows from the definitions that

(1) Two occurrences of some procedure symbol both contained in CM_j identify each other w.r.t. CM_j iff they identify each other w.r.t. CM, $j = 1, \ldots, n$; an occurrence of some procedure symbol contained in $V_j, 1$ as occurring in $[V_1, 1, \ldots, V_n, 1]$ also identifies the corresponding occurrence of this symbol contained in $CM_j, \ j = 1, \ldots, n$.

(2) An occurrence of some procedure symbol contained in CM_j is executable w.r.t. CM_j iff it is executable w.r.t. CM, $j = 1, \ldots, n$; these are the only executable occurrences.

Next we define two transformations of computation models, τ_1 and τ_2, which are essential to the proofs of lemmas 2.5 and 2.6:
In the following definition $x_1 V_1 x_2 V_2 \ldots x_n V_n x_{n+1}$ stands for the constituent computation sequence of any model CM.

Let CM contain no executable occurrences of any P_j, $j \in J$, and $W_j \in SS$ be for every $j \in J$ of the same type as P_j, then $t_1(CM)$ is obtained from CM by executing the following steps:

Step 1: Consider for every $j \in J$ all occurrences of P_j in CM identified by occurrences of P_j in V_1.
Step 2: Replace all considered occurrences by W_j, for all $j \in J$.

For arbitrary CM, $t_2(CM)$ is obtained from CM by executing the following steps:

Step 1: Consider for every $j \in J$ all occurrences of P_j in CM identified by occurrences of P_j in V_1.
Step 2: Mark all those considered occurrences which are executable.
Step 3: Replace all other considered occurrences of P_j by S_j (with $P_j \ll S_j$).
Step 4: Replace every combination $\ldots x_k P_j^* x_{k+1} S_j x_{k+2} \ldots$ by $\ldots x_k S_j x_{k+2} \ldots$ and every combination $x_k P_j^* S x_{k+1} S_j S x_{k+2} \ldots$ by $\ldots x_k S_j S x_{k+2} \ldots$, where P_j^* denotes the marking of P_j performed in step 2.

Transformations t_1 and t_2 are morphisms w.r.t. the operations defined above (in def. A.1.1), i.e.,

(1) $t_1(CM_1; CM_2) = t_1(CM_1); t_1(CM_2)$,

$t_1((CM_1); CM_2) = (t_1(CM_1)); t_1(CM_2)$,

$t_1((o_0(p) \rightarrow CM, W)) = (o_0(p) \rightarrow t_1(CM), \tilde{W}[W_j/X_j]_{j \in J}, \ast)$

$t_1((o_0(p) \rightarrow W, CM)) = (o_0(p) \rightarrow \tilde{W}[W_j/X_j]_{j \in J}, t_1(CM)) \ast$ and

$t_1([CM_1, \ldots, CM_n]) = [t_1(CM_1), \ldots, t_1(CM_n)]$.

*) These formulae hold only in case W is closed.
(2) \(t_2(\text{CM}_1;\text{CM}_2) = t_2(\text{CM}_1);t_2(\text{CM}_2), \)

\(t_2((\text{CM}_1);\text{CM}_2) = (t_2(\text{CM}_1));t_2(\text{CM}_2), \)

\(t_2((\sigma_0(p) \rightarrow \text{CM},W)) = (\sigma_0(p) \rightarrow t_2(\text{CM}),W^{[1]}), * \)

\(t_2((\sigma_0(p) \rightarrow W,\text{CM})) = (\sigma_0(p) \rightarrow W^{[1]},t_2(\text{CM})) * \) and

\(t_2([\text{CM}_1,\ldots,\text{CM}_n]) = [t_2(\text{CM}_1),\ldots,t_2(\text{CM}_n)]. \)

Lemma 2.5. Let \(S \) be a closed statement scheme, \(\text{CM} \) be a computation model for \(x \) \(S y \) containing no executable occurrences of \(P_j, j \in J, \) and \(W_j \in SS \) be for every \(j \in J \) of the same type as \(P_j, \) then transformation \(t_1 \) is a morphism (in the sense indicated above) of the algebra of computation models (defined in def. A.1.1) into itself, which transforms \(\text{CM} \) into a computation model for \(\tilde{S}[W_j/X_j]_{j \in J}. \)

Proof. By induction on the complexity of the statement schemes concerned. We use the notation indicated above in our analysis of the notion "to identify".

a. \(S = R, R \in A \cup C \) (\(R \in X \) does not apply, \(S \) being closed): Obvious from definitions 2.2 and 2.6.

b. \(S = P_j \): Does not apply as \(\text{CM} \) contains no executable occurrences of \(P_j \).

c. \(S = V_j;W_1 \): Step 1 of \(t_1 \) results in considering for all \(j \in J \) those occurrences of \(P_j \) in \(\text{CM} \) which are identified by occurrences of \(P_j \) in \(V_j;W_1 \). These occurrences are:

(1) The occurrences of \(P_j \) in \(\text{CM} \) identified by occurrences of \(P_j \) in \(V_j \).

These correspond exactly with the occurrences of \(P_j \) in \(\text{CM}_1 \) identified by occurrences of \(P_j \) in \(V_j \) in \(\text{CM}_1 \).

(2) The occurrences of \(P_j \) in \(\text{CM} \) identified by occurrences of \(P_j \) in \(W_1 \) as contained in \(V_j;W_1 \). These are:

(2a) The occurrences of \(P_j \) in \(\text{CM} \) corresponding with the occurrences of \(P_j \) in \(\text{CM}_2 \) identified by occurrences of \(P_j \) in \(W_1 \) in \(\text{CM}_2 \).

(2b) The remaining occurrences of \(P_j \) in \(cs^*_1 \) identified by occurrences of \(P_j \) in \(W_1 \) as contained in \(V_j;W_1 \).

