stichting
mathematisch
centrum MC

1A

1A

DEPARTMENT OF COMPUTER SCIENCE ID 4/75 OCTOBER

INFAL, AN INFORMATICS LIBRARY
W. BOHM (ED.)

2¢e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CENTRUM
. ———AMSTERDAM— 5353060

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pwie mathematics and its
applications. 1t 48 sponsored by ithe Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free Univensity at Amsterdam, and by industries.

AMS(MOS) subject classification scheme (1970): 68A15, 68A10

ACM -Computing Reviews-— categories: 3.73, 3.74, 4.40, 4.4}

Infal, an informatics library

W. Bdhm (ed.)

ABSTRACT

Infal, an informatics library of programs in the field of informatics
is maintained on the CONTROL DATA CYBER70 system. It contains a variety
of main programs, subprograms and macros, some of which were taken over
from the X8 MILLI system.

This guide contains the documentation of each program, which contains
a brief description and specifies how to run the program. In case of a
subprogram it states the language(s) from which it can be called. It
also tells you how to get the source text or the documentation of that
specific program,

KEYWORDS AND PHRASES:

Program library,informatics

Infal, an informatics library

Contents
1. Introduction

2. Application programs
2.0 Miscellaneous
2.0.1 Mcc some classics from the X8 MILLI system
2.0.2 Bitpres AND, OR, XOR, BITSTRING and SET
2.1. Text editing ,
2.1.1 Neatab0 an ALGOL 60 neatener
2.1.2 Textsch Jjustifies text written in natural language
2.2. Sorting, merging, searching
2.2.1 Omnisort ' all kinds of sorting and merging
2.2.2 Kwicind index of keywords in context

- 3, System programs .

3.1 File handling

Copysfs formats a (multi)file

Simpio simple input/output macros

Ptchab0 changes the prefix table of an ALGOL 3 object
Chario character manipulation and conversion

WA LN
PN WINPT
@ o
W R

Infal, an informatics library

Introduction.
The Infal system consists of :

1. A program librarv on a permanent file with permanent file name
"infal" and owner identification "matcen". It is created and
maintained with the EDITLIB utility [1]. ’

2. A file containing documentations, source texts and a backup of the
program ‘library on tape. It is created and maintained with the
MODLIB system [2]. The tape has tape number "ns8097t" and user
identification "infalme".

Before executing a program using infal one should:
attach,infal,id=matcen.

Put infal in a library set [1], fer instance with the command:
library,infal.

Using MODLISB, the source text or documentation of a specific program
can be obtained by retrieving that file from the tape. The filenames of
the documentation and the source text are given in the documentation.
Suppose that we would want to get the source text of the program
copysfs, we would: ‘
specify in the job command a nine track tape device
attach,modlib
(modlib will request the tape)
retrieve the file with the command:
modlib ,ns8097t ,infalme,x,copysfs.

References

1. SCOPE reference manual, version 3.4.1 CONTROL DATA
2. SARA publication: Voorlopige utility publikatie

Infal, an informatics library

2.0 Miscellaneous
2.0.1 Mcc some classics taken over from the X8 MILLI system
2.0.2 Bitpres AND, OR, XOR, BITSTRING and SET

Mcc some classics taken over from the X8 MILLI system page 2.0.1.1

Author: H.L. Oudshoom

Source and documentation: mccsrec, mccedoc

Revisor: P. Beertema
Institute: Mathematical Centre
Date received: 06/11/74

Brief description: \

mee contains the following procedures inherited from the
X8 MILLI system:

exit : Terminates the execution of the program

available: Gives unused space (fl - top cof runtime stack)
date : Gives (day x 100 + month)x 100 + year - 1900
real time: Gives (hour x 100 + minute)x 100 + second

time left: Gives (time par in jobcard - used time)
in seconds

setrandom: Initializes random generation

random: Gives a random nunber
Keywords: exit,available,date,time,random
Type: ALGOL code procedures, in compass
Calling sequence EXIT:

"orocedure™ exit ; "code" 11010
Calling segquence AVAILABIE:

Tinteger" "procedaure" available ; "code" 11011
Calling sequence DATE:
"integer" "procedure" date ; "code' 11012;

Calling sequence REAL TIME:
"integer" "procedure" real time; "code" 11013;
Calling sequence TIME IEFT:
"real" "procedure" time left; "code' 11016;
Calling sequence SETRANDOM:
"pbrocedure" setrandom(x);"code" 11014;
X: 1input parameter
initializes starting value for following calls of random.

Calling seguence RANDOM:
"real" "procedure" random; "code" 11015;

Subprograms used: None

Method RANDOM:
new value := big number x oldvalue (mod 2xx48)

Bitpres and, or, xor, bitstring, set

Author:

H.L. Oudshoorn

Source and documentation: bitsrc, bitdoc

page 2.0.2.1

Revisor: P. Beertema
Institute: Mathematical Centre
Date received: 06/11/T74

Brief description:

Bitprecs contains 5 procedures that manipulate the rightmost 48 bits
of machine words. If x is a variable of type integer or real, then
"integer" "array" d x[0:47] represents the 48 bits of the unpacked
variable. All procedures deliver a packed and normalized value.

AND(A,B):
"FOR" T := O HSTEPH 1 "UNTIL" 47 "DO"
D AND[I] := "IF" D A[I] =0
"T EN" O
"ELSE" D B[I]
OR(A,B):
HFOR" I = O "STEP" 1 "UNTHJ" 47 "DO"
D OR[I]} := "IF" D A[I] =1
"THEN" 1
"EISE" D B[I]
XOR(A,B):

"HOR" T = 0 "STEP" 1 "UNTIL" 47 upOn
D XOR[I] := "IF" D A[I] = D B[I]

"THEN" 0
IIELSE" 1
BITSTRING (U,L,A):

"FOR" I := 47 "STEP" -1 "UNTIL" U-L+1 "DO"
D BITSTRING[I] := 0;
"FOR" I := U-L STEP" -1 "UNTIL" 0 "DO"
D BITSTRING[I] := D A[I+L]
%ETt(!C,U’L}iA)l:I it
IF'"' I = AND" L = 0
"THEN" "FgR" I .= }47 "STEP" _1 "UNTIL" O "DO"
D SET[I] := D C[I]
"ELSE"
"BEGIN"
"FOR" I := 47 "STEP" -1 "UNTIL" U+1 "DO"
D SET(I] := D A[I];
"FOR" I := U "STEP" -1 "UNTIL" L "DO"
D SET[I] := D C[I-L];
"FOR" I := L~-1 "STEP" -1 "UNTIL" 0 "DO"
D SET{I] := D A[I] '
HEN'D"

Keywords: Bit manipulation

Infal section 2.0: Miscellaneous

Type: AIGOL code procedures

Calling sequence AND, OR and XOR:
"integer" "procedure" and(a,b); "code" 12000;

"integer" "procedure" or(a,b); "code" 12001;
"integer" "procedure'"xor(a,b); "code" 12002;

Calling sequence BITSTRING:
"integer" "procedure" bitstring(u,l,a); "code" 12003;

u : upper limit
1 : lower limit
a : source

Calling sequence SET:
"integer" "'procedure" set(c,u,l,a); "code" 12004;

: source

: upper limit receiver
: lower limit receiver
: receiver

oSO

Subprograms used: None

page 2.0.2.2

Infal, an informatics library

2.1 Text editing
2.1.1 Neatab0 an ALGOL 60 neatener
2.1.2 Textsch justifies text written in natural language

Neata60 an AIGOL 60 neatener page 2.1.1.1

Author: Ger ten Velden

Source and documentation: neat60s, neat60d

Institute: Mathematical Centre

Date received: 01/05/75

Brief Description: ,

This program is an AIGOL 60 program for autcmatic text layout of
AIGOL 60 (CD-ALGOL) programs.

The requirement of well readable output, which seems to be a highly
subjective matter, has been met by generating a text 1layout which
displays the syntactical structure of the source text.

The results, obtained by this syntax oriented method, do rather
conform to the wusual, hand prepared, ALGOL 60 texts, wused for
publication purposes.

Keywords :
Text layout, ALGOL 60 programs, syntactical structure.

Type: ALGOL 60 main program.

Calling seguence:
attach,infal,id=matcen.
library(infal)
attach,source,id="id’'.
attach,options,id='id'. SEE OPTIONS
neatab0.

Input Output:
Two extra channel definitions are required for:

1) source text input: channel 50 (channel,50=source,p80,r)
2) neat output: charmel 51 (channel,51=neat,p80,r).

The channels 60 and 61 (files INPUT and OUTPUT) are used to specify
options. Options also can be read fram an extra channel:

3) options: channel nn (channel ,nn=options,p80,r).

Infal : section 2.1: Text editing page 2.1.1.2

Options:
Fach option starts at the beginning of a line and is terminated (not

necessarily at the same line) by a period. All text between this period

and

the first following 'end of line' will be considered as comment.

Options are terminated by the end option (e. or end.) or 'end of file'
(actually 'end of record')

Options concern:

1)

2)

3)

)

option channel: o, <unsigned integer>.

A1l options fram the specified channel are read, starting at the
second line (the first line is skipped). Afterwards, options are
read again fram the original channel, following the o option.

width of source text: k = <unsigned integer-.
k represents the number of characters per Iline. Exceeding
characters are skipped. (standard: k = 72)

width of resulting text: w = <unsigned integer>.
(standard: w = 72).

ATGOL symbols (letters and digits excepted).

AIGO% symbols are followed by parameters e.g. "vegin",$'ogn'$, t6.
and (, 19.

Parameters concern:

4,1) neat representation: the desired output of the ALGOL symbol
is enclosed between dollars,

I,2) tabulation value: t<digit>, this value is meaningful for same
ATGOL symbols (see table below),

4,3) cohesion values: I<digit> and r<digit>, specifying the Ileft
and right hand side of the ALGOL symbol;

= 0 means: no space,
<digit> > 0 means: one space,

< 9 means: relative cohesion value of the space,
<digit> = 9 means: cohesion value infinite (no breakpoint).
These values are meaningful for (see table below):

a) operators, indicating the priority of the operator,

b) pseudo operators (, : := "step" "until" "while'"), indicating
the priority of the pseudo operator,

c) only a left cohesion value is meaningful for:
(, when precgded by a procedure identifier,
[, when prectded. by an array identifier.

Neatab0 an ALGOL 60 neatener page 2.1.1.3

Input:

The source text must be an ALGOL 60 program or procedure declaration.
The source text ends at an occurrence of the ALGOL symbol ecp or at end
of file (end of record). Comments before and after the program .(or
declaration) are skipped. The hardware representations of ALGOL 60
symbols are listed in the table below (including some alternatives).

Output:
The desired output of the ALGOL 60 symbols can be specified by means
of some options. The standard representations are listed in the table

below.

ATGOL SYMBOL, ADDITTONAL TABULATION CCHESION VALUES
INPUT AND INPUT VALUE (STANDARD)
STANDARD OUTPUT REPRESENTATIONS (STANDARD) IEFT RIGHT
REPRESENTATTON
+ - 6 6
- - 6 6
X "TTMES" - 7 7
/ - 7 7
XX "POWER" - 8 8
// "/ - 7 7
"DIVH
> "GREATER" - 5 5
"GR"
"GT"
>= "NOTIESS" - 5 5
"GEI!
"G‘Q"
= "EQU AL" - 5 5
"EQ"
T "NOTEQUAL" - 5 5
"NE"
"NQ"
<= "NOTGREATER" ~ 5 5
".T_E"
"LQ"
< "I_ESS" - 5 5
"]’_Sﬂ
HLT"
"AND" - 4 4
HOR" -— 3 3
"EQUIV™ "EQV" - 1 1
- UNOT! - - -
"IMPL" "IMPLIES" - 2 2
" IMP"
, - 0 1
: L) = 3 3

" (LOWER TEN) -

Infal section 2.1: Text editing page 2.1.1.4.

N
[T

(/ 1
/) -
i (] : -
mn - - -
"TRUE" — -— -
"FAISE"

"GOIIO"

HIFH

"TTHEN"

"ELSE"

"FOR"

nDOn

"S'IEP "

"UNTIL"

HWHI]'JE"

"COMMENT" Hcoﬂ
"BEGIN" "BGN™
"EN.D"

"OWN"

"BmLEAN" "BOOL"
"INTEGER" "INT"
"REAL"

"ARRAY" MAR"
"SWITCH"

"PROCEDURE" "PROC
"STRING"

"LABEL"

"VALUE" "VAL" - -
NCODE" -— - -
"ALGOL" — . -
"FORPRAN " - - -
HEOP 1" -— - -

el ™ N’ 0n
it
1
|
It~ 1 OF
n

Lt Utovn—1~3u1 1 |
1 1
| l

1
[IR AUAAG A |
[i i = |

S g = g - i . - -
1
i

Required central memory: 60000b.

Running time: 3 to 4 lines per second.

Method and performance:
Arranging the source text into neat lines is performed according to
the following two main rules:

1) if some syntactical unit (think of a compound statement) doesn't
fit in one 1line by itself, that unit will be subdivided into a
nurber of subunits (the composing statements of the compound
statement); each following line will contain as many as possible of
these whole subunits.

Neatab0 an ALGOL 60 neatener page 2.1.1.5

2) if some subunit doesn't fit in one line by itself, that subunit
is partitioned into several lines, according to rule 1), and the
following subunit will start at the beginning of a new line (a
small statement should never be hidden at the end of the last 1line
of a preceeding large statement, nor should, as a consequence, a
durmy statement).

The following actions are performed until the input has been
exhausted. ,

The program fills a circular buffer, while parsing the ALGOL 60 text
according to a simplified grammar. After the buffer has been filled the
program searches the break point, which is the rightmost symbol with the
lowest cohesion value. The indentation for the next line is calculated
and the current line is put out.

Same constructions, viz. comments and strings, give rise to troubles
because of the lack of any internal syntactical structure. Additional
information should be available to determine whether existing layout
characters in the source text have to be retained, or other ones may be
inserted instead. These two cases are treated as follows:

coments :
On each occurrence of one or more consecutive spaces, one space is
generated instead. If one coment doesn't fit in one line the

comment is subdivided into several lines, breaking each line after
the last space that fits on that line; continuation lines are
indented normally,

strings:

All characters, including spaces are retained (the exception being
spaces between the camposing characters of (nested) string quotes).
If one string doesn't fit in one line, the string is subdivided
into several lines, breaking each line after the 1last character
that fits in that line; continuation lines are not indented.

