
AFDELING INFORMATICA

stichting

mathematisch

centrum

IN 6/73

Lambert MEERTENS & Hans van VLIET
A SYNTAX-DIRECTED ERROR-RECOVERY METHOD
FOR PARSING ALGOL 68 PROGRAMS

Prepub I i cation
IA

DECEMBER

2e boerhaavestraat 49 amsterdam

MATl-le.MATISCH
p.t'\SURDAII

P,unted a.t :the Ma.thema.:ti.c.ai. Ce.n,t/[.e, 49, 2e BoeJr.haa.vu.:tM.a.t, Am6:trvulam.

The Ma.thema.:tic.ai. Cen;tJte, 6ou.nded :the 11-:th 06 FebJr.u.aJr.y 1946, L6 a. non
pJr.o 6U .i.n1>-tU1Ltlo n tumi.ng a.t :the pJr.omo.tlo n o 6 puJr.e. ma.thema.:ti.C-6 and .i.:t6
a.pp.Uc.a.:ti.oru.. 1:t ,l6 .6pon1>0Jr.e.d by :the. Ne:thell1.a.nd6 GoveJr.nme.nt fuough :the.
Ne:th<Vl1.a.nd6 OJr.ga.n.i.za.:ti.on 6oJr. :the Adva.nc.eme.nt o 6 PU/Le Ru e.Mc.h (Z. W. 0) ,

. by :the. Mwuc..i.pa..u:ty 06 Am6:teJr.da.m, by :the Un.i.ve.MUy 06 Am6:teJr.da.m, by
:the. FJr.ee Un.i.ve.MUy a.t Am6:teJr.da.m, and by .i.ndw.,,t,uu.

ACM - Computing Reviews - category: 4.22, 5.23

· · 68 *) A syntax-directed error-recovery method for parsing ALGOL programs

CONTENTS

Abstract

1 • Introduction

2. Conventions, terminology and definitions

3. Top-down error recovery and ALGOL 68
4. A simple grammar and its prefix form

5. Introducing error-productions

6. Transforming the grammar

7. Applicability of the method

References

Figure

2

3

4

8

10

11

13

17

21

22

This paper has been submitted for the IFIP Congress 74 at Stockholm.

Lambert Meertens and Hans van Vliet 2

ABSTRACT

The generality of ALGOL 68 makes it difficult to obtain good error recov

ery when the traditional top-down error-recovery method is applied. With

the help of a simplified example, an error-recovery technique is sketched,

relying on the fact that there is an algorithm for detecting incorrect

parenthesis skeletons. The source text is brought into prefix form and

an LL(1) grammar is constructed such that

(i) the prefix form of each source text satisfying certain restrictions

on the parenthesis skeleton can be parsed according to that grammar;

(ii) the number of places in the grammar where resynchronization takes

place is considerably enlarged;
'

(iii) the syntactical errors, although produced by the grammar, are easily

identifiable;

(iv) the parse tree obtained for the prefix form of a correct source text

is similar in structure to the prefix form of the ALGOL-68 parse

tree for that source text;

(v) the resulting grammar is considerably simpler than the original

grammar.

Lambert Meertens and Hans van Vliet 3

1 . INTRODUCTION

The primary purpose of error recovery in the parsing of programs is

to minimize the number of runs required to obtain a syntactically correct

program. This goal is achieved by continuing the parsing, in a "meaningful"

way after a syntactic error has been detected, so that pertinent informa

tion may be given on errors occurring further on in the source text.

The generality of ALGOL 68 [1] makes good error recovery considerably

more difficult than it is, e.g., in ALGOL 60. Investigating this problem

we concluded that good resynchronization of the parser is only then possi

ble if it is known beforehand which opening parentheses are, and which

are not, accompanied by a matching closing parenthesis (and vice versa).