*) These formulae hold only in case \(W \) is closed.
Then step 2 is performed; the occurrences of group 1 above are replaced by \(W_j \) - this corresponds exactly with \(t_1(CM_1) \) - then the occurrences of group 2a are replaced by \(W_j \) - this corresponds exactly with \(t_1(CM_2) \) - and finally the occurrences of group 2b are replaced by \(W_j \) - corresponding exactly with the extra occurrences of \(\tilde{W}_1[W_j/X_j]_{j \in J}^* \) necessary for the construction of \(t_1(CM_1);t_1(CM_2) \) from \(t_1(CM_1) \) and \(t_1(CM_2) \).

It follows that \(t_1(CM) = t_1(CM_1);t_1(CM_2) \).

By the induction hypothesis \(t_1(CM_1) \) and \(t_1(CM_2) \) are computation models for \(x \tilde{V}_1[W_j/X_j]_{j \in J} z \) and \(z \tilde{W}_1[W_j/X_j]_{j \in J} y \) for appropriate \(z \), whence, by definitions 2.2 and 2.6, \(t_1(CM) \) is a computation model for
\[
(\tilde{V}_1;\tilde{W}_1)[W_j/X_j]_{j \in J}^*.
\]

\(d. S = (V_1);\tilde{W}_1 \): Step 1 of \(t_1 \) results in considering for all \(j \in J \) those occurrences of \(P_j \) in \(CM \) which are identified by occurrences of \(P_j \) in \((V_1);\tilde{W}_1 \). These are:

1. The occurrences of \(P_j \) in \(CM_1 \) identified by occurrences of \(P_j \) in \(V_1 \).
2. The occurrences of \(P_j \) in \(CS_2^* \) or \(CM_2 \) identified by occurrences of \(P_j \) in \(W_1 \) - these correspond exactly with the occurrences of \(P_j \) in \(CM_2 \) identified by occurrences of \(P_j \) in \(W_1 \) in \(CM_2 \).
3. The occurrences of \(P_j \) in \((V_1);\tilde{W}_1 \).

Then step 2 is applied; the occurrences of group 1 above are replaced by \(W_j \) - this corresponds exactly with \(t_1(CM_1) \) - then the occurrences of group 2 are replaced by \(W_j \) - this corresponds exactly with \(t_1(CM_2) \) - and finally the occurrences of group 3 are replaced by \(W_j \) - corresponding exactly with the occurrence of \((V_1);\tilde{W}_1)[W_j/X_j]_{j \in J}^* \) necessary for the construction of \(t_1(CM_1);t_1(CM_2) \) from \(t_1(CM_1) \) and \(t_1(CM_2) \).

It follows that \(t_1(CM) = (t_1(CM_1));t_1(CM_2) \).

By the induction hypothesis \(t_1(CM_1) \) and \(t_1(CM_2) \) are computation models for \(x \tilde{V}_1[W_j/X_j]_{j \in J} z \) and \(z \tilde{W}_1[W_j/X_j]_{j \in J} y \) for appropriate \(z \), whence, by definitions 2.2 and 2.6, \(t_1(CM) \) is a computation model for
\[
(\tilde{V}_1;\tilde{W}_1)[W_j/X_j]_{j \in J}^*.
\]

\(e. S = (p + V_1,V_2) \) or \(S = [V_1,\ldots,V_n] \): Similar to above.

\textbf{COROLLARY: LEMMA 2.5.}

\text{The reader should not be confused in case } l \in J.
LEMMAT 2.6*. Let S be a closed statement scheme and CM be a computation model for $x \{S\} y$, then t_2 is a morphism (in the sense indicated above) of the algebra of computation models (defined in definition A.1.1) into itself, which transforms CM into a computation model for $x \{S[1]\} y$.

Proof. By induction on the complexity of CM.

We use the notation indicated in our analysis of the notions "to identify" and "executable occurrence".

a. $S = R$, $R \in \mathcal{A} \cup \mathcal{C}$ ($R \in X$ does not apply, S being closed): Obvious from definitions 2.2 and 2.6.

b. $S = P_j$: CM has the following form: $<x P_j \times S_j \ldots y, CM>$.

Thus $t_2(CM) = <cs', CM>$, as in step 1 only the first occurrence of P_j is considered, which is executable, whence in step 2 this occurrence is marked, step 3 does not apply, and step 4 results in the deletion of the part $P_j^* x$.

c. $S = V_1; W_1$: Step 1 of t_2 results in considering for all $j \in J$ those occurrences of P_j in CM which are identified by occurrences of P_j in $V_1; W_1$. These occurrences are:

(1) The occurrences of P_j in CM identified by occurrences of P_j in V_1. These correspond exactly with the occurrences of P_j in CM_1 identified by occurrences of P_j in V_1 in CM_1.

(2) The occurrences of P_j in CM identified by occurrences of P_j in W_1 as contained in $V_1; W_1$. These are:

(2a) The occurrences of P_j in CM corresponding with the occurrences of P_j in CM_2 identified by occurrences of P_j in W_1 in CM_2.

(2b) The remaining occurrences of P_j in cs_j^* identified by occurrences of P_j in W_1 as contained in $V_1; W_1$, which are all non-executable.

Next step 2 is performed: the executable occurrences of groups 1 and 2a above are marked, group 2b containing no executable occurrences.

Hence we obtain

$$<x_1 V_1^*; W_1 x_2 V_2^*; W_1 \ldots x_n V_n^*; W_1 x_{n+1} W_1 y_2 W_2^* \ldots y_m W_m^*; y_{m+1}, CM_1^* \cup CM_2^*>,$$
with V_k^*, W_1^* and CM_1^* indicating the result of marking the executable occurrences of P_j in V_k^*, W_1^* and CM_1^*, $k = 1, \ldots, n, l = 1, \ldots, m, i = 1, 2$, which are considered in step 1.