Infal section 2.1: Text editing page 2.1.1.6

Example of use:

The following procedure declaration will be used to demonstrate the
use of neatab0 and its options. The short alternative representations
for ALGOL symbols (see table) have been used in the source.

file source:

MPROC"QUICK SORT(A,I,J);"VAL"I,J;"AR"A;"INT"I,J; "BGN""INT"P,Q; "REAL"X,Y,
T3 "IF"J-I>1"THEN""BGN"T:=A[I] ;Q: =J ; "FOR"P : =T+1"STEP"1"UNTIL"Q"DO""BGN"X :
=A[P] ;"IF"X>T"'I‘IE\I""BGN""FOR"Q: =Q"STEP"-1"UNTIL"P"]I)" "BGN"Y : =A[Q] : "IF"Y<
T"THEN""BGN"A[P] :=Y;A[Q] : =X;Q: =Q~1; "GOTO"L"END""END" ;Q: =P-1; "GOTO"M"END"
;L:"END";M: A[I]:=A[Q];A[Q]:=T;QUICK SORT(A,I,Q-1);QUICK SORT(A,Q+1,J)"EN
D""ELSE""IF"J-I=1"THEN""BGN"X: =A[I];Y:=A[J] ; "IF"X>Y"THEN""BGN"A[I]: =Y ;A[
J]: =X"END""END""END"SORT;

First, we neat the source without specifying any option.

a)interactively:
attach,infal,id=matcen
attach,source,id=gtv

connect ,input
xeq,libload=infal ,neatabl ,execute
charnnel,50=source ,p80,r
channel,51=sort ,p80,r
charnel,end

end.

catalog,sort ,id=gtv

b)batch job:
attach,infal ,id=matcen.
attach,source,id=gtv
library ,infal.

neatabo.

catalog,sort ,id=gtv.
xend of record
charnel,50=source,p80,r
channel,51=sort ,p80,r
xend of file

Neatab0 an ALGOL 60 neatener page 2.1.1.7

The result on file output (case b) is:

CHANNEL ,60=INPUT P80 ,R
CHANNEL , 61=0OUTPUT,P136 ,PP60 ,R
CHANNEL , 50=SOURCE ,P80 ,R
CHANNEL ,51=SORT ,P80,R

AIGOL60 NEATER.
OPTION:
SOURCE DECK ENDS AT LINE 7

END OF ALGOL RUN xV3.1x
The result on file sort is:

"PROCEDURE" QUICK SORT (A, I, J); "VALUE" I, J; "ARRAY" A;
"INTEGER" I, J;
"BEGIN" "INTEGER" P, Q; "REAL" X, Y, T;
"IF" J - I > 1 "THEN"
"BEGIN" T:= A [I]; Q:= J;
"FOR" P:= I + 1 "STEP" 1 "UNTIL" Q "DO"
"BEGIN" X:= A [P];
"IFH X > T "fIrI_]E‘N"
"BEGIN™
"FOR" Q:= Q nerEPH -1 "UNTIL" P I'Don
"BEGIN" Y:= A [Q];
"IF" Y < T "THEN"
"BEGIN" A [P]:= ¥; A [Q]:= X; Q:= Q - 1; "GOTO" L

"END"
"END";
Q:= P - 1; "GOTO" M
"EE\ID";
L:
"EN'D";

M: A [I]:= A [Q]; A [Q]:=T; QUICK SORT (A, I, Q - 1);
QUICK SORT (A, Q + 1, J)

"END"

"ELSE"

"IF" J - I = 1 "THEN"

"BEGIN" X:= A [I]; Y:= A [J];
"IF" X > Y "THEN" "BEGIN" A [I]:=Y; A [J]):= X "END"

"END"

YEND" SORT;

Infal) section 2.1: Text editing page 2.1.1.8

The same source will be neated, demonstrating the effect of same
options. After the 'channel,end' of example a, we insert the following
options:

(, LO. NO SPACE BETWEEN PROC IDENTIFIER AND (
(/,LO. NO SPACE BETWEEN ARRAY IDENTIFIER AND [
, LRO. NO SPACE AT THE RIGHT HAND SIDE OF ,

+ ,L0,RO. NO SPACES AROUND +

- ,L0,R0. NO SPACES AROUND -~ |

:=,R0. NO SPACE AT THE RIGHT HAND SIIE OF :=

Result on file ocutput:

CHANNEL ,60=INPUT,P80,R
CHANNEL,61=0UTPUT,P136 ,PP60,R
CHANNEL ,50=30URCE ,P80,R
CHANNEL ,51=SORT ,P80,R
CHANNEL ,END

ATGOL60 NEATER.

OPTION:

(,Lo.

OPTION:

(/,L0.

OPTION:

s 5RO

OPTION:

+,L0,R0.

OPTION:

-,L0,RO.

OPTION:

+=,R0,

OPTICN:

END.

SCURCE, DECK ENDS AT LINE 7
END OF AIGOL RUN xV3.1x

Neatab0 an ALGOL 60 neatener page 2.1.1.9

Result on file sort:

"PROCEDURE" QUICK SORT(A,I,J); "VALUE" I,J; "ARRAY" A; "INIEGER" I,J;
"SEGIN" "INTEGER" P,Q; "REAL" X,Y,T;

"IF" J_I > 1 HTHEN"
"BEGIN" T:=A[I]; Q:=J;
"FOR" P:=I+1 "STEP" 1 "UNTIL" Q "DO"
"BEGIN" X:=A[P];
"IFH X > T “T.HEN"
"BEGIN"
"FOR" Q:=Q "STEP" - 1 "UNTIL" P "DO"
"BEGIN" Y:=A[Q];
"IF" Y < T "THEN"

"BEGIN" A[P]:=Y; A[Q]:=X; Q:=Q-1; "GOTO" L "END"
"END";
Q:=P-1; "GOTO" M
"E:ND";

L:

"END";
n'a'é ﬁ.[I]::A[Q]; A[Q]:=T; QUICK SORT(A,I,Q1); QUICK SORT(A,Q+1,J)
"IF" J-I = 1 "THEN"
"BEGIN" X:=A[I]; Y:=A[J];

"IF" X > Y "™IHEN" "BEGIN" A[I]:=Y; A[J]:=X "END"
"ENDH
"END" SORT;

Infal section 2.1: Text editing page 2.1.1.10

Now we use a separate file, called 'options', containing a nunber of
options:

THIS FIRST LINE WILL BE SKIPPED AS A COMMENT
"PROC", $PROC$, T2.

"AL", $VALS, T2.

"AR", $ARRAY$,T2.

"INT", $INTS, T2.
"REALM", $REAL$, T2.
"BGN", $BEGIN$,T2.
"ENDY, $.

"TEt, IF, T3.
s S, 19,
"EL‘:‘% , :oELbEﬂS, T5.
"FOR p FOR, TU.
"STE:P p $STEPS, T5.
"Ul\]"];’IL »$SUNTILS ,T6.
pot, po, T3
"GOTO", $GOTO3.

The following interactive commands are used to produce a very narrow
version of the sorting procedure:

attach,infal,id=matcen
attach,source,id=gtv
attach,options,id=gtv

connect ,input

xeq ,1libload=infal,neatab0 ,execute
channel ,50=source ,p80,r

channel ,51=sort,p80,r

channel ,52=cptions,p80,r

channel ,end

(,10.

[,10.

5570,

,10,r0,

-,10,r0.

options,52. Only the first letter of options is examined
w=32, Width of result = 32
end.

Neata60 an ALGOL 60 neatener ﬁ page 2.1.1.11

The result on file output is:

. CHANNEL ,60=INPUT,P80 ,R
CHANNEL, 61=0UTPUT ,P136 ,PP60 ,R
CHANNEL,, 50=SOURCE , P80 , R
CHANNEL ,51=SORT P80 ,R
CHANNEL, 52=0PTIONS ,P80 ,R
CHANNEL ,END

ALGOL60 NEATER.
OPTION:

(,Lo.

OPTION:

[,Lo.

OPTION:

,,RO.

OPTION:

+,10,R0.

OPTION:

-,L0,R0.

OPTION:
OPTIONS,52.
OPTION:

"PROC" ,$PROCS , T2.
OPTION:

"YAL" $VALS,T2.
OPTTION:

"AR" ,$ARRAYS ,T2.
OPTION:

"INT" ,INT,T2.
OPTION:

"REAL" ,$REAL$,T2.
OPTION:

"BGN" ,$BEGINS ,T2.
OPTION:

ENDY , END .
OPTION:

"IF" $IFS ,T3.
OPTION:

"THEN" ,$THENS ,T5.
OPTION:

"ELSE" ,$ELSES ,T5.
OPTION: .
"FOR" ,FOR ,T4.
OPTION:

"STEP" ,$STEPS , T5.
OPTION:

"UNTIL" ,$UNTILS$,T6.
OPTION:

"Don ’m :TB .
OPTION:,

Infal section 2.1: Text editing page 2.1.1.12

"GOTO" ,$GOTOS.
OPTTON:

OPTION:

W=32.

END.

SOURCE DECK ENDS AT LINE 7

END OF ALGOL RUN xV3.1x

Neatab0 an AIGOL 60 neatener page 2.1.1.13

The result on file sort is:

PROC QUICK SORT(A.I,J);
VAL I,J; ARRAY A; INT I,J;
BEGIN INT P,Q; REAL X,Y,T;
IF J=-I > 1 THEN
BEGIN T:= A[I]; Q:= J;
FOR P:= I+1 STEP 1 UNTIL Q

DO
BEGIN X:= A[P];
IF X > T THEN
BEGIN
FOR Q:=
Q STEP - 1 UNTIL P
DO
BEGIN Y:= A[Q];
IF Y < T THEN
BEGIN A[P]:= Y;
AlQ]:= X; Q:= Q-1;
GOTO L
END
END;
Q:= P-1; GOI'O M
END;
L:
END;

M: A[I]:= A[Q]; A[Q]:=T;
QUICK SORT'(A,I,Q-1);
QUICK SORT(A,Q+1,J)

END

ELSE

IF J-I = 1 THEN

BEGIN X:= A[I]; Y:= A[J];
IF X > Y THEN
BEGIN A[I]:= Y; A[J]:=X
END

END

END SORT;

As another example we mention the neated source text of neatab0. This
program has been neated without specifying any option.

Textsch justifies text written in natural language page 2.1.2.1

Author: Dick Grune

Source and documentation: schaafs, schaafd

Revisor: Jan Karel Schreuder
Institute: Mathematical Centre
Date received: 31/01/75
Last revision: 23/06/75

Brief description:

TEXTSCH (short for "tekstschaaf", dutch for text plane) is a
program that Jjustifies and paginates texts written in a natural
language. It is possible to suppress Jjustification for certain parts
of the input; pagination, however, will always take place.

The input should consist of chapters, made up of paragraphs. This
structure must be indicated by special synbols on the input ~file.

Each chapter starts at a new page. The program takes care of the
pagination within the chapters. A heading will be put at the top of
each page: a text supplied by the user, at the left and a chapter
nunber and page number at the right. The chapter number must be
specified at the beginning of each chapter. The page number is
incremented automatically.

Two types of paragraphs exist. The first one is a sequence of
words. The second one is an indivisible block, i.e. .Jjustification
will be suppressed for that paragraph. A paragraph consisting of
words, will be Jjustified and reproduced as a block of text with
straight left and right margins. The first line may cover the full
linewidth. For the second and following lines a left margin will be
kept. ,

The program inserts spaces to create a straight right margin. The
most appropriate positions for this insertion are: immediately after
a period, comma, colon, semicolon or question mark. Other appropriate
positions could be found by parsing sentences. This is not within the
scope of the program. However, when we observe english or dutch
sentences, we discover that very often a short word and a following
longer one are part of the same syntactical unit. The value that the
user puts on these considerations, can be made known to the program in
numerical form.

Keywords :
Justification, natural language, pagination.

Type: Main program in ALGOL 60

Infal section 2.1: Text editing page 2.1.2.2

Calling sequence:
attach,infal,id=matcen.
attach,invoer, 'pfn',id='id’.
library(infal)

textsch.
catalog,print,'pfn',id="id"'.
catalog,pons, 'pfn',id="id’.
xeor

<filespec>

xeof

'filespec! 1is a sequence of three pairs of integer values that
specify the files "invoer", "print" and "pons" in that order. The
first integer of each pair specifies the line width of the file. The
second integer specifies the character code of the file. The value of
the line width specification should be greater than or equal to the
maximum linewidth of the specified file. The following table gives
the range and meaning of the values that specify the character codes
of the files:

type of file read file write file
ascii, even parity 2 18
ascii, odd parity 3 19
me~flexowriter code 4 20
arbe-flexowriter code 5 21
display code 6 22
dollar code T 23
63 character set print file 24
95 character set print file 25

The 95 character set print file cannot be supported before the
operating system SCOPE 3.4.2. is running on the CYBER installation.
A dollar file is an "enriched" display file, in which a special
meaning is attached to the dollar sign. For further information we
refer to Chario (3.1.4)

Data and results:

1. Input file: 1fn "invoer",

This file contains the text to be Justlfled We will describe the
input in Backus-Naur-Form. Occasionaly the exact me ning of a backus-
naur-formula will be slightly changed in the accompanying text, in
order to keep the formal description simple.

<input>::= <chapter><chapter delim><input>,<chapter>
<chapter>::= <readvarblock><alinea>
<chapter delim>::= §;

The ‘input consists of a sequence of chapters separated by a
'chapter delim' (a sharp sign followed by a semicolon: "E;"). A
'readvarblock' precedes each 'chapter!’.

Textsch justifies text written in natural language page 2.1.2.3

<readvarblock>::= (<assignments>)
<assignments>::= <variable name>:=<value>;<assignments>,<empty>

The 'readvarblock' contains information about the chapter that
follows. The 'values' assigned to the 'variable names' are passed on
to variables of the program. In this way each 'variable name'
corresponds to a variable of the program. The program assigns initial
values to these variables. Such a variable keeps its (initial) wvalue
until its corresponding ‘'variable name' is assigned to in a
'readvarblock'. The 'variable names! will be ‘treated as ordinary ALGOL
variables.) ’

The 'variable names' are:

string kopje;
A string assigned to 'kopje' will be put as a heading at the top
of each page. Self-evidently, the "string" of ‘'kopje' together
with the chapter number and the page number should not occupy
more positions than 'breedte'! specifies. The string must be
enclosed within guotes.

"boolean" pons;
If pons is true, a file "pons" (see beginning of this section)
will be created. Otherwise only a file "print" is created.
Initial value: "true".

"integer" hoofdstuk;
Chapter number; minimum value 0, initial value 1.

"integer" bladzijde;
The number of the first page of the chapter;
minimum value 0, initi 1 value 1.

"integer" laatste;
The maximum value of the page nunber. If the page, having a page
nuber equal to 'laatste', is followed by another page, the
latter will get 'laatste' as its number followed by an "a", the
next page will get 'laatste' followed by a "o" etc. This creates
the possibility of inserting pages into a text that has already
been nurbered,
Minimum value 0, initial value 100000.

"Integer" breedte;
The number of positions on a line.
Minimum value 18 (necessary to ensure sufficient space for a
chapter number and a page number), initial value 75.

Infal section 2.1: Text editing page 2.1.2.4

"integer" hoogte;
The numbers of lines per page. The first line is reserved for
the heading, the next three lines are empty and the following
lines may be filled with text. No page will have more than
hoogte lines. Minimum value 5, initial value 56.

"integer" alinea;
A justified paragraph containing a number of lines that is less
than or equal to 'alinea', will never be divided over two pages.
The value of 'alinea' must be at least 4 less than the value of
'hoogte' and positive.
Initial value 10.

"integer" kantlijn;

Specifies the width of the 1left margin of the second and
following lines of a justified paragraph. The first line will
start at the same position as it did on the input file. if the
left margin of the first line is smaller than the margin as
specified by 'kantlijn' and the length of the first word is
greater than or equal to the difference of the two margins, the
first word will be put on a separate 1line (squeezed out). So
justified paragraphs may take the following forms:

XXX e X o XXXK X
XXX o XXXXX
KXo XX XXX
or
XXXX
XXX o XX o XXXXX
KXo o XX XXX X
or
XXo o KXo XXX X
XXX XXX e Xo XXX
XX o ZHAXXK « XXXXX

where "x" represents letters and "." space.
impossible is:

XXXX« XXX X
XXX XX X
XX XXX X

For example, instead of:
10.1.3.5. The justification of nixon.

