
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

T. HAGEN

INTERMEDIATE DATA STRUCTURE (IDS)

~
MC

IN 14/77 AUGUSTUS

2e boerhaavestraat 49 amsterdam

Ptu.nte.d a.t .the. Ma.the.ma.tic.al Ce.n.tll.e., 49, 2e. BoeJthaaveA.bl.aa..t, Ami.de.Jr.dam.

The. Ma.the.ma.tic.al. Ce.n.tll.e., 60UY1.de.d .the. 11-.th at Fe.b1u.J.C1JLy 1946, -l6 a. non­
pko 6U ino.tuu:Uo n a-i.mi.ng a.t .the. pJtomo.tio n o 6 puJte. ma.thema.t-i.C6 a.nd ,i,;(:,!)
a.ppuc.a.t-i.ono. I.t ,l6 J..ponooJte.d by .the. Ne:theJI.1.,a.ndf.. GoveJtnme.nt .thJtou.gh the.
Ne:theJci.a.ndf.. 0Jtga.niza.t-i.on 6oJt the. Adva.n.c.eme.nt 06 Pu1te. Re6e.a.Jtc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68K30, 68T35

ACM-Computing Reviews-categories: 8.2

Intermediate Data Structure (IDS)

by

T. Hagen

ABSTRACT

A survey is given of a data structure representation (called IDS) of

ILP (Intermediate Language for Pictures). Examples of this representation

are given together with algorithms for the interpretation and manipulation

of these complex data structures. An implementation of ILP in terms of a

virtual machine with a data structure like IDS is outlined.

KEY WORDS & PHRASES: Computer graphics, graphical data structure, picture

representation.

CONTENTS

1. GOALS AND CRITERIA

2. INTRODUCTION TO THE DATA STRUCTURE

3. IDS- !LP STRUCTURE
3. 1. Pointer. r.ecor.ds
3.2. Mixed r.ecor.ds
3.2. 1. Name r.ecor.ds
3.2.2. Refer.ence name r.ecor.ds
3.3. Data r.ecor.ds
3.3.1. Picture r.ing data r.ecor.ds
3.3.2. Attribute r.ing data r.ecor.ds
3.3. ABS/REL basic attribute

4. IDS COMPARED WITH OTHER DATA STRUCTURES

5. IDS COMPARED WITH ILP

6. IMPLEMENTATION ASPECTS OF IDS
6. I. The combination r.ecor.ds
6.2. The continuation r.ecor.ds
6.3. The pictur.e file

7. THE VIRTUAL IDS STACK MACHINE
7. 1. The pictur.e comachine
7. 1. 1. The data r.ecor.ds
7. I .2. The pointer. r.ecor.ds
7. 1.3. The mixed r.ecor.ds
7.2. The attribute comachine
7.2. 1. The pointer. r.ecor.ds
7.2.2. The mixed r.ecor.ds
7.2.3. The data r.ecor.ds
7.3. The subspace comachine

LITERATURE -

APPENDIX I IDS on a PDP 11/45
APPENDIX II IDS in the language C
APPENDIX III An ILP and IDS example

INDEX

2

3
4
4
5
6
6
6
7
8

9

1 l

13
13
13
13

17
20
20
20
2 l
23
24
24
26
26

27

28
32
38

39

I. GOALS AND CRITERIA

This report is closely related to the report "ILP, In­
termediate Language for Pictures· [I J. ILP concepts and de­
finitions are not repeated he~~- To facilitate referencing,.
the same notation as in [I J is used.

A first goal is to define IDS (Intermediate Data Struc­
ture for ILP) and to propose an implementation. The inLen­
tion of this pLoposal is to provide a classification of the
problems as presented by some ILP design decisions. ILP
concepts which have an important influence on the semantics
are emphasized. A distinction is m·ade between the logical
u~its of IDS and the actual "hardware" re~resentation. In
this way a detailed and directed discussion of the implemen­
tution is made possible.

The main goal in the design of IDS is to provide a one
to one correspondence between ILP and IDS. The special pro­
perties of ILP that must be preserved are:

The compactness of picture repr~sentation.
Multiple occurrences of parts of a picture (subpicture)
are included only once in the data structure.

The subspace mechanism.
This mechanism allows omission of irrelevant value,
e.g. in a subspace with a smaller dimension then the
surrounding space, one (or more) coordinates can be om­
itted.

ILP provides a library fac,ility and predefined (curve)
generators.
IDS must contain sufficient information to support
these facilities.

Modification or edit operations on ILP programs must be
possible. IDS should be flexible enough to allow such
modifications.

IDS will be used as input for picture processing and
picture manipulation programs. These programs will bypass a
lot of the detailed information of ILP. Traversing of the
data structure is facilitated by providing a uniform and
simple main data structure. This overall structure gives
little, but sufficient information for traversing the data

. structure and provides the descriptors necessary for storage
allocation.

- 2 -

2. INTRODUCTION TO THE DATA STRUCTURE - -- ---

First we define the basic elements of IDS. The most
elementary unit of information is called an elementary data
item. One or more elementary data items that belong togeth­
er logically are called a data block. One or more data
blocks may be collected in a record. All records of the IDS
for one ILP program are collected in a picture file. An ac­
tual implementation requires that a correspondence between
elementary data items, records, files and the underlying
hardware representation is defined.

El~mentary data items are the smallest information un­
its that are distinguished. An address is associated with
every elementary data item. Records are identified by the
address of their first elementary data item. An address of
an IDS record is called a pointer. The first elementary
data item in the first data block of a record always is a
pointer, called link. The second elementary data item in
the first data block is called the~ of a record. A list
of data blocks with a fixed internal structure as depending
on the type is the data body of a record. The third el~men­
tary data item in the first data block is the length of the
data body. The first data block of a record i.e. link, type
and length is called the header of a record. All records
have this structure:

- header
link

-- type'
-- length

- data body
data blockfsl

In the sequel we will reserve the nam~ data block for
data blocks in the data body only. The .explicit names link,
type or length wi~l be used to refer to components of the
record header. A record is self descriptive in the sense
that its data blocks can be interpreted completely using the
information in the record header. In the case where data
blocks of one (record) type may vary in length, the length
of such a block is specified as a part or the data block.

So far we have mainly stressed the layout of IDS
records, and not considered their contents. The information
contained in an ILP construction can be build up from a
number of elementary ILP data items. The IDS must provide a
means to store these elementary data items together with
their re'lations. The definition of ILP is such that elemen­
tary ILP constructions are well separated from relations
between those constructions.

