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ABSTRACT 

The generality of ALGOL 68 makes it difficult to obtain good error recov

ery when the traditional top-down error-recovery method is applied. With 

the help of a simplified example, an error-recovery technique is sketched, 

relying on the fact that there is an algorithm for detecting incorrect 

parenthesis skeletons. The source text is brought into prefix form and 

an LL(1) grammar is constructed such that 

(i) the prefix form of each source text satisfying certain restrictions 

on the parenthesis skeleton can be parsed according to that grammar; 

(ii) the number of places in the grammar where resynchronization takes 

place is considerably enlarged; 
' 

(iii) the syntactical errors, although produced by the grammar, are easily 

identifiable; 

(iv) the parse tree obtained for the prefix form of a correct source text 

is similar in structure to the prefix form of the ALGOL-68 parse 

tree for that source text; 

(v) the resulting grammar is considerably simpler than the original 

grammar. 
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1 . INTRODUCTION 

The primary purpose of error recovery in the parsing of programs is 

to minimize the number of runs required to obtain a syntactically correct 

program. This goal is achieved by continuing the parsing, in a "meaningful" 

way after a syntactic error has been detected, so that pertinent informa

tion may be given on errors occurring further on in the source text. 

The generality of ALGOL 68 [1] makes good error recovery considerably 

more difficult than it is, e.g., in ALGOL 60. Investigating this problem 

we concluded that good resynchronization of the parser is only then possi

ble if it is known beforehand which opening parentheses are, and which 

are not, accompanied by a matching closing parenthesis (and vice versa). 

Therefore, it was decided that in the machine-independent ALGOL-68 com

piler which is currently being developed at the Mathematical Centre, in

correct parenthesis skeletons will be detected before the source text is 

parsed. This error detection is treated in detail in [2]. This decision 

now appears to pay off in a twofold way: 

(i) At an early stage it was decided to parse top-down. As a tool for 

writing our compiler we have at our disposal the language ALEPH [3], 

which is particularly suited for top-down parsing according to a 

grammar of type LL(1) [4]. The context-free grammar underlying [5] 

the ALGOL-68 syntax is not of type LL(1), but it seems possible to 

construct an LL( 1 ) grammar for II context-free ALGOL 68 11
• However, in 

doing this, the original syntactic structure is lost. Another possi

bility is to apply beforehand a simple transduction scheme [6], op

erating from right to left, which brings the source text in prefix 
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form. If, however, this transduction scheme is applied bluntly to a 

source text with an incorrect parenthesis skeleton, the result is in 

general unacceptable. The advantage of having first detected errors 

in the parenthesis skeleton is that the transduction scheme can be 

constructed in such a way as to yield acceptable results even for im

properly parenthesized programs. 

(ii) The presumption that knowledge about errors in the parenthesis skel

eton would alleviate the problems of error recovery was confirmed in 

a stronger way than we expected: The transduction scheme mentioned 

above can be amended in such a way that all possible errors in the 

source text are described syntactically. Error recovery then simply 

becomes a side-effect of syntax-directed parsing. 

It is not surprising that the application of a right-to-left trans

duction scheme opens possibilities for error recovery: it can be 

viewed as an unbounded lookahead from left to right. 

The purpose of this paper is to sketch this error-recovery techniQue. 

This is done in an informal way by applying it to a simplified exam

ple. 

2. CONVENTIONS, TERMINOLOGY AND DEFINITIONS 

We shall refrain from giving a formal definition of well established 

concepts as "context-free grammar", the "language produced by'r a grammar, 

"parse tree", etc. Instead, we shall introduce our conventions in an in

formal way. 

Nontermina.Zs will be denoted by capital letters (A,B,C, ... ). 

A terminal pPoduction of a nonterminal will be denoted by the corre-
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spending small letter (a,b,c, ••. ). 

Terminals will be denoted by their representation (+,-,x, ... ). 

The empty·string will be denoted by£. 

5 

Other small Greek letters (a,$,y, ••. ) will be used to denote some -possi-

bly empty- sequence of terminals and nonterminals. 

A production rule for a nonterminal is written by first giving that non

terminal, then a colon, then the alternative productions for that non

terminal, separated by semicolons, and then a point. E.g., T: T + X; X. 

means that there are two productions for T, T + X and X. 