Gods own country suffered a severe
shock. We all know that, our dear

Textsch justifies text written in natural language page 2.1.2.5

the program might produce:

10.1.3.5.
The justification of nixon. Gods
own country suffered a severe
shock. We all know that, our dear

It 1is possible to obtain the former layout by meking the first
line a separate paragraph and choosing a different indication;
see <indication>.

Minimum value 0, initial value 8.

"integer" diepte;

The number of lines of a paragraph (counted after justification)
that are used by the process of Jjustification, in order to
calculate the number of words on the 1lines (see
Method and performance). '
Minimum value 1, initial value 3.

"integer" zwak, middel, sterk, lzwak, lmiddel, lsterk;

These variables regulate the protection of certain word pairs
against insertion of spaces or linebounderies. Zwak, middel,
sterk determine the amount of protection enjoyed by weakly,
mildly and strongly bonded words against the insertion of spaces.
Lzwak, Ilmiddel and 1strong define the amount of protection
against the dinsertion of Ilinebounderies. A large value of
lsterk, for instance, implies that two strongly bonded words will
never be separated by a lineboundery.

Minimum value 1.

Initial values:

zwak 1 lzwak 1

middel 2 Imiddel 1

sterk 4 1sterk 1

"integer" rafels;

Indicates the importance the user attaches to an exactly straight
right margin., A value much smaller than the value of zwak,
middel etc. destroys completely the effect of Jjustificationy in
that case each 1line will be filled with as many words as
possible.

Minimum value 1, initial value 100.

X les:
(hoofdstuk :=3; bladzijde := 1)

Pages will be numbered 31, 32, 33, etc.

(hoofdstuk:= 3; bladzijde:= 13; laatste:= 13)
Pages will be numbered: 313, 313a, 313, etc

(hoogte:= 10000000; kantlijn := 0; diepte:= 1; rafels:= 1;
zwak: =1000; middel:=1000; sterk:= 1000; lzwak:= 1000;

Infal - section 2.1: Text editing page 2.1.2.6

Imiddel:= 1000; lsterk:= 1000)
The text will be packed as closely as possible:
no pagination, no left margin, and no straight right margin.

<alineas>::= <alinea><alineas>,<alinea>

<alinea>: := <layout ind option><quoted block><alinea delim>,
<layout ind option><words><alinea delim>

<layout ind option>::= <layout><layout ind option>,

<indication><layout ind option>,<empty>

<indication>::=<indication delim><spec><indication delim>

<gpec>: := h<spec>,k<integer>spec,<empty>

<alinea delim>::= §"

<indication delim>::= §=

<quoted block>::= <quote delim><block><quote delim>

<quote delim>::= §?

The 'indication' is enclosed within ‘'indication delim's and
consists of the character "h" and/or the character "k" followed by an
integer. The integer following "k" specifies the margin for the
paragraph that follows (in other words, 'kantliin' will be turned off
temporarily). '"h", if present, causes the boolean variable "hard" of
textsch to take the value true; if not present,"hard" will have false
as 1its value. the trueness of hard will ensure that the paragraph
that follows, is put on the current page if and only if it fits
campletely on that page. If it is too long it will start at a new
page.

Tabs, spaces, and line transitions constitute the layout. This
layout will be copied and determines the starting point of the
justified paragraph. If the paragraph starts at a new page preceding
line transitions will be ignored. A 'quoted block' starts and ends
with a 'quote delim’'.

A1l symbols but 'quote delim's are allowed in a 'quoted block'. A
'quoted block' without its enclosing 'quote delim's will be copied and
no justification will take place.

<words>: := <word>,<word><separator><words>

Tabs, spaces and/or line transitions constitute a 'separator'. One
space, tab or line transition suffices to specify a 'separator'; the
exact composition of a 'separator' is of no importance.

<word>::= <normal word>,<quoted word><mark option>

A 'nmormal word' may contain all available symbols with the
exception of spaces, tabs, line bounderies and 'alinea delim's. A
'normal word' must not begin with a 'quote delim'. Its position in
the paragraph will be determined by the process of justification.
Like a 'quoted block', a 'quoted word' is “enclose within ‘'quote
delim's. However, tabs and 1line transitions are not allowed in a
'quoted word'. The program removes the enclosing 'quote delim's and
the proeess of justification determines the position of the 'quoted

Textsch justifies text written in natural language page 2.1.2.7

word'! in the paragraph (the uncertainty of its future place makes it
impossible to allow tabs and linebounderies in a 'quoted word!).

<mark option>::= <empty>,<cama>,<period>,<colon>,<semicolon>,
<question mark>

The 'mark option' forms an indivisible unit with the 'quoted word'.
For example:
=n:=n + 1;}=
has the same meaning as:
F=n:=n + 1}=;

2. Output files.
2.1. 1fn "print", containing the justified text plus error
messages.
2.2. 1fn "pons", containing the justified text.

General remarks pertaining to input/output

The internal code is ascii. The read and write procedures return
and accept ascii. So, capitalisation and underlining are possible.
The program was written originally for the x8 and this imposes the
following restrictions on the input. Barred and underlined symbols
must always appear in the order:

bar/underline backspace synbol

The reverse order is not interpreted according to the intentions of
the user. If the text does not contain capitals or backspace the
input file can be in display code and specified accordingly. A richer
code is necessary to represent capitals, backspace, underlining. This
can be provided for by using the dollar convention. (see Chario) If
the input file code is "richer" than the output file code as specified
by 'filespec' the extra symbols of input are replaced by question
marks on the output file.

The sharp symbol(4) indicates a delimiter (chapter delimiter,
alinea delimiter, etc.). Sharps that are part of the text to be
Jjustified, should be represented by pairs of sharps.

Errormessages are self-explaining and interspersed in the justified
text on the file "print". The file "pons" contains the justified text
without additional remarks.

Method and performance:

The program processes paragraphs. One can divide the processing of
each paragraph into an input phase, a justifying phase and an output
phase.

Infal section 2.1: Text editing page 2.1.2.8

The input phase:

The words of a paragraph are stored in a doubly 1linked 1list, one
integer per symbol. In the links of the list, space is reserved for
justification data. The strength of the bond between two successive
words 1s specified in the 1links, according to the criteria as
explained in "brief descripton'.

The justifying phase:

The thus created list of words is passed on to an algorithm, which
determines the line division as follows. The first line is filled
with as many words as possible. Then the degree of its justifiability
is determined. The remaining part of the list is regarded as a new
paragraph, the Jjustifiability of which is determined recursively by
the same process. These two justifiabilities are added up and this
result constitutes the Jjustifiability of this paragraph when having
this particular line division. Then the last word of the first 1line
is removed and added to the remainder of the paragraph. Again the
Jjustifiability is determined. Clearly the 1line has become less
Justifiable; the justifiability of the rest of the paragraph, however,
may have increased sufficiently to have improved the overall picture.
The distribution of spaces over the first line and its division do not
become final, before the optimal number of words on the line has been
determined in this way. Then this process is repeated iteratively for
the remainder of the paragraph. The execution time of this algorithm
is roughly proportional to 24r, where r is the number of lines in the
Justified paragraph. This implies that the justification of a
paragraph of 15 1lines takes 1000 times as much time as the
justification of a paragraph of 5 1lines. This is intolerable.
Moreover, looking beyond more than a few lines does not heighten the
esthetic effect. The depth of the recursion in the above algorithm is
limited, therefore, by the variable diepte. The time required to
process a paragraph is now:

if r > diepte: (r - diepte + 1) x 2 xx diepte

if r <= diepte: 2 XX r

If 'diepte' = 6, the ratio of the executiontimes of two paragraphs
of 15 and 5 lines is now: 20 : 1.

The above algorithm makes use of a numerical value that indicates
the degree of justifiability. This value is defined as follows. The
length of the words and the linewidth determine the number of spaces
to be inserted,n, and the number of groups of spaces,ng. Then:

n = sum(i, 1, ng, s[il]),
where s[i] is the length of the i~th group of spaces. Justifiability
is defined by:

-sum(i, 1, ng, k[i] s[i] < 2)
where k[i] is the strength of the bond between two words. The degree
of justifiability decreases quickly if one of “ the groups of spaces
grows too big. If we do not limit the values of s to integers the
justifiability has a maximum value if:

s[j] = (n / sum(i, 1, ng, 1 / k[i])) / k[il;

Textsch justifies text written in natural language page 2.1.2.9

this maximum value is:
-n xx 2 / sum(i, 1, ng, 1 / k[i].

This value is used as an indication of justifiability in order to
determine the line division. Inserting the correct nunber of spaces
however, necessitates a solution with integers. This is found by
trial and error: starting with an initial guess of the distribution
of spaces, the program shifts words and word groups until no no
improvement is possible.

The output phase:

The precise length of the paragraph is known at this moment. If
the current page cannot contain the entire paragraph, the value of
"hard" is inspected; if it is found to be true, the paragraph starts
at a new page; if "hard" is false, the length of the paragraph is
canpared with the value of "alinea" (see data and results) and then it
is decided whether or not to start at a new page. If the paragraph
starts a new page, the line transitions in layout of layout ind option
are thrown away. The 'layout' is executed, followed by the text of
the paragraph. New pages are inserted where necessary.

Subprograms used:
rdchar, wrchar, open, close (Chario)
available, exit (Mcc)

Required Central Memory: 70000b.

Example of Use:

In this example a dollar file is read in and an arba-flexowriter
file is put out. The file specifications are:
80 7 80 22 80 21

The input file contains:
(kopie:= "brief van meester $fok"; hoofdstuk:= 12%; bladzijde:= 13;
laatste:= 13; breedte:= 50; hoogte:= 40; alinea:= 20; kantlijn:= 2)
$<waarde vriend$>
$ik heb over veertien dagen geschreven met een $hollandsch schip, doch
alzo het zelve ncch eerst een reis moet gaan doen naar $angola, zo
vertrouw ik wel, dat die brief eenige maanden na deze zal arriveren. $
ik
leer hier van alle slag van ambachten; alzo ik buiten $fiscaal, voor
$secretaris, voor $raad, voor $notaris, voor $ambassadeur, voor $kaper
en voor den eenen drommel met den anderen moet spelen: zo dat gy wel
kund denken, dat ik niet veel tyd heb am spelen te loopen; daar ook ni
et
veel occasie toe is in dit barbaarsche, melancholique, en verbaasde
dorre land, 't welk ik niet gezind ben heel net af te schilderen, uit
vrees, dat gy schreien zoud als een kind, en de arme $fok beklagen, om
dat hem het noodlot in zo verdoemde plek gebracht heeft. $want beeld u
zelfs eens in te zien een zwaarmoedig kasteel, gesitueert op een schra

Infal section 2.1: Text editing page 2.1.2.10

le :
en dorre rots, daar de zee, met een eeuwig geruisch, op leid te gnorre
n; :
figureert u vorders aan de rechterhand van 't voorschreve kasteel te
zien een langwerpig dorp, bestaande in hutten, gedekt met zwart verbra
nd
hool, en strooi, of riet(want de duivel zelfs zou niet kunnen raden we
1k
van drien het is) waar in het zwermt van half naakte, en koolverwige
schimmen, die u den ganschen dag de ooren warm maken met een eeuwig
getoet van loejende hoorens, daar zy haar $artem $musicam met het
abominabelste geschal des weerelds op exerceren, 't geen u wel een
baal kattoen in 't jaar zou kosten, om uw geluitvangers daar mede toe
te stoppen, $aan de slinker zyde van 't kasteel zwalpt een droevig
riviertje, 't geen al 't zout van de zee in zyn boezem schynt
ingezogen te hebben, alzo 't zelve tienmaal zouter is dan het
alderziltste pekelnat E's;

$bedenk nu vorders by u zelven cmtrent twee mylen in 't rond
te zien een barre en schrale woestyn, waar op noch telg,
noch lover te vinden is, die u voor een straal van de zon kan
beschutten, die hier zo schrikkelyk steil boven onze kruin, in 't
$zenith staat, dat men op 't midden ven den dag, zelfs ontrent de
hoogste tooren des werelds, geen duimbreet schaduw zou kunnen vinden,
$denk nu vorders, of ik geen reden heb van zomtyds in drie weken niet
buiten het kasteel te komen, en in myn sel te blyven; alwaar gy my
zoud zien zitten, in 't compagnie van myn twee zwarte Jjongens, al
dampende dat het zyn oogen verdraaid, en dat zy met hun beide
eeuwlg werk hebben met toebak te kerven, en te stoppen; dit gaat zo
zyn gang al schryvende, of iets vermakelyks lezende, of met een
eerlyke ziel of twee by my, onder de beneficie van een glaasje, am de
geest te verfraalJen en de melancholie te diverteren. $wat aangaat
myn muzyk, die is, door het afsterven van myn kouzyn van $heden, die
met my overgekomen, en hier zedert eenige weken overleden is,
zodanig verstorven, dat gy myn violon met droefheid aan de wand zoud
zien hangen, zodanig gediscordeert, dat gy daar niet dan een enkele
bas op zoud vinden; terwyl in de holte van dat droevig instrument
de splnnekoppen zodanlg haar logement hebben verkozen, dat ik geloof,
dat zy van sins zyn van hun eigen weefzel nieuwe snaren daar op te
maken. $in 't end, ik vind, dat ik met recht mag zingen, pas als de
kinderen $israels in een der $psalmen doen: $-$super flumina $babylone

3

illic sedimus, A flevimus, A suspendimus $organa nostra.$-§"$;

g? $dat iS:$;

$aan de $babylonsche strocmens;
$hingen wy met naar gesteen,$;
$en met jammerlyk geween,$;

$al ons speeltuig aan de boomen.$;"

3;
Foi"s;

$doch echter patientie, is 't land slecht, het goud is goet, en

Textsch justifies text written in natural language page 2.1.2.11

dat is het alleen, 't geen my veel ongenuchten, die my hier
voorkomen, doet dirigeren; want daar is geen cardiacum in de weereld,
dat zo krachtig is, als dat; dieshalven is het, dat ik geresolveert
ben in alles geduld te nemen, en ondertuschen, terwyl ik hier ben,
myn naad te naaijen zo veel ik kan, en de plalzieren van de weereld
voor een jaar of zes te vergeten, als of ik dood was. $want hier is
geen vermaak ter weereld, als alleen dat in uw eigen gemoed, en by
u zelfs bestaat; want de wyn in overdaad, en de zwarte vrouwen
haat ik dapper: en ik geloof niet, dat ik tot een van beiden
heel licht zal vervallen, alzo ik het egaal voor beestachtigheid,
en een doodelyke coyonnerie hou. $alleen heb ik myn meeste
vermaak in een kleine zwarte jongen, die ik heb, die van zeer grooten
hulze, en van zeer treffelyke luiden is; want ik,verklaar u, dat ik
nooit schoonder, noch heroiquer wezen gezien heb, vermengd met een
groots, doch eenigzins stuurs opslag van oogen, 't geen my vaak op
geg.doen appliceren de woorden van $seneca in $hippolytus:§"$;
2%
$quam $grata est $facies torva $viriliter,$;
$et $pondus $veteris triste $supercilii.s;

$dat is:$;

$hoe heerlyk, en voortreffelyk staat$;
$een fier en mannelyk gelaat,$;

't $geen, door den opslag zyner blikken,$;
$een ieder vol ontzag doet schrikken.$;

$;
§28"$;

$want inderdaad, dat wezen is in die .Jjongen zo heerlyk te zien,
dat ik my dikwils inbeeld in hem te zien een schets van dien ouden
$afrikaanschen $hannibal; ook zyn al zyn inclinatien groots, en
moedig, Jja zo, dat hy met jongens van zyn jaren(die ontrent 12. zyn)
niet zal omgaan, maar altyd met zyn ouder, waar boven hy noch altyd
wil de preferentie hebben, 't zy in den dans, of andere speelen,
daar hy altyd de eerste wil zyn; of zo iemand hem die rang
bedisputeert, zo ontziet hy zelfs geen volwassen jongens voor de
kop te slaan. $en by al deze barsheid is hy weer by my zo vriendelyk,
beleeft, en trow, dat ik die jongen lief heb in myn hart, en zou(zo h
Yy
ieg slaaf was) niet weigeren een pond goud voor hem te geven, enz,i"$;
24 .