- 3 -

3. IDS-ILP STRUCTURE

An ILP program is equivalent with a directed graph
without cycles. All arcs of such a graph are represented in
IDS by means of links. The direct descendants of a given
node in the graph are collected in a linked list of records
(see figure 3.1). The link in the header of the record is
used for that purpose.

figure 3. l

Each].inked. list of this nature is prefixed with a so called
link back record. The link of this record points to the
first record of the list. The link of the last record of
the list points to the link back record. The link back
record actually turns the list into a £..l!!.9.· Moreover, the
data body of a link back record contains a pointer, called
back ll!ili., to the parent node (see figure 3.2).

parent node

ring

figure 3.2
back link link back record

Direct descendants of an ILP node are either of type picture
or of type attribute. In IDS the direct descendants are
linked 1n two separate type of rings called picture ring and
attribute ring respectively. The record, which corresponds
to the parent node, has a pointer to link back record of the
ring of its direct descendants.

The structure of ILP 1s such that a distinction can be
made between elementary constructs (the end nodes of the
graphs) that do not contain arcs, elements that contain only
arcs, ~and elements that contain external references ar.d (not
necessarily) ether data. To reflect this structure, IDS
cvi1ta1ns data records, £.Qinter records and mixed records.
End nodes lhat specify an external reference, provide infor-

- 4 -

mation for. other end nodes, which refer to that external
reference. A generator requires, for instance, besides a
dimension and a name, also q. description of parameters.
This global information, is collected in a mixed record,
called the name record. The information in the end node
that is unique Ctn case of a generator: the actual parameter
values and a pointer to the corresponding name record) is
found in another mixed record, called reference name record.
A similar separation of common and unique information is
formed in the case of subpictures and attribute packs. Here
also name and reference name records are used. Data records
alvays correspond to end nodes {n the ,ILP graph. Nodes
which are not end nodes are expressed in pointec records.
We will now discuss the various types of records in more de­
tail.

3.1. Pointer records

A pointer record always connects rings. The data body
consists of data blocks of one pointer. An example of a
pointer record is the link back record. All other pointer
records correspond to ILP constructions. These are:

Constructions that associate data with a picture. The
first pointer points to the associate ring, the other
pointer to a picture ring. The following association
constructions exist:

Withdraw record
associates an attribute ring with a picture ring.

Subspace record
associates a subspace transformation with a
picture ring. The transformation is placed in a
ring, called subspace ring.

Remark
To associate non pictorial information with a picture a
construction must be available to associate this infor­
mation vith a picture ring. This associate record
should belong to the groµp of pointer records. Howev­
er, there is no ILP construction for such an associa­
tion of data with a picture.

Withdraw and subspace records always belong to a
picture ring (picture node).

Bracket records.
The data body consist of one pointer to a ring (descen­
dattt nodes) of the same type as the ring of which this
bracket record is an element (node).

- 5 -

3.2. Mixed records

A construction like attribute (attribute pack) and
picture (subpicture or root pi~ture) has a name and a dimen­
sion. For multiple referenced objects common information
can be collected in a name record. ILP constructions which'
refer to th~se objects have a corresponding record in IDS,
called referenc«:: ~ records.

3.2. 1. Name records

The name records which correspond to the name of an ILP
construction are:

root picture record or rpname record.

subpicture record or spname record.

attribute pack record of aname record.

The data body of these name records consist of one data
block containing:

a pointer to the picture or attribute ring.

the dimension of the picture or attribute.

the number of references to this object.

the name, which consists of the actual length of the
name, followed by the char~cters of the name.

Note that the name record corresponds
graph.

to a node in the

The global information of detect.ors and generators is
also collected in a name record. These name records do not
correspond to nodes in the graph. The first elementary
items of the data block are the same ~s in the previous name
records. Hovever, the pointer is nil and the dimension is
zero for detector types. If necessary, the data block is
completed with elementary items, which represent the number
of parameters and the types of the parameters. Apart from
the name records just mentioned, the following name records
exist:

detector name or dname record.
This name record has no parameter descriptors and the
dimension is zero.

srmbol name or sname record.
This name record has no parameter descriptors.

- 6 -

curve name or cname record.
This name record has parameter descriptors,
number of parameters, ,fallowed by the
parameters.

template name or tname record.

i.e. the
type of the

This name record has parameter descriptors as described
by the cname record.

The type of a parameter in a generator can be value,
dimensional value, pname, aname or dn,,ame.

An ILP construction that represents an explicit refer­
ence corresponds to the reference name records in IDS. The
pname and aname in ILP are examples of such a reference.
The corresponding reference pname and reference aname
records contain one pointer to the name record of the refer­
ence. Detection in ILP (detectable, detectant element and
undetectable) has its IDS counterpart in a reference dname
record. The data block contains· a pointer to the name
record, which contains the name of the detectant and the
string of the detect.ion. The reference name record, which
corresponds to a reference of a generator (reference sname,
cname and tname record) has a number of data blocks accord­
ing to the number of references in ~his generator. Each
data block contains the parameter values, (possibly) the
attribute matches and a pointer to the name record, which
contains the name and the types of the parameters.

In a ring only data records are found which correspond
to ILP elements of the type of the ring. The structure of
the data blocks of the data record depends on the type the
data record. In a picture ring there are always data
records which correspond to picture elements and in an
attribute r!n~ the data records always correspond to
attribute elements. The data records always correspond to
end nodes Cleaves) of an IL~ graph. In IDS the following
types of rings exist:

picture ring

attribute ring

subspace ring

- 7 -

3.3.l. Picture Ll!lg_ data records

The elementary ILP constructions that correspond to
data records are coordinate' t.ype, text. and NIL. The NIL
type data record is characterized by a NIL type and an empty
data body (length of the data body is 0). For the other tvo
elementary ILP constructions data blocks are formed in the
following vay. For every coordinate or string the
attribute mat.ch for every attribute class is computed. In
case of the coordinate type element successive coordinates
are searched, vhich have equal at.tribute matches. These
attribute matches are placed in f~ont of such a rov. In
this vay a semantically equivalent element is constructed.
A data block consists of attribute matches and a st.ring or a
rov of coordinates. Note that the two levels of
at.tribute matches of ILP have been combined into one level.