The start nontePminal of a grammar will be the nonterminal whose produc

tion rule is given first. 

As usual, a+$ means that$ can be directly derived from a by replacing 

one nonterminal in a by one of its productions, and a+*$ means that$ 

can be derived from a by zero or more derivation steps: 

a= y ➔ y ➔ ➔ y = 0 , n ~ O. O 1 • • • n ., 

In this paper, the notions "LR(k) grammar" and "LL(k) grammar" are used. 

For a definition, we refer to [4] and [7]. We shall only mention here 

those properties that are relevant to the exposition. 

If a grammar is of type LL(k) this means that it is possible to construct 

a parse tree for a string produced by that grammar in the following way: 

Start with a partial parse tree consisting of only one (top) node, la

belled with the start nonterminal, and that string. The top node is said 

to be "untreated". In a number of successive steps, the parse tree will be 

developed by attaching to some bottom node which is labelled with a non

terminal a number of (untreated) descendants, one for each terminal and 
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nonterminal'of one of its productions. At the same time, the string will 

be accepted by deleting from left to right successive terminals. Each step 

has the following form: Take the leftmost untreated node in the partial 

parse tree ( this is always a bottom node). That node is then "treated" 

as follows: If that node is labelled with a nonterminal, select on the 

basis of that nonterminal and the first k terminals of the string, a pro

duction for that nonterminal and develop the parse tree accordingly. (The 

selection is uniquely determined for an LJJ..k) grammar.) If that node is 

labelled with a terminal, it is equal to the first terminal of the re

maining string (this is a property of the selection procedure for LL(k) 

grammars), and that first terminal is deleted. 

If the string was indeed produced by the given grammar, this parsing pro

cess will terminate with a complete parse tree (all nodes treated and all 

bottom nodes terminal) and an empty remaining string. Otherwise, the pro

cess terminates with a non-empty remaining string or at some stage in the 

process no selection is possible. 

A parsing method as sketched above is known as a top-do'l;)n method; the fact 

that the selection is uniquely determined, so that no decisions have ever 

to be undone, labels this method as deterministic. It may be easily imple

mented by a system of mutually recursive routines, one for each nontermi

nal. During the parsing process, the untreated part of the tree is reflec

ted in the status of the link stack. For LR(k) grammars, there exists a 

deterministic bottom-up parsing method, in which the construction of the 

parse tree is performed in the opposite direction. 

Since for a grammar of type LL(k) or LR(k) there exists a deterministic 

parsing method, this implies that for any string produced by that grammar 
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there exists only one parse tree; in other words, such a grammar is un-

ambiguous. 

Now we need some precise definitions. 

Two parse trees T
1 

and T
2 

are congruent if they are the same, apart from 

the labelling of nodes by nonterminals. An example of two congruent trees 

is given by T
7

e and T
9
e in fig. 1. 

A parse tree Te is the contracted form of a parse tree T if Te may be ob

tained from T by replacing any nodes with one single descendant by that 

descendant itself, by deleting any nodes with no descendants, and by re

peating this process until no such nodes are left. In fig. 1, T
7

e and 

T
9
e are the contracted forms of T

7 
and T

9
, respectively. 

Two parse trees T
1 

and T
2 

are similar if their contracted forms are con

gruent. An example is given by T
7 

and T
9 

in fig. 1. (In fact, all four 

trees shown are similar, since similarity between trees is an equivalence 

relation and a tree is always similar to its contracted form.} 

A grammar G is a structurally similar extension of a grammar G if, for 
e 

each strings produced by G, with parse tree T, there exists a parse tree 

Te for s according to Ge such that T and Te are similar. 

Two grammars G1 and G
2 

are structurally similar if G
1 

is a structurally 

similar extension of G
2

, and vice versa. 

Note that the language produced by a grammar G is a (not necessarily prop

er) subset of the language produced by any structurally similar extension 

Ge of G. Obviously, two structurally similar grammars are equivalent ( in 

the weak sense that they produce the same language). The equivalence re

latiop of structural similarity is stronger, however; it is closely re-
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lated to the still stronger notion of st'I'uaturai equivaienae introduced in 

[8]. The motivation for the introduction of this weaker form lies in the 

fact that for purposes of compilation, it is the contracted form rather 

than the full tree which is important; e.g., in the context-free grammar 

which we use for ALGOL 68, the appearance in the parse tree of nontermi

nals like unit, tertiary, etc., is an artefact, introduced by the step 

from a Van-Wijngaarden grammar as in [1] to the underlying context-free 

grammar. 