$op 't kasteel $st. $george da $mina,$;
$den 10 $february, 1669.$;

$focquenbroch. §2§"$; §;

The arba-flexowriter file 1s displayed on the next pages without
the usual infal headings. '

brief van meester Fok 12313

WAARDE VRIEND Ik heb over
veertien dagen geschreven met een Hollandsch
schip, doch alzo het zelve noch eerst een reis
moet gaan doen naar Angola, =zo vertrouw ik
wel, dat die brief eenige maanden na deze
zal arriveren. Ik leer hier van alle slag
van ambachten; alzo ik buiten Fiscaal,
voorSecretaris, voor Raad, voor Notaris, voor
Ambassadeur, voor Kaper en voor den eenen
dramnel met den anderen moet spelen: zo dat gy
welkund denken, dat ik niet veel tyd heb om
spelen te locpen; daar ock niet veel occasie
toe 1is in dit barbaarsche, melancholique, en
verbaasde dorre land, 't welk ik niet gezind
ben heel net af te schilderen, uit vrees, dat
gv schreien zoud als een kind, en de arme Fok
beklagen, om dat hem het noodlot in zo verdoemde
plek gebracht heeft. Want beeld u zelfs eens in
te zien een zwaarmoedig kasteel, gesitueert op
een schrale en dorre rots, daar de zee, met een
eeuwig peruisch, op leid te gnorren; figureert
u vorders aan de rechterhand van 't voorschreve
kasteel tezien een langwerpig dorp, bestaande
in hutten, gedekt met zwart verbrand hooi, en
strooi, of riet(want de duivel zelfs zou niet
kunnen raden welk van drien het is) waar in het
zwermt van half naakte, en koolverwigeschimmen,
die u den ganschen dag de oore warm maken met
een eeuwig getoet van loeje de hoorens, daar zy
haar Artem Musicam met het abominabelste geschal
des weerelds op exerceren, 't geen u wel een
baal kattoen in 't jaar 2zou kosten, om uw
geluitvangers daar mede toe te stoppen, Aan de
slinker zyde van 't kasteel zwalpt een droevig
riviertje, 't geen al 't zout van de zee in
zyn boezem schynt ingezogen te hebben, alzo 't
zelve tienmaal zouter 1s dan het alderziltste

brief van meester Fok 123=13a,

pekelnat.

Bedenk nu vorders by u zelven omtrent twee
mylen in 't rond te zien een barre en schrale
woestyn waar op noch telg, noch lover te
vinden is, die u voor een straal van de zon kan
beschutten, die hier zo schrikkelyk steil boven
onze kruin, in 't Zenith s aat, dat men op 't
midden ven den dag, zelfs ontrent de hoogste
tooren des werelds, geen duimbreet schaduw zou
kumnen vinden, Denk nu vorders, of ik geen
reden heb van zamtyds in drie weken niet buiten
het kasteel te komen, en in myn sel te blyven;
alwaar gy my zoud zien zitten, in 't compagnie
van myn twee zwarte jongens, al dampende dat het
zyn oogen verdraaid, en dat zy met hun beide
eeuwlg werk hebben met toebak te kerven, en te
stcppen; dit gaat 2zo zyn gang al schryvende,
of iets vermakelyks lezende, of met een eerlyke
ziel of twee Dby my, onder de beneficie van
een glaasje, om de geest te verfraaijen, en
de melancholie te diverteren. Wat aangaat myn
muzyk, die is, door het afsterve van myn kouzyn
van Heden, diemet my overgekomen, en hier zedert
eenige weken overleden is, zodanig verstorven,
dat gy myn violon met droefheid aan de wand
zoudzien hangen, zodanig gediscordeert, dat gy
daar niet dan een enkele bas op zoud vinden;
terwyl in de holte van dat droevig instrument
de spinnekoppen gzodanig haar logement hebben
verkozen, dat ik geloof, dat zy van sins gzyn
van hun eigen weefzel nieuwe snaren daar op te

maken. In 't end, ik wvind, dat
ik met recht mag zingen, pas als de
kinderen Israels in een der Psalmen doen:
Super flumina Babylone, illic sedimus, A flevimus,

A suspendinus Organa nostra.

brief van meester Fok 123-1%b

Dat is:

Aan de Babylonsche stroomen
Hingen wy met naar gesteen,
En met jammerlyk geween,

Al ons speeltuig aan de boomen.

Doch echter patientie, is 't land slecht, het
goud is goet, en dat is het alleen, 't geen my
veel ongenuchten, die my hier voorkomen, doet
dirigeren; want daar is geen cardiacum in de
weereld, dat zo krachtig is, als dat; dieshalven
is het, dat ik geresolveert ben in alles geduld
te nemen, en ondertuschen, terwyl ik hier ben,
myn naad te naaijen zo veel ik kan, en de
plaizieren van de weereld voor een jaar of zes
te vergeten, als of ik dood was. Want hier is
geen vermaak ter weereld, als alleen dat in uw
eigen gemoed, en by u zelfs bestaat; want de
wyn in overdaad, en de zwarte vrouwen haat ik
dapper: en ik geloof niet, dat ik tot een van
beiden heel licht =zal vervallen, alzo ik het
egaal voor beestachtigheid, en een doodelyke
coyomerie hou. Alleen heb ik myn meestevermaak
in een kleine zwarte jongen, die ik heb, die
van zeer grooten huize, en van zeer treffelyke
luiden is; want ik,verklaar u, dat ik nooit
schoonder, noch heroiguer wezen gezlen heb,
vermengd met een groots, doch eenigzins stuurs
opslag, van oogen, 't geen my vaak op hem doen
appliceren de woorden van Seneca in Hippolytus:

brief van meester Fok 123%=13c

Quam Grata est Facies torva Viriliter,
Et Pondus Veteris triste Supercilii.

Dat is:

Hoe heerlyk, en voortreffelyk staat
Een fier en mannelyk gelaat,

't Geen, door den opslag zyner blikken,
Een ieder vol ontzag doet schrikken.

Want inderdaad, dat wezen is 1in die jongen
zo heerlyk te =zien, dat ik my dikwils
inbeeld in hem te zien een schets van dien
ouden Afrikaanschen Hannibal; ook 2zyn al zyn
inclinatien groots, en moedig, ja zo, dat hy met
jongens van zyn jaren(die ontrent 12. zyn)niet
zal omgaan, maar altyd met zyn ouder, waar boven
hy noch altyd wil de preferentie hebben, 't
zy in den dans, of andere speelen, daar hy
altyd de eerste wil gzyn; of =zo iemand hem
die rangbedisputeert, zo ontziet hy zelfs geen
volwassen jongens voor de kop te slaan. En by
al deze barsheid is hy weer by my zo vriendelyk,
beleeft, en trouw, dat ik die jongen lief heb
in myn hart, en zou(zo hy een slaaf was) niet
welgeren een pond goud voor hem te geven, engz,

Op 't kasteel St. George da Mina,
Den 10 February, 1669.

Focquernbroch.

Infal, an informatics library

2.2 Sorting, merging, searching
2.2.1 Omnisort all kinds of sorting and merging
2.2.2 Kwicind index of keywords in context

Omnisort all kinds of sorting and merging page 2.2.1.1

Author: G.H.A. Kok

Source and documentaion: omnisrc, omnidoc

Institute: Mathematical Centre

Date received: 28/02/75

Brief descrlgtlon

Ommisort is a procedure written in ALGOL 60.

It is designed to do all kinds of sorting or merging lists of units,
each consisting of two lists of words, containing respectively sort and
nonsort information - in real or integer format -.

The units are either offered to the procedure in two linear arrays,
containing the sort and nornsort information, by procedure calls from the
calling program or read in from file(s) created by former calls to
omnisort.

It returns to the calllng program - and if the caller specifies so,
it writes to a file in a special internal form as well - a list of
units, ordered ascendingly after the numeric value of the elements of
the first array, the significance of which is from 1 upward. In case of
character-type information - integers in the range [0 : 255] - there
is a facility to have omisort pack the data very efficiently with
respect to memory usage.

Keywords : ALGOL 60, sorting, merging.
Type: ALGOL code procedure, in ALGOL 60.

Calling seguence:
The heading of the declaration of omisort reads:

"eode" 14001
"integer" "procedure" omnisort(throughput,ls,ln,lt,store module,
fetch module,i,sym i);
"value" 1s,In,1t; "string" throughput;
"integer" 1s,In,1t,i,sym i;
"orocedure" store module, fetch module;

To understand the meaning of the parameters to be supplied to
omnisort some knowledge is required of the way omisort functions. The
next steps may be distinguished:

i. Creation of space for the arrays sort, nonsort and work, with
lower bound equal to zero and upper bound to resp. 1s, In, and
abs(1t).

ii, Analysis of the string throughput.

In this string from zero up to three filenames may be specified,
each obeying the rules for SCOPE logical file names and each
corresponding to a SCOPE logical file.

The type of the file (input file with sorted data or output file,

BIBLIOTHEEK MATHEMATISCH CENTRUM
. =——AMSTERDAM ——

Infal section 2.2: Sorting, merging, searching page 2.2.1.2

iii.

iv.

Data

to receive sorted data) depends upon the separator before each
name: a comma Or no separator denotes an input file, a slash one
for output.

At most 2 inputfiles and 1 outputfile can be specified for one call
to omisort, resulting from the next 6 possible string forms - fn
denotes a filename, the pai (n,m) the number of in- and
outputfiles -: :

£1,f2/£3 => (2,1); f1/£3 => (1,1); f1,f2 = (2,0);

f1 = (1,0); /f3 => (0,1); empty => (0,0).

If input file(s) are specified reading of their contents.

Call to store module, which should provide the elements to be
sorted.

Omisort supplies to store module resp. the arrays sort and
nonsort and the no-type procedures store and comp. (comp is to be
explained in section data and results a). within store module for
each unit to be sorted the arrays sort and nonsort should be filled
- from 1 upward -, after which store should be called with two
integer parameters containing resp. the number of elements filled
of sort and nonsort. store will copy those elements to work.

Completion of the sorting process.

If an output file is specified writing the ordered units to this
file.

Call to fetch module, which hands the sorted units one by one to
the calling program in much the same way wav as store module puts
units into omisort.

Fetch module receives the arrays sort and nonsort from omnisort as
the first two parameters and moreover a boolean procedure fetch and
a no-type procedure decomp.

The latter is to be explained in section data and results a. Each
call to fetch, with parameters by name 1s and 1ln, fills sort and
nonsort with the data of the next unit and returns "true" as Ilong
as there are units left and "false" otherwise.

The number of elements used of sort and nonsort is returned resp.
in 1s and 1n.

A value is returned to the calling program.

It specifies the nunber of units sorted if it is nonnegative or
else signals an error-situation after the list given in section
data and results d.

The parameters 1 and sym i are explained in section data and
results a.

and results:

. Compression/decompression/recoding:

Omnisort handles all data to be represented by real or integer
values. A special case arises when the data consist of integer
values in the interval [0 : 255], e.g. representing a character

Omisort all kinds of sorting and merging page 2.2.1.3

set. In this case a call to comp (ref. to calling sequence) with
parameters s, a linear array, and 1, an integer variable,
compresses the contents of the elements of s (1 : 1) and stores
the compressed data back into s; the number of elements used is
returned in the variable 1. Along with the compressing a recoding
will be done. The recoding must be specified by the parameters i
and sym i by means of jensens' device: let n be the number of
integers to be recoded; sym i should specify, for i from 0 to n-1,
the value, which should be sorted with ordinal i+l. For i equal to
n sym i should take a negative value, to denote the end of the
recoding list. The list specified in this way may be empty, but it
shouldn't contain exactly one element.

During compression the order relation is preserved:

recoded compressed and recoded uncompressed data will be sorted in
the same way.

Decompression can be done within fetch module by a call to decomp
with parameters a 1linear array s and an integer variable 1. 1
should contain before the call the number of elements of s
containing data; after execution of decomp each element of s
contains one decoded integer up to a nunber which is returned in 1.

Input sorted, 1t - paranmeter.

If the first units offered by store module are already in order
omisort can operate more efficiently. Information about this
situation can be conveyed to it by entering 1t negatively. In that
case omisort checks the order of the units; after detecting the
first unit out-of-order omnisort goes on in sorting mode.

Value of sort[0] and nonsort{ 0], equal keys.

After a call to fetch, sort[0] contains the number of units
with sortkey given by sort[1 : lsort].
If these unit(s) do not have nonsort information, the next call to
fetch will deliver a unit, if any, with the next sort information.
In case there are units with nonsort information - and maybe
without it as well =, each call to fetch will fill the array
nonsort from 1 to lnsort with the pertinent information and assign
to mnsort[O] the ordinal of that unit, beginning at 1 after the
ordening:

1. units read from filel (from throughput), if any;
2. units read from file2, if any;

3. units entered by store module in 'first-in-first-out!

order.

The number of units without nonsort information can be found by
counting the number of units, that do have nonsort information
returned by fetch in successsive calls until a change of sort
information, and subtracting that nunber from the total number of
unit? c?ntaining the current sort information, as given by
sort{ 0 |.

&

Infal section 2.2: Sorting, merging, searching page 2.2.1.4

d.

ii.

iii.

Value returned by omisort, errors.

The value returned by omnisort specifies an errormessage if it
is negative, else the nunber of units handled - in case there are
units without nonsort information all are taken account of -.

If an error is detected omisort sometimes writes a message to
channel 61. Often omnisort won't stop immediately, but it will go
on until the present phase is finished or the number of errors
detected till then exceeds some limit, which depends upon the
number of units handled till then.

4 categories of errormessages may be distinguished, depending upon
the phase of the process:

Initialisation phase:

1. 1s < O

2. In < 0

3. abs(1t) < max (1s + 1In + 10, 1024)

10. sym 1 > 255

11. sym 1 produces some value more than once

12. length of recodinglist equals exactly one

20. filename incorrect

21. filename takes more than 7 characters

23, inputfile incorrect

24, inputfile not created by omisort

25. inputfile created with 1s and/or 1ln exceeding the present value
26. inputfile created with another recoding

29. omisort stops because of errors in intialisation phase

Input- and sorting phase:

(1sort and lnsort derote the nunber of elements offered to onmisort
by a call to store, 1ls and 1n identify resp. the second and third
parameter to omnisort)

30, 1sort < O

31l. lsort > 1s

32. Insort < O

33, Insort > 1n

41, comp is called without a recoding having been specified

42, integer to be compressed out-of-range

43, integer to be recoded not specified in recodinglist

49, omnisort stops because of too many errors in sorting phase

Qutput phase:

51. decomp 1is called without a recoding having been specified
52. the array offered to decomp does not contain data compressed
by comp
53. the size of the array offered to decomp is too small to
contain the decompressed data
59. omisort stops because of too many errors in the output phase
99. during execution of fetch module errors are detected
(the number of units skipped is written to channel 61)

Omnisort all kinds of sorting and merging page 2.2.1.5

iv. Errors by omnisort:

101, 102, 103. units are lost
141, 151, 152. errors in the filesystem

If omisort returns -59, units are offered to fetch module; in case
of returning -99 moreover units are written to the output file, if
any. In both cases the results should not be relied upon.

