
stichting

mathematisch

centrum

AFDELING INFORMATICA
·c DEPARTMENT OF COMPUTER SC I ENCE l

P.J.W. TEN HAGEN & F.R.A. HOPGOOD

TOWARDS COMPATIBLE GRAPHi'C STANDARDS

~
MC

IN 17/79 FEBRUARI

2e boerhaavestraat 49 amsterdam

j

ElOLlOTHEEK r~~fa.Tl-ft\-::\-r 1,:;c: .. 1 ·CE:>J.~f-~JrVt
- -.....;~R":'-t',?S1,t_. -.-.,t ... ;\:!S-ft.h~r'\r• ... i-

PfLi.nted a;t .the Ma;thema.t,foai. Ce.n;tJr.e, 49, 2e BoeJLha.a.ve1dJr.a.a.:t, Amo.teJLdam.

The Ma.thematic.al CentJr.e, 6ou.nded .the 11-.th on FebJtuaJty 1946, Ma. non.­
pll.o 6,i..t .in6ti:tutlo n cumln.g at .the pll.omo:Uo n. o 6 pU!Le ma;thematic.6 and .l:t6
a.ppUc.a.Uon6. It ,lt, .6pon6oJted by .the NetheJr.1.a.nd.6 GoveJLnment .th/tough .the
NetheJLta.n.d.6 0Jtga.n.iza.Uon. nail. .the Adva.nc.ement on PU/Le RueMc.h (Z.W.0).

llQ/.I~.5l.1/.~ .. Q.5/H.a.2.-Graphics

Editorial Board Meeting,

Amsterdam, february 8-10,1979.

The Editorial Board implements the recommendation by
the above ISO working group, to establish a direct coopera­
tion between all national groups currently developing a
graphics standard based on the GSPC CORE report. On request
of the national groups concerned (e.g. ANSI and DIN), the
ISO working group provides a neutral chair for the board, as
well as a comparison between both national efforts by
members of the ISO working group.

The comparison of the national efforts is based on two
documents often referred to as the CORE and GKS respective­
ly. These documents are:

- Status Report of the Graphic Standards Planning
Committee of ACM/SIGGRAPH, Part II: General Methodology and
Proposed Standard, Computer Graphics, Volume 11, no 3, fall
19 7 7.

- Proposal of Standard DIN 00 66 252, Information
Processing, Graphical Kernel System, Functional Description,
Preliminary Version.

Statements in the following attributed to ANSI/GSPC or
DIN or regarding the philosophy of the CORE or GKS are not
official positions but represent the opinions of individual
technical experts who are well acquainted with the national
efforts involved.

- 2 -

Contents

List of participants

Agenda

Minutes and Recommendations

- Opening

- Main Principle Differences between
GKS

- New developments around GSPC CORE

Comparing Functional Groups

- Future Work

- Final Technical Remarks

List of Clarification Areas

Appendix, Comments ISO/TC97/SC5/WG2-
members

page 3

page 4

page5

page 5

GSPC CORE and
page 6

page 12

page 14

page 32

page 33

page 34

page 35

- 3 -

lltl Q.(Participants

Ralph Eckert (DIN), TH Darmstadt-FE Informatik, FG Gra­
phische Datenverarbeitung, Steubenplatz 12, Darmstadt,BRD.

Ir. Johan Ero (NNI), Secretary to the meeting, Philips
Dep. ISA-VN523, Eindhoven, N~therlands.

~rs. Paul J. W. ten Hagen (NNI), co-chairman, Mathemat­
ical Centre, 2nd Boerhaavestraat 49, Amsterdam, The Nether­
lands.

Prof. F.(Bob) R.A. Hopgood, (BSI), co-chairman, SRC,
Rutherford Laboratory, Chilton Didcot, Oxfordshire OX11 OQX,
Great Britain.

Dr. Klaus Kansy (DIN), Gesellschaft fuer Mathematik und
Datenverarbeitung mbH Bonn., Postfach 1240, 5205 St. Augus­
tin, BRD.

Dr James C. Mitchener (ANSI), Intermetrics Inc., 701
Concord Avenue, Cambridge, Massachusetts 02138, USA.

- 4 -

Agenda

DIN

0. Opening

1. Main principle differences between
GKS

1.1 3D - 2D

1.2 Storage Philosophy

1.3 Inquiry Strategy

1.4 General Comments on GKS by Michener

2. New developments around GSPC CORE

3. Comparing Functi6n~l Groups

3.1 Output Primitives

3.2 Segmentation and Naming

3.3 Attributes

3.4 Viewing Transformations

3.5 Input Primitives

3.6 Control

4. Future work of the board

5. Final technical remarks

GSPC CORE and

- 5 -

Q. Opening

Paul ten Hagen welcomes all participants.