Therefore, it was decided that in the machine-independent ALGOL-68 com

piler which is currently being developed at the Mathematical Centre, in

correct parenthesis skeletons will be detected before the source text is

parsed. This error detection is treated in detail in [2]. This decision

now appears to pay off in a twofold way:

(i) At an early stage it was decided to parse top-down. As a tool for

writing our compiler we have at our disposal the language ALEPH [3],

which is particularly suited for top-down parsing according to a

grammar of type LL(1) [4]. The context-free grammar underlying [5]

the ALGOL-68 syntax is not of type LL(1), but it seems possible to

construct an LL(1) grammar for II context-free ALGOL 68 11
• However, in

doing this, the original syntactic structure is lost. Another possi

bility is to apply beforehand a simple transduction scheme [6], op

erating from right to left, which brings the source text in prefix

Lambert Meertens and Hans van Vliet 4

form. If, however, this transduction scheme is applied bluntly to a

source text with an incorrect parenthesis skeleton, the result is in

general unacceptable. The advantage of having first detected errors

in the parenthesis skeleton is that the transduction scheme can be

constructed in such a way as to yield acceptable results even for im

properly parenthesized programs.

(ii) The presumption that knowledge about errors in the parenthesis skel

eton would alleviate the problems of error recovery was confirmed in

a stronger way than we expected: The transduction scheme mentioned

above can be amended in such a way that all possible errors in the

source text are described syntactically. Error recovery then simply

becomes a side-effect of syntax-directed parsing.

It is not surprising that the application of a right-to-left trans

duction scheme opens possibilities for error recovery: it can be

viewed as an unbounded lookahead from left to right.

The purpose of this paper is to sketch this error-recovery techniQue.

This is done in an informal way by applying it to a simplified exam

ple.

2. CONVENTIONS, TERMINOLOGY AND DEFINITIONS

We shall refrain from giving a formal definition of well established

concepts as "context-free grammar", the "language produced by'r a grammar,

"parse tree", etc. Instead, we shall introduce our conventions in an in

formal way.

Nontermina.Zs will be denoted by capital letters (A,B,C, ...).

A terminal pPoduction of a nonterminal will be denoted by the corre-

Lambert Meertens and Hans van Vliet

spending small letter (a,b,c, ••.).

Terminals will be denoted by their representation (+,-,x, ...).

The empty·string will be denoted by£.

5

Other small Greek letters (a,$,y, ••.) will be used to denote some -possi-

bly empty- sequence of terminals and nonterminals.

A production rule for a nonterminal is written by first giving that non

terminal, then a colon, then the alternative productions for that non

terminal, separated by semicolons, and then a point. E.g., T: T + X; X.

means that there are two productions for T, T + X and X.

The start nontePminal of a grammar will be the nonterminal whose produc

tion rule is given first.

As usual, a+$ means that$ can be directly derived from a by replacing

one nonterminal in a by one of its productions, and a+*$ means that$

can be derived from a by zero or more derivation steps:

a= y ➔ y ➔ ➔ y = 0 , n ~ O. O 1 • • • n .,

In this paper, the notions "LR(k) grammar" and "LL(k) grammar" are used.

For a definition, we refer to [4] and [7]. We shall only mention here

those properties that are relevant to the exposition.

If a grammar is of type LL(k) this means that it is possible to construct

a parse tree for a string produced by that grammar in the following way:

Start with a partial parse tree consisting of only one (top) node, la

belled with the start nonterminal, and that string. The top node is said

to be "untreated". In a number of successive steps, the parse tree will be

developed by attaching to some bottom node which is labelled with a non

terminal a number of (untreated) descendants, one for each terminal and

Lambert Meertens and Hans van Vliet 6

nonterminal'of one of its productions. At the same time, the string will

be accepted by deleting from left to right successive terminals. Each step

has the following form: Take the leftmost untreated node in the partial

parse tree (this is always a bottom node). That node is then "treated"

as follows: If that node is labelled with a nonterminal, select on the

basis of that nonterminal and the first k terminals of the string, a pro

duction for that nonterminal and develop the parse tree accordingly. (The

selection is uniquely determined for an LJJ..k) grammar.) If that node is

labelled with a terminal, it is equal to the first terminal of the re

maining string (this is a property of the selection procedure for LL(k)

grammars), and that first terminal is deleted.

If the string was indeed produced by the given grammar, this parsing pro

cess will terminate with a complete parse tree (all nodes treated and all

bottom nodes terminal) and an empty remaining string. Otherwise, the pro

cess terminates with a non-empty remaining string or at some stage in the

process no selection is possible.