3.3.1_. At.t.ribut.e E...!_Qg data records

The at.tribute NIL data record is the same as the
picture NIL data record. fhe at.tribute class elements can
specify a large amount of data record types. They are split
according to their at.tribute classes~

transf orma t. ion
Scale, translate, matrix, affine, proJect ORIGIN,
proJect PARALLEL, port and homogeneous have a data body
vith one data block: a matrix. The structure of this
matrix is the same as described by picture coordinate
matrix.

style
The attribute class elements fall into three groups of
elements:

line style
The data body consists of one data block of one
real value or three small integers (period).

point. style
The data body consists of one data block of one
elementary item. The following items are possi­
ble: small integer for a font, real for a value
(size, italic, bold) and character value for a
character (dot, marker).

typographic style
The data body consists of one data block
elementary item. The following items are
ble: real for a value (size, italic, bold)
small integer for a font.

of one
possi­
and a

The TYPFAULT data record does not contain any data
blocks (length of the data body is 0).

pen
The PENFAULT data record· does not contain any data
blocks (length of the _body is 0). All the different
combinations (seven) of contrast, intens and colour
have a corresponding data type. According to that data·
type a data body consist of one data block of real
values.

control
This data record has a data body consisting of one data
block: The length of the string and the characters of
the string (string data block).'

coordinate mode and visibility
These data records have an empty
binary value of these attributes is
the type of the data records.

3.3. ABS/REL basic attribute

data body. The
stored as part of

Every basic attribute has a prefix ABS or REL (default
is RELJ. In IDS a mark ABS or REL-is added to the type of
all records (except the link back record) in an attribute
ring. Reference aname records, bracket records and the data
records in an attribute ring all have this mark.

- 9 -

4. IDS COMPARED WITH OTHER DATA STRUCTURES

IDS has no means to manipulate its own data structures.
In this respect IDS (like ILP) differs from most associative
data structure languages. Here we w111 only compare the
data structure itself.

IDS is a hierarchical data structure constructed with
the help of one way single rings. One~ means that the
elements in the rings can only be found by traversing the
ring (say) clock wise. Single means that an element of the
ring does n~t participate in other rings as well. This
structure, the simplest form of ring structure, is more than
sufficient to represent an acycli_c directed graph. In fact
linear lists instead of rings would have been sufficient.
The ring struclure however is added fn order to be able to
return to the parent ring element (node) in an efficient
way.

Multi list structures as present in sophisticated
graphics systems like the Graphics System of General Motors
and Univac are not included. Structures equivalent with
these can be generated dynamically under control of attri­
butes (detection) or by externat means through association
rings (for instance, to describe the topology). IDS
represents purely graphical information for which these more
complicated features are not necessary and moreover, non
graphical information must be attached to IDS structures ex­
plicitly, leaving IDS data unchanged.

IDS meets the following requirements as generally ac­
cepted for graphics systems. Elementary pieces of a picture
(like text or line) are stored as one unit separable from
similar units. Their representation is a simple sequence of
all relevant data in one record. All external references to
IDS objects are eventually transformed into pointers to a
record on the intended level in the hierarchy. From there
all related records can be reached (e.g. all elements of the
same ring, the parent or all descendants, etc.). Adding and
deleting records is possible and efficient, due to the fact
that the logical order is completely independent from physi­
cal arrangements.

IDS 1s too complicated for direct use as display file.
A copy of IDS containing only picture elements collected in
subroutines Cif the display processor can handle these) must
be produced. Depending on the detection attribute values,

- 10 -

these display files vill contain refeiences to the IDS data
structure. After each update of IDS, the display file is
(perhaps partly) regenerated., Essential is the concept that
the display file is considered as part of the "hardware".
In order to display the picture, vhich amounts to the gen­
eration of a display file, interpretation of the IDS data
structure is required. The instruction set of such an in­
terpreter together vith the IDS data constitute a language
comparable to other languages for handling complicated data
structures.

~ l l -

5. IDS COMPARED WITH ILP

ILP and IDS are equivalent in the sense that there is a
mapping defined from ILP to IDS and also from IDS to ILP.
An ILP program mapped in this vay onto an IDS data st~ucture
and back to ILP does, in general, not produce exactly the
same symbolic ILP description. Hovever, the picture pro­
duced by this program vili be exactly the same as the pic­
ture produced by the original progra~.

An ILP program forms a symbolic description of data
structures that are used to produce pictures. Since this
description is in symbolic form, no commitment has to be
made hov these data structures should be represented on a
specific computer. IDS is functionally equivalent to an ILP
program. But implementation of IDS requires choices for the
representation of all IDS constructions and data structures.
This makes I.DS more machine dependent then ILP.

IDS must realize the ILP concepts concerning compact
representation. To this end the subpicture and
attribute_pack are stored only once in IDS. This is compar­
able to the way in vhich these entities ar~ treated in ILP.
Moreover, to minimize referencing overhead, the machine in­
dependent but complicated naming strategy of ILP ts, whenev­
er possible, directly mapped onto the record link mechanism.
This certainly provides a limited "name space·, but the name
space in IDS can b~ made sufficiently large by using an ad­
dress dictionary or similar technique.

The subspace mechanism of ILP, which allows spaces of
minimal dimension, is realized in IDS via a subspace ring.

Numerical values in ILP can have arbitrary size and
precision. In IDS numbers are divided in classes with dif­
ferent range and precision. Rows of coordinates,
transl orma t.1 ons and subspace transformations are packed in a
matrix (see APPENDIX I). These packed values may form less
accurate but more compact repr~sentations.

With regard to the introduction of new attributes or
even attributes over attributes, IDS is as flexible as ILP.
All these nev facilities can be implemented using the exist­
ing record ring structure.

IDS is designed to facilitate traversing the data
structure. Moreover, edit or modification operations on the
data s,tructure are straightfon,ard.

Information concerning multiple referenced obJects
(detectors, pictures etc.) is collected in name records.
Specific properties of such obJects are also stored in the

- 12 -

..
name records. The introduction of name records makes the
interaction of external proce~ses (outside IDS and ILP) with
IuS straightforward. Compare,,this situation with the case
of an ILP program where this interaction information must be
collected during a traversing of the ILP program.

- 13 -

6. IMPLEMENTATION ASPECTS OF lDS

The cor-r-espondence betveen ILP constr-uctlons and IDS,
r-ecor-ds ts descr-ibed 1n chapter- 3. We vill nov introduce
data r-ecor-ds of IDS which have no counterpart in ILP. All
IDS r-ecor-ds ar-e combined together- vith some extr-a data in­
for-matton in a pictur-e file. This extr-a infofmation con­
cer-ns the links and physical addr-esses of the Lecords Cad­
dr-ess dictionaLy) and expedites the a~cess to a deta struc­
ture by hashing techniques. Combining .tvo pictur-e files
must be done in a unique vay. At the end of this ~hapter an
algorithm is given foL the combination of tvo pictuLe files.

6.1. The combination Lecor-ds

Many types of data r-ecor-ds contain a small amount of
infoLmatton. To r-educe the stor-age over-head caused by the
explicit linkage of data r-ecor-ds, it is possible to combine
data r-ecor-ds in a combination (data) r-ecor-d. The data body
of this data r-ecor-d consists of seqµentially or-der-ed data
records without the1L links. This is a vay of br-acketing
that 'does not exists in ILP.