The definition of the work of the board for this meet­
ing is, to compare the two national efforts towards a graph­
ics standard, namely GSPC CORE report and DIN GKS functional
description.

Statements in the following attributed to ANSI/GSPC or
DIN or regarding the philosophy of the CORE or GKS are not
official positions but represent the opinions of individual
technical experts who are well acquainted with the national
efforts involved.

The result of the comparison will be to list the
differences and to provide ways to resolve them. The latter
will be formulated in the form of recommendations. A recom­
mendation will always address one or both functional
descriptions. A change of a description according to the
recommendation will bring them closer together.

~he meeting will also identify areas which need further
clarification.

1 . .Hll.n nirrerences

Main differences are discussed first because they af­
fect more than one functional group. The result should clear
the ground for resolving differences on the functional lev­
el.

The GSPC CORE proposal supports 3D-output whereas GKS
supports only 2D.

Comments by Michener: Allthough a majority of people
requires 2D only, the part that wants 3D to be supported is
very rapidly growing and is expected to become the majority
within a few years.

In the CORE, the relationship between 2D and 3D is that
2D is considered a special case of 3D. The omitted z­
coordinate in the 2D-case is assumed to be the z-coordinate
of CP. 2D output does not affect z-coordinate of CP.

GSPC feels that 3D should become part of the standard
now in order to prevent people developing their own 3D ex­
tension on top of a 2D CORE.

Comments by Kansy/Eckert: The reason for omitting 3D is
mainly lack of manpower. The DIN group has to come up with a
proposed standard in a very short time. Therefore they have
left out a few functional groups for which only a small
minority of their users has an immediate need. They will
certainly add 3D when time permits.

The important question that remains now is: Will the
future 3D - extension of GKS be consistent with the current
3D CORE proposal?

All agree that 2D should be considered as a special
case of 3D.

There remain a few questions however:

1. Is it allowed to have 2D and 3D primitives mixed in
one segment?

~It is allowed in the CORE, whereas the current opinion
in DIN tends to forbid it.

2. Does having CP impact the way 2D is a special case

of 3D?

It does in the CORE. In view of the fact that GKS might
not use CP it could not define 2D-3D relation in the same
way.

The board feels that the CORE wants to use CP for in­
troducing convenience rather than basic semantics.

RECOMMENDATION 1:

The CORE should try to avoid using CP for defining an
important item like 2D-3D relation.

RECOMMENDATION~:

In view of the fact that the 2D-3D relation can be
clearly defined (2D is special case of 3D), there should be
an optional configuration of the CORE having 2D only.

i.~ storage Philosophy

Eckert/Kansy: GKS distinguishes graphical objects and
pictures. They correspond to CORE segments in different
stages along the viewing pipeline.

Objects are stored in the so-called GKS-file as un­
transformed and non-clipped segments.

Pictures are stored at the workstation as transformed
and clipped segments in a device dependent or device in­
dependent display file. Which one, is defined by the imple­
menter only.

A workstation is allowed to refuse to store segments.
This is similar to the fact that in the CORE an output lev­
el2 device driver does not support retained output.

It is established that
the same as the concept
(picture). The GKS-file is
by the CORE.

the concept of CORE segment is
of a segment "on" a workstation

a form of storage not supported

Associated with the GKS-file are the following explicit
or implicit functions:

~

1. Allow creation of segments on different workstations
from one sequence of primitive invocations. This function is
needed in GKS because there can be only one workstation ac­
tive at the time.

- 8 -

2. Insert segments from GKS-file into the open segment.

3. Deliver segment on record for long term storage.

The following remarks on GKS-file turn out to be impor­
tant:

A GKS-file is a high level facility.

A GKS-file is erased at the end of a session.

Processing of GKS-files requires inspection of GKS-file
segments contents.

GKS-file contents is completely device independent.

An object in the GKS-file has a symbolic form of attri­
bute whose meaning is determined only when the object is in­
serted in a segment on a workstation.

An object in the GKS-file cannot specify what line
style, line width, color or intensity primitives have.

The GSPC CORE envisages a file facility on top of the
CORE, i.e. a high level facility also.