A parsing method as sketched above is known as a top-do'l;)n method; the fact

that the selection is uniquely determined, so that no decisions have ever

to be undone, labels this method as deterministic. It may be easily imple

mented by a system of mutually recursive routines, one for each nontermi

nal. During the parsing process, the untreated part of the tree is reflec

ted in the status of the link stack. For LR(k) grammars, there exists a

deterministic bottom-up parsing method, in which the construction of the

parse tree is performed in the opposite direction.

Since for a grammar of type LL(k) or LR(k) there exists a deterministic

parsing method, this implies that for any string produced by that grammar

Lambert Meertens and Hans van Vliet 7

there exists only one parse tree; in other words, such a grammar is un-

ambiguous.

Now we need some precise definitions.

Two parse trees T
1

and T
2

are congruent if they are the same, apart from

the labelling of nodes by nonterminals. An example of two congruent trees

is given by T
7

e and T
9
e in fig. 1.

A parse tree Te is the contracted form of a parse tree T if Te may be ob

tained from T by replacing any nodes with one single descendant by that

descendant itself, by deleting any nodes with no descendants, and by re

peating this process until no such nodes are left. In fig. 1, T
7

e and

T
9
e are the contracted forms of T

7
and T

9
, respectively.

Two parse trees T
1

and T
2

are similar if their contracted forms are con

gruent. An example is given by T
7

and T
9

in fig. 1. (In fact, all four

trees shown are similar, since similarity between trees is an equivalence

relation and a tree is always similar to its contracted form.}

A grammar G is a structurally similar extension of a grammar G if, for
e

each strings produced by G, with parse tree T, there exists a parse tree

Te for s according to Ge such that T and Te are similar.

Two grammars G1 and G
2

are structurally similar if G
1

is a structurally

similar extension of G
2

, and vice versa.

Note that the language produced by a grammar G is a (not necessarily prop

er) subset of the language produced by any structurally similar extension

Ge of G. Obviously, two structurally similar grammars are equivalent (in

the weak sense that they produce the same language). The equivalence re

latiop of structural similarity is stronger, however; it is closely re-

Lambert Meertens and Hans van Vliet 8

lated to the still stronger notion of st'I'uaturai equivaienae introduced in

[8]. The motivation for the introduction of this weaker form lies in the

fact that for purposes of compilation, it is the contracted form rather

than the full tree which is important; e.g., in the context-free grammar

which we use for ALGOL 68, the appearance in the parse tree of nontermi

nals like unit, tertiary, etc., is an artefact, introduced by the step

from a Van-Wijngaarden grammar as in [1] to the underlying context-free

grammar.

3. TOP-DOWN ERROR RECOVERY AND ALGOL 68

One advantage of top-down parsing is mentioned by Knuth: "when we are

fortunate enough to have an LL(1) grammar, we have more flexibility in ap

plying semantic rules, since we know what production is being used before

we actually process its components. This foreknowledge can be extremely

important in practice" [4]. (Although this remark specifically refers to

LL(1) grammars, it seems to hold for LL(k) grammars in general, provided

that the k-symbol lookahead is not considered "processing".)

It is not the purpose of this paper to justify our choice for a par

ticular parsing method, but it should be clear that this choice has pro

found bearings on the error-recovery techniques possible. Gries: "The

nice part about top-down error-recovery is that the partially constructed

tree conveys much usable information about what should appear next in the

source program. This information is not as readily available in the bot

tom-up method" [9] ..

A top-down error-recovery technique is sketched in [9]: If, in the

partial parse tree at some stage no step is possible (for a' node labelled ,,

Lambert Meertens and Hans van Vliet 9

with a nonterminal: no selection is possible; for-a node labelled with a

terminal: it is not equal to the first terminal of the remaining string),

proceed then upwards in the tree until a node is encountered, labelled

with an "important" nonterminal, after which the whole tree descending

from that node, including the node itself, is considered treated. Delete

then successive terminals from the remaining string until a next step is

possible. The parsing process may now be resumed. For ALGOL 60, an im

portant nonterminal would be, e.g., "statement". If the parsing process

gets stuck in a statement, the effect of this technique would be that the

source text is skipped up to a semicolon, end or eZse, whereupon the par

sing continues. Due to the generality of ALGOL 68, this technique is not

straightforwardly applicable. The ALGOL-60 concepts of statement and ex

pression are unified in ALGOL 68 into the unit. A typical example is given

by print (c := begin reaZ z = exp(x); (z+l/z) x.6 end),

which in ALGOL 60 could be

pegin reaZ z; z == exp(x); c := (z+l/z)x.5 end; print (c).