3. TOP-DOWN ERROR RECOVERY AND ALGOL 68 

One advantage of top-down parsing is mentioned by Knuth: "when we are 

fortunate enough to have an LL( 1) grammar, we have more flexibility in ap

plying semantic rules, since we know what production is being used before 

we actually process its components. This foreknowledge can be extremely 

important in practice" [4]. (Although this remark specifically refers to 

LL( 1) grammars, it seems to hold for LL(k) grammars in general, provided 

that the k-symbol lookahead is not considered "processing".) 

It is not the purpose of this paper to justify our choice for a par

ticular parsing method, but it should be clear that this choice has pro

found bearings on the error-recovery techniques possible. Gries: "The 

nice part about top-down error-recovery is that the partially constructed 

tree conveys much usable information about what should appear next in the 

source program. This information is not as readily available in the bot

tom-up method" [9] .. 

A top-down error-recovery technique is sketched in [9]: If, in the 

partial parse tree at some stage no step is possible ( for a' node labelled ,, 
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with a nonterminal: no selection is possible; for-a node labelled with a 

terminal: it is not equal to the first terminal of the remaining string), 

proceed then upwards in the tree until a node is encountered, labelled 

with an "important" nonterminal, after which the whole tree descending 

from that node, including the node itself, is considered treated. Delete 

then successive terminals from the remaining string until a next step is 

possible. The parsing process may now be resumed. For ALGOL 60, an im

portant nonterminal would be, e.g., "statement". If the parsing process 

gets stuck in a statement, the effect of this technique would be that the 

source text is skipped up to a semicolon, end or eZse, whereupon the par

sing continues. Due to the generality of ALGOL 68, this technique is not 

straightforwardly applicable. The ALGOL-60 concepts of statement and ex

pression are unified in ALGOL 68 into the unit. A typical example is given 

by print ( c := begin reaZ z = exp(x); ( z+l/z) x.6 end), 

which in ALGOL 60 could be 

pegin reaZ z; z == exp(x); c := (z+l/z)x.5 end; print (c). 

The very least thing to do is not to skip simply to some resynchronizing 

terminal such as a semicolon, end or eZse~ but to make an effort to parse 

parenthesized constructs encountered meanwhile. But even then, it may be 

expected that the freedom of expression in ALGOL 68 will give rise to a 

style of programming compared to which the ALGOL-60 way of cutting into 

statements will seem short-breathed. It is therefore desirable to in-

.crease the number of points where resynchronization may take place. But 

if this is done at all, it should be done in a systematic fashion; perhaps 

no error recovery whatsoever is better than an unsurveyable collection 

of ad-hoc methods, the combined effect of which may easily go beyond our 
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limited ability to grasp complicated processes. 

4. A SIMPLE GRAMMAR AND ITS PREFIX FORM 

As the syntax of ALGOL 68 is rather complicated, the error-recovery 

technique will be demonstrated with the help of a simplified grammar, 

which nevertheless reflects the major difficulties involved. Consider the 

following grammar, in which I stands for some recognizable basic item, 

e.g., an identifier or a denotation ( the production rule for I is omitted; 

it will be treated as a terminal): 

U: T .- U; T. 

T: T + X; x. 

X: XX Y; Y. ( 1 ) 

Y: + Y; P. 

P: P(U); ( U); I. 

The language generated by this grammar contains, in ascending order of 

priority, constructions resembling assignations, foY'lrl'UZas (with dyadic 

operators+ and x and a monadic operator+) , routine eaZZs, eZosed 

eZauses and some basic item. The nonterminals U, T and P correspond to the 

ALGOL-68 unit, tertiary and primary. If the becomes symbol:= is consid

ered an operator, and, moreover, an invisible operator© is assumed be

tween the primary P of a call and its parameters pack (U), the prefix 

form of ( 1) is given by: 
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U: .- T .L U; T. 

T: + T .L X; x. 

X: XX .L Y; Y. (2) 

Y: e Y; P. 

P: @ p .L (U); (U); I. 