The argument in favor of GKS-file saying that "output­
ting the same picture to a second device driver requires a
complete regeneration by the application program" is coun­
tered by the fact that the application program might do that
very well from an application-specific representation. In
some application programs, this will not be less efficient
than using GKS-file capability. The GKS-file functions
INSERT,DELIVER,GENERATE and the inspection of segments are
compatible with a CORE file module for short term or long
term filing.

Having a temporary file for output to multiple worksta­
tions is considered a different form of filing.

RECQMMENDATION ~:

Change the GKS-file terminology:

GKS-file -> temporary file or object structure.

• Say records are stored in or read from files by the
application program.

RECQMMENDATIION i:

Do not use the GKS-file for supporting multiple dev­
ices. Multiple devices should already be present on levels
below the GKS-file level.

RECOMMENDATION 2:

Define a level and/or module structure for GKS.

, It turns out that the concept of levels is a very use­
ful means to isolate and resolve differences.

The support of multiple devces without temporary filing
could be done at one workstation for the following reasons:

A workstation can have more than one output device.
Rather than giving the operator an external device switch,
one could put the switch under program control by some func­
tion. This is the more disirable for input (and in fact al­
ready the case).

The editorial board feels that DIN can maintain the re­
quirement of one workstation active at the time. Transfer
between workstations has to be done by the file system but
it now has a different meaning.

RECOMMENDATION~:

Existence of a
should not affect
works. The segment
desirable at that
on top of the CORE
structure.

RECOMMENDATIUH I:

file system on top of the segment system
the way the segment system underneath

system should include all facilities
level. The introduction of a file system
should not change application program

DIN should investigate the possibility of supporting
multiple view surfaces by the segment facility.

At a workstation one can change the pen representation
for a given pen number. The binding between pen number and
pen representation is done at a very late stage. In this way
a picture may change after UPDATE. This type of facility re­
quires a lot of overhead, e.g. a device independent display
file. This type of change is not possible in the CORE.

V There are three reasons for having the pen number con­
struct.

1. To have application program control over different
visual effects on different devices.

- 10 -

2. To permit library routines to easily select attri­
butes defined by the calling program.

3. To dynamically modify existing segments on a works­
tation by changing the pen representation.

The editorial board feels the first reason is most im­
portant because a given device might not support certain at­
tributes.

A way to decrease the difference between CORE and GKS
would be to apply the pen number concept in this situation
only, and therefore not to change attributes by it.

1.3 Inguiry strategy

DIN feels that if all possible inquiry functions are
allowed, there would be of the order of one hundred func­
tions. This is too high and some method must be defined
which limits the number of inquiry functions. The GKS system
has a number of independent datastructures which at dif­
ferent times are accessible from the applications program.
The GKS philosophy had been to try and encapsulate the in­
formation that could be inquired so, that it was unavailable
when it was not required.

The GSPC approach was that it was impossible to define
states where the information in the various states lists
might not be legitimately required even if only to store for
later use, or for debugging. Some editorial board discussion
attempted to see if it was possible to restrict inquiry to
information that one can use immediately.

RECOMMENDATION~:

In general all status information should be available
irrespective of the current use.

Any errorhandling provided cannot use the inquiry func­
tions but must have immediate "error free" acces to the da­
tastructures. Otherwise it is possible to generate recursive
calls.

RECOMMENDATION~:

•GKS should define a set of Inquiry Functions. They must
be part of the kernel proposal and not left to the language
dependent level.

- 11 -

RECOMMENDATION 1.Q.:

GSPC should provide a clearer definition of functions
which cause major state changes and to make more explicit
the states and/or flags which constrain what is allowed in
various situations.

The categories of information open for inquiry are, but
for image transformations of a segment, similar in both pro­
posa~s.

i.~ ™ Philosophy

Some discussion took place concerning the GKS introduc­
tion (section 3.1), which describes GKS philosphy. This sug­
gests that the layers described there were all of non-zero
thickness. This implied that the Application Oriented Layer
could not call GKS primitives directly, even if there was a
1-1 equivalence between these and the language dependent
layer. It became clear that the GKS proposals were not so
rigid in this respect as they seemed.

- 1-2 -

2. B.fili Developments Around~~

Jim Michener gave a synopsis of GSPC changes.

1. Levels have now been devided into input levels and
output levels. In theory, any input level can be taken with
any output level allthough they are not completely orthogo­
nal, because one cannot have pick input (input level 3)
without segments (output level3).

2. A new GSPC 79 was due out on january 22 and is
probably currently in the mail. Comments are invited before
the Boulder meeting.