The very least thing to do is not to skip simply to some resynchronizing

terminal such as a semicolon, end or eZse~ but to make an effort to parse

parenthesized constructs encountered meanwhile. But even then, it may be

expected that the freedom of expression in ALGOL 68 will give rise to a

style of programming compared to which the ALGOL-60 way of cutting into

statements will seem short-breathed. It is therefore desirable to in-

.crease the number of points where resynchronization may take place. But

if this is done at all, it should be done in a systematic fashion; perhaps

no error recovery whatsoever is better than an unsurveyable collection

of ad-hoc methods, the combined effect of which may easily go beyond our

Lambert Meertens and Hans van Vliet 10

limited ability to grasp complicated processes.

4. A SIMPLE GRAMMAR AND ITS PREFIX FORM

As the syntax of ALGOL 68 is rather complicated, the error-recovery

technique will be demonstrated with the help of a simplified grammar,

which nevertheless reflects the major difficulties involved. Consider the

following grammar, in which I stands for some recognizable basic item,

e.g., an identifier or a denotation (the production rule for I is omitted;

it will be treated as a terminal):

U: T .- U; T.

T: T + X; x.

X: XX Y; Y. (1)

Y: + Y; P.

P: P(U); (U); I.

The language generated by this grammar contains, in ascending order of

priority, constructions resembling assignations, foY'lrl'UZas (with dyadic

operators+ and x and a monadic operator+) , routine eaZZs, eZosed

eZauses and some basic item. The nonterminals U, T and P correspond to the

ALGOL-68 unit, tertiary and primary. If the becomes symbol:= is consid

ered an operator, and, moreover, an invisible operator© is assumed be

tween the primary P of a call and its parameters pack (U), the prefix

form of (1) is given by:

Lambert Meertens and Hans van Vliet 11

U: .- T .L U; T.

T: + T .L X; x.

X: XX .L Y; Y. (2)

Y: e Y; P.

P: @ p .L (U); (U); I.

In the above grammar, a synchronization symbol, denoted by .L, has been

introduced. It is superfluous here, but it will become essential in sub

sequent versions of the grammar. The sequence+ .L has been replaced by

@; it thus stands for the monadic+.

In [6] it is proved that any postfix syntax-directed translation of

an LR(k) grammar can be performed on a (deterministic) pushdown machine.

Grammar (1) is of type RL(2), which simply means that the grammar obtained

from it by writing all productions back to front (as in U: U:= T; T.) is

of type LR(2) [7]. The mapping from (1) into (2) is a simple prefix

syntax-directed translation scheme -apart from a trivial modification-

so that the required translation can be performed by scanning from right

to left. Grammar (2) is of type LL(1), which was the purpose of bringing

(1) into prefix form in the first place.

5. INTRODUCING ERROR-PRODUCTIONS

The pushdown machine introduced in the previous section is a trans

lator from the language produced by (1) to the language produced by (2).

We now want to extend this translator to all possible input strings.

The grammar

Lambert Meertens and Hans van Vliet 12

V: VB; £.

(3)
B: . - ; + ; X ; I; (V).

generates all strings composed of the symbols of our language with the

property that parentheses occur nested. (This restriction corresponds to

the fact that errors in the parenthesis skeleton have been detected al

ready at this stage.)

We now extend (1) in the following way: the strings produced at the

basic level by P may also be£ (the empty string) or be followed by a se

quence of I's.

U: T:= U; T.

T: T + X; x.

X: XX Y; Y.
(4)

Y: + Y; P.

P: P(U)Z; (U)Z; IZ; £.

Z: IZ; £.

Clearly, (4) is a structurally similar extension of (1).

We shall prove that (3) and (4) are equivalent, i.e., all strings pro

duced by U are produced by V, and vice versa. In order to simplify the

proof, we make a trivial modification to (4) by replacing the last two

rules by:

P: P(U)Z; (U)Z; z.

Z: ZI; £.