Then step 3 is performed, whence we obtain

$$<x_1 V_1^*[S_j/P_j]_{j \in J}; W_1^*[1] x_2 V_2^*[S_j/P_j]_{j \in J}; W_1^*[1] \ldots x_n V_n^*[S_j/P_j]_{j \in J}; W_1^*[1]$$

$$\leftarrow\ x_{n+1} W_1^*[S_j/P_j]_{j \in J} y_2 W_2^*[S_j/P_j]_{j \in J} \ldots y_m W_m^*[S_j/P_j]_{j \in J} y_{m+1}, CM_{1**} \cup CM_{2**}>$$

$$\rightarrow$$

with $V_k^*[S_j/P_j]_{j \in J}, W_1^*[S_j/P_j]_{j \in J}$ and CM_1^* indicating the result of replacing the non-executable (unmarked) occurrences of P_j considered in step 1 by S_j, in V_k^*, W_1^* and $CM_1^*, k = 1, \ldots, n, l = 1, \ldots, m, i = 1, 2$.

The problem with the construct obtained in step 3 is that parts occur of the form $\ldots z_1 V_1; S_j z_{l+1} P_j z_{l+2} S_j \ldots$, violating definition 2.4 of computation model (e.g., if $V_1 = W_1 = P_j$, then $W_1^*[1] = S_j$ but $W_1^*[S_j/P_j]_{j \in J} = P_j^*$).

In step 4 these parts are deleted in order to obtain a proper computation model.

Finally step 4 is performed:

Application of this step to CS_{1**} and CM_{1**} results in

$$x_1 V_1^*[S_j/P_j]_{j \in J}; W_1^*[1] x_2 V_2^*[S_j/P_j]_{j \in J}; W_1^*[1] \ldots x_i V_i^*[S_j/P_j]_{j \in J}; W_1^*[1] x_{i+1}$$

and

$$CM_1^*,$$

with

$$t_2(CM_1^*) = <x_1 V_1^*[S_j/P_j]_{j \in J} x_2 V_2^*[S_j/P_j]_{j \in J} \ldots x_i V_i^*[S_j/P_j]_{j \in J} x_{i+1}^*, CM_1^*>$$

by the induction hypothesis, whence $V_i^*[S_j/P_j]_{j \in J} = V_i^*[1], x_i^* = x$ and x_{i+1}^* is the same set as the set of indices k for which parts $V_k^*[S_j/P_j]_{j \in J}; W_1^*[1] x_{k+1}$ are deleted from CS_{1**} are deleted from

$$x_1 V_1^*[S_j/P_j]_{j \in J} x_2 V_2^*[S_j/P_j]_{j \in J} \ldots x_n V_n^*[S_j/P_j]_{j \in J} x_{n+1},$$

the result of applying steps 1, 2 and 3 to CS_1.

Application of step 4 to cs^*_{2} and CM^*_2 results by the induction hypothesis in

$$y_{j_1}^{*} w_{j_1}^* [S_j/P_j]_{j \in J} y_{j_2}^{*} w_{j_2}^* [S_j/P_j]_{j \in J} \ldots y_{j_t}^{*} w_{j_t}^* [S_j/P_j]_{j \in J} y_{j_{t+1}}$$

and CM^*_2, the two constituent parts of $t_2(CM_2)$, whence $y_{j_1} = x_{n+1}$, $y_{j_{t+1}} = y$ and $w_{j_1}^* = w_1^*$. Thus we conclude that $t_2(CM) = t_2(CM_1) ; t_2(CM_2)$. As $V_1^{[1]} ; w_1^{[1]} = (V_1 ; w_1)^{[1]}$ by definitions 2.2 and 2.6, $t_2(CM)$ is a computation model for $x S^{[1]} y$.

Thus $S = (V_1; V_2); V_3$, $(p \to V_1; V_2)$ or $[V_1, \ldots, V_n]$; Proved similarly.

COROLLARY: LEMMA 2.6 Let CM be a computation model for $x S y$, with S closed and with constituent sequence $x_1 V_1 x_2 V_2 \ldots x_n V_n x_{n+1}$. If for some $j \in J$ at least one occurrence of P_j in V_1 identifies an executable occurrence of P_j, $t_2(CM)$ is a computation model for $x s^{[1]} y$ which contains at least one executable occurrence of P_j less than CM.

Proof. Follows from lemma 2.6* by a simple induction argument, as t_2 is a morphism.

LEMMA 2.7 Let CM be a computation model for $x S y$ and S be closed. Then there exists for some k a computation model for $x S^{(k)} y$.

Proof. By applying lemma 2.6 n times in succession one obtains a computation model for $x S^{[n]} y$; this follows from lemma 2.4 ($S^{[m][1]} = S^{[m+1]}$) and the fact that, if $S^{[m]}$ is closed, $S^{[m+1]}$ is also closed.

Let l be the smallest number such that $S^{[1]}$ contains no executable occurrences of P_j. This number exists as every application of lemma 2.6 decreases the number of executable occurrences of P_j, if any. Then the conditions of lemma 2.5 are satisfied, whence some computation model for $x S^{[1]} [\Omega_j/X_j]_{j \in J} y$ exists.

As by lemma 2.4 $S^{[1]} [\Omega_j/X_j]_{j \in J} = S^{(l+1)}$, it suffices to take $l+1$ for k.
APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY FOR \(\mu \)

Lemma 3.1. (Monotonicity). Let \(J \) be any index set, \(\{X_j\}_{j \in J} \subseteq X \), \(\sigma \in T \) be syntactically continuous in all \(X_j \), \(j \in J \), and variable valuations \(v_1 \) and \(v_2 \) satisfy

1. \(v_1(X_j) \leq v_2(X_j), j \in J \),
2. \(v_1(X) = v_2(X), X \in X - \{X_j\}_{j \in J} \),

then the following holds:

\[\phi_{<\sigma>(v_1)} \subseteq \phi_{<\sigma>(v_2)}. \]

Proof. By induction on the complexity of \(\sigma \).

a. \(\sigma \in A \cup B \cup C \cup X \): Obvious.

b. \(\sigma = \sigma_1 \cup \sigma_2, \sigma_1 \cap \sigma_2, \sigma_1 \cap \sigma_2, \bar{\sigma}_1 \):

\[\phi_{<\sigma_1 \cup \sigma_2>(v_1)} = \phi_{<\sigma_1>(v_1)}; \phi_{<\sigma_2>(v_1)} \text{ and } \langle x, y \rangle \in \phi_{<\sigma_1>(v_1)}; \phi_{<\sigma_2>(v_1)} \text{ iff } \exists z \langle x, z \rangle \in \phi_{<\sigma_1>(v_1)} \text{ and } \langle z, y \rangle \in \phi_{<\sigma_2>(v_1)}. \]

By the induction hypothesis, \(\phi_{<\sigma_i>(v_1)} \subseteq \phi_{<\sigma_i>(v_2)}, i = 1, 2 \).