6.2. The continuation r-ecor-ds

The capacity of the data body of r-ecords is limited.
Since the data body of a LINE data record may be aLbt·tr-ar-y
long, it is some times necessar-y to divide the coordinates
over tvo or- mor-e r-ecords. Splitting of the lar-ge LINE it­
self is not possible, since this may affect line styles.
The only solution is to allov the continuation of a data
body over several r-ecor-ds. This facility is pr-ovided by
continuation records.

6.3. The picture file

All aspects of IDS introduced in this paragraph do not
influence the logical set up of IDS. Therefore they are left
out of the discussion concerniQg this set up.

The IDS records corresponding to one ILP program are
collected in a picture file. The number of records can be
so large that ve must consider problems concerning the size
of the link and multi volume files. A mechanism must be
provided that computes the physical record address from a
link (value). A possible scheme is to attach unique indices
to all records and define a mapping from index to an address
dictionary, which in turn contains the physical address of
the corresponding record. In this way the link size is re­
duced. In many cases the hardware enhances this type of
dictionary system.

- 14 -

.
ILP provides a library facility and predefined genera­

tors. Name records realize this facility in IDS. Basically
the name records are the conta,ct points for internal as well
as for external references (and hence, for the correlation
between those). This is the first step towards interaction
with IDS.

A fast way of fetching the name information is achieved
by storing the name records sequentially in the file. This
is called the name record part of the file. The speed of
fetching named data can be improve~ by means of hash tech­
niques. This requires a hash table to be part of the pic­
ture file and that a hash coding scheme is chosen and imple­
mented. Hash coding must be transparent to the logical
structure of IDS.

A picture file has the following structure:

- An identification mark that it is a picture file.

The size of the address dictionary.

The size of the name records part.

- The hash table.

- The address dictionary.

- The name record part.

- The other records.

A further consequence of the address dictionary and
hashing technique is that two IDS files can be merged effi­
ciently. The names from one data structure (file) are
merged in the hash table and linked to the name record
lists. The address dictionaries are set one after the oth­
er. When the _records of the second file are being copied,
the link(s) of each record are updated to point to the new
dictionary and its physical address in the address diction­
ary is corrected.

The following algorithm can be used to merge two pic­
ture files. From the name a key is computed. This key
corresponds to an entry in the hash table. The hash table
consist of links, one for every entry. If more names have
the same key, the corresponding name records are put into
one list. The link of the hash entry points to this list.
The links of the records are numbers of the entries of the
addres~ dictionary.

- 15 - .

Algorithm: Merge two picture files.

Step 0. Make a start: Copy the first part one of the picture
files (called the first>.,·

Step 0.1. Copy the hash entries of the first file.

Step 0.2. Copy the address dictionary of the first file
behind it.

Step 0.3. Copy the address
file behind it.

dictionary of
',

the second

Step 0.4. Copy the
behind it and
dictionary.

name records of the first file
mark these entries in the address

Step l. Merge the hash table of the first and second file
into the new hash table.

Step 1.0. Fetch the next name record (initially the
first) of the second file. If there are no more
name records do step 2.

Step l. l. Compute the hash entry of the name record.
If the name is not nev do step 1.2.
The link becomes the contents of the hash entry
(set the name record as the first record in the
list). The hash entry becomes the entry in the
dictionary. Update and mark the address diction­
ary to the physical ~ddress and copy the name
record. Do step 1 .0.

Step 1 .2. If the name is an aname or pname then the
pointer in the data block must be updated, so do
step l • 3.
Update and mark the address dictionary to the phy­
sical address of the name record of the first
file._ Do step 1.0.

Step 1.3. If the name records of both files have a
pointer to a ring ·then announce an err or and do
step l • 0.
Update the address dictionary to the physical ad­
dress of the record, which had a pointer unequal
nil. Mark the entry. Delete the other name
record or make this name record nil.
Do step l. 0.

Step 2. Update the physical addresses of the unmarked en­
rries in the address dictionary of the first file.

Step 3. Merge the other records.

- 16 -

Step 3.1. Copy the rest of the record~ of the first
file.

Step 3.2. Copy the next (initi~lly the first) record of
the second file.
If there is none then the merge is ended.

Step 3.3. The link of the record becomes the sum of the
link entry and the number of entries of the ad­
dress dictionary of the first file.

Step 3.4. If the record is a
pointers in the data body
the link in step 3.3,
else do the next step.

link record, then the
are updated ~ccording to

Step 3.5. The address dictionary entry corresponding to
the physical address of the record of the second
file is updated to its new physical address.
Do step 3.2.

- 17 -

7. THE VIRTUAL IDS STACK MACHINE

The semantics of ILP are described in chapter 3 of (I J
by means of an interpretation process, called elaboration.
In the following an implementation of' this process on a vir-
tual stack machine is outlined. ·

An ILP program consists of a description of the way a
picture is to be drawn (attributes) and one or more actions
(ptct.ure_element.s). The at.t.ribut.es together with all infor­
mation that changes dynamicaliy as a result of actions is
called the environment, in which the elaboration takes
place. The part of the environment that is determined by
attributes is called the full state. The additional infor­
mation needed to turn a full state into an environment is
called state extension. Examples of· information from the
state extension are the picture position, element position
and pen position. The contribution to the state of the
attributes between VITH ... DRAV "brackets· is called a state
component. The contribution of the at.t.rtbut.es of an element
path (see :3.4.1. [!]) derived from an !LP program is called
state (i.e. all the state components on the element path).
By combining a state with default attributes for all the
attrtbute_class elements which ~ere omitted a full state is
obtained. According to at.t.ribut.e_classes the (full) state
can be split into (full) state classes.

The state can be described in terms of an ILP attribute
pack, named state.

ATTR state {

} .

{ "t.ransformat.i ons"};
{ "coordinate_mode" };
{"pens"};
{"styles"};
{ "visibi li t.y· };
{"detect.ions"};
{ "cont.rols"}

Here (s)" denotes the attribute(s) to describe the state
class. Elaboration of the pict.ure_element. is equivalent
with executing the ILP statement

C

VITH state DRAV picture_element

Executing this statement has the following effects. 1he

~ 18 -

..
state is combined with default attributes to a full state.
Next the mode of a drawing device is updated according the
corresponding full state. Th~. picture_element is changed
through the environment into zero or more pict.ure_element.s,
which are fed in the device. Finally the state extension is'
updated.

Traversing the ILP graph implies that at all possible
levels the current state must be saved. The state has to be
changed temporarily, and must next be restored upon return
from each descendant. Moreover, ,,calling subpictures re­
quires that return information is stored, preferably on the
stack. The machine which perform these actions by travers­
ing the IDS of a picture is called the IDS virtual stack
picture machine or (picture) machine for short.