In the above grammar, a synchronization symbol, denoted by .L, has been 

introduced. It is superfluous here, but it will become essential in sub

sequent versions of the grammar. The sequence+ .L has been replaced by 

@; it thus stands for the monadic+. 

In [6] it is proved that any postfix syntax-directed translation of 

an LR(k) grammar can be performed on a (deterministic) pushdown machine. 

Grammar (1) is of type RL(2), which simply means that the grammar obtained 

from it by writing all productions back to front (as in U: U:= T; T.) is 

of type LR(2) [7]. The mapping from (1) into (2) is a simple prefix 

syntax-directed translation scheme -apart from a trivial modification-

so that the required translation can be performed by scanning from right 

to left. Grammar (2) is of type LL(1), which was the purpose of bringing 

(1) into prefix form in the first place. 

5. INTRODUCING ERROR-PRODUCTIONS 

The pushdown machine introduced in the previous section is a trans

lator from the language produced by (1) to the language produced by (2). 

We now want to extend this translator to all possible input strings. 

The grammar 
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V: VB; £. 

( 3) 
B: . - ; + ; X ; I; (V). 

generates all strings composed of the symbols of our language with the 

property that parentheses occur nested. (This restriction corresponds to 

the fact that errors in the parenthesis skeleton have been detected al

ready at this stage.) 

We now extend (1) in the following way: the strings produced at the 

basic level by P may also be£ (the empty string) or be followed by a se

quence of I's. 

U: T:= U; T. 

T: T + X; x. 

X: XX Y; Y. 
(4) 

Y: + Y; P. 

P: P(U)Z; (U)Z; IZ; £. 

Z: IZ; £. 

Clearly, (4) is a structurally similar extension of (1). 

We shall prove that (3) and (4) are equivalent, i.e., all strings pro

duced by U are produced by V, and vice versa. In order to simplify the 

proof, we make a trivial modification to (4) by replacing the last two 

rules by: 

P: P(U)Z; (U)Z; z. 

Z: ZI; £. 

(5} 
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Proof: 

I. If U ➔* u then V ➔* u. This part is obvious. 

II. If V ➔* V then U ➔* v. 

The proof is by induction on the length of v, say n. 

For n = O, II is obvious, since U ➔* £. 

13 

Otherwise, v can be written as v'h, V ➔* v', B ➔* h, where, by the in

ductive hypothesis, U ➔* v'. We make a distinction by the first derivation 

step of U ➔* V ' • 

Case A. U ➔ T:= U ➔* v'. v' can be written as t:= u, with T ➔* t and 

U ➔* u. Since U ➔* u, V +* u and, consequently, V +* uh. 

By the hypothesis, we have U +* uh. 

We have: U ➔ T:= U ➔* t:= uh= v'b = v. 

Case B. U ➔ T ➔* v'. Note that for any v' such that T +* v' each of the 

following holds: T + aX +*ax= v'; T +*SP+* Sp= v'; 

T. ➔* yZ ➔* yz = v' . Moreover, U ➔* £ ; X +* £ ; Y ➔* £ • We 

distinguish the various possibilities for h. 

If h = :=, u ➔ T:= u ➔* v':= £ = v'b = v. 

If b = +, u +* T + X ➔* v' + £ = v'h = v. 

If b = x, T ➔ aX +*ax= v', so U ➔ T +.aX ➔ aX x Y +* ax x £ = v'h = v. 
If I ➔* h, T +* yZ ➔* yz = v', so U ➔ T +* yZ ➔ yZI +* yzh = v'b = v. 

If (V) ➔* h, (V) +* (v'') = h, with V +* v'' and therefore, by the 

hypothesis, U ➔* v' ' .. T +* SP +* SP = V 
1

, so 

U ➔ T +*SP+* SP(U)Z +* Sp(v'')£ = v'h = v. 

6. TRANSFORMING THE GRAMMAR 

Grammar (4) is not of type RL(k) for any k, since it is ambiguous, unlike ,, 



Lambert Meertens and Hans van Vliet 14 

(3). E.g.,+ (I) is produced in four different ways. Therefore, we need a 

slight detour, in order to obtain a translator, similar to the one which 

maps (1) into (2), but which accepts all.strings produced by (4): we re

write (4) eliminating ambiguities (a subscript n for a nonterminal indi

cates that its terminal productions are of one of the forms a) or aI). 