3. POLYMARKER has been added as an output primitive
and the marker type is now an attribute for both MARKER and
POLYMARKER.

4. Text attributes ar~ now more complex. It is possi­
ble to specify text output to go from left-right, right­
left, up-down and down-up to allow for human (natural)
languages other than English. Variable spaced character
fonts will be allowed. Justification will also be available
as an option (begin, end and centered).

5. The non-retained segments have been removed. In­
stead it is possible to call output primitives, attributes
and define transformations outside of segments. This was
provided for plotter users etc .• An alternative approach
which was not accepted, was not to have default settings on
CREATE SEGMENT. This situation may well change.

6. A much more precise definition of attribute values
has been specified. For example, line styles Oto 9 will be
used for hardware line styles and line styles above 9 define
the precise dash-dot pattern (similar to PLOT10). Also more
precise are defined the range of values for segment names
and for pick-ids.

7. A set of 10 standard markers has been defined.

8. Image transformation values are now completely
specified in one function call. The motivation is to save
multiple passes through the segment file.

9. Input devices must now be initialized before they
are enabled.

10. Additional inquiry functions have been provided, as
has•a function which sets all viewing parameters at once.

11. Two types of picture change control have been in­
cluded that affect the behaviour of primitive creation, seg-

- 13 -

ment attribute settings, segment deletions, and NEW FRAME.

The first one turns off immediate
display can be arbitrarily out of
buffering. CLOSE SEGMENT has no effect.

visibility so the
date, similar to I/0

The second type mandates four alternatives for batching
of updates on a view surface. The implementation can choose
which one:

- 1. Like a refreshed device - state of batching ig­
nored.

2. Like a storage tube device - deletion is saved up
but additive changes go through.

- 3. All retained segment operations are delayed but
non-retained output is immediate.

- 4. All changes are saved. An example might be a dev­
ice where overhead for immediate output is large. For exam­
ple, line printer output with raster conversion.

12. Input will now allow different kinds of echoing to
be specified. For example, rubber banding echo for locator
input.

13. The extensions sub-committee is considering raster
displays, colour and pseudo devices (file transfer but with
segment information lost).

3. comparing Functional Groups

3.1 output Primitives

The main differences to be discussed were:

1. To have CP or not

2. 3D output or not

3. DRAW/INSERT high level primitives

The GSPC use of CP is purely a syntactic abbreviation.
Setting CP does not create output primitives, it only influ­
ences how they are produced. Thus it is just a convenience.
The major motivations are that a lot of systems have it and
it reduces the number of parameters in future calls. It also
allows the specification of the output primitives using
calls of functions which have relative coordinates.

A major problem with the GSPC definition of CP is that
it is used implicitly in the mixing of 2D and 3D output
primitives. For example,

MOVE-ABS-3 (X,Y,Z)

LINE-ABS-2 (X,Y)

The second primitive uses the Z-coordinate of the
first.

DIN agrees that CP is current practice. However, CP has
a number of severe conceptual consequences. The GSPC defini­
tion has to mention CP frequently. It is equivalent to the
use of an accumulator in assembly language programming. The
DIN view is that the output primitives should be on a high
level. It would not be acceptable to DIN to build a language
dependent level on top of the GKS system which included CP
as construct. GKS defines primitives at the POLY-level. DIN
feels that even a LINE primitive is unnecessary. In most ap­
plications, data values are not generated inside the program
but are input from device and so the user does not need to
write cumbersome seven-line POLYLINE calls very often,e.g.

A{1) = 5; A(2) = 6

A(3) = 7; A(4) = 5

A(5) = 6; A(6) = 8

CALL POLYLINE(A)

- 15 ~

During a long discussion th~ editorial board tried to
resolve the opposite approaches. Certain mixing of output
calls in the GSPC proposal were not easily transformed into
equivalent GKS calls. For example:

LINE-ABS-2(X,Y)

TEXT (•ABCDE')

LINE-ABS-2(A,B)

If GSPC was to not allow such uses of CP, it would be
possible to translate GKS primitives into GSPC and vice ver­
sa.

The following was agreed:

RECOMMENDATION .11:

The concept of CP is a major fundamental difference
between the two proposals which needs to be considered ur­
gently.

A possible way of resolving the current impossibility
to allow each system to be specified in terms of the other
would be:

The CORE should not change the CP for text output. In­
stead an inquiry function should be provided which gives the
last end-of-text.