As we have seen before IDS is structured in such a way
that logical ILP units are represented as IDS records. The
machine knows three separate address spaces:

Instruction space, containing IDS.
In this space every record corresponds to a
machine instruction.

The stack.

(virtual)

The stack contains all temporary values that change
temporarily. State values, which change temporarily
are stacked in records, called stack records.

Register space, which contains two kinds of registers:
Link registers always contain a pointer. Examples are
the program instruction register, pointing at the
record in the instruction space that is curreitly being
executed, a~d the stack register, pointing at the top
of the stack.
Value registers contain dynamically changing global
values. An example is the value of the pen position.

Each instruction of the picture machine can be charac-
terized by:

push a value, a value of some kind is saved on the
stack, or

pop a value, a value of some kind is restored from the
stack, or

execute, a value is produced or consumed, either as in-
put, output or in a register.

Each instruction will be described as a micro program of mi­
cro instructions. The micro instructions can be divided in
push, pop and execute micro instructions.

- I 9 -

The micro programs for execute rnstructions can be di­
vided in three categories, 'depending on the ring in vhich
the instruction record occurs~ The execute instructions of
the three rings use separate registers and data (as part of
the instructions). Moreover, they are of such a differen~
nature that they do not share common instructions of a lover
level. For this reason, these instructions are conceptually
executed by three different so called comachines, vhich in
principle can run in parallel. These comachines need to
synchronize only vhen a save or restore operation is re­
quired.

We vill now explain how the environment (i.e~ state and
state extension) is represented in terms of the three ad~
dress spaces. Next it is outlined how the state mechanism
operates on records through their links. This knovledge is
used to explain each record instruction at the micro code
leve 1.

The state extension is stored in the register space.
For ~very state there exists a linked list of attribute
records on the stack. A state .descriptor, vhich has
pointers to every state class list, is part of the state ex­
tension. Apart from this state descriptor, the state exten­
sion contains the following position values: element posi­
tion CEP)J transformed element position (TEP), transformed
picture position (TPP), the pen position (PEN) and the
transformed pen position (TPEN). Note that TEP, TPP and
TPEN are values in the original user space. The register PR
(program instruction pointer) points to the IDS record to be
executed. The top of the stack is pointed to by the stack
pointer CSP). The initial value of SP at the start of a
picture comachine is kept in the initial stack pointer
(ISP> .

The state class values of the state can be found
directly via the state descriptor. Executing the records of
an at.t.ribut.e ring amounts, in general, to combining an
attribute with the state class value. For every class this
combining is done on a linked list of records, which
describe the attribute class. value. The records of the
lists are kept on the stack (linked lists of stack records).
Some class values require a second level of linked lists,
because each class value is made up of a number of indepen­
dent atomic values. Each atomic value is represented as a
second level list. Combining an attribute with a state con­
sist of combining the attribute with a particular list.
Combining can produce a new stack record at the head of the
list or a complete nev list on the stack. The state class
descrl~tor pointer points (indirectly) to this nev list.

We will now discuss the record instructions of the dif­
ferent comachines at the micro code level. Note that ini­
tially the picture comachine is started with PR pointing to

- 20 -

the rpname record of the picture to b~ elaborated.

7. I. The picture comachine

For the picture comachine the
records shows a similar scheme.
structions for the execution of a
start and end:

execution of
The sequence of

data record has
',

begin

end

if type of PR is not nil then
begin

complete(state);
execute(PR);
update(state extension);

$ EP := PEN; TEP := TPEN $
end;

PR := link of PR$ next record$

A comment in a micro program starts and ends with
bol. Let PD be a pointer to a data block in
pointed to by PR. The micro instructions of the
next data block (PR) calculates the pointer to the
block in the same record. Execute(PR) corresponds
cuting the following micro instructions:

begin
PD := next data blockCPR);
while PD 1s not nil do

begin

all data
micro in­
a common

a $ sym­
the record
procedure
next data

to exe-

select state(attribute matches of PDl;
apply(state);

end

PD := next data block(PR)
end

l•l·l· The pointer records

If a pointer record associates a ring of a certain type
with a picture ring, micro instructions are required to
start the comachine of that type. IF the comachine has com­
pleted its instructions the state extension is updated. The
values of the state extension, which must be saved, are
pushed' on the stack and the picture ring pointed to by the
picture pointer is executed. The micro instructions consist
of three blocks of micro instructions:

,.

- 2 1 -

begin

end

begin$ block l $ ·
p 1.1~;h(link of PR>; push<TPP>;
push(state descriptor);
push(ISP>; ISP:= SP;
comachine(link of (associate pointer of PR))·

of associate type;
update(state extension)

end;
begin$ block 2 $

TPP : = TEP;
comachine(link of (picture pointer of PR))

of picture type;
end;
begin$ block 3 $

end

SP:= ISP; pop(ISP);
pop(state descriptor);
popCTPP>;
popCPR>

The various pointer records are:

The bracket record
The micro program, vhich corresponds to this record,
i s :

begin
push(link of PR>; pushCTPP>;
execute block 2;
popCTPP>; popCPR>

end

The subspace record
The associated subspace ring contributes a transforma­
tion to the state and a dimension to the state exten­
sion. Hence the state class transformation pointer and
the dimension must be saved instead of the state
descriptor. The associated type is subspace, so the
subspace comachine is started executing the subspace
ring. The micro program cbnsists of executing block l,
2 and 3.

The link back record
This is a return instruction to the calling comachine.

7. I .3. The mixed records

The various mixed records are:

The rpname and spname record
The root picture and subpicture records have a simple
micro program:

iHJU()T!iLLK MA if 1P,<,\1l'}t.H Ll~Nil1i.-i~i
AlV.1:n tHDAflll

end

begin
pushCTPPl;

- 22 -

execute block 2 $ of pointer record
micro instruction program$;

popCPR) $ if PR is nil stop machine$

The reference rpname and reference spname record
The micro program, which corresponds to this record is:

begin
pushClink of PR);
PR := reference pointer of PR

end

The reference generator name record
A reference name record starts an extecnal machine for
every data block in the record. The name and the type
of input for that external machine are given in the
name record. The external machine builds an IDS in
memory. A pointer to this IDS is returned to the pic­
ture machine. The picture machine executes this new
structure, after which the IDS is removed. The refer­
ence name records startlng such external machines are:
The reference sname record

PD is a pointer to a data block. Next data block
CPR) gives the next data block of PR (initially
the first, finally nil). The micro program is:

begin

end

while next data blockCPR) is not nil do
begin
PI := start external

machineCPD);
stackCTPP);
execute block 2 $ of the

pointer record micro program$;
popCTPP)
end

The reference tname record
The micro instructions differ from the previous
ones in that the external machine builds an IDS
with pointers to the original picture (IDS) pro­
gram. PD is as described above. The micro pro­
gram is:

- 23 -

begin

end

vhile next data ·block<PRJ is not nil do
begin .•
PI := start external machine(PDJ;
pushCTPPJ;
comachine(PI) of picture type;
pop<TPPJ
end

The reference cname recor~
The external machine build~ one data record with a
coordinate_type and attribut.e_matches according to
the specification in the data block. The micro
program is:

begin

end

PI := start external
machine(description of PD,

coordinate type of PD,
parameter values of PDJ;

execute(PIJ;

7.2. The attribute comachine

The actions of this machine are controlled by records
fr om the a t. tr i b u t. e r i n g . The a c ti on s ma i n l y c on s i s t o f com -
bining attributes and the state into a new state. Ve will
give an example of combining ~n attribute to a state class
for the state class detection. The state class record,
called detection record, has a data body with data blocks,
one data block for every detector. The data block consists
of three pointers. The first pointer points to the dname
record (the name of the detector), the second pointer points
to the detectant set (a list of reference dname records) and
the third pointer points to the detectant element Corie
record of the· detectant set or a record of the list of
reference dname records). How detection attributes are com­
bined is outlined in the explanation of the instruction
corresponding to the reference·dname record.

The way attribute elements of a given class are com­
bined is controlled by ABS and REL. Every record
(at.t.ribut.e) in an attribute ring has an ABS/REL mark. The
ABS/REL mark of a record, which contains a pointer to anoth­
er attribute ring supersedes the ABS/REL mark of the data
records of this attribute ring. This superseding holds only
for th@ first data record for every state class. After com­
bining the first data record of one state class, the other
data records can be combined with a REL mark. To denote
that the state class is changed during the execution there
is a change mark for every state class. In the state exten-

- 24 -

sion there are for every state class tvo marks: The ABS/REL
superseding mark and the changed/not changed mark. These
marks are called the mark field. The mark field is stacked
on entering an attribute ring'and combined vith the stacked
field mark on return from an attribute ring. The combina­
tion of the marks of the field mark is done according to the
folloving scheme:

old marks: ABS/ REL/ REL/
stacked not changed not changed changed
marks:
ABS/not ch. ABS/not ch. ABS/not ch. REL/changed
REL/not ch. REL/not ch. REL/not ch. REL/changed
REL/changed REL/changed REL/changed REL/changed

ABS/~hanged is handled as REL/changed, as explained above,
hence ABS/changed is no part of the scheme. The field mark
is part of the state extension and for that reason a regis­
ter value.

7.2.1. The pointer records

The various pointer records are:
The bracket record

The micro program is:

begin

end

push CPR);
push(field marks);
set change marks of field marks to unchanged;
if ABS/REL mark of the field marks is ABS then

set mark to ABS
else if mark of record is ABS then

set mark to ABS
else set mark to REL;
comachine(pointer of PR) of attribute type;
compute field marks$ see scheme above$;
pop<PR}

The link back record
The corresponding instruct·1on is a return instruction
to the calling comachine.

7.2.2. The mixed records

The various mixed records are:
The aname record

The micro program is:

- 25 -

begin

end

comachine(poihter of PRJ of attribute type;
popCPRl

The reference aname instruction
The micro program is:

begin
pushClink of PRJ;
PR := attribute pointer of PR

',
end

The reference dname record
The micro instructions of this record depend on the
following type of reference dname record:

Absolute detectable
The dname reference record is pushed. The
link of the stacked record becomes nil. The
pointer of the corresponding detectant set
and detectant in the detection record are set
to the stacked record. The oth~r pointers of
the detection record are made nil.

Absolute detectant set element.
The dname reference record is pushed. The
link of this stack record becomes nil and the
pointer of the corresponding detectant set of
the detectant record is set to the stacked
record. All the. other pointers of the detec­
tion record are made nil.

Absolute undetectable
All the pointers of the detection record are
made nil.

Relative detectable
The dname reference record is pushed. The
link of this stack record becomes the pointer
of the corresponding detectant set. The
pointers of the detectant set and the detec­
tant of the detection record are set to the
stacked record.

Relative detectant set element
The dname reference record is pushed. The
link of this stack record becomes the pointer
of the corresponding detectant set of the
detection record. This pointer of the detec­
tion record is set to the stacked record.

- 26 -

Relative undetectable
The pointers of· the
set and detectant in
made nil.

corresponding detectant
the detection record are

The last micro instruction of the micro program
i s :

PR := link of PR

7.2.3. The data records -----
The micro instructions of the data record consist of

combining the data record to a state class. A nev list of
dat~ records, vhich describe the state class is formed on
the stack. The combining micro instructions differ for each
state class or even for each atom and the type of the
corresponding attribute in the attribute_class. Such a list
of actions vill not be given here.

7.3. The subspace comachine

The subspace selection contributes a transformation to
the transformation state class, a nev pen position (invisi­
ble move of the pen) and a (nev) dimension. The transforma­
tion can be prepended to the list of transformation state
class stack records. The transformation can not be combined
with other transformations in the list vhile the ABS/REL
attribute mark and the attribute_match TR may not cancel
this transformation. Hence ~fficiency is improved if a
pointer to the preceding subspace transformation is added in
the subspace stack record. Finally the state extension is
updated and the next record in the ring is executed <PR:=
link of PR). This next record is a link back record and
will stop the comachine (return to the picture comachine).

- 27 -

LITERATURE

[l 1 T.Hagen, P.J.V. ten Hagen, P. Klint & H.Noot,
ILP, Intermediate Language for Pictures,

t 2 1

MC Report 1977, Mathematical Centre Amsterdam.

Robin Villiams,
A Survey of Data Structures
Graphics Systems, Computing
Vol. 3, No. l, March 1971.

for Computer
Surveys,

'•

[31 J.C. Grag,
Compound data structure for computer aided
design; a survey, Proc. A.C.M.,
National Meeting, 1967.

{41 George G. Dodd/
Elements of Data Management Systems,
Computing Surveys,
Vol. l, No. 2, June 1969.

{51 Dennis M. Ritchie,
C Reference Manual,
Bell Telephone Laboratories, January 1974.

rc

- 28 -

APPENDIX I IDS on a PDP I 1145 -----

This is a survey of the structure of IDS records for a
PDP 11/45. The first two words of the record form the
header of the record. The first word (first and second
byte) of the header are the link. The third byte is the
length of the data body in units of words. The fourth byte
has three fields of bit(sl:
bit 0 is the ABS/REL mark.
bit I - bit 6 is the type.
bit 7: If this bit is 0 the record is of type pointer or
mixed. If this bit is 1 the record is of type data.