Subprograms used:

Word-adressable file procedures by D. Winter; these procedures will
become part of the infal-library.

Required central memory - octal -:

source
omnisort: 15000 infal
filesystem: 7450 infal
record manager routines, used by filesystem: L4u04 sysio
blank common, used by record manager: 2200
algorun,alglibC0,alglib01l,

alglib02,alglib06: (15756) p.m. sysmisc
dynamic storage: + 1500 + 1s + In + abs(1t)

Execution time:
The order of the process is n x log(n).
Compared to the CD Sort/Merge system it is slow.

Method and performance:

The sorting process consists of repeatedly building a binary tree as
large as the size of the working store 'work' allows and dumping the
ordered subset to a backing store, followed by merging the subsets.

References:
G.H.A. Kok, Alfabetiseren en andere sorteerwerkzaamheden,
MC Publication MR 120 , october 1970.

Example of use:

In this example the text of the sample program is read in and
decanposed into words.

A word is defined as a sequence of letters, separated by a start-of-
line or a nhon-letter. The whole sequence of letters should lay before
position 73.

The words are offered to omisort by the procedure in, sorted and
returned to the procedure out, which prints the words in alphabetical
order together with the number of occurrences of each word in front of
it.

A recoding is applied merely to signal to omisort, that only 25
characters are to be cared about (this invckes an errormessage, because
the letter z occurs also)

&

Infal section 2.2: Sorting, merging, searchiﬁg page 2.2.1.6

"BEGIN"
"COMMENT" SAMPLE PROGRAM DEMONSTRATING THE USE OF OMNISORT;

"INTEGER" "PROCEDURE" OMNISORT
(THROUGHPUT, IS, IN, LT, STORE MODULE, FETCH MODUIE, I, SYM I);
"CODE" 14001;

"INTEGER" I, RESULT; "REAL" TO;

"PROCEDURE" IN (SO, NSO, STORE, COMP); "ARRAY" SO, NSO;

"PROCEDURE" STORE, COMP;

"BEGIN" "INTEGER" "ARRAY" BUFFER [1 : 80]; "INTEGER" I, J, T42, LS;
EOF (1, EINDE INVOER); TH2:= 2 xx 42;

AGATN1: INPUT (1, "("80(A)")", BUFFER); J:= 0;

AGATNZ:
"FOR" I:= J,
I+1
"WHILE"
I < 73 "AND"
(BUFFER [I] > EQUIV (''("z")") "OR" BUFFER [I] = 0)
"DO" J:= I;

"COMMENT" J POINTS TO LAST NON-LETTER;
"IFY J = 72 "THEN" "GOTO" AGAIN1; LS:= 0
"FOR" I:=J + 1,
I+1
"WHILE"
I < 73 "AND" BUFFER [I] <= E UIV (1!("2!1)") "AND"
BUFFER [I] >0
Hm"
"BEGIN" IS:= LS + 1; SO [LS]:= BUFFER [I] / T42; J:= I "END";
"COMMENT" J POINTS TO LAST LET ER;
COMP (S0, LS); STORE (LS, 0);
"goTo" "IF" J = 72 "THEN" AGAIN1 "ELSE" AGAINZ;
EINDE INVOER:
"END" IN;

"PROCEDURE" OUT (SO, NSO, FETCH, DECOMP); "ARRAY" SO, NSO;
"PROCEDURE" DECOMP; "BOOLEAN" "PROCEDURE" FETCH;
"BEGIN" "INTEGER" LS, INS, J, T42;
TU2:= 2 xx U2;
"FOR" J:= 0 "WHILE" FETCH (LS, LNS) "DO"
"sEGIN" DECOMP (SO, LS);
OUTPUT
(61, "("/9ZDB,50(A)™)", 80 [0], (SO [I] x Th2, I:=1 : LS))
HENDH
"ElND";

Omnisort all kinds of sorting and merging ‘ page 2.2.1.7

TO: = CLOCK;
ReESULT: =
OMNISORT
("(™m", 100, 0, 3072, IN, OUT, I,
HIFH I < 25 "THEN" I+ 1 "ELSEH - 1);
OUTPUT
(61,
"("x"("WAARDE VAN OMNISORT NA AANROEP IS:")",+5ZD///, "(
"SENODIGDE TIJDSDUUR:")™, 3ZD.3D,"(™ SEC")"/'")",
RESULT, CLOCK - TO)
"END"

Infal section 2.2: Sorting, merging, searching page 2.2.1.8

Results: ‘
- only part of the output of the sample program is shown, the
remaining part is indicated by periods -:

CHANNEL,60=INPUT,P80 ,R
CHANNEL ,61=0UTPUT ,P136 ,PP60 ,R
CHANNEL ,1=TE TOMN,P80,R

26 NOT IN ALPHABET

ERROR 43 '
26 NOT IN ALPHABET
ERROR U3
26 NOT IN ALPHABET
ERROR 43
26 NOT IN ALPHABET
ERROR 43
26 NOT IN ALPHABET
ERROR 43
2 A
1 AANROEP
5 AGAIN -
3 ARRAY
5 BEGIN
1 BENODIGIE
1 BOOLEAN
1 THROUGHPUT
1 TIJDSDUUR
3 TO
1 USE
1 VAN
1 WAARDE
3 WHILE
5 UNITS SKIPPED
ERROR 99
WAARDE VAN OMNISORT NA AANRCEP IS: =99

BENODIGDE TIJDSDUUR: 8.829 SEC
END OF ALGOL RUN xV3.1x

Kwicind index of keywods in context ~ page 2.2.2.1

Author: Han Noot

Source and documentation: kwicins, kwicind

Contributor: Dik Winter -
Institute: Mathematical Centre
Date received: 24/06/75

Brief description: ;

The program produces a keyword in context index (kwic-index) and an
index, from input consisting of text-units and opticnally together with
the output of previous runs of the program. Each text-unit consists of
a codefield, followed by a text body.

In the text body, subsections preceded by a marker symbol, as well as
the subsection that starts with the first character of the text-body,
are used as sorting-keys for the kwic-index.

The index produced, consists of the complete text-units, sorted
alphabeticaly, where the code contained in a codefield acts as the
sorting-key.

The kwic-index consists of output, sorted according to the keys
marked in the text-input. This output is made up from one line for each
key. The key is printed in its textual context. Each output-line
terminates with the codefield of the text-unit from which it is part.

Apart from processing text-units, the output of previous runs (stored
in an intermediate form) can be used as input too. In this case, the
old output (at most two files , is merged with the new output, or
alternatively, two old output-files are just merged.

The input and output-files can be coded in varicus character sets,
while the 1layout of the input and output is , to a certain extend,
variable too.

The significant characters that make up keys are in sorted order:

a,0,C,0,c 0000000000242
"blank",0,1,2,3,4,5,6,7,8,9,v v v v v
AB,CoD, e neennannns o

Other characters are just ignored, when keys of a specified number of
characters are read in from the input.

Keywords: Keyword, sort, merge, index, kwic-index.
Type: Main program in ALGOL 60.

Calling sequence:

attach,binlk,
attach,binZk,
attach,binli,
attazh,bin2i,

Infal section 2.2: Sorting, merging, searching page 2.2.2.2

attach,text,
attach,control, ...
attach,infal,id=matcen.
library,infal.

kwicind.

print and/or catalog charkw
print and/or catalog charid
catalog,binkw,
catalog,binid,

In this calling-sequence, the first 5 attach-commands are optional.
Whether they are necessary or not, depends on the input used and the
sort/merge operation to be performed. The same holds for the 1last two
catalog-commands. For details, the next section should be consulted.

Data and results:

Input-files:
As dinput, files with the following 'logical file names' can be used
by the program:

'econtrol', 'text!, 'binlk', 'bin2k', 'bindi', 'bin2i':

The file 'control' contains parameters that determine the sort/merge
operation to be performed and the input/output format, while file 'text!®
contains text-units in a format consistent with the one, specified on
file 'control' (see below). The files 'binxk', respectively 'binxi',
contain a compressed form of a kwic-index respectively index produced in
a previous run of kwicind. The contents of these files can be merged
with each other and/or with the output. Only certain combinations of
these input-files are meaningful, depending on the sort/merge operation
that must be performed. They are:

1) 'control!', 'text'.

2) 'control!', 'text', 'binlk', 'bin2k', 'binli', 'bin2i'.
3) 'control', 'text!, 'oinik', 'binli'.

4) 'control', 'binik', 'bin2k', 'binli', 'bin2i’.

For a discussion of the meaning of these input-file combinations, see
the subsection "control" below.

Output-files:

There are four output-files generated, namely ‘'charkw', 'charid',
"oinkw' and ‘'binid'. Files 'charkw' and 'charid' are character-files,
that contain the kwic-index respectively index produced (they should
explicitly be printed out or cataloged, at least if the user is
interested in his output). Files 'binkw' and 'binid' are binary files,
that contain the kwic-index respectively index in compressed form. They
can be wused in subsequent merging operations using kwicind, in which
case they must then be attached with logical file-names'binik!or 'binZk
respectively 'binli' or 'bin2i' (see above). Furthermore, the standard

Kwicind index of keywods in context page 2.2.2.3

output-file is used for error-messages and for a printout of the
specifications, contained in file control.

Text:

The file 'text' consists of a number of text-units, eventually
separated by blanks, "new line" characters and '"carriage return"
characters (or there analogon in non-ascil code). ;

Text-units are sequences of characters belonging to the character set
specified for the input (see control, intl). A text-unit starts with a
codefield (of a length specified by int6 on control) and is followed Dby
a text-body. In this text-body, the first character of keys (for the
kwic-index), is indicated by preceding it with a marker synbol
(specified on file control, the length of the keys is specified by int5
on this file). The first character of the text-body is always the
begiming of a key, it must not be preceded by the marker symbol,
otherwise the first text-body characters are treated as a key twice.

If the marker-symbol is separated from the first character in the
key, which is not a blank , "carriage return" or "new line" by one or
more of these characters, they are skipped. The same gpplies to
"carriage return" and "new line" characters anywhere in the text-body;
they are ignored. Strings of more then one blank are reduced to one
blank, however.

Finally, the end of a text-body is indicated by two marker symbols in
succession,

Note: file ‘'text' should be presented to kwicind without sequence
numbers from the editor, because these nunbers will be treated as part
of the text-units.

Control:
The contents of this file are:

int1,int2,int3,char,int4,int5,int6,int7,<a>, where

<g>::=svmlsvr2svm2

Int1 is the codenumber which determines the code (display, ascii etc.)
in which file text is coded. Int2 is the codenumber which defines the
character-set in which the output is produced. Intl and int2 can have
the following values and meanings:

int1 int2 code
0 16 8-bit binary
1 17 12-bit binary
2 18 ascii even parity
3 19 ascii odd parity
4 20 -me~flexowriter code
5 21 arba-flexowriter code
6 22 display code '
7 23 dollar code
24 63 char set printfile

25 95 char set printfile

Infal section 2.2: Sorting, merging, searching page 2.2.2.4

For more information on this subject, see the documentation on
Chario, contained in this library.

Int% must be set to the maximum number of errors that may occur in the
input, before the program stops. Input errors are occurences of
characters in the input, that are not part of the character set
specified for it.

Char is the character, that is used to mark keys on file text. It nmust
belong to the character set defined by intl. It is considered an
error, if the marker character is a digit, a letter or a blank .

Intd4 must be set equal to the maximal number of characters that may
occur in an input text-unit.

Int5 defines the number of characters in the keys used for the kwic-
index. Hence, keys are completely defined by int5, the marker
symbol and the set of significant characters for keys (see brief
description).

Int6é is set equal to the number of characters in the codefield of the
text unit.

Int7 defines the position of the first character of the key in a kwic-
index output-line. This key is printed, surrounded by its context
in the text-body, where it belongs to. The last parameter on
control, specifies the input-files present and the sort/merge -
operations that must take place, in the following way:

s : sort only: produce a kwic-index and an index from the text-
units on file 'text',

mls : sort/merge: produce a kwic-index and an index from the
input on ‘'text' and merge the result with the result of prev1ous
runs, stored in files 'binlk' and 'binli'.

m2s : sort/merge: like mls, with the exeption that the results of
two previous runs are used, which are stored on files 'binilk',
"pin2k', 'binli', 'bin2i'.

m2 : merge: produces an index and a kwic-index by merging the
results of two previous runs, stored on files 'binlk', 'bin2k',
'binli', 'bin2i'.

Remark: all parameters on file 'control' are checked first; as well by
them selves as for mutual consistency. For instance: a value of int7
larger then the maximum number of characters on a printed output-line
(135) is considered an error. If an error occurs, a message is printed
and program-execution stops.

&

Kwicind index of keywods in context page 2.2.2.5

Relation between logical file-names and the program:

File 'control! is used as a scope-file (channel, 50=control, p80, r) and
as a file processed by chario (filenr. 4).

File 'text' is solely read from or written upon by procedures from
chario. It is used with file nunber 1. Files 'charkw' and 'charid' are
solely processed by chario too. Their filenumbers are 2 and 3
respectively.

The files ‘'binik', 'bin2k', 'binii', 'bin2i' are input-files for the
sorting procedure omisort, files 'binkw' and 'binid' are output-files
for +this procedure. Their names are passed as parameters to omnisort,
where they are opened. For details the reader should consult the
documentation on omnisort, contained in this library.

Subprograms used:

Omnisort

Chario

Word-addressable file procedures by D. Winter; these procedures will
become part of infal.

Required central memory: 125000b

Running time:

Because of the long running time, needed for the production of
substantial output, no details are yet available on this subject.

We kindly ask users to communicate their experience in this respect
to the infal redaction or to the author so that their information can be
incorporated in this documentation.

Method:

This program is strongly dependent on three other elements of infal.
The central element in the sorting process is procedure omnisort which
takes care of all the sorting- and merging operations to be performed.
It 1s called twice during the -execution of kwicind, once for the
production of the index and once for the kwic-index. In the first case,
procedures storeindex and fetchindex are passed as parameters to
omisort , in the other procedures, storekwic and fetchkwic. These
procedures pass, respectively accept input—, respectively output units
to, respectively from omisort, one by one. The contents of file 'text'
are read once during the execution of kwicind, namely by procedure
storekwic. This procedure reads in one text-unit, each time it is
called by omisort. Next, it tabulates keypositions and strips the
text-unit from marker-symbols, and superfluous '"blanks", "new line" and
"carriage return" characters. It is at this point that parameter intl
from file 'control' is of consequence, because text-units are kept
temporaray in an array for this and other processing. The stripped
units are written to a scratch~file for later use by storeindex. Next,
for every tabulated keyposition, one output=line (key in context) and
one key are generated and stored in arrays, which are passed to
omisort. ILeading and trailing blanks in output-lines are not stored,
however., The first two elements of the array containing the output-

Infal section 2.2: Sorting, merging, searching page 2.2.2.6

line, are used to store the numbers of these blanks instead.