RECOMMENDATION J..3.:

GKS should add an INQUIRY function which gives the last
end-of-text.

Some discussion of GKS DRAW compared with GSPC ESCAPE
ensued.

RECOMMENDATIQM .l.J!:

DRAW (GKS) and ESCAPE (CORE) are higher-level primi­
tives which should not appear in the lowest level of the
system definition.

- 16 -

RECOMMENDATION ll:

At some stage, there will be a need to standardise on
the language level representations such as how an array of
points is stored. DIN and GSPC should adopt a common array
definition strategy and function parametrisation strategy -
particularly for FORTRAN.

For example, does POLYLINE-3 take an N by 3 array or
three N by 1 arrays?

Allthough it was suggested that GKS should introduce
LINE and MARKER primitives, it was felt that this was nei­
ther a major nor a significant difference (unlike some of
the other issues that had been raised).

~-~ segments

Major issues discussed were:

1. Retained/Non-retained Output

2. No RENAME command in GKS

3. Deletion of segments on more than one workstation

In view of the discussion on storage philosophy this
section deals with segments{pictures) only, and not with
files(objects).

The DIN view is that non-retained output outside a seg­
ment is a new concept which is not necessarily bad. However,
it will have to be discussed within DIN first. The same can
be said of attribute setting outside segments.

GSPC feels that the CORE philosophy of having
CREATE/CLOSE force default attribute settings makes the CORE
easier to understand. Also it is good practise as it means
that the definition of a segment cannot be changed by some
global setting lexically remote from the segment definition.
Therefore it is much easier to read existing application
programs. The new CORE definition means that the CLOSE SEG­
MENT function in effect is an implicit 'open non-retained'
function. Attributes for the non-retained output are not
saved across the segment definition.

'There is the possibility that the next version of the
GSPC CORE allows viewing transformations to be changed
within segments.

- 17 -

There is also a possibility that non-retained segments
will "return" but that setting defaults at CREATE SEGMENT
will be eliminated.

There was an agreement that no recommendation could be
made at this stage as both. systems were in a state of
change.

RECQMMENDATION .LQ.:

The RENAME SEGMENT function should be included in GKS.

There was a lengthy discussion over segment naming.
Allthough GKS segment names are stored centrally to check
that the name is not reused, most of the information con­
cerning the segment is stored on the workstation. A segment
could only be on one workstation.

The recommendations agreed upon were:

RECOMMENDATION ll:

GSPC should change the name of SELECT and DESELECT as
normal usage implies a total deselection which does not in
fact take place.

Selecting a device for output in GSPC CORE is indepen­
dent from segment management, e.g. a segment can be deleted
on a non-selected surface.

RECQMMENDATIQN JJi:

In GKS and CORE it should be possible as an option, not
a mandate, to output primitives to more than one view sur­
face with different pen representations on each device. Such
a facility should be available without using the GKS-file
system.

This implies in GKS either workstations should be sim­
plified and allow multiple workstations or expand the facil­
ities of a workstation to include multiple view surfaces
within one workstation.

~he DIN position is that 2-level
2-level modifying. It is only used
better done by using a special CHOICE
dled by the driver.

naming should imply
for menues and this is
input primitive han-

The GSPC position does not worry about consistency of
naming and modification. The second level is only provided
for PICK input. They see the PICK-ID as being used in two
different ways:

1. Light button menues ·

2. Scatter plot or graphical entity to be picked
(Operator tells system to delete that point over there.)

The GKS approach does not allow menues to be made up of
graphical entities unless they are defined at the driver
level. Thus the application program cannot define a menue in
one segment via the standard.

There is an additional argument for two level naming
(which DIN rej~cts) saying that segment overhead is much
greater than the equivalent PICK-ID.overhead.

There is also the experience from GINO user groups
which asked for two level naming.

RECOMMENDATION .1.9.:

There are valid reasons for a second level of naming
and DIN should reconsider. The menue argument is independent
of the second level of naming.

Two other problems concerning segments were:

1. CORE permits the open segment to be manipulated -
GKS does not

2. Image transformations should not alter the seg­
ment contents. That is, image transformations are not accu­
mulative in the GSPC view.

GSPC's view on open segment manipulation is that it
should be allowed to pause in the middle of an open segment
and allow the segment name to be available. In particular,
it should be possible to change the visibility of the open
segment.

GKS's view is that one should restrict the use of func­
tions for security and good programming practice. Applica­
tion programs should not be allowed to change the open seg­
mentpwithout first closing it.