Records:
5.).4 12,11 9 8 7 0

link

01 ty'pe lxl length

data body

Pointer records:

link link

01 011 0101 2 01 021 0101 2

pointer attr ring pointer subsp ring

pointer pict ring pointer pict ring

withdraw record subspace record

link

el a I 0 !el l

back ponter

link back record

Mixed records:
Name records:
attribute subtypes:
aname ~detectable 00lx

set element 0l0x
undetect 01 lx

link

01 05 I 0101 1

pointer ring

bracket record

sname
cname
tname
rpname
pname

picture subtypes:
10lx

gname I 10x
111 X

1001
1000

- 29 -

(a,p,d,slname record (c,t)name record ref. name record

Reference name data blocks:

pointer name rec pointer name rec pointer name rec

(length string I length pars

characters string parameter values

(a,p,s)name ref. dname ref. (c,t)name ref.

Data records: Some structures in a data block:

link

11 type M length

I data block

I t data block ;;
data record

#columns #rows precision:
----------- 0 small int

matrix values
1 integer
2 double int
3 real

length

string
characters

matrix structure string structure

Picture data records:

types
line
contour
point
text
nil

okt.
02
04
06
010
0

Data blocks:

attr match

f!"atrix strcCture

code data block structure

.. ..

attr. matches matrix
attr. matches matrix
attr. matches matrix
attr. matches string

attr match
"+.._"'-1-""'+-'+'""+'""-+"""-t-TF

string structure
DF

"---S'l'
----PN

-----CM

_L ___ i _I __ _
------vs

--------or{matches}

coord.type text

- 30 -

Attribute data records:

Type:

attr.type mode: ABS (l) I REL (0)

Attribute classes:

Transformation (00xxxx):

subtype bin.code act.code data block structure
nil 00 0000 0
rotate 00 0001 01 real+matrix
scale 00 0010 02 matrix
translate 00 00 I l 03 matrix
matrix 00 0100 04 matrix
affine 00 0101 05 matrix
project origin 00 0110 06 matrix
project parallel 00 0111 07 matrix
window 00 1000 010 matrix
windov,viewport 00 1001 01 l matrix
homogeneous 00 1010 012 matrix

Style (01xxxxl:

subtype bin.code act.code data block structure
linestyle:
period 01 0110 026 3•byte
map reset coord. 01 l 101 035 real
map reset line 01 1110 036 real
map continue 01 l Ill 037 real
th1c~ 01 0111 027 real
point style:
dot 01 0100 025 byte
marker 01 0101 024 byte
typ.fault 01 0000 020

font 01 0001 021 byte
size 01 0010 022 real
italic 01 0011 023 real
bold 01 0100 024 real

typographic style:
typ. fault 01 1000 030

font 01 1001 031 byte
size 01 1010 032 real
italic 01 101 I 033 real
bold 01 l i 00 034 real

,

- 31 -

Pen (lllxxx):

subtype bin.code act.code data block structure
fault 1 1 l 000 070
contrast l l 1 001 071 2•real
1ntens I I l 010 072 real
colour l 1 l 100 074 3•real
col.+intens l l l 01 l 073 3•real
cont.+colour l l I 101 075 5•real
1nt.+colour 1 l I 110 076 4•real
cont.+int.+col. l l l l I l 077 6•real

Coordinate mode (10000x) :

subtype bin.code act.code data block structure
fixed 10000 0 040
free 10000 I 041

Visibility (10001 X) :

subtype bin.code act.code data block structure
visible 10001 0 042
invisible 10001 l 043

Control (100100) :

subtype bin.code act.code data block structure
control 100100 044 string

Combination record:
The type of this data record is
data body consists of data
record without a link.

l 00 l 1 l (o c ta l 0 4 7) . The
blocks, structured as a data

Continuation record:
<pic­

as the
dis­

ABS

Continuation data records are only permitted in the
ture> ring. The type of this data record is the same
<picture> data record which precedes this record. The
tinction is made by the ABS/REL mark bit in the type.
(l) means that the data record is a continuation of the pre-
vious data record.

Picture file:

name
picture file identification
address dictionary table size
name record size
hash t,able
address dictionary
name records
other records

size
l word p
1 word "a"
l word n
"h" words "h" entries
a words a/2 entries
n words
x words

- 32 -

.APPENDIX II IDS in the language C

This is a survey of the IDS structure
language "C" [5 l .

3-
1• record
3-define
struct

int
}•
' struct

structure •I
ltype(p,q)
body{
data[];

record{
struct record

p « 4&q

•link; I• ref record •I

in

char length;
char type;

I• 3-words in data body •I
l•bitr01 ABS/REL; bitrl:61 type;

the

struct body
bit[7] link (0) / data (1) record •I

databody; I• data •I

I• link records •I
3-define withdraw ltype(0!,0)
struct withdrawbody{

struct record
struct record

*p_ring; I• ref picture ring •I
•a_ring; I• r.ef attribute ring ~·/

3-define subspace ltype(02,0)
struct subspacebody{

struct r.ecord
struct record

•p_ring; I• ref picture ring •I
•s_ring; I• ref subspace ring •I

3-define assoc ltype(03,0)
struct asocbody{

struct record
S tr UC t record

*p_ring; I• ref picture ring •I
•assoc_ring; I• ref association ring •I

~define bracket ltype(05,0)
struct bracketbody{

struct record •ring; I• ref ring •I

~define backlink ltype(0,0)
struct backlinkbody{

struct record •back; I• ref ring •I
} ; .

I• name
~define
~define
~define
~define
~define
~define
~define
~define
~define
~define

I• {ref)
~define
~define

- 33 -

subtypes •I
sname 01 2 I• symbol name •I
cname 014 I• curve name •I
tname 016 I• template name •I
rpname 01 1 I• root picture name •I
pname 010 I• subpicture name •I
aname 00 I• attribute name ♦/

dname 02 I• detector name •I
detect 02 I• detectable •I
detset 04 /♦ detectant set element
undet 06 /♦ undetectable

name type •I
name 07
refname 06

and matrix structure •I
string{

•I
♦/

I• string
struct

char
char

nrchrs; I• number of characters in string •I
chars[J; I• actual string data •I

I• precision •I
~define smalli~t
~define integer
~define longint
~define realvalue

0
01
02
03

~define

struct

descript(c,r,pl

matrix{

(c10377l<<8+Crl077l<<2+(pl03l

int m_descr; I• descript(~columns,~rows,~precisionl •I
char matrixdata[l; I• actual values ♦/

~define
S tr UC t

char
char

maxlength 15
ident{
lngth; / ♦ length of the name •I
chrs[maxlengthl; I• actual name •I