Thus \(\langle x, y \rangle \in \phi_{<\sigma_1>(v_1)}; \phi_{<\sigma_2>(v_1)} \) implies \(\langle x, y \rangle \in \phi_{<\sigma_1>(v_2)}; \phi_{<\sigma_2>(v_2)} \), whence \(\phi_{<\sigma_1 \cup \sigma_2>(v_1)} \subseteq \phi_{<\sigma_1 \cup \sigma_2>(v_2)} \) follows from the definitions.

The cases \(\sigma = \sigma_1 \cup \sigma_2, \sigma_1 \cap \sigma_2 \) and \(\bar{\sigma}_1 \) are proved similarly.

c. \(\sigma = \bar{\sigma}_1 \): By syntactic continuity of \(\sigma \) in all \(X_j \), \(j \in J \), no \(X_j \) occurs in \(\sigma_1 \) for any \(j \in J \), whence \(\phi_{<\bar{\sigma}_1>(v_1)} = \phi_{<\sigma_1>(v_2)}. \)

Therefore \(\phi_{<\bar{\sigma}_1>(v_1)} = \bar{\phi}_{<\sigma_1>(v_1)} = \bar{\phi}_{<\sigma_1>(v_2)} = \phi_{<\bar{\sigma}_1>(v_2)}. \)

d. \(\sigma = \mu_{n \in k} \{X_1, \ldots, X_n, \sigma_1, \ldots, \sigma_n\} \):

\[\phi_{<\sigma>(v_2)} = \]

\[(\forall \{v_2^i(X_1)\}_{i=1}^n \mid \phi_{<\sigma_1>(v_2^i)} \leq v_2^i(X_1), 1 = 1, \ldots, n, \text{ and } v_1^2(X) = v_2(X), X \in X - \{X_1, \ldots, X_n\})_k \quad \text{... (a.2.1)} \]

Let \(v_2^i \) satisfy the conditions mentioned in (a.2.1).

Define \(v_1^i \) by: \(v_1^i(X_1) = v_2^i(X_1), 1 = 1, \ldots, n, \text{ and } v_1^i(X) = v_1(X), X \in X - \{X_1, \ldots, X_n\}. \)

Then, the conditions for monotonicity, w.r.t. the index set \(J \cup \{1, \ldots, n\} \),
and v'_1 and v'_2, are fulfilled, whence by the induction hypothesis:

$$\phi^{<\sigma_1>}(v'_1) \subseteq (\text{monotonicity}) \phi^{<\sigma_1>}(v'_2) \subseteq v'_2(X_1) = v'_1(X_1), \quad l = 1, \ldots, n.$$

Thus,

$$\bigcap_{l=1}^{n}\{v'_1(X_1) > 1 \mid \phi^{<\sigma_1>}(v'_1) \subseteq v'_1(X_1), \quad l = 1, \ldots, n, \text{ and}$$

$$v'_1(X) = v'_1(X), \quad X \in X - \{X_1, \ldots, X_n\} \} \subseteq$$

$$\bigcap_{l=1}^{n}\{v'_2(X_1) > 1 \mid \phi^{<\sigma_1>}(v'_2) \subseteq v'_2(X_1), \quad l = 1, \ldots, n, \text{ and}$$

$$v'_2(X) = v'_2(X), \quad X \in X - \{X_1, \ldots, X_n\} \},$$

whence

$$\phi^{<\mu_1 X_1 \ldots X_n, \ldots, \sigma_n>}(v'_1) \subseteq \phi^{<\mu_1 X_1 \ldots X_n, \ldots, \sigma_n>}(v'_2).$$

Lemma 3.2. (Continuity). Let J be any index set, $\{X_j\}_{j \in J} \in X$, $\sigma \in T$ be syntactically continuous in all X_j, $j \in J$, v and v'_1, for all $i \in N$, be variable valuations satisfying, for $i \in N$ and $j \in J$,

1. $v(X_j) = \bigcup_{i=0}^{\infty} v_i(X_j)$,

2. $v_i(X_j) \subseteq v_{i+1}(X_j)$,

3. $v(X) = v'_1(X)$ for $X \in X - \{X_j\}_{j \in J}$,

then the following holds:

$$\phi^{<\sigma>}(v) = \bigcup_{i=0}^{\infty} \phi^{<\sigma>}(v'_1).$$

Proof. \supseteq: By monotonicity (lemma 3.1).