In the discussion it became clear that GKS asserted

- 19 -

that invisible segments could be sent to the workstation and
yet that there was no mechanism for doing it.

RECOMMENDATION 2.Q.:

That DIN implements the GKS statement that "Invisible
segments may be sent to the workstation" (page 7). There
needs to be a capability for creating invisible segments
and, all segment attributes should be subject to change in
an open segment.

GSPC suggests that it should be possible to change seg­
ment attributes (visibility etc.) without having to activate
a workstation or view surface.

Next image transformations are discussed.

If one accumulates matrices one gets round off errors.
A pure rotation will eventually also include some scale
function. Therefore it shoul~ be possible to replace as well
as accumulate image transformations. This necessitates
keeping transformed and untransformed segments in some
cases. CORE also provides an inquiry for the current image
transformation. If one only keeps a composite of the values
applied sofar, it is impossible to read the values back.

The DIN view is that one should transform the
transformed data if it is being done by software. Motivation
is to reduce the space overhead.

This argument may be weakened by having to keep a dev­
ice independent file, anyway, for pen attribute capabili­
ties.

No recommendations were made as this area needs further
clarification.

The editorial board discussed whether scaling should
take place before rotation takes place in image transforma­
tions. There appear to be some arguments for both choices.
The full pros and cons do not seem to have been written
down.

RECOMMENDATION 2..1:

A clear statement of the pros and cons for:

• 1. scale-rotate

2. rotate-scale

- 20 -

3. scale-rotate-scale

should be set out by both GSPC and DIN.

~-~ Attributes

The major differences with respect to attributes are
the following:

1. GKS has no segment type for image transforma­
tions. It has a store mode instead of the retained/non­
retained attribute.

2. Pickid attribute (already discussed as part of
segments).

3. GKS has pen nu~b~r concept instead of correspond­
ing modal attributes.

4. There is no charplane function as text attribute
in GKS. Neither of the additional attributes in the revi­
sion of the CORE is present in GKS.

5. It is not certain whether set visibility, set
highlighting and image transform have an UPDATE side effect
in GKS, like the NEW FRAME effect in the CORE. Visibility,
highlighting and detctability are not independent in GKS.

Discussion of 5.:

GKS gives an error when a segment is invisible and
detctability or highlighting are set. After discussing
several examples the general feeling is that such settings
ought to be independent.

RECOMMENDATION z.a:
GKS should allow SET VISIBILITY, SET DETECTABILITY and

SET HIGHLIGHTING independently.

As an addition to the earlier discussion about pen at­
tribute the following remarks are made:

, Pen attribute of GKS meets the requirement of having
"different attributes on different devices".

If the penrepresentations per pen number were not al­
lowed to change dynamically (i.e. cause segment modifica-

tions), there would be only a minor problem.

Could GKS provide motivation and case for change of pen
representation causing a segment(picture) modification?

Dynamic change of pen representation is particularly
difficult for workstations that-store segments.

A change of pen may have the side effect of updating.

DIN remarks:

Pen attribute will become more interesting in combina­
tion with GKS-file.

DIN would like to see pen attribute as an option (i.e.
not present in a basic system).

It is desirable to have the display of a segment on
different devices appear to be different. This difference
should be under application program control.

The GKS function UPDATE is very similar to the pair of
CORE functions END-BATCH-OF-UPDATES / BEGIN-BATCH-OF­
UPDATES.

Immediate update as a side effect is, in GKS, left to
the implementer.

Michener: complaints about the GSPC 77 definition that
"batching of updates is implementation dependent" were quite
bitter. I strongly recommend that DIN define a number of
mandatory, precisely specified ways of possible implementa­
tions of batching.

DIN feels that reading input should force
picture update. GSPC has explicitly rejected
of the example of a digitiser, used at full
significantly ahead of the graphical output.

an implicit
this, because
speed, being

GKS should set out as clearly as possible what is in­
tended in terms of what attribute changes cause a picture
modification.

Next segment type is discussed.

GKS has no static segment attribute specifying image
tran;formability. The following comments are made.

DIN: Transformability is a feature of the workstation.

- 22 -

In most applications either all segments are transformable
or none are. Therefore transformability should not be a seg­
ment attribute. Rather one should specify at the global lev­
el something like hno 3D transformations are used".

GSPC: The properties of refined transformability fit
within the attribute scheme. Not all segments should pay the
overhead of storing information (e.g. 3D screen coordinates
if only a few segments use it).