U: T:= U; T. 

T: T + X; X. n 

X: X X Y; y. 

Y: + Y; P. 

P: P (U)Z; (U)Z; IZ; e:. 
n 

Z: IZ; e:. 

T : T + X ; X • 
n n n n 

X : XX y. y . 
n n' n 

y : + y ; p • 
n n n 

p : Pn(U)Z; (U)Z; IZ. 
n 

(6) 

The proof that (6) is equivalent to (3), and therefore to (4), runs large

ly parallel to the proof given above. Grammar (6) is of type RL(2), just 

as (1); it is obvious that (6) is also a structurally similar extension 

of (1); the prefix form of this grammar may be constructed in the same 

way as for ( 1 ) : 
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U: :=Ti U; T. 

T: + T i X; x. n 

X: XX i Y; Y. 

Y: e Y; P. 

P: @P i (U)Z; (U)Z; IZ; n 

Z: IZ; £. 

T : + T i X· X . 
n n n' n 

X : X X i Y· y . 
n n' n 

y : eY· p . n n' n 

P:@ P i (U)Z; (U)Z; IZ. 
n n 

15 

£. (7) 

It is easily verified that the translation scheme which maps (6) in-

to (7) has the property that each strings produced by (1) is translated 

to a string whose parse tree according to (7) is similar to the parse tree 

according to (2) of the translation of s by the translator which maps 

(1) into (2). (So (7) is a structurally simil~r extension of (2).) More

over, each string not produced by (1) is translated to a string which is 

not accepted by (2). E.g.,+ I;= II+ is translated to the prefix form 

:=@Ii+ II i. 

Since (7) is still of type LL(1), just like (2), we have, in a sense, 

reached our goal. However, extensive simplifications have come within 

reach. The important thing to notice is that we know beforehand that any 

string which will be submitted to be parsed according to our grammar, is 

produced by (7). What we need is a grammar such that it will produce, for 

strings accepted by (7), a similar parse tree; if it also accepts strings 

not accepted by (7), this will do no harm: no such strings will ever be 

submitted to it. As a first simplification, the step from (4) to (6) is, 
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so to speak, undone: 

U: := T .LU; T. 

T: + T .L X; x. 

X: XX.LY; Y. (8) 

Y: e Y; P. 

P: @ p .L (U)Z; (U)Z; IZ; £. 

Z: IZ; e:. 

Again, (8) is a structurally similar ~xtension of (7); in other words, if 

a string can be parsed according to (7), then a similar parse tree ac

cording to (8) may be given. We must, however, exclude the possibility 

that, apart from this similar parse tree, another (not similar) parse 

tree might be found. That this is indeed excluded can be seen immediately 

by observing that (8) is still of type LL(1), and therefore unambiguous. 

Comparison of (8) and {2) shows that the possible errors have been 

concentrated in two spots in the grammar: if a string is accepted by (8) 

which is not produced by (2), then this must be the effect of having a Z 

from a production of P produce a non-empty string or of having P produce 

e: (or some combination of these). This can be expressed more strikingly 

by factoring the first three alternative productions of the production 

rule for P, so that we have P: QZ; e:. and Q:@ P .L (U); (U); I., thus ob

taining a variant which is still a structurally similar extension of (2). 

As a final step, we can "contract" this variant of (8): 
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U: .- u J_ U; 

+ u J_ U; 

X ij J_ U; 

e U· , 

QZ; £, 

Q: @ u J_ (U); (U); I. 

Z: IZ; £. 

Grammar (9) is a structurally similar extension of the variant; as before, 

the fact that (9) accepts a wider class of strings is not harmful, as 

only strings accepted by (8) will be submitted for parsing, and the LL(1)

ness of (9) guarantees that the parse tree found will be similar to that 

obtained according to the variant, and, therefore, for strings produced 

by (2), similar to that obtained according to (7). Compared to (7), how

ever, a not insignificant simplification has been achieved. 

7. APPLICABILITY OF THE METHOD 

It will be clear that the essence of the method sketched in the pre

vious sections lies in the leaving behind of synchronization symbols at the 

places where the right-to-left scan picks up operators. It is interesting 

to note that the top-down error-recovery method sketched in section 3 may be 

viewed in the same light: if we consider a semicolon an operator, then the 

prefix form of begin Bl; S2; S3 end, e.g., is begin; S1 J.; S2 J. S3 end, and 

we see how resynchronization may take place at semicolons. The same observation 

holds for closing parentheses, where resynchronization may take place also. 