\subseteq: By induction on the complexity of σ.

a. $\sigma \in A \cup B \cup C \cup X$: Obvious.

b. $\sigma = \sigma_1; \sigma_2, \sigma_1 \cup \sigma_2, \sigma_1 \cap \sigma_2, \sigma_1:$

$$\phi^{<\sigma_1; \sigma_2>}(v) = \phi^{<\sigma_1>}(v); \phi^{<\sigma_2>}(v) = \text{(induction hypothesis)}$$

$$\bigcup_{i=0}^{\infty} \phi^{<\sigma_1>}(v'_1); \bigcup_{j=0}^{\infty} \phi^{<\sigma_2>}(v'_2) = \bigcup_{i=0}^{\infty} \bigcup_{j=0}^{\infty} \phi^{<\sigma_1>}(v'_1); \phi^{<\sigma_2>}(v'_2),$$

by a property of relations.
\[\bigcup_{i=0}^{\infty} \phi_{\sigma_1}(v_i); \phi_{\sigma_2}(v_i) \subseteq E_1 \text{ is obvious and} \]

\[\bigcup_{i=0}^{\infty} \phi_{\sigma_1}(v_i); \phi_{\sigma_2}(v_i) \supseteq E_1 \text{ follows from} \]

\[\phi_{\sigma_1}(v_i); \phi_{\sigma_2}(v_j) \subseteq \text{(monotonicity)} \phi_{\sigma_1}(v_{\max(i,j)}) \supseteq \phi_{\sigma_2}(v_{\max(i,j)}). \]

Thus, \[\bigcup_{i=0}^{\infty} \phi_{\sigma_1 \sigma_2}(v_i) = \phi_{\sigma_1 \sigma_2}(v) \]

The cases \(\sigma = \sigma_1 \cup \sigma_2, \sigma_1 \cap \sigma_2 \text{ and } \sigma_1 \) are proved similarly.

c. \(\sigma = \sigma_1 \): By syntactic continuity of \(\sigma \) in all \(X_j, j \in J, \) no \(X_j \) occurs in \(\sigma_1 \) for any \(j \in J, \) whence \(\phi_{\sigma_1}(v) = \phi_{\sigma_1}(v_i). \)

Therefore \(\phi_{\sigma_1}(v) = \bigcup_{i=0}^{\infty} \phi_{\sigma_1}(v_i) \subset \phi_{\sigma_1}(v_i) \subset \phi_{\sigma_1}(v_i) \text{ for all } i \in N, \)

whence \(\phi_{\sigma_1}(v) = \bigcup_{i=0}^{\infty} \phi_{\sigma_1}(v_i) \).

d. \(\sigma = \left\{ \sigma_1, \ldots, \sigma_n \right\} \):

\[\bigcup_{i=0}^{\infty} \phi_{\sigma_i}(v_i) = \bigcup_{i=0}^{\infty} \left(\cap_{i=1}^{n} v_i(X_i) \subseteq v_i(X_1), 1 = 1, \ldots, n, \text{ and} \right. \]

\[v_i(X) = v_i(X_1), X \in X - \{X_1, \ldots, X_n\} \}

\[\bigcup_{i=0}^{\infty} \left(\cap_{i=1}^{n} v_i(X_i) \subseteq X_1, 1 = 1, \ldots, n, \text{ and } v_i(X) = v_i(X), X \in X - \{X_1, \ldots, X_n\} \right) \]

... (a.2.2)

by a property of relations.

First we demonstrate that one can restrict oneself in (a.2.2) to intersections of unions of \(v_i(X_1) \) such that \(v_i(X_1) \subseteq v_{i+1}(X_1), 1 = 1, \ldots, n: \)

Let \(\left\{ v_i^{(i)} \right\}_{i=0}^{\infty} \) be a sequence consisting of valuations which satisfy for every \(i \in N, \phi_{\sigma_1}(v_i^{(i)}) \subseteq v_i^{(i)}(X_1), 1 = 1, \ldots, n, \) and \(v_i^{(i)}(X) = v_i(X), \) for \(X \in X - \{X_1, \ldots, X_n\}. \)

Define \(\left\{ v_i^{(n)} \right\}_{i=0}^{\infty} \) as follows:

For every \(i \in N, v_i^{(n)}(X_1) = \cap_{j=1}^{n} v_j^{(i)}(X_1), 1 = 1, \ldots, n, \) and \(v_i^{(n)}(X) = v_i(X), \) for \(X \in X - \{X_1, \ldots, X_n\}. \)

This sequence of valuations satisfies the following properties:
1. For every \(i \in N \), \(\phi_{\sigma_1^i}(v_i) \subseteq v_i^n(X_i), \ l = 1, \ldots, n \).

 This can be deduced from the fact that, for all \(j \geq i \),
 \[\phi_{\sigma_1^j}(v_i^n) \subseteq (\text{monotonicity}) \
 \phi_{\sigma_1^j}(v_{i+1}^j) \subseteq v_{i+1}^j(X_{i+1}), \ l = 1, \ldots, n. \]

2. For every \(i \in N \), \(v_i^n(X_i) \subseteq v_{i+1}^n(X_{i+1}), \ l = 1, \ldots, n \).

3. \(\bigcup_{i=0}^{\infty} v_i^n(X_i) \subseteq v_i^1(X_i), \ l = 1, \ldots, n. \)

Therefore, as every \(n \)-tuple \(\bigcup_{i=0}^{\infty} v_i^1(X_i) = 1 \) with \(v_i^1 = 0 \) satisfying the conditions mentioned above contains coordinate-wise an \(n \)-tuple \(\bigcup_{i=0}^{\infty} v_i^n(X_i) = 1 \) with \(v_i^n = 0 \) also satisfying these conditions, in addition to the extra condition \(v_i^n(X_i) \subseteq v_{i+1}^n(X_{i+1}), \ l = 1, \ldots, n, \ i \in N \), one can restrict oneself in \(a.2.2 \) to \(k \)-th components of intersections of the latter.

Define \(v'' \) by \(v''(X_i) = \bigcup_{i=0}^{\infty} v_i''(X_i), \ l = 1, \ldots, n \), and \(v''(X) = v(X) \), \(X \in X - \{X_1, \ldots, X_n\} \).