It turns out that
answered. Resolving the
depends on the answer:

To GSPC:

an important question must be
CORE/GKS difference very much

What happens when a certain view surface cannot support
certain segment types?

What happens when you try to use it?

Two final remarks conclude the discussion on attri­
butes:

The attribute
etc.) are expected
CORE revision.

refinements in GKS (linestyles,color
to be the same as are given now in the

GKS should note that GSPC has changed its text defini­
tions which now makes the two systems incompatible.

~-~ Viewing Transformations

The major issues were:

1. Should there be a clipping rectangle seperate
from the window (for defining the window/viewport mapping)?

2. Should the CORE VIEW-UP-2 function be implement­
ed in GKS for compatibility with 3D?

3. Is the mapping from NDC to device coordinates
the same in both systems?

4. Is the WINDOW specified by points or limits?

Points versus limits:

- 23 -

The decision whether the window is specified by points
or limits is purely an explanatory matter. GKS should make
it quite clear that the order of the two points does not im­
ply any transformation of the viewspace (reflection etc).

The clipping rectangle:

RECOMMENDATION 2..1:

GSPC should consider the separation of the clipping
rect'angle from the window definition.

RECOMMENDATION ll: GKS should change the name of the window.

VIEW-UP-2:

RECOMMENDATION 2.5_:

When GSPC defines a 2D subset, VIEW-UP-2 should not be
included in it.

It was ascertained that both GKS and CORE had inquiry
functions which allowed the actual dimension of the view
surface to be obtained.

Mapping from NDC to Device coordinates:

The GKS function SET-REQUESTED-DISPLAY-SPACE is really
only provided for efficient use of the plotting area for
multiple plots on a drum plotter. GKS binds the NDC to the
device independent of the application program. The origin is
in the lower left hand corner and 1.0 corresponds to the
smaller device dimension. SET REQUESTED DISPLAY SPACE de­
fines a rectangle in the NDC space that will be used for the
plot. An error occurs if the requested rectangle is outside
NDC space. All viewports(and the "images" of the clipping
rectangles) must be defined inside this area. For example:

0)1 1,3)1*0
--- NOC

I I --.
SET RiQl.J E"SiE D bl.SPLAY

ill I SPACE
T

'VIEWPO RT
0

- 24 -

The driver supporting the plotter has complete freedom
to locate the display area for the plot at any position on
the plotter surface to save paper etc., e.g.:

-

H
H

ERE
ER£

H

Thus with respect to controlling a plotter, the limits
of the requested display space only defined the area to be
used. Consequently, SET REQUESTED DISPLAY SPACE could equal­
ly well define the area in the lower left hand corner. De­
fining it aywhere else is just confusing.

On a device other than a plotter, SET REQUESTED DISPLAY
SPACE is ignored. Michener suggested that it would be
better to map the requested space to the full display
screen.

RECOMMENDATION~:

SET REQUESTED DISPLAY SPACE should define an area in
the lower left hand corner(P parameter is the origin). It
should also force a call of REQUEST NEW DISPLAY SPACE.

The following question was raised:

If clipping is turned off, should devices be expected
to provide clipping at the boundary of the view area?

The DIN approach is that hardware devices should do
this and, if they do not it will be provided in the driver.
The GSPC approach is that one need only to protect an unin­
telligent device from damaging itself.

The two approaches to defining NDC space are as fol-
lows:

1. GKS insists that the aspect ratio of NDC space
is device dependent, that the unit square is visible on the
device and that it appears in the lower left corner. For ex-

- 25 -

ample a horizontal Tektronix would have:

o, 1 --------,, 1 • .3 11

o_,o 1.J.,o
2. CORE insists that the aspect ratio of NDC space

is application dependent with a default of 1:1, that the
limits of the view area must both be less than or equal to
1. Thus if a 1 by 0.7 NDC-space is requested one has:

0,0,7 1)0.7

o..,o 1_,o
In this way, the CORE achieves greater application

portability than GKS. However it is defined, the view area
is portable and visible on all devices. The CORE does not
cons train the origin to be t·he lower left corner.

RECOMMENDATION il:

There appears to be no good reason why the choice of
NDC is different in the two systems. The GSPC approach seems
to have some advantages. GKS should reconsider and explain
the advantages, if any, of this approach over GSPC.

- 26 -

~-~ Input Primitives

There is a very big difference between GKS and CORE
with respect to input.

GKS offers a very minimal set of capabilities. GKS de­
fines 5 logical input devices which may be at a workstation.
In contrast CORE defines 5 classes of logical input devices.