I• name record bodys •I
struct namebody{ I• root/subpicture, attribute, symbol, detector •I

struct record •ring; I• ref picture/attribute ring •I
char dim; I• dimension •I
char nrrefs; I• ~references •I
struct ident identity; I• name •I

I• parameter types •I
~define interval 01
~define value
~define dimval(dim)
~define refpname 010
~define refaname 012
~define refdname 013

struct gen_body{

- 34 -

02
04+(diml03l

struct record •nil; I• ref routine entry •I
char dim; I• dimension •I
char nrref; I• ~references •I
struct ident identity; I• name •I
char nrpar; I• number of parameters •I
char par_type(l; I• parameter types •I

I• reference name record bodys •I
struct dnameblock{

struct
struct

record
string

struct ctnameblock{

•namerec; I• reference to the namerecord •I
dstring; I• detectant string •I

struct record •namerec; I• reference to the name record •I
char parlength; I• length of the parameter values •I
char parameter(l; I• parameter values •I

struct apnamebody{
struct record •namerec; I• reference to the name record •I

struct snamebody{
struct record •snamerec(l; I• references to the name record i

struct dnameboqy{
struct dnameblock db lock [J ;

struct ctbody{
struct ctnameblock ctblck(l;

I• data records •I
~define dtype(p) (p« l)&0200
~define nil dtype(0,0)

I• picture data records •I

I• attribute
~define tf
~define dt
~define st
~define pn
~define cm
~define vs

matches •I
01

04
010
020
040

I• coordinate type •I
~define line dtype(0!)

- 35 -

~define contour dtype(02)
~define point dtype(03)

struct coorddatablock{
char attr_matches;
struct matrix coords;

struct coordbody{
struct coorddatablock cblock[_J;

~define texttpe dtype(05)
struct textblock{

char attr_matches;
struct string text;

struct textbody{
struct textblock tblock[l;

I• attribute data records, types •I
~define ttype(p,q) {p&q)<<l
I• transformations •I
~define trans 0
~define rotate ttype(trans,01)
~define scale ttype(trans,02)
~define translate ttype(trans,03)
\define matrix ttype<trans,04)
~define affine ttype(trans,051
~define proj_org ttype(trans,06)
~define proj_par ttype(trans,07)
~define window ttype(trans,010)
\ de f i n e v1 __ v 1 e v1 t t y p e (t r ans , 0 I I l
~define homo ttype(trans,0121

1 • st y,le • I
~define stvle 020

styles •I
lperiod
lma'pr c
lmaprl
lmapc
lthick

style •I

- 36 -

ttype(style,06}
ttype(style,015}
ttype(style,016}
ttype(style,017}
ttype(style,07}

I• line
3-define
3-define
3-define
3-define
3-define
I* point
3-define
3-define
3-define
3-define
3-define
~define
~define
I• text
3-define
3-define
3-define
3-define

pdot ttype(style,05}
pmarker ttype(style,04}
ptfault ttype(style,0}
ptfont ttype(style,01}
ptsize ttype(style,02}
pt ital ttype(style,03}
pbold ttype(style,04)

style •I
ttfault
ttfont
ttsize
ttital

I• pen *I
3-def ine
3-define
~define
~define
3-define
3-def ine
3-def ine
3-def ine
3-define

pen 070
pfault
pcontr
pinten
pcolour
pcolint
pconcol
pintcol
pcoint

ttype(style,010}
ttype(style,01 I l
ttype(style,012)
ttype(style,013}

ttype(pen,0}
ttype(pen,01 l
ttype(pen,02)
ttype(pen,04)
ttype(per_,03)
ttype(pen,05)
ttype(pen,06)
ttype(pen,07)

I• coordinate mode •I
3-define fixed ttype(0,040l
3-define free ttype(0,041 l

I* vistbility •I
3-define vis ttype(0,042l
3-define 1nvis ttype(0,043l

I• control *I
3-define control t t y p e (0 , 4 4 l_

I• combination record •I
3-define comb dtype(047l

I• picture file •I
struct addentry{

int •address;

I• map reset coordinate •I
I• map reset line •I
I• map continue •I

I* type fault •I
I• type font •I

I• type size •I
/ * type italic •I
I• type bold •I

I• type fault *I
/ * type font •I
I• type size •I
I• type italic * /

ch~r extent; I• address extention •I
char flags; I• svstern • 1

- 37 -

struct pictfile{
int picture; I• picture•file •I
int addsize; I• address _dictionary size •I
int namesize; I• name records size •I
int •hashtable[J; I• hash table •I
struct addentry addrss[J; I• address dictionary ♦/
struct record nrec[J; I• name records •I
struct record rec[J; I• records •I

- 38 -

APPENDIX lll. An ILP and IDS example

An example of an ILP program and its corresponding IDS
progr~m·. Elements (end nodes) of the attribute, subspace

and picture are denoted by a, sand p respectively followed
by an index.

PICT pa
YITH a 1
DRAY SUBSPACE st

\/ITH a 2
DRAY { Pt P2 } .

/"
rpname

(
--::

link back /Y with draw

-

f '
"I

I " '
link back Al

data
t'

: •

' l - } '-illi

link back subspace

-

.C

link ba~
'

.
Sl

data .
i

. .
§

\. ~
:~ -

' link back

I I - . data

l i

~

P2

data .

INDEX

ABS/REL marker, 23
address dictionary, 13
aname instruction, 24
aname record, 5
attribute ring, 3
attribute comachine, 23
back link, 3
bracket instruction, 21,24
bracket record, 4
cname record, 6
comachine, 19
comb i n a t i on record , l 3
combining attributes, 19
data block, 2
data body, 2
data instruction, 20,26
data record, 3
detection instruction, 23
dname instruction, 23
dname cecord, 5
elementary data item, 2
environment, 17
full state, 17
length, 2
link back record, 3,24
1 ink, 2
mixed record, 3
name record, 4,5
picture ring, 3
picture comachine, 20
picture file, 2
pointer record, 3
pointer, 2
record header, 2
record, 2
ref aname instruction, 25
ref cname instruction, 23
ref dname instruction, 25
ref gname instruction, 22
ref rpname instruction, 22
ref sname instruction, 22
ref spname instruction, 22
ref tname instruction, 22
reference aname record, 6
reference dname record, 6

reference name record, 4,5,6
reference pname record, 6
ring, 3
rpname instruction, 22
rpname record, 5
sname record, 5
spname instruction, 22
spna~e record, 5
stack record, 19
state class, 17
state component, 17
state descriptor, 19
state extension, 17
state, 17
subspace ring, 4
subspace instruction, 21
subspace record, 4
tname record, 6
type, 2
withdraw record, 4