Then the conditions for continuity, w.r.t. the index set \(J \cup \{1, \ldots, n\} \), and \(v'' \) and \(\bigcup_{i=0}^{\infty} v_i''(X_i) = v''(X_1), \ l = 1, \ldots, n. \)

Hence,

\[\phi_{\sigma_1^n}(v''(X)) = (\text{continuity}) \bigcup_{i=0}^{\infty} \phi_{\sigma_1^i}(v_i''(X)) \subseteq (\text{point 1 above}) \]

\[\bigcup_{i=0}^{\infty} v''(X_i) = v''(X_1), \
 \text{for } l = 1, \ldots, n. \]

LEMMA 3.3. (Substitutivity). Let \(J \) be any index set, \(\sigma \in T \), \(x_j \in X \) and \(\tau_j \in T \) be of the same type for \(j \in J \), and variable valuations \(v_1 \) and \(v_2 \) satisfy

(1) \(v_1(X) = v_2(X), X \in X - \{x_j\}_{j \in J} \),
(2) \(v_j(X_j) = \phi^{\leq \tau_j}(v_2), \ j \in J \),
then the following holds:

\[
\phi^{\leq \sigma}(v_1) = \phi^{\leq [\tau_j/X_j \ j \in J]}(v_2).
\]

Proof. By induction on the complexity of \(\sigma \).
We only consider the case \(\sigma = \mu_{m_1}X_1 \ldots X_n[\sigma_1, \ldots, \sigma_n] \).

By definition,

\[
\mu_{m_1}X_1 \ldots X_n[\sigma_1, \ldots, \sigma_n][\tau_j/X_j \ j \in J] = \\
= \mu_{m_1}Y_1 \ldots Y_n[\sigma_1[\nu Y_1/X_1 \downarrow = 1, \ldots, n, \tau_j/X_j \ j \in J]], \\
\ldots, \sigma_n[\nu Y_1/X_1 \downarrow = 1, \ldots, n, \tau_j/X_j \ j \in J^*,

\]

with \(J^* = J - \{1, \ldots, n\} \) and \(Y_1, \ldots, Y_n \) relation variables different from \(X_j \),
\(j \in J \), and not occurring in \(\sigma_k, \ k = 1, \ldots, n \), or \(\tau_j, \ j \in J^* \).

Let

\[
E_1 = \\
\{(v''_1)_{k=1}^n \ | \ \phi^{\sigma_k}(v'') \subseteq v''_1(X_k), \ k = 1, \ldots, n, \text{and} \\
v''_1(X) = v_1(X), \ X \in X - \{X_1, \ldots, X_n\})_m,
\]

\[
E_2 = \\
\{(v'_1)_{k=1}^n \ | \ \phi^{\sigma_k}[Y_1/X_1 \downarrow = 1, \ldots, n](v'_1) \subseteq v'_1(Y_k), \ k = 1, \ldots, n, \ \text{and} \\
v'_1(X) = v_1(X), \ X \in X - \{Y_1, \ldots, Y_n\})_m,
\]

and

\[
E_3 = \\
\{(v''_2)_{k=1}^n \ | \ \phi^{\sigma_k}[Y_1/X_1 \downarrow = 1, \ldots, n, \tau_j/X_j \ j \in J^*](v''_2) \subseteq v''_2(Y_k), \\
\underbrace{\sigma'_k}_{k = 1, \ldots, n, \ \text{and} \ v''_2(X) = v_2(X), \ X \in X - \{Y_1, \ldots, Y_n\})_m.
\]
In order to prove $\phi^{\sigma}(v_1) = \phi^{\sigma[\tau_j/X_j]}_{j \in J}(v_2)$, that is $E_1 = E_3$, we first prove $E_2 = E_3$ and then $E_1 = E_2$.

$E_2 = E_3$:

\subseteq: Let v'_2 satisfy $v'_2(X) = v_2(X)$, for $X \in X - \{Y_1, \ldots, Y_n\}$, and $\phi^{\sigma'}(v'_2) \leq v'_2(Y_k)$, $k = 1, \ldots, n$.

Define v'_1 by $v'_1(X) = v'_2(X)$ for $X \in X - \{X_j \mid j \in J\}$ and $v'_1(X_j) = \phi^{\tau_j}(v'_2)$, for $j \in J$, and define v''_1 by $v''_1(X) = v_2'(X)$ for $X \in X - \{X_j \mid j \in J^*\}$ and $v''_1(X_j) = \phi^{\tau_j}(v'_2)$, for $j \in J^*$.

By the induction hypothesis, $\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v''_1) = \phi^{\sigma_k}(v'_2)$.

As X_1, \ldots, X_n do not occur in $\sigma_k[Y_1/X_1]_{j=1} = \ldots, n$, $\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v''_1) =$ $\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v'_1)$.

Moreover $\phi^{\sigma_k}(v'_2) \leq v'_2(Y_k) = v'_1(Y_k)$, $k = 1, \ldots, n$, as $\{X_j \mid j \in J\} \cap \{Y_1, \ldots, Y_n\} = \emptyset$.

Thus $\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v'_2) \subseteq v'_2(Y_k)$, $k = 1, \ldots, n$.

Furthermore $v'_1(X_j) = \phi^{\tau_j}(v'_2) = (Y_1, \ldots, Y_n$ do not occur in $\tau_j)$, $\phi^{\tau_j}(v'_2) = v_1(X_j)$, $j \in J$, and $v'_1(X) = v''_1(X) = v_2(X) = (assumption)$ $v_1(X)$ for $X \in X - \{X_j \mid j \in J\} - \{Y_1, \ldots, Y_n\}$, whence v'_1 satisfies the conditions mentioned in E_2.

As $<v''_1(Y_k)>^n_{k=1} = <v'_2(Y_k)>^n_{k=1}$, we obtain $E_2 \subseteq E_3$.

\supseteq: Let v'_1 satisfy $v'_1(X) = v_1(X)$, $X \in X - \{Y_1, \ldots, Y_n\}$ and $\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v'_1) \subseteq v'_1(Y_k)$, $k = 1, \ldots, n$.

Define v'_2 by $v'_2(Y_k) = v'_1(Y_k)$, $k = 1, \ldots, n$, and $v'_2(X) = v_2(X)$, otherwise.