Strictly speaking, the prefix form of (U) should be() J. U J., where() 

may be considered one new indivisible symbol. In these cases, however, 
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nothing is gained by bringing the grammar in preI'ix form. 

The question we ask now is: how generally applicable is this method? 

It appears that the answer is connected with the theory of operator pre

cedence grammars. We shall give a partial answer in the form of a theorem 

(without proof), but first we need some definitions. 

Let G be an operator precedence grammar (for a definition, see [10]). This 

implies that each production is of the form a 0 T1 a 1 ••• an_1 Tn an, n ~ 1, 

where each of the a. is either E or a nonterminal and where each of the T, 
~ ~ 

is a terminal. For a production with n = 1, T 1 will be called an operator; 

if n ~ 2, T1 will be called an opener, Ti' 2 ~ i ~ n - 1, will be called a 

middler, and T will be called a closer. n 

The grarronar with er:r>or productions Ge of G is the grammar 

V: VB; E. 

s . , n 

where to each production a0 T1 a 1 •.. an_ 1 Tn an of G there corresponds 

one Si of the form T1 V ..• V Tn· 

The synch!'onized prefix grammar Gp of G is obtained from G by replacing 

each production a 0 T1 °'1 .•. a T a of G by cr T ao .L a1 . .. an-1 n-1 n n T 1 ° • • n 
where 

. 
a terminal uniquely determined by a n' 

(J lS T 1 • • • T . 
T 1 • • • Tn n 

The er:r>or-:r>ecovery prefix g:r>arronar Gpe of G is the grammar obtained from 

GP, with one nonterminal, say U, whose productions are obtained in the 

following steps: 

.L 
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1. For each production in GP of the form a a 0 .L a 1 ... an_ 1 .Lan, add 

a production o U .LU •.• U .LU. 

2. Add a production£. 

3. If some production occurs twice or more, delete all occurrences 

but one. 

The operator precedence relations for G determine a translation scheme 

for the language produced by G. 

Theorem: 

Let G be an operator precedence grammar and let Ge' GP and Gpe be defined 

as above. If G satisfies the following restriction: 

the operators, openers, middlers and closers of G form mutually 

disjoint sets, 

then it is possible to extend the operator precedence relations for G, for 

all pairs of terminals o, T between which no precedence relation is defined, 

with the exception of those pairs where o is an opener or a middler and Tis 

a middler or a closer, by taking for the precedence relation R between a and 

Tone of the precedence relations~ and 9 , where, if o is an opener or middler, 

R must be~, if Tis a middler or closer, R must be?' and if both o and T 

are operators, the choice between ❖ and 9 is free, and we have the following 

result: 

Let S be the translation scheme determined by the extended operator pre

cedence relations, and let S(a) denote the result of subjecting a string 

a to S. Then: 

1. If Vis produced by Ge, then S(v)is produced by Gpe; moreover, if 

vis also produced by G, then S(v) is equal to the corresponding 

e 
V produced by Gp. p 

2. Gpe is a structurally similar extension of GP. 

3. Gpe lS of type LL( 1 ) . 
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The context-free grammar underlying ALGOL 68 is certainly not an op

erator precedence grammar. This holds even for our grammar (1). However, 

it appears that by small, inessential modifications, such as: recognizing 

certain basic constructions like identifiers beforehand; resolving pre-

cedence clashes by taking into account the i:mmediate context, or separat

ing nonterminals by inserting operators (also on the basis of the immedi

ate context), the grammar may easily be transformed into an operator pre

cedence grammar. The test whether the modified grammar satisfies the re

striction of our theorem may be done mechanically. The error productions 

in the corresponding grammar 

may be done by comparison of 

G are not immediately identifiable; this pe 

Gp and Gpe· A sensible way to fill in the 

empty precedence relations seems to be to make an attempt at consistency 

with the already defined relations. 
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Fig. 1. Two parse trees, according to grammars (7) and (9), for the 

string:= e I .L +II .1, and their contracted forms. Note that nodes 

labelled Z, P or U with no descendants correspond to a production£. 