Procedures storeindex, fetchkwic and fetchindex are straightforeward
and will not be discussed here.

The flexibility of input- and output code is optained, by using the
procedures fram chario. They are used in the fetch- and store
procedures just mentioned, as well as for the processing of file
control, in order to be able to read in a marker-symbol, not beeing part
of display code.

Example of use:

Input-files:

File 'control':

6,22,0,$,72,4,4,10,s,

File '"text':

030 this is a small $example.$$

345 hopefull it $illustrates the use of $kwicind.$$
009 if not,the $author will try to $help.$$

541 good $luck.$$

Files 'pinli', 'bin2i', 'binik', 'bin2k': not present.
Output-files:

File 'charid':

009 if not,the author will try to help.

030 this is a small exanmple,

345 hopefully it illustrates the use of kwicind.
541 good luck,

file 'charkw'

Because of the Ilength (135) of the lines on file 'charkw' we shorten
these. This is indicated by "><".

ot,the author will try to help. >< 009
small example. >< 030
good luck. > 541

try to help. >< 009
hopefully it illustrates the use of kwicind. >< 345

if not,the author will try to help. > 009

1lly it illustrates the use of kwicind. >< 345
use of kwiecind. >< 345
good luck. > 541
this is a small example. >< 030

Kwicind index of keywods in context

Part of the standard output-file:

index and kwicindex

inputcode: display

outputcode: display
maxerrnumber: 0
ascii-representation marker: 36
maxstringlength: 72

keylength: 4

codefieldlength: U4

tabposition: 10

input: new text-units

page 2.2.2.7

Infal, an informatics library

3.1 File handling

.1.1 Copysfs formats a (multi)file

2 Simpio simple input/output macros

.3 Ptchab0 changes the prefix table of an ALGOL 3 object
4 Chario character manipulation and conversion

.

[N

AN ALAN AN

Copysfs formats a (multi)file page 3.1.1.1

.Author: ‘Dick Grune

Source and documentation: copysfs, copysfd

Institute: Mathematical Centre

Date received: 11/11/74.

Brief description: ,

The program 'copysfs' accepts a (multi)file, possibly composed of
more than one file, and formats it for display on the line-printer.
Control characters are added and each record is preceded by a title
line giving the file number, record number (both counting from 0),
date, time and logical name of the input file.

If the contents of a record cannot be interpreted as characters,
the rest of the record will be skipped, to prevent the printing of
binary records.

It is possible to restrict the printing to the first 'm' 1lines of
each record. If this option is not chosen, each record will start on
a new page and will be printed in full.

Keywords : Output formatting.
Type: Main program, in compass.

Calling segquence:

Fran the batch:

copysfs,parl,par2,par3.

Fram intercom:

xeq ,libload=infal ,copysfs,execute=,parl,par2,par3

The program has three parameters:
1. The name of the input file. The file will not be rewound.
(default is ‘input')
2. The name of the output file. (default is 'output')
3. The maximum number of printed lines per record.

If this parameter is present, the record will not start at a new
page. If the parameter 1is empty or gzero, records will still be
printed in full; otherwise the parameter must be a decimal integer
giving the maximum number of printed lines per record.

Data and results: See brief description.

Subprograms used: None.

Required central memory: 10000b.

BIBLIOTHEEK MATHEMATISCH cEnTR:
= AMSTERDAM e B

 Infal section 3.1: File handling page 3.1.1.2

Method: ‘
The program reads and writes through internal routines relying on cpc,
which do not use autamatic recall.

Example of use:
copysfs,bigfile,,3.

The eor/eof structure of bigfile will be displayed, together with
the first 3 lines of every record.

Simpio simple input/output macros page 3.1.2.1

Author: Dick Grune.

Source and documentation: simpios, simpiod

Institute: Mathematical Centre.
Date received: 07/02/75.
Last revision: 03/04/75.

Erief Description:

Simple i/o routines in campass.

The package contains the macros GETWORD, PUTWORD, WORDFILE, OPENGET, and
OPENPUT.

GETWORD generates a routine that will read 60-bits words from a file.
PUTWORD generates likewise a routine that will write 60-bits words to a
file. These routines are activated through rj-calls. They can also
handle end-of-record conditions. WORDFILE generates the administration
and buffer for a specific file.

Files must be opened by OPENGET and OPENPUT, respectively. The
routines can service connected files.

Keywords: I/0, Compass.
Type: Compass macros in systext form.

Calling sequence and results for GETWORD and OPENGET:

NAME GETWORD

A routine with label 'name' is generated. This routine is called as
follows:

SX1 FITEADDR SEE MACRO 'WORDFILE'®
RJ NAME

If now X3 = 0, then X2 contains the next word fran the file the
address of which was {and still is) in X1. Otherwise X3 > 0 and an end-
of-record/file has been read; the routine will not automatically start
reading the next record/file (but the next call to 'name' will). The
level of the 'eor' is X3-1; end-of-file is yielded as X3 = 16; end-of-
information is yielded as double end-of-file.

The routine expects that Bl=1 and affects X2...X7 and Al...A7. It is
24 words long and uses SYS=.

Infal section 3.1: File handling page 3.1.2.2

All input files must be opened by calls of the macro OPENGET:

SX1 FILEADDR
OPENGET

If an input file is not opened, bad service will result.

Calling seguence and results for PUTWORD and OPENPUT:

NAME ~PUTWORD

A routine with label 'name' is generated.
To write a word to a file the calling sequence of this routine is:

SX1 FILEADDR SEE MACRO 'WORDFILE'

SX2 WORD
SX3 0 OR MX3 0
RJ NAME

To write an end-of-record to a file, code:

SX1 FILEADDR
SX3 LEVEL+1
RJ NAME

The routine expects that Bl=1 and affects X4...X7 and Al...A7. It is 23
words long and uses SYS=.

A1l output files must be opened by calls of the macro OPENPUT:

SX1 FILEADDR
OPENPUT

If an output file is not opened, bad service will result. All output
files must be closed by writing an end-of-record on them. The routines
do not have any resistance to bad input parameters: anything may

happen.
Calling sequence for WORDFILE:

FILEADDR WORDFILE IEN

It generates the fet (see SCOPE RM, ch 11) and buffer for a file with
logical file name 'lfn'. ‘The fet is labeled 'fileaddr'; it is this
value that is passed to the routines in X1.

For a file on magnetic tape the call is:

FIILEADDR WORDFILE LFN,TAPE

Simpio simple input/output macros page 3.1.2.3

A call of '"WORDFILE' without tape-parameter occuples 199 words, the
tape-version occupies 1543 words. A non-tape file can be handled by the
tape-version but a tape-file cannot be handled by the non-tape version.

Calling sequence of campilation of a program using simpio:

The systext 'simpio'! is stored in 'infal' and must be made known to
the campass-assembler, e.g. in the following way:

attach,infal,id=matcen.
campass ,s ,s=infal/simpio.

The single s 1in the above call preserves the system systext
'systext!'.

Example of use:

The following program will copy one file from the file 'tape' to the
file 'disk'. The file 'tape' may be on tape.

IDENT COPY
ENTRY COPY
IN WORDFILE TAPE ,TAPE
ouT WORDFILE DISK

READ GETWORD
WRITE PUTWORD

copY . SBl 1

SX1 IN
OPENGET
SX1 ouT
OPENPUT
LOOP SX1 IN
RJ READ SET X2 AND X3
SX1 ouT
RJ WRITE INPUT TO 'WRITE' MIRRORS OUTPUT OF 'READ'
WILL ALSO CLOSE FIILES
AX3 4 DIVIDE BY 16
ZR,X3 LOOP OTHERWISE END OF FILE
ENDRUN

END COPY

Patchab0 -changes the prefix table of an ALGOL 3 object page 3.1.35.1

Author: Dick Grune

Source and documentation: ptchsrc, ptchdoc

Institute: Mathematical Centre

Date received: 11/11/74

Brief description: ,
This program makes the following changes to an AIGOL 3 object module:

1. 00b in the program name are replaced by spaces and spaces in the
entry point are replaced by 00b. This is to make the module
retrievable from a library. '

Date and time are added in the prefix table.
The right-most 70 spaces in the prefix table are replaced by 00b

W N

2. and 3. are to get a better layout of the loader map and the
listing of editlib.

Keywords:
ILibrary, layout, ALGOL 3 object module.

Type: Main program, in campass.

Calling sequence:

Fran the batch:

ptchab0 ,parl ,par?.

Fraom intercom: ’
xeq,libload=infal,ptchab0,execute=,parl par2

The program has two parameters:
1. The name of the input file (default is 'lgo').
2. The name of the output file (default is 'mgo').

Subprograms used: None

Required central memory: 20000b

Method: .
The program reads and writes through internal routines relying on
cpe, which do not use automatic recall.

Infal section 3,1: File handling page 3.1.3.2

Example of use: : _
The following job compiles an algol program,names it 'name' and puts
it in a library:

algol.
rewind, 1go.
ptchab0.
editlib.
xeor

'name !
"begin"

"en(.i"

Xeor
library(libi,old)
rewind ,mgo.
add(x,mgo,al=1)
finish.

xeof

Chario character manipulation and conversion page 3.1.4.1

Author: Paul Klint
Sources: chriosl, ... ,chrios5
Institute: Mathematical Centre

Date received: 15/03/75

Brief description:

A filesystem for the processing of binary and character data
is described in this section. Some characteristics of this
filesystem are:

- ALGOI~60 callable.

implicit conversions to and fram ASCII, display and
flexowriter code. The user communicates by means of ASCII
characters and the conversions are transparant to him.
transmission on character or array basis.

limited string manipulation facilities.

Keywords: Filesystem, character manipulation

Infal section %.1: File handling page 3.1.4.2

TABIE OF CONTENTS
1. INTRODUCTION
2. A FUNCTIONAL DESCRIPTION OF THE FILESYSTEM
2.1 survey of filetypes
2.1.1 binary files
2.1.1.1 8bit binary files
2.1.1.2 12-bit binary files
2.1.2 ASCITI files
2.1.3 flexowriter files
2.1.3.1 MC flexowriter code
2.1.3.2 ARBA flexowriter code
1.4 display code
.1.5
2.1,
2.1
1.6
2.1
2.1
1

rum

dollar code

5.1 the dollar convention

.1.5.2 dollar convention and dollar file
print files

.6.1 63 character set print files

6.2 95 character set print files

2.

2.2 logical and physical line position
2.2.1 write files
2.2.2 read files
2.2.3 binary files
2.2.4 summary

3. ALGOL-60 INTERFACE WITH THE FILESYSTEM

3.1 open

3.2 close
3.3 rdchar
3.4 rdarray
3.5 wrchar
3.6 wrarray
3.7 wrtext
3.8 pos

3.9 type
3.10 Imargin
3.11 rmargin

Chario character manipulation and conversion page 3.1.4.3

4, APPENDIX

TABIE, A: ascii -> flexowriter

TABIE B: ascii -> dollar

TABLE C: ascii -> 63 char print file
TASLE D: ascii -> display code

Infal

section 3.1: File handling page 3.1.4.4

1. INTRODUCTION

A filesystem for the processing of binary and character data is

the subject of this section.

Design and implementation of this filesystem were initiated by the

desire to alleviate the severe restrictions imposed by the small (63)
character set offered by the computer manufacturers system ware. Some
characteristics of this filesystem are:

AIGOL~60 callable (many existing programs should run on the
CYBER). ~
flexibility:

. no fixed line sizes

. user controlled end-of-record and error processing

. operating system interface through logical filename
a facility to transmit complete array's, thus eliminating many
(time consuming) procedure calls. A stop character may be
defined by the user to terminate array reading.
a facility to write strings.
18 different filetypes: 8 read only, 10 write only.
transparency of different filetypes: only ASCII characters are
written to or read from a file. Only binary files form an
exception. ‘
efficiency: all programs are written partly in FORTRAN IV,
partly in COMPASS. In this way execution speed compares
favourable with the available character processing facilities.
automatic reprieve at (normal or abnormal) jobtermination. There
is no need to explicitly close a file at the end of a program.
In case of error termination (time limit, overflow etc.) all
data written until the moment the error occurred are actually
written.

This description is subdivided in 3 chapters. Chapter 2 describes

the basic concepts underlying the structure of the filesystem. A survey
of the available filetypes is given. In chapter 3 the ALGOL-60 inter—

face i

s treated in detail.

Chario character manipulation and conversion page 3.1.4.5

2. A FUNCTTIONAL DESCRIPTION OF THE FILESYSTEM
2.1 A survey of filetypes

In this section we survey the filetypes the filesystem can pro-
cess. The types will be discussed in the following order:

types 0 and 16: 8-bit binary (see 2.1.1.1)
types 1 and 17: 12-bit binary v (see 2.1.1.2)
types 2 and 18: ASCII, even parity (see 2.1.2)
types 3 and 19: ASCII, odd parity (see 2.1.2)
types U4 and 20: MC-flexowriter code (see 2.1.3.1)
types 5 and 21: ARsBA-flexowriter code (see 2.1.3.2)
types 6 and 22: display code (see 2.1.4)
types 7 and 23: dollar code (see 2.1.5)
type 24: 63 character set print file (see 2.1.6.1)
type 25: 95 character set print file (see 2.1.6.2)

The types 0-7 are read only, 16-25 write only.
2.1.1 Binary files

Files of type binary (0,16,1,17) are not really character files.
Binary numbers 1in the ranges 0-(2%%8-1) and 0-(2%x12-1) are written to
or can be read from these files. (note: we use "xx" to denote exponen-
tiation) There exists no character representation for these values but
we will often call them characters. A more appropriate name is frame.
The concepts line and linewidth (see 2.2) will also be applied to these
files.

2.1.1.1 8~bit binary files (readtype 0, writetype 16)

Values in the range 0-(2%%8-1) may be written on or can be read
from a file of this type. Internally 7 8-bit frames are stored in each
60 bits memory word. The frames are left justified with zero fill. The
layout of one memory word looks like:

I | | I | | | Lo

| framel | frame2 | frame3 | framed | frame5 | frameb | frame7 | I

I | | |

4 zero bits

Infal section 3.1: File handling page 3.1.4.6

2.1.1.2 12-bit binary files (readtype 1, writetype 17)

Values in the range 0-(2%%12-1) may be written on or can be read
from a file of this type. Internally 5 12-bit frames are stored in each
60 bits memory word. The layout of one word is:

| framel | - frame2 | frame3 | framel | frames |

2.1.2 ASCII files

Transput via ASCII papertapes for example may be achieved by means
of the ASCII filetypes (2, 18, 3, 19). Types 2 and 3 resp. 18 and 19
differ only in the treatment of the paritybit. Values in the range 0-127
may be written on or can be read from a file of these types. Internally
each character is treated as a 12-bit frame, the upper 4 bits equal to
zero. One word looks like:

| 4 zero bits

For read files the even (odd) parity of each frame is checked and
the paritybit is stripped off. If a parity error occurs a user defined
error procedure is called (see 3.3). For write files a paritybit is
attached to the value of the ASCII character to obtain a frame of even
(odd) parity.

2.1.3 Flexowriter files

Transput via MC-flexowriter or ARBA-flexowriter papertapes for
example may be achieved by means of the flexowriter filetypes. To obtain
a transparent behaviour of the different filetypes as seen by the user,
ASCII characters must be written to flexowriter files. The conversion
from ASCITI-code to flexowriter-code is dinvisible. Reading from a

Chario character manipulation and conversion pagé 3.1.4.7

flexowriter file delivers ASCII values. The internal representation is
equal to the one used for ASCITI files.