Now (1) $v'_1(X_j) = v_1(X_j) = \phi^{\tau_j}(v'_2) = (Y_1, \ldots, Y_n$ do not occur in $\tau_j)$ $\phi^{\tau_j}(v'_2)$, $j \in J$,

(2) $v'_1(X) = v_1(X) = v_2(X) = v'_2(X)$, $X \in X - \{X_j \mid j \in J\} - \{Y_1, \ldots, Y_n\}$, and

(3) $v'_1(Y_k) = v'_2(Y_k)$, $k = 1, \ldots, n$,

imply together that the induction hypothesis may be applied, whence

$\phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>[\tau_j/X_j]_{j \in J}(v'_2) = \phi^{\sigma_k}[Y_1/X_1]_{j=1} = \ldots, n>(v'_1)$.

Since $\sigma_k[Y_1/X_1]_{j=1} = \ldots, n>[\tau_j/X_j]_{j \in J} = \sigma_k[Y_1/X_1]_{j=1} = \ldots, n>[\tau_j/X_j]_{j \in J^*} = \sigma_k'$, as no X_1, \ldots, X_n occur in $\sigma_k[Y_1/X_1]_{j=1} = \ldots, n$,
\[\phi_{k}^{\circ} (v_{2}^{1}) = \phi_{k}^{\circ} [Y_{1}/X_{1}]_{1=1}^{n} \leq (v_{1}^{1}) \leq v_{1}^{1}(Y_{k}) = v_{2}^{1}(Y_{k}) \]

It follows, \(k = 1, \ldots, n \). As \(v_{2}^{1}(X) = v_{2}^{1}(X), X \in X - \{Y_{1}, \ldots, Y_{n}\} \), it can be deduced that \(E_{2} \geq E_{3} \).

E_{1} = E_{2}:

\(\geq: \) Let \(v''_{1} \) satisfy \(\phi_{k}^{\circ} (v''_{1}) \leq v''_{1}(X_{k}), k = 1, \ldots, n, \) and \(v''_{1}(X) = v_{1}(X), X \in X - \{X_{1}, \ldots, X_{n}\} \).

Define \(v_{1}^{1} \) by \(v_{1}^{1}(Y_{k}) = v''_{1}(X_{k}), k = 1, \ldots, n, \) and \(v_{1}^{1}(X) = v_{1}(X), X \in X - \{Y_{1}, \ldots, Y_{n}\} \).

By the induction hypothesis, \(\phi_{k}^{\circ} (v''_{1}) = \phi_{k}^{\circ} [Y_{1}/X_{1}]_{1=1}^{n} (v_{1}) \).

Therefore, \(\phi_{k}^{\circ} [Y_{1}/X_{1}]_{1=1}^{n} (v_{1}) = \phi_{k}^{\circ} (v_{1}) \leq v''_{1}(X_{k}) = v_{1}^{1}(Y_{k}), k = 1, \ldots, n. \) As \(v_{1}^{1}(X) = v_{1}(X), X \in X - \{Y_{1}, \ldots, Y_{n}\} \), it can be deduced that \(E_{1} \geq E_{2} \) holds.

\(\leq: \) As \(\phi_{k}^{\circ} [Y_{1}/X_{1}]_{1=1}^{n} [X_{1}/Y_{1}]_{1=1}^{n} = \sigma_{k} \), the proof of this part is similar to the proof above.
APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).

\[\vdash X \ldots j-1 \ldots X \ldots X_n \sigma_1, \ldots, \sigma_j, \ldots, \sigma_{j+1}, \ldots, \sigma_n = X \]

\[= \mu X_{j} [\sigma_{j}, \ldots, \sigma_{j+1}, \ldots, \sigma_{n}] / X_{j} \in I, \]

with \(I = \{1, \ldots, j-1, j+1, \ldots, n\} \).

Proof. The proof of this lemma is copied from Hitchcock and Park [18]. For ease of notation, we establish this lemma just for the case \(n = i \); the general version, for \(n \neq i \), should be clear.

We use the following notation:

\[\mu_{j} \equiv \mu X_{1} \ldots X_{n} [\sigma_{1}, \ldots, \sigma_{n}, \sigma], \quad j=1,2,\ldots,n+1, \]

\[\hat{\mu}_{j}(X) \equiv \mu X_{1} \ldots X_{n} [\sigma_{1}, \ldots, \sigma_{n}], \quad j=1,2,\ldots,n, \]

\[\mu \equiv \mu[X[\sigma_{1}(X), \ldots, \sigma_{n}(X), X]], \]

and prove

\[\vdash \mu = \mu_{n+1}, \hat{\mu}_{1}(\mu) = \mu_{1}, \ldots, \hat{\mu}_{n}(\mu) = \mu_{n}. \]

By the minimal fixed point property, we have

1. \(\vdash \sigma_{j}(\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \mu_{n+1}) \leq \mu_{j}, \quad j=1,2,\ldots,n, \)

2. \(\vdash \sigma(\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \mu_{n+1}) \leq \mu_{n+1}, \)

3. \(\vdash \sigma_{j}(\hat{\mu}_{1}(\mu), \ldots, \hat{\mu}_{n}(\mu), \mu) \leq \hat{\mu}_{j}(\mu), \quad j=1,2,\ldots,n, \)

4. \(\vdash \sigma(\hat{\mu}_{1}(\mu), \ldots, \hat{\mu}_{n}(\mu), \mu) \leq \mu. \)

Then

(1) \(\vdash \hat{\mu}_{j}(\mu_{n+1}) \leq \mu_{j}, \quad j=1,2,\ldots,n, \)

applying an \(n \)-ary minimal fixed point argument to the inequalities (1),

noting that

\[\hat{\mu}_{j}(\mu_{n+1}) \equiv \mu X_{1} \ldots X_{n} [\sigma_{1}(X_{1}, \ldots, X_{n}, \mu_{n+1}), \ldots, \sigma_{n}(X_{1}, \ldots, X_{n}, \mu_{n+1})], \]

...
(ii) from (1) and monotonicity of \(\sigma \)

\[\vdash \sigma(\hat{\nu}_1(\mu_{n+1}^1), \ldots, \hat{\nu}_n(\mu_{n+1}^n), \mu_{n+1}) \leq \sigma(\mu_1, \mu_2, \ldots, \mu_{n+1}), \]

so \(\vdash \sigma(\hat{\nu}_1(\mu_{n+1}), \ldots, \hat{\nu}_n(\mu_{n+1}), \mu_{n+1}) \leq \mu_{n+1} \)

and \(\vdash \mu X[\sigma(\hat{\nu}_1(X), \ldots, \hat{\nu}_n(X), X)] \leq \mu_{n+1} \), by a 1-ary minimal fixed point argument, whence

\[\vdash \mu \leq \mu_{n+1} \]

follows.