(5}

Lambert Meertens and Hans van Vliet

Proof:

I. If U ➔* u then V ➔* u. This part is obvious.

II. If V ➔* V then U ➔* v.

The proof is by induction on the length of v, say n.

For n = O, II is obvious, since U ➔* £.

13

Otherwise, v can be written as v'h, V ➔* v', B ➔* h, where, by the in

ductive hypothesis, U ➔* v'. We make a distinction by the first derivation

step of U ➔* V ' •

Case A. U ➔ T:= U ➔* v'. v' can be written as t:= u, with T ➔* t and

U ➔* u. Since U ➔* u, V +* u and, consequently, V +* uh.

By the hypothesis, we have U +* uh.

We have: U ➔ T:= U ➔* t:= uh= v'b = v.

Case B. U ➔ T ➔* v'. Note that for any v' such that T +* v' each of the

following holds: T + aX +*ax= v'; T +*SP+* Sp= v';

T. ➔* yZ ➔* yz = v' . Moreover, U ➔* £ ; X +* £ ; Y ➔* £ • We

distinguish the various possibilities for h.

If h = :=, u ➔ T:= u ➔* v':= £ = v'b = v.

If b = +, u +* T + X ➔* v' + £ = v'h = v.

If b = x, T ➔ aX +*ax= v', so U ➔ T +.aX ➔ aX x Y +* ax x £ = v'h = v.
If I ➔* h, T +* yZ ➔* yz = v', so U ➔ T +* yZ ➔ yZI +* yzh = v'b = v.

If (V) ➔* h, (V) +* (v'') = h, with V +* v'' and therefore, by the

hypothesis, U ➔* v' ' .. T +* SP +* SP = V
1

, so

U ➔ T +*SP+* SP(U)Z +* Sp(v'')£ = v'h = v.

6. TRANSFORMING THE GRAMMAR

Grammar (4) is not of type RL(k) for any k, since it is ambiguous, unlike ,,

Lambert Meertens and Hans van Vliet 14

(3). E.g.,+ (I) is produced in four different ways. Therefore, we need a

slight detour, in order to obtain a translator, similar to the one which

maps (1) into (2), but which accepts all.strings produced by (4): we re

write (4) eliminating ambiguities (a subscript n for a nonterminal indi

cates that its terminal productions are of one of the forms a) or aI).

U: T:= U; T.

T: T + X; X. n

X: X X Y; y.

Y: + Y; P.

P: P (U)Z; (U)Z; IZ; e:.
n

Z: IZ; e:.

T : T + X ; X •
n n n n

X : XX y. y .
n n' n

y : + y ; p •
n n n

p : Pn(U)Z; (U)Z; IZ.
n

(6)

The proof that (6) is equivalent to (3), and therefore to (4), runs large

ly parallel to the proof given above. Grammar (6) is of type RL(2), just

as (1); it is obvious that (6) is also a structurally similar extension

of (1); the prefix form of this grammar may be constructed in the same

way as for (1) :

Lambert Meertens and Hans van Vliet

U: :=Ti U; T.

T: + T i X; x. n

X: XX i Y; Y.

Y: e Y; P.

P: @P i (U)Z; (U)Z; IZ; n

Z: IZ; £.

T : + T i X· X .
n n n' n

X : X X i Y· y .
n n' n

y : eY· p . n n' n

P:@ P i (U)Z; (U)Z; IZ.
n n

15

£. (7)

It is easily verified that the translation scheme which maps (6) in-

to (7) has the property that each strings produced by (1) is translated

to a string whose parse tree according to (7) is similar to the parse tree

according to (2) of the translation of s by the translator which maps

(1) into (2). (So (7) is a structurally simil~r extension of (2).) More

over, each string not produced by (1) is translated to a string which is

not accepted by (2). E.g.,+ I;= II+ is translated to the prefix form

:=@Ii+ II i.

Since (7) is still of type LL(1), just like (2), we have, in a sense,

reached our goal. However, extensive simplifications have come within

reach. The important thing to notice is that we know beforehand that any

string which will be submitted to be parsed according to our grammar, is

produced by (7). What we need is a grammar such that it will produce, for

strings accepted by (7), a similar parse tree; if it also accepts strings

not accepted by (7), this will do no harm: no such strings will ever be

submitted to it. As a first simplification, the step from (4) to (6) is,

Lambert Meertens and Hans van Vliet 16

so to speak, undone:

U: := T .LU; T.

