
AFDELING INFORMATICA

stichting

mathematisch

centrum

L.G.L.T. MEERTENS and J.C. van VLIET
REPAIRING THE PARENTHESIS SKELETON
OF ALGOL 68 PROGRAMS (Extended abstract)

IA

~
MC

IN 5/73 OCTOBER

2e boerhaavestra_at 49 amsterdam

MATH EMA TISCH
AMS'f!RDA~

, PJun..ted a.:t .the, Ma.:thema..tlc.a.l Cen:tlte, 49, 2e, BoeAhaa.vetdJT.a.at, Am.o.teAdam.

The, Ma.the.ma.Uc.al Cen:tlte, 6ounde,d .the 11-.th 06 Febiw.My 1946, .l6 a. n.on.­
p1to6U ,ln..o.tUILtlon. a..i.m,in.g a.:t .the, pltomotion. 06 pu/l.e ma.:thema..tlc.6 a.n.d -lt6
a.pp.U.c.a;Uon6. I.t .l6 .opon..oo1te,d by .the Ne.theJLta.n.d6 GoveAn.men..t .th/tough :the
Ne.theJri,a.n.d6 01tga.n.,lza..tlon. 601t :the, Adva.n.c.emen..t 06 Pu!l.e, Re.oe.Mc.h (Z.W.O),
by .the, Mun,ic.,ipa.U:ty 06 Am.6.teAdam, by .the Un.,lveJr.6.lty 06 Am.6:teAdam, by
.the, F1te,e, Un.,lveJT.6.lty a.t Am.o.teAdam, a.n.d by ,ln.dU6-tlue..6.

ACM - Computing Reviews - category: 4.12, 4.22

Repairing the parenthesis skeleton of ALGOL 68 programs

Lambert Meertens, Hans van Vliet

Smmnary

Good error-recoverability for an ALGOL 68 parser is only possible if

the errors in the parenthesis skeleton are known beforehand. Two al­

gorithms for repairing such errors are discussed.

Text of a paper presented at the Third Semi-annual Western-North

American Informal Conference on ALGOL 68, Los .Angeles, September,

8-9, 1973.

I. Introduction

The degree to which compilers for high-level languages like ALGOL 68

are able to recover from errors in the source text and to give meaningful

error messages, i.e.,error messages which are interpretable 'for the human

programmer, varies considerably in practise. In our current effort to con­

struct a machine-independent ALGOL 68 compiler, one of the design objectives

is to reach a relatively high level of error-recoverability. Here, we will

discuss one of the concrete aspects of the syntax of ALGOL 68 [I], the par­

enthesis structure.*

If, somewhere in a piece of source text which starts with an opening

parenthesis, an error occurs which causes the parser to derail, one may

hope to use the closing parenthesis to bring it back in its track. Should,

however, this closing parenthesis be missing (which might be the cause of

the derailment in the first place), then this strategy is not particularly

helpful. It may appear that the solution would be to insert, as it were, the

matching closing parenthesis in the source text when a different closing

parenthesis is met, but then, if the source text contains an extra closing

parenthesis, we are even worse off, The conclusion is that a good resynchron­

ization of the parser is only then possible if it is known beforehand which

opening parentheses are accompanied by a matching closing parenthesis, and

which are not (and vice versa). This holds especially for some parentheses,

such as the quote-symbol, that have one same representation for opening and

closing parenthesis.

· The term "parenthesis" is used here to denote a wider class of sym-

*) A detailed treatment is given in [2]. However, the revision of ALGOL 68

has been taken only partially into account there. It is hoped that a "re­

vised" version of [2] will appear in due time.

2

bols than is usual: we shall use this term to stand for the following

symbols:

"braces": $, (,) , begin, end, [, J, I, I : , ease, in,

out, ouse, esaa, ii., then, else, eZif, fi,
for, from, 0b to, whi Ze, do, od, and

"state switchers": ", ~, #, ao, aomrilent, E!_ and pi'agmat.

The role played by the state switchers is so special as to warrant a

spec~al treatment. Not only does one same symbol serve both as 11opener 11 and

as "closer" of certain constructions, but, which is more important, the

"item sequences" which are embraced by these symbols lack syntactical struc­

ture and may contain braces in an arbitrary fashion that otherwise would

have to occur "nested". Therefore, it is a hopeless task to treat the braces

before it is known which parts of the program are item sequences, and which

are not, and, consequently, which braces have to be disregarded and which

have to be taken into account.

Apart from this, the treatment of both types of parentheses runs

largely in parallel. In general, errors in the parenthesis skeleton are re­

paired by marking a number of parentheses such that, by deleting these

parentheses, a correct skeleton is obtained.