2.1.3.1 MC-flexowriter code (readtype 4, writetype 20)

This type is used to write ASCII characters on or read ASCII char-
acters from a file in MC-flexowriter code.
note: The symbols bar (|) and underline () are implicitly followed
by a backspace symbol, in other words bar and underline do not
influence the position in the current line.

2.1.3.2 ARBA-flexowriter code (readtype 5, writetype 21)

Apart from one exception this type is identical to the MC-
flexowriter type. The exception concernes the symbols bar and underline:
in an ARBA-flexowriter file the synbols bar and underline are not impli-
citly followed by a backspace symbol and increment the line position.

2.1.4 Display code (readtype 6, writetype 22)

Display code is the favourite 63-character set code of the CDC
CYBER- system.

To obtain the transparency already mentioned in 2.1.3 reading from
a display code file delivers values in a 65-character ASCII subset.
This subset contains all characters available in display code plus the
symbols carriage return (CR) and line feed (LF). Every character outside
this 65-character ASCII subset written to a display code file is re-
placed by a question mark (?). Internally each character is treated as a
6-bit frame. Ten characters are stored in one memory word:

|
ch 10|

5
=
(e

ny
N
Q

oy
N
Q

o2
P
Q

iny
U1
(@]

oy
N
Q

iny
-3
o

oy
o
\O

A line terminator (hereafter referred to as physical line termina-
tor see 2.2) is represented by zeros in the bits 0 through 12. A line
terminator read is replaced by the symbols CR and IF. A carriage return
symbol (CR) written to a display code file is replaced by a line termi-
nator. In fact a line feed symbol (LF) written to a display code file
has no effect at all. To maintain compatability with other filetypes it
is advisable, however, to write the characters CR and LF to generate a
newline.

Infal section 3.1: File handling page 3.1.4.8

2.1.5 dollar code (readtype 7, writetype 23)

Files in dollar code are introduced to supply the full set of 128
ASCII characters within the restrictions of the 63 character set of the
CYBER-system. A "dollar" file derives its name from the fact that a
$-sign is used as escape character. Dollar files must be formatted ac-
cording to the dollar convention described in the following paragraph.
2.1.5.1 The dollar convention

The dollar convention can be subdivided in two parts:

a. case definitions
b. special symbols

Three case definitions are used:
lower case (representation: $>)
upper case (representation: $<)

underline switch(representation: $- or $)

Upper and lower case affect letters only. For this reason it is
not necessary to insert a lower case symbol before certain non-letter

symbols.
The following sequence of character is a dollar file
$<ex.1 use of upp$>ercase
is interpreted as:

EX.1 USE OF UPPercase

It dis cumbersome to write five symbols to get one uppercase letter, for
example:

$<e>x. 2
with interpretation:
Ex. 2

In this special case the "less than" symbol (<) of the uppercase symbol
and the corresponding lower case symbol may ne omitted. The rule is:

Chario character manipulation and conversion page 3.1.4.9

dollarsign followed by a letter is interpreted as one letter
uppercase.

Therefore the preceeding example may be written:
$ex. 2
with the same interpretation.
The underline switch turms underlining on and off. After the oc-
currence of an underline switch symbol which turned the underlining on,

every following (ACSII) character is prefixed by the symbols

_ (underline) and
BS (backspace)

until the next underline switch symbol turns the underlining off. Note
that certain sequences of symbols line uppercase, lowercase symbol and
some others (which we will mention shortly) are not prefixed by the syn-
bols underline and backspace if underlining is on. The sequence of char-
acters

so$_me u$-nderlinings
is interpreted as

some underlinings

or more precisly as the sequence of ASCII characters:

Vs" "Oﬂ "nn BS "m" 11 BS " "
"nn " 1 " " " "1 AT B ORGP L R | S nant
BS SP U BS "u", n" "3 Gl N i ipht i it g gt

where SP stands for a space symbol.
A less trivial example that covers all rules introduces so far is:

mi$rabild<e $-dic$>tus-.
with interpretation:
miRabilE DICtu.

The special symbols are subdivided in printable and not printable sym-
bols. The printable symbols are:

Infal "~ section 3.1: File handling page 3.1.4.10

ACSII character dollar representation
BS $(
HT $)
LF 3,
vT $+
CR $.
3 33
(percent sign) $/
(accent grave) 3!
(accolade open) $[
(accolade close) $]
(bar) 31
thilde $~

notes:

1. The sequence of symbols CR, LF (in dollar notation $.$,) may be
abbreviated to $;

2. After the symbols $. and $; a physical end-of-line is inserted to
improve the readsbility of dollar files. This extra end-of-line has
no significance (see next section).

3. When reading from a dollar file all symbols between $. or $; and the
next physical end-of-line are skipped. Because of this rule copying
from one dollar file to another one does not destroy the layout.

The not printable ASCII characters are mostly communication and syn-
chronization synbols. These symbols are represented by:

dollar symbol, ASCIT value (octal) plus or minus symbol.

A complete 1list of these symbols appears in the appendices. One
example will illustrate the rule. The ASCII character NAK (negative ack-
nowledge) with value 25 (octal) is represented by:

$25+ or $25-
Though it seems very useless this mechanism may be applied to
every ASCII character. In this way the letter—a-synbol (value 97 = 141
(octal)) can be represented by

$141+

Chario character manipulation and conversion page 3.1.4.11

" 2.1.5.2 Dollar convention and dollar files

A dollar file is nothing mcre than a display code file in which a
special meaning is attached to the dollarsign. This view on dollarfiles
is usefull to discover scme problems. By definition a 1ine of ASCII
characters dis terminated by a carriage return symbol. An arbitrary
nunber of characters can preceede this carriage return symbol. Now ob-
serve that

- a display code file and therefore a dollarfile has a fixed linesize,
and that

- the representation of ASCII characters according to the dollar
convention occupies on the average more than one character position.

An obvious conclusion is that the carriage return symbol only
(represented by $. or combined with LF by $;) terminates a line. There
is no meaning attached to possible physical end of lines in the dollar
file. One line of ASCII characters may be represented in a dollar file
by several physical lines and vice versa.

This property of dollar files motivates the introduction of two
line positions in a file:

- the logical line position (defined by the stream of ACSII characters)
and
- the physical line position (defined by the representation of the
stream of ASCII characters).
see 2.2 for more details on this subject.
2.1.6 Print files
Print files are specially formatted for reproduction on a line-
printer. Before each line a printer controlcharacter is inserted to
allow line feed, page eject and overprinting.
2.1.6.1 63~character set print file (writetype 24)

A 63 character ASCII subset may be represented on these files.
Chararacters outside this subset are replaced by a resembling character.

2.1.6.2 95~character set point file (writetype 25)

The 95 printable ASCII characters can be represented on these

4

Infal section 3.1: File handling page 3.1.4.12

files.
note: this filetype cannot be supported before the operating system
SCOPE 3.4.2 is running on the CYBER installation.

2.2 Logical and physical line position

As pointed out in section 2.1.5 it is necessary to make a clear
distinction between a stream of ASCII characters and their representa-
tion. We repeat that the logical line position depends on a stream of
ASCII characters only. The physical 1line position depends on the
representation of this same stream of ASCII characters.

The properties of logical and physical line position are discussed
in three subsections: one for write files, one for read files and a
‘separate section for binary files.

2.2.1 Write files

Files may be regarded as a collection of lines. ASCII characters
written to a file can influence the character position in the line which
is currently under construction. Each file has three properties concern-
ing the logical line position:

logical line width (logw)
logical line position (logpos)
left margin (1m)

at most logw ASCII characters, which increment the logical line position
may be written before the synbols CR, LF and a number of space symbols
(SP) equal to the current value of the left margin are inserted automat-
ically.

Note that 1logical 1line width and left margin can be controlled
directly by the user (see 3.). Each file has two other properties con~
cerning the physical line position:

physical line width (physw)
physical line position (physpos)

Not more representations of ASCIT characters, or parts thereof,
that increment the physical line position from 0 to physw can be written
before a physical end of line mark is inserted. This process is indepen-
dent from the influence of the ASCII characters on the logical line
position.

An example will probably clarify these definitions and rules.

Chario character manipulation and conversion

Suppose the ASCII characters

8BCDe fgHIJK1

are written to a dollar file with specifications:

logical line width = 5
physical line width = 6

These write operations have the effect:

physpos
logpos

physpos
logpos

physpos
logpos

physpos
logpos

rhyspos
logpos

note:

K

$

b 3.3

a $ < b ¢ d wmk
1 2 3 4 5 6

1 1 1 2 3 4

$ > e $; owex

1 2 3 4 5

4y 4 5

f g $ < h 1 »eex
1 2 3 4 5 6

1 2 2 2 3 4

i 8%

1 2 3

5

k $ > 1

1 2 3 4

1 1 1 2

physical end-of-line inserted
CR, LF anf physical end-of-line inserted

2.2.2 Read files

page 3.1.4.13

Read files resemble write files in almost every respect. Only one

exception exists:

when reading from a file the symbols CR and LF are

never inserted, in other words the value of the logical 1line width is
unreachable and input lines of indefinite length can occur. The logical
lise position in only reset to zero if a CR symbol is encountered. The
physical line position is restricted to the values 0 < physpos < physw.

&

Infal section 3.1: File handling page 3.1.4.14

Outside this range synbols are skipped until the next physical end of
line mark. For read files the values of left margin and logical line
width have no meaning.

2.2.3 Binary files

Binary files follow the rules: When exactly logw frames have been
written a number of zero frames equal to the current value of leftmargin
are inserted. Each frame read from a binary file increments the logical
line position by one. '

2.2.4 summary

A summary of section 2.2 is given in the following table:

file description type chars/ chars/ type chars/ chars/
log.line phys.line log.line phys.line

8-bit bin. 16 1w 1w 0 or or
12-bit bin. 17 1w w 1 or or
ASCIT even 18 1w 1w 2 or or
ASCIT odd 19 w 1w 3 or or

MC flex. 20 1w 1w y or or
ARBA flex. 21 1w w 5 or or
display 22 1w phw 6 or phw
dollar 23 w phw 7 or phw

63 print 24 1w phw - - -

95 print 25 1w phw - - -

Iw: logical line width
phw: physical line width
or: Iindefinite sequence of characters terminated by a CR symbol.

Chario character manipulation and conversion page 3.1.4.15

3. ALGOL~60 interface with the filesystem

This chapter contains a detailed description of a set of pro-
cedures which can be used to commnicate with the filesystem. The
behaviour of these procedures and the meaning of their parameters is
explained fully.

The maximum number of files which can be processed simultaneously
is an assenmbly parameter of the filesystem itself. In the sequal we
refer to this value minus one as "maxfiles". The value of maxfiles in
the current version is seven.

Infal section 3.1: File handling page 3.1.4.16

3.1 Open
BRIEF DESCRIPTION:

Before a file can be accessed the procedure open must be called to
specify certain properties like filetype, filename etc. Every attempt to
access file before it is opened results in a fatal error.

CALLING SEQUENCE:

procedure open(n,lfn,w,t,rew);
value n,w,t,rew;

integer n,w,t,rew; strint 1lfn;
code 13000;

note: the not existing specifier strint is used to indicate a type that
may be either string or integer.

The meaning of the parameters is:

n : filenumber, which will identify all following accesses for this
file. The filenunber must obey the restriction O<n<maxfiles.

1fn : legal SCOPE logical filename. Two types are allowed for 1lfn:
either a string ("("fileone")") or an integer (the integer
equivalent of a string which does not exceed eight characters;
this integer equivalent can be obtained by means of the
ALGOL 60 library function equiv or by means of an explicit
computation.)

w : logical and physical line width. The value of w is assigned to
both system variables. The value of the logical line width can
be changed afterwards by means of a call to the procedure
rmarge (see 3.11), the value of the physi al line width,
however cannot be changed without first closing (see 3.2) and
then reopening the file with a different value for w.

t : filetype in one of the ranges
0 <t < 7 for readfiles and
16 < t < 25 for writefiles.
Note that an attempt to read from a write file and vice versa
causes a fatal error.

rew : rewind option. File will be rewind if the value of rew is not

Chario character manipulation and conversion page 3.1.4.17

equal to zero.
EXAMPLE OF USE:

exanmple:
open(3,"("file3")",72,6,1); meaning:
open a file with filenumber 3, logical filename "file3",
logical and physical line width 72. The filetype is 6 (display
code, reading) and rewind file before processing.

Infal section 3.1: File handling page 3.1.4.18

3.2 Close
BRIEF DESCRIPTION:

Close completes the processing of a certain file. After a call of
close the filenumber which identified all accesses for this file is
released and may be used again in a call of open to identify accesses to
another file. At Jjob termination (normal or sbnormal) the filesystem
calls close for every file not yet closed. For this reason the program
mer does not have to close all files at the end of his program.

CALLING SEQUENCE:
procedure close(n);
value nj;
integer n;
code 13001;
The meaning of the parameter is:
n : filenumber of the file for which all accesses are terminated.

EXAMPIE OF USE:

example: close(3)
meaning: evident.

Chario character manipulation and conversion page 3.1.4.19

3.3 Rdchar

BRIEF DESCRIPTION:

Rdchar reads the next character from a file. If the character is

not present (end-of-file or end-of-record encountered) a user supplied
end~of-record procedure is executed. If the next character is erroneous
(parity-error, violation of dollarconvention) a user supplied error pro-
cedure is executed. In the normal case, however, the value of the char-
acter is delivered as value of the function identifier. Reading from a
file with type outside the range 0-7 is fatal error.

CALLING SEQUENCE:

integer procedure rdchar(n,eor,error);

value n;

integer n;
procedure eor,error;
code 13002;

The meaning of the parameters is:

n

eor

error

: filenunber.

: end-of-record procedure. This procedure will be executed when
during a read operation an end-of-record is encountered. The
procedure eor must be declared as:

procedure eor(n,eorlev,eorsym);
value n;
integer n,eorlev,eorsym;

The parameters of the procedure eor have the meaning:

n

eorlev :

eorsym :

: filenunber of file in which end-~of-record was

encountered.

end-of-record level. An end-of-file is equivalent
with eorlev = 15,

end~of-record symbol. eorsym defines the value rdchar
must deliver for the current read operation. A
meaningful. value must be assigned to eorsym in the
body of the procedure eor.

: errorprocedure, to be executed when an errorcondition occurs
during a read operation. The procedure error must be declared

Infal | ‘section 3.1: File handling page 3.1.4.20

as
procedure error(n,er);
value n;
integer n,er;
The parameters have the following meaning:
n : filenunber of the file in which the error occurred.
er : errorcode and errorcharacter.
Possible values of er are:
-1, ..., =255 parity error: the value read inverted

from sign is passed as
value of er.

=299 (in dollar file) exceed
digits following a dollar
sign the value 127.

=300 (in dollar file) is a
dollar sign followed by
digits not closed by a
plus or a minus sign.

=302 (in dollar file) is a
dollar sign followed by
an illegal symbol.

-303 ring the bell! a system
inconsistency occurred.