T: + T .L X; x.

X: XX.LY; Y. (8)

Y: e Y; P.

P: @ p .L (U)Z; (U)Z; IZ; £.

Z: IZ; e:.

Again, (8) is a structurally similar ~xtension of (7); in other words, if

a string can be parsed according to (7), then a similar parse tree ac

cording to (8) may be given. We must, however, exclude the possibility

that, apart from this similar parse tree, another (not similar) parse

tree might be found. That this is indeed excluded can be seen immediately

by observing that (8) is still of type LL(1), and therefore unambiguous.

Comparison of (8) and {2) shows that the possible errors have been

concentrated in two spots in the grammar: if a string is accepted by (8)

which is not produced by (2), then this must be the effect of having a Z

from a production of P produce a non-empty string or of having P produce

e: (or some combination of these). This can be expressed more strikingly

by factoring the first three alternative productions of the production

rule for P, so that we have P: QZ; e:. and Q:@ P .L (U); (U); I., thus ob

taining a variant which is still a structurally similar extension of (2).

As a final step, we can "contract" this variant of (8):

Lambert Meertens and Hans van Vliet 17

U: .- u J_ U;

+ u J_ U;

X ij J_ U;

e U· ,

QZ; £,

Q: @ u J_ (U); (U); I.

Z: IZ; £.

Grammar (9) is a structurally similar extension of the variant; as before,

the fact that (9) accepts a wider class of strings is not harmful, as

only strings accepted by (8) will be submitted for parsing, and the LL(1)

ness of (9) guarantees that the parse tree found will be similar to that

obtained according to the variant, and, therefore, for strings produced

by (2), similar to that obtained according to (7). Compared to (7), how

ever, a not insignificant simplification has been achieved.

7. APPLICABILITY OF THE METHOD

It will be clear that the essence of the method sketched in the pre

vious sections lies in the leaving behind of synchronization symbols at the

places where the right-to-left scan picks up operators. It is interesting

to note that the top-down error-recovery method sketched in section 3 may be

viewed in the same light: if we consider a semicolon an operator, then the

prefix form of begin Bl; S2; S3 end, e.g., is begin; S1 J.; S2 J. S3 end, and

we see how resynchronization may take place at semicolons. The same observation

holds for closing parentheses, where resynchronization may take place also.

Strictly speaking, the prefix form of (U) should be() J. U J., where()

may be considered one new indivisible symbol. In these cases, however,

Lambert Meertens and Hans van Vliet 18

nothing is gained by bringing the grammar in preI'ix form.

The question we ask now is: how generally applicable is this method?

It appears that the answer is connected with the theory of operator pre

cedence grammars. We shall give a partial answer in the form of a theorem

(without proof), but first we need some definitions.

Let G be an operator precedence grammar (for a definition, see [10]). This

implies that each production is of the form a 0 T1 a 1 ••• an_1 Tn an, n ~ 1,

where each of the a. is either E or a nonterminal and where each of the T,
~ ~

is a terminal. For a production with n = 1, T 1 will be called an operator;

if n ~ 2, T1 will be called an opener, Ti' 2 ~ i ~ n - 1, will be called a

middler, and T will be called a closer. n

The grarronar with er:r>or productions Ge of G is the grammar

V: VB; E.

s . , n

where to each production a0 T1 a 1 •.. an_ 1 Tn an of G there corresponds

one Si of the form T1 V ..• V Tn·

The synch!'onized prefix grammar Gp of G is obtained from G by replacing

each production a 0 T1 °'1 .•. a T a of G by cr T ao .L a1 . .. an-1 n-1 n n T 1 ° • • n
where

.
a terminal uniquely determined by a n'

(J lS T 1 • • • T .
T 1 • • • Tn n

The er:r>or-:r>ecovery prefix g:r>arronar Gpe of G is the grammar obtained from

GP, with one nonterminal, say U, whose productions are obtained in the

following steps:

.L

Lambert Meertens and Hans van Vliet 19

1. For each production in GP of the form a a 0 .L a 1 ... an_ 1 .Lan, add

a production o U .LU •.• U .LU.