2. The treatment of state switchers

An ALGOL 68 program can be thought of as consisting of a sequence of

(possibly empty) segments, separated by state switchers. To each of these

segments a "state" may be assigned, which is either "neutral" or one of the

state switchers. For a correct program, it is possible to assign these

states in such a way that the first and the last segment are neutral and

that at each state switcher we have a correct transition, i.e., the state

switches to that state switcher if it was neutral and to neutral if the pre­

sent state switcher is equal to the state, and otherwise the state is not

affected. To give an example:

segments:

states:

,, #
- - - -- o'\,. --__ ...

neutral II neutral neutral

3

Note that the segments which have a state switcher as state are precisely

those segments that are, or are contained in, an item sequence. Obviously,

if such an assignment of states is not possible, the program is incorrect.

It is necessary to refine our definition of a correct transition

slightly further. Although state switchers have one same representation

for openers and closers, it is possible in some cases to derive from the

context that a given state switcher, which then must be a quote-symbol,

cannot be an opener or a closer. E. g,, in the context of d = "monday"; it

can be shown that the first quote-symbol must be an opener and the second

one a closer. Now, for a state switcher which has shown to be a non-opener,

the transition from the state neutral to the state" is not considered cor­

rect. A similar restriction applies to state switchers which have been

shown to be non-closers.

The task of the algorithm for correcting the state-switcher skeleton

can be formulated approximately as follows: assign states to each of the

segments in such a way that the number of incorrect transitions is kept, in

some sense, as low as possible.

The elementary actions consist of the marking of one state switcher,

indicating that it should be disregarded in order to obtain a correct state­

switcher skeleton. This implies that the state should not switch at such a

state switcher. Therefore, for an incorrect transition to be admissible in

such cases, it is necessary that the state does not change.

In the general case, there will be more than one admissible interpre­

tation for a given sequence of segments. The problem is, therefore, to give

a criterion to which one of these interpretations can be chosen as, hope­

fully, the best. A simple criterion would be to count the number of incor­

rect transitions. We have chosen, however, for a more sophisticated criter­

ion. Rather than having all incorrect transitions weigh equally, different

"error values" have been assigned to the various types of incorrect transi­

tions, based upon estimates of the likelihood of these transitions. The

thought underlying the computation of those values is that of Bayesian anal­

ysis.

4

2.1 The algorithm

The task of the algorithm can be stated thus: find among all admis­

sible interpretations an optimal one, i.e., one with minimal total error

value. Obviously, it is impractical to generate all admissible interpreta­

tions one by one, as their number will grow exponentially with the number

of state switchers in the source text. By applying the principle of dynamic

progrannning, however, it is possible to derive a practical algorithm.

3. The treatment of braces

After, as a result of the treatment of the state switchers, states

have been assigned to all of the segments, it is known which parts of the

program are item sequences, and, consequently, which braces have to be dis­

regarded. It is the task of the algorithm for repairing the brace skeleton

to try to match as much as possible the braces and to mark the remaining

ones. The criterion for comparing two alternatives will simply be: which

one has the smaller number of marked braces.

First, it is obvious that braces like (and J or begin and end match.

However, in the case of, e.g., I the potential for matching is much higher:

this brace is able to match simultaneously to the left with either of the

braces (, I and I:, and to the right with I, I:, and J. In spite of this

seeming complication, a satisfactory and yet simple solution is given by

systematically replacing I by JI (and I: by JI:(, and then to require the

matching of (and J, after which I and I: are no longer considered braces.

Similarly, then is replaced by fi. then if_, and so on. Obviously incorrect

skeletons, such as (j I jJ, are not indicated as such by this algorithm.

Similar to the state switchers, it is sometimes possible to tell

whether a$ serves as an opener or a closer. This information, if available,

is taken into account.

3.1 The algorithm

A correct brace skeleton, i.e., one in which all braces match properly,

can be characterized algorithmically as follows:

5

Start with an empty stack. Scan the braces from left to right. Upon meeting

an opening brace, it is put on the stack. When a closing brace is met, it

matches the top of the stack (otherwise the brace skeleton was incorrect)

and that brace is "matched away", i.e., removed from the stack top. After

having processed all braces, the stack is again empty.

An alternative way of viewing this can bring the notion· of "correct

brace skeleton" in a framework quite similar to that employed for dealing

with state switchers: The stacks are states that are assigned to the seg­

ments between the braces. For a correct program, it is possible to assign

these states in such a way that the first and the last segment are neutral

(i.e., have an empty stack) and that at each brace we have a correct trans­

ition, i.e., if the brace is an opening brace the new state consists of the

old state with that brace put on top, and if it is a closing brace, the old

state consists of the new state with the matching opening brace put on top.

The definition of an admissible incorrect transition then becomes: a

transition is admissible incorrect if the old state and the new state are

equal.

The algorithm sketched above is rather impractical. It is possible to

refine the process in such a way that the number of branches is kept below

a certain reasonable limit.

References

[l] A. van Wijngaarden e.a., Revised Report on the Algorithmic Language

ALGOL 68.

[2] L.G.L.T. Meertens and J.C. van Vliet, Repairing the Parenthesis Skele­

ton of ALGOL 68 Programs, IW2/73, Mathematisch Centrum, Amster­

dam (1973).