To er a meaningful value must be assigned in the

body of the procedure error: this value replaces the

erroneous character and is delivered as value of

rdchar,

EXAMPLE OF USE:
example: after the declarations:

procedure eor(n,eorlev,eorsym);
value n;
integer n,eorlev,eorsym;
1f eorlev = 15 then goto eof reached else eorsym:= -1;
procedure erro’r?n,er' H
value n;
integer n,er;
begin errorcount:= errorcount+1;
er:= -2
end error;

Chario character manipulation and conversion page 3.1.4.21

integer errorcount;

and a proper call of openh:

open(3,"("inpfile")",80,4,1);

rdchar could be called as:

n:= rdchar(3,eor,error);

In this example "eof reached" is supposed to be a global label.

meaning: evident.

Infal section 3.1: File handling page 3.1.4.22

3,4 Rdarray
BRIEF DESCRIPTION:

Rdarray reads characters from a file and assigns the values of
these characters to consequtive elements of a given array. The number of
characters read is delivered as value of the function identifier. End-
of-record and error processing are identical to the method described in
the preceeding section. One additional feature of rdarray is the defini-
tion of a stopcharacter. Characters are read from the file until either
the array is completely filled or the stopcharacter is encountered.

CALLING SEQUENCE:

integer procedure rdarray(n,a,eor,error,stop);
value n,stop;

integer n,stop;

integer array a;

procedure eor,error;

code 13003;

The meaning of the parameters is:
n : filenumber,

a : array to be filled with character values. If a is more
dimensional the array is filled rowwise.

eor : end-of-record procedure. see 3.3 for a complete description.
When an end-of-record or end-of-file is encountered rdarray
returns immediately with a partially filled array a. When
rdarray is called the nexttime and no calls of rdchar for
the same file occurred in the meantime, the eor procedure is
executed before anv array element is assigned a value. In this
case the user defined value of "eorsym" will be assigned to the
first array element.

error : error procedure, see 3.3 for a complete description. The
position of the errorneous character is marked in array a by
the value -1 before procedure error is called. The user defined
value of this marked array element.

stop : stopcharacter,
When a character with value "stop" is encountered in the file

Chario character manipulation and conversion page 3.1.4.23%

EXAMPLES

exanmple:

meaning:

during a call of rdarray, reading is terminated and the last
array element defined contains the value of "stop". Rdarray
behaves as a readline procedure if the value of stop is equal
to carriage return or line feed.

OF USE:

after declaration of eor, error, an array al[1:100] and a proper
call of open, rdarray could be called as:

a n:= rdarray(3,a,eor,error,13)
or as
b n:= rdarray(3,a,eor,error,=1)

a fill all 100 elements of array a with characters from a file
with filenumber 3 unless a carriage return (ASCII value 13)
occurs. Return in that case with array a filled with all
characters upto and including this carriage return.

b fill all 100 elements of arrasy a. The value -1 implies
that the stopcharacter will pever be encountered.
(any value outside the range 0-127 can be used instead
of -1).

Infal section .1: Pile handling page 3.1.4.24

3.5 Wrchar
BRIEF DESCRIPTION:

Wrchar writes one character to a file. Writing to a file with type
outside the range 16-25 results in a fatal error.

CALLING SEQUENCE:

procedure wrchar(n,char);
value n,char;

integer n,char;

code 13004:

The meaning of the parameters is:
n : filenumber.
char : character to be written. The legal values for char differ for
binary and character files.
8-bit binary : 0 < char < 2#8 -1

12-bit binary : 0 < char < 212 -1
other type : 0 < char < 127 (ASCII character)

EXAMPIE OF USE:

example: open(6,"("file")",80,22,1);
wrchar(6,65);

meaning: the letter "a" (ASCII value 65) is written to the file with
logical filename "file".

Chario character manipulation and conversion page 3.1.4.25

3.6. Wrarray
BRIEF DESCRIPTION:

Wrarray writes a specified number of character values, which are
stored in an array, to a file.

CALLING SEQUENCE:

procedure wrarray(n,a,l);
value n,l;

integer n,l1;

integer array a;

code 13005;

The meaning of the parameters is:
n : filenumber.

a : array containing characterdata.
for legal values see 3.5.2.

1 : length of traject.
Suppose array a is declared as
array albegin:end];
now distinguish the two cases:

begin+l < end: the values in
a[begin], albegin+1], ... , a[begin+l-1]
are written.

begin+l > end: the values in al[begin], ... alend]
are written.

The index of the last array element to be written is determined
by
minimum(begin+l,end).

EXAMPLE OF USE:

example: integer array a[1:3];
open(6,"("file")",80,22,1);
al1]:= 65; a[2]:= 66; a[3]:= 67;
wrarray(6,a,2); wrarray(6,a,10);

Infal “section 3.1: File handling page 3.1.4.26

meaning: a the first call of wrarray writes the letters "a" and "b" to
file "file".

b the second call of wrarray writes the letters "a", "b" and
"e" to file "file".

Chario character manipulation and conversion page 3.1.4.27

3.7 Wrtext
BRIEF DESCRIPTION:
Wrtext writes a string in dollarformat to a file.
CALLING SEQUENCE:
procedure wrtext(n,s);

value n;

integer n;
string s;
code 130063

The meaning of the parameter is:
n : filenumber.

S : string according to dollar convention. Any violation of the
dollar convention results in a fatal error.

EXAMPLE OF USE:

examplel:
open(1,"("file")",80,22,1);
wrtext (1,"("ab$/c$;e™)");

meaningl:
the symbols: "a', "o", "o", "e", CR, LF, "e" are written to
file "file1".
Note the replacement of the percent sign (represented by $/)
by a questionmark because percent sign is not available in
display code.
If "file1" was empty before the call of wrtext it contains now:

ab%c
e

example?:
open(1,"("file2")",80,23,1);
wrtext (1,"("ab$/c$se")");

meaning?:
the symbols: "a", "o", (percent sign), CR, LF, "e" are written

Infal section 3.1: File handling page 3.1.4.28

to file "file2".
If file2 was empty before the call of wrtext it contains now:

abd/cd;
e

Chario character manipulation and conversion page 3.1.4.29

3.8 Pos
BRIEF DESCRIPTICN:

Pos delivers the current value of the logical position in a file.
Pos gives then the value of the last used position.

CALLING SEQUENCE:

integer procedure pos(n);
value nj;

integer n;
code 13007

The meaning of the parameter is:
n : filenumber.

EXAMPIE OF USE:

examplel:
suppose the display code file we are reading from contains as
current line:
abedefg
and we have already read the characters "a" and "b". A call
of pos delivers the value 2.
exanple2:

suppose that two characters have been written on the
current line of a display code file. A call of pos delivers
the value 2.

Infal section 3.1: File handling

3.9 Type
BRIEF DESCRIPTION:
Typ delivers the filetype of a given file.
CALLING SEQUENCE:
integer procedure type(n);
value n;

integer n;
code 13008;

The meaning of the parameter is:
n : filenumber.

EXAMPIE OF USE:

examplel:
Open(B,"("f")",80,25,1);
n:= type(3);
meaningl:
the value 25 is assigned to n.
example?:
n:= type(4);
meaning?2:

page 3%.1.4.30 |

Suppose a file with filenumberd is not opened. The value -1

is assigned to n.

This is the only operation possible on a not opened file.

Chario character manipulation and conversion page 5.1.4.31

3.10 Lmargin
BRIEF DESCRIPTION:

Imargin is used to redefine or inspect the value of the left mar-
gin of a file. ‘

CALLING SEQUENCE:

procedure lmargin(n,x,q);
value n,q;

integer n,x,q;
code 13010;

The meaning of the parameters is:
n : filenumber.

X : variable or expression.
distinguish the two cases:

a inspection of left margin (gq=0).
The value of left margin is assigned to the variable x.

b redefinition of left margin (g#0).

The value of the variable or expression x is assigned to left
margin. The value of x must lje in the rang 0 < x < logical
line width. The effect of redefinition of the left margin is
not visible until the next line. In other words redefinition
does not influence the nunber of spaces or binary zeros written
at the beginning of the current line.

o} : question or redefine.
g = 0 inspect.
g ¥ 0 redefine.

EXAMPIE OF USE:

example:
open(1,"("file")",6,22,1);
wrtext (1,"("dbedefg")");
Imargin(1,3,1);
wrtext (1,"("hijkimnop™)");

Infal section 3.1: File handling

meaning:
"rile" contains the characters:

abedef

ghijkl
mo
p

page 3.1.4.32

Chario character manipulation and conversion page 3.1.4.33

3.11 Rmargin
BRIEF DESCRIPTICN:

Rmargin is used to redefine or inspect the value of the logical
line width of a file.

CAILLING SEQUENCE:
procedure rmargin(n,x,q);
value n,q;
integer n,x,q;
code 13%009;

The meaning of the parameters is:

n : filenumber.
X : variable or expression (see 3.10.2)
q : question or redefine (see 3.10.2).

Redefinition of the 1logical line width influences the nunber of
characters written on the next line. The value of logical line width at
the moment that a line is started determines the maximum number of posi-
tion incrementing characters on that line.

EXAMPIE OF USE:

exanple:
open(1,"("file")",6,22,1);
wrtext (1,"("abedefg")");
I’marg,in(l,j,l);
wrtext(1,"("hijklmop")");

meaning:
"file" contains the characters:

abedef
ghijkl
mno

p

page 3.1.4.34

TAB

GS

BS| HT
FS

BS

STOP | PUOF

SI| DIE| DC1| DC2| DC3

So|
"
]

3

TABIE A: ascii -> flexowriter

CR

SP

SP
el el L e el] e et

|
|
I

us

DC4| NAK| SYN| ETB| CAN| EM| SUB| ESC

LF| VI| FF

NULL| SCH| STX| ETX| EOT| ENQ| ACK| BEL

10
20
20 {

Appendix

| 1 i
3] 1 i
1 S ol & g1 % =
I i { 1 . .
| b Q b | >
“ pr >~ Q ” — “ “ >
“ = _to _Ix _i1= 1@ |
i o= © | A =
I [IR IR
" “ o e “ L WL R
“ “ = [n) L) o
e ————————
[0 A
= o _ | “ ~) o
— — —
— mw [b —
& = = “ < ~ R
Sll..l.. ~ “ a0 |I|“| o - -__I
o 19p] ~ “ af " o) < “
e = ta ta s I
o - “ Gy Q, __ N “
| — e 1o s _1t
i @ | 1)) o | >
LIS SO SRS U S
1 1 1 [I
I o)
“ S “ A Ay ™ b “ T 8 < “ » > "
i i _ I R .
1 1 1 1 i i
i o | Q 1 o { o O 1 o |
] ~ 1 0 1 N I O — | o i
1 1 i i - A I — 1

Appendix TABIE A: ascii -> flexowriter

notes:

STOP: stopcode

PUCF: punch off

NOT: logical not sign
TEN: low ten symbol
SP: space symbol

page 3.1.4.7%5

Appendix TABIE B: ascii -> dollar page 3.1.4.36

| o] 1] 2 3] 41 5 6 71 81 9|
| I I I |
NULL SOHl STX| ETX| EOT| ENQ| ACK| BEL| BS| HT
0
$1+ |2+ |33+ [$4+ |35+ |$6+ $7+ [$C [9)
ir| vr| Fr| cR| So| sI| DE| pcil pe2| De3
10
$, 13+ [$1u+]$. |$16+|$17+|$20+|$21+|$22+ |23+
DCM{ NAK| SYN| ETB| canN|] EM| SuB| ESC| FS| @GS
20
$24+ $25+|$26+ $27+|830+ | $31+ 432+ | $33+ | 334+ |$35+
RS| US| SP| ! " Bl $1 £ & '
30
I$36+ $37+| Sp | ! " § $$ 1 8/ | A !
() #* + 3 - / 0 1
40
l () | * + s - / 0 1
2 3 4 5 6 7 8 9 3
50
2 |3 |4 |5 |6 |7 I8 9 I ; =
<| =]l >] 2] @] a] B} c| D| E|
60 | |
l< 1= 1> |2 |@ A |B |Jc |D |E
Fl | H|] 1|] x| | M| N| O
70 |
F |G |d |1 |J lx |L IMm|N |O
Pl Q| Rl s| 7] ul v} wl] x| ¥
80
P |Q | R { S T U Y | W X I Y }
oz LN I AL]] al bl e
90 I I
lz [I\ T 1A T _ %14 |B |c
dl el £l gl n| il k| 1| m
100
| D |IE |F |G |H |IT |Jd |K |L |M
| nl o p q r S t u vi] w
110 I
| N { o |P Q@ RIS |IT Ju |V |w I
| x| y| z| ¢ | ¥y | =~ | DEL | I
120 | I I I I
’ X I Y | z | $0 1 $: | $1 | 34 | I I

page 3.1.4.37

Appendix

TABIE C: ascii => 63 char print file

; M\ D i .] g
(&) o=
~ B BIR 18 |- e Lde e gl ol nde olE 2lE o
) [QV] Iml [|||l|-_ - T
@ < i
a BRI m < o B atlE m < gt s
B~ = 3 A - o = = le 1w 1 = n
i)] i ~ ~ o o =17 0= | < N [o
O % 4 N
= .M % F w ol® al” al” s S R TE s
@ — 0 ‘
Ta = e === .
= 0 m e | — < < et et o o | _ ~ _ 0] " o
- (@] 1 1 § T
= 8 2 = — —_
] 7 mmu | = " a o | & @ S i ® @i -
llllll [} At [} . Ia!.ll_
h o] i
M —-e °
= 5 »lB B . B N T e e L A
Iilllllll!.ﬂm o - T T T - 0 - T
o oy : o ,
m Wm mu m 7s) “)} % =t A A m - X o n - =N - Ny N AN
e —_ _— e e e e e
-) i
i (@) f
N W m W = ~~ M 1 m © [} @ @@ = — m v m ° O > >
T T4 = T T TN T T T T I
o M 2 s
m w m — o~ \Y v m £ . [W n, AN} - "_ A o - » b "_
T i R] - i | R I - I ul_l
I (@] o (] [} Q (o] (] (=} I (@] [o] o (@] O [}
] A [qVY} } Ny = 1) 0 1 B~ QQ N 1 (@] i [QV]]
I I I i i i 4 i

Appendix TABIE D: ascii -> display code page 3.1.4.38

0 1 2 3 4 5 6 7 8 9
NULL SOHl STX| ETX| EOI'| ENQ| ACK| BEL| BS| HT
0
2 ?2 |12 2 ? 2 ? 2 9 ?
IF VTl FF| CR| SO{ SI| DIE| DC1| DC2{ DC3
10
? NL | NL ? ? ? ? ? ?
DC4| NAK| SYN| ETB| CAN| EM| SUB| ESC| FS| GS
20
? ? ? 2 2 9 ? 2 9 2
I
| RS| US| sp| ¢ " 3 $ / A J
30
o D] SP 7 1 & $ o A t
l SRS PR S P
() % + , - / 0 1
40
() * + , - / 0 1
2 3 4 5 6 7 8 9 ;
50
2 3 it 5 6 7 8 9 ;
< = > ? @ A B C D E
60 | I
< = |I > ? @ A B C D E |
F G| n I J K Ll M| N 0
70 |
F G H I J K L M N 0
P Q R S T U v W X Y
80
P | Q R S T §] \' W X Y
z| L1 NP I AT _ *l al b| e}
90 |
Z [}\] A { 12 |a|B |C
d e fl g h i J k 1 m |
100 | |
D | E | F G H I J K L M
| n o D o} r| s t u v wl
110 | |
N 0 P Q R S T U v W }
= |====] | |=mm |-
| x| vyl z| €| || 3] ¥ |DEL |
120 | |
X |y |z ? ? ? ? |
I |

T,

Bt