2. Add a production£.

3. If some production occurs twice or more, delete all occurrences

but one.

The operator precedence relations for G determine a translation scheme

for the language produced by G.

Theorem:

Let G be an operator precedence grammar and let Ge' GP and Gpe be defined

as above. If G satisfies the following restriction:

the operators, openers, middlers and closers of G form mutually

disjoint sets,

then it is possible to extend the operator precedence relations for G, for

all pairs of terminals o, T between which no precedence relation is defined,

with the exception of those pairs where o is an opener or a middler and Tis

a middler or a closer, by taking for the precedence relation R between a and

Tone of the precedence relations~ and 9 , where, if o is an opener or middler,

R must be~, if Tis a middler or closer, R must be?' and if both o and T

are operators, the choice between ❖ and 9 is free, and we have the following

result:

Let S be the translation scheme determined by the extended operator pre

cedence relations, and let S(a) denote the result of subjecting a string

a to S. Then:

1. If Vis produced by Ge, then S(v)is produced by Gpe; moreover, if

vis also produced by G, then S(v) is equal to the corresponding

e
V produced by Gp. p

2. Gpe is a structurally similar extension of GP.

3. Gpe lS of type LL(1) .

Lambert Meertens and Hans van Vliet 20

The context-free grammar underlying ALGOL 68 is certainly not an op

erator precedence grammar. This holds even for our grammar (1). However,

it appears that by small, inessential modifications, such as: recognizing

certain basic constructions like identifiers beforehand; resolving pre-

cedence clashes by taking into account the i:mmediate context, or separat

ing nonterminals by inserting operators (also on the basis of the immedi

ate context), the grammar may easily be transformed into an operator pre

cedence grammar. The test whether the modified grammar satisfies the re

striction of our theorem may be done mechanically. The error productions

in the corresponding grammar

may be done by comparison of

G are not immediately identifiable; this pe

Gp and Gpe· A sensible way to fill in the

empty precedence relations seems to be to make an attempt at consistency

with the already defined relations.

REFERENCES

[1] A. van Wijngaarden e.a., Revised Report on the Algorithmic Language

ALGOL 68, to be published.

[2] L.G.L.Th. Meertens, and J.C. van Vliet, Repairing the Parenthesis

Skeleton of ALGOL 68 programs, report IW 2/73, Mathematical

Centre, Amsterdam, February 1973.

[3] D. Grune e.a., ALEPH Manual, Mathematical Centre, Amsterdam, to be

published.

21

[4] Donald E. Knuth, Top-Down Syntax Analysis, Acta Informatica, vol. 1,

no. 2, 1971, 79-110.

[5] C.H.A.Koster, Affix-grammars, in ALGOL 68 Implementation, ed. J.E.L.

Peck, North-Holland Publishing Co., Amsterdam, 1971.

[6] P.M. Lewis II, and R.E. Stearns, Syntax-Directed Transduction,

Journal of the ACM, vol. 15, no. 3, July 1968, 465-488.

[7] Donald E. Knuth, On the Translation of Languages from Left to Right,

Information and Control, vol. 8, no. 6, December 1965, 607-639.

[8] Marvin C. Paull, and Stephen H. Unger, Structural Equivalence of

Context-Free Grammars, Journal of Computer and System Sciences,

vol. 2, no. 4, December 1968, 427-463.

[9] David Gries, Compiler Construction for Digital Computers, John Wiley,

New York, 1971,

[10]Robert W. Floyd, Syntactic Analysis and Operator Precedence,

Journal of the ACM, vol. 10, no. 3, 1963, 316-334.

/i~ u
~I~

.- T .L u := u .L u
I I /\ /I~
X T e U +U.LU
I +/i~ /\ / '\
y Q z Q z

/\ n I I /\ I $ y I I I I z
I X y

In I
p y p

/ "'-. In
I z p

/n
I ""'- Z

/"-.
I z

(T7) (T9)

u
/I~

:= y .L T
/'\ /I~

e I + p .L
l'Z_

I I

Fig. 1. Two parse trees, according to grammars (7) and (9), for the

string:= e I .L +II .1, and their contracted forms. Note that nodes

labelled Z, P or U with no descendants correspond to a production£.