(iii) \(\vdash \mu_{n+1} \leq \mu, \mu_1 \leq \hat{\nu}_1(\mu), \ldots, \mu_n \leq \hat{\nu}_n(\mu), \)

follows directly from (3) and (4) by an \((n+1)\)-ary minimal fixed point argument. The result follows then from inequalities (i), (ii) and (iii).

COROLLARY 4.4. (Modularity). For \(i = 1, \ldots, n, \)

\[\vdash \mu_1 X_1 \ldots X_n [\sigma_1(\tau_1)(X_1, \ldots, X_n), \ldots, \tau_{1m}(X_1, \ldots, X_n), \ldots, \sigma_n(\tau_{nm}(X_1, \ldots, X_n))] = \]

\[= \sigma_1(\mu_1 X_1 \ldots X_{nm} [\tau_{11}(\sigma_1(X_1, \ldots, X_{1m}), \ldots, \sigma_n(X_{nm}, \ldots, X_{nm}),]
\]

\[\ldots, \tau_{nm}(\ldots), \ldots, \mu_{im} \ldots). \]

Proof.

(1) \(n = 1 \) and \(m = 1. \)

First we prove \(\mu_1 XY[\sigma(\tau(\sigma(Y))), \tau(X)] = \) (iteration) \(\mu X[\sigma(\mu Y[\tau(\sigma(X))]) = \)

\(= (\text{fpp}) \mu X[\sigma(\tau(X))]. \) Then we have \(\mu_1 XY[\sigma(\tau(Y)), \tau(X)] = (\text{fpp}) \)

\(\sigma(\mu_2 XY[\sigma(Y), \tau(X)]) = \) (iteration) \(\sigma(\mu Y[\tau(\mu X[\sigma(\tau(Y))])] = (\text{fpp}) \)

\(\sigma(\mu X[\tau(\sigma(Y))] = \sigma(\mu X[\tau(\sigma(X))]), \) whence the result.

(2) \(n = 1. \) By induction on \(m. \) Induction step:

a. \(\mu X[\sigma(\tau_1(X), \ldots, \tau_m(X))] = \mu_1 X_1 \ldots X_{m+1} [\sigma(X_2, \ldots, X_{m+1}, \tau_1(X), \ldots, \tau_m(X))]. \)

Proof. \(\mu_1 X_1 \ldots X_{m+1} [\sigma(X_2, \ldots, X_{m+1}, \tau_1(X), \ldots, \tau_m(X))] = \) (iteration)

\(\mu_1 X_1 [\sigma(\mu_1 X_2 \ldots X_{m+1} [\tau_1(X), \ldots, \tau_m(X)], \ldots, \mu_m \ldots)] = (\text{fpp}) \)

\(\mu X_1 [\sigma(\tau_1(X), \ldots, \tau_m(X))]. \)

b. \(\mu_1 X_1 \ldots X_{m+1} [\sigma(X_2, \ldots, X_{m+1}, \tau_1(X), \ldots, \tau_m(X)) = (\text{fpp}) \)

\(\sigma(\mu_2 X_1 \ldots X_{m+1} [\sigma(\tau_1, \ldots, \tau_m), \ldots, \mu_m X_1 \ldots X_{m+1} [\sigma, \tau_1, \ldots, \tau_m]). \)
c. \(\mu_{i_1 \ldots i_m} = \prod_{j=1}^{m} \mu_{i_j} \)

\[\mu_{i_1 \ldots i_m} = (\mu_{i_1} \cdot \mu_{i_2} \cdot \ldots \cdot \mu_{i_m}) \]

Proof. E.g., \(i = 2 \),

\[\mu_2 X_{i_1} \ldots X_{i_m} = (\mu_2 X_{i_1} \cdot \mu_2 X_{i_2} \cdot \ldots \cdot \mu_2 X_{i_m}) \]

\[\mu_2 X_{i_1} \cdot \mu_2 X_{i_2} \cdot \ldots \cdot \mu_2 X_{i_m} = (\mu_2 X_{i_1} \cdot \mu_2 X_{i_2} \cdot \ldots \cdot \mu_2 X_{i_m}) \]

By induction on \(n \). Induction step: Let

\[\mu_i \equiv \mu_{i_1} \cdot \mu_{i_2} \cdot \ldots \cdot \mu_{i_n} \]

\[\beta_i \equiv \beta_{i_1} \cdot \beta_{i_2} \cdot \ldots \cdot \beta_{i_n} \]

\[\gamma_{i_1} \equiv \gamma_{i_1} \cdot \gamma_{i_2} \cdot \ldots \cdot \gamma_{i_n} \]

\[\gamma_{i_1} \equiv \gamma_{i_1} \cdot \gamma_{i_2} \cdot \ldots \cdot \gamma_{i_n} \]

a. \(\mu_i = \beta_i \), \(i = 1, \ldots, n \). By induction. E.g., consider \(i = 1 \),

\[\beta_1 = \gamma_{i_1} \]

\[\mu_1 = \gamma_{i_1} \]

b. \(\mu_{i_1} = \beta_{i_1} \). Similarly.

Hence \(\mu_i = (\mu_{i_1} \cdot \mu_{i_2} \cdot \ldots \cdot \mu_{i_n}) \).
REFERENCES