GKS defines five read functions like the FORTRAN read
statement (without the format capability, however) to obtain
data from one of the five logical devices.

Because of the apparently new approach Kansy/Eckert are
asked to give the general idea behind this, as well as the
reason for not following the CORE.

DIN comments: In the previous revision of GKS, event
and sampled input was present. The current proposal is a
result of critique on the previous one, by DIN members. It
was decided to have a much simpler input first and add a
high level module containing sample and event later. The
simple version also allowed to interface to a FORTRAN read.

From dicussing the previous draft a number critical
comments apply to the CORE as well:

Every logical device should be usable both as sample
and as event device. Thus, locator and valuator may also be
event and pick, text and button may be sampled. If all in­
put devices may be event drive, no association of button and
locator would be necessary. DIN considers such an applica­
tion of a button not a choice. Furthermore input of sampled
devices is not under operator control.

As GKS wants to base itself on read, the time perameter
as used in GSPC is not meaningful.

cal
ing.

In the CORE there is no adequate definition of a logi­
input device. The description therefore needs inprov-

Comments from GSPC:

Input is broken down to the lowest common denominator.
Natural associations are inquirable or at least known from
an "installation manual".

~The application program should time out, or prompt in
case of await event for a limited amount of time.

There are two sample input strategies available to dev-

- 27 -

ice drivers:

1. Inform the operator that a sampling is required
and await his response

2. Return a current value

Input device simulations may use either.

GSPC defines locator and valuator logical devices to be
those parts of input mechanisms that determine positions and
values. Those parts of input mechanisms that determine in­
stants in time are called event devices.

Discussion:

In both CORE and GKS logical devices are defined by the
type of value they deliver. The main difference between the
CORE and GKS(revision 2) input proposal regarding what is a
logical input device, is that CORE uncouples sample and
event devices.

Michener: With GKS, the operator cannot choose between
using one device or another (DIN agrees this is sometimes
desirable). If the five read functions were replaced by
await-event, the operator could be given this capability.

DIN is urged
sample input as
read functions to
incompatible with

RECOMMENDATIOM 2..§.:

to proceed with plans to define event
an option of GKS which operates under

determine whether adopting read will
future capabilities in this area.

and
the

be

GSPC should include an inquiry capability which informs
whether a sample request will hang up the application pro­
gram until a new value is present.

RECOMMENDATION 2...9.:

GSPC should consider sample and event as operating
modes for all logical input devices. This mode can be speci­
fied at enable time.

Two more points concerning input remain:

1. Locator in GKS returns user coordinates. Locator
in GSPC returns ND Coordinates.

2. Input in continuous mode in GKS is very far away
from event queue. This is the main reason for reading sets
of locator values. The event concept may be different to
support over a communication line in case of a non-stand

. I
:,, V

- 28 -

alone graphics system. This question is not furt~er resolved
in view of the previous discussion.

With ~espect to the problem of a locator returning user
coordinates the following comments are made.

From DIN: It is recognised that this may be difficult
to maintain in the 3D case. The examples in the last issue
of computing surveys however, show only use of locator
values mapped back on world coordinates.

, It is believed that almost always a locator value must
be related to the user space connected with the picture on
the screen.

From GSPC: In 3D "backwards viewing" transformation is
sometimes ill-defined. When well defined it requires a lot
more work than converting physical device coordinates to
NDCs. Assuming world coordinates forces the application
desiring NDC to do doubl~ wprk. It also is assumed that the
"current viewing transformation" is an output concept, not
an input concept too.

In case of an asynchronously provided locator value the
mapping onto world coordinates can only be performed at de­
queuing. The viewing transformation at this time may not be
the viewing transformation the operator intended to be used.

A splitscreen technique (simultaneous multiple view of
the same object) means that the desired NDC to user map is
"piece-wise linear" and is discontinuous at viewport edges.

There are examples where the locator value is intended
to be a point in user space.

GSPC and GKS should give their motivations for defining
locator result in user space or in NDC space in order of im­
portance.

The following possibility is discussed:

Have both mappings (viewing, locator to user space) in­
dependent. Define a conversion between the two. Allow the
input mapping to be switched off.

RECOMMENDATION .1.Q.: Give in both GKS and GSPC CORE a function
which controls whether locator values are returned in NDCs
or in some user coordinates. Provide also two functions one
of which defines locator to user space mapping as reverse
viewing whereas the other defines viewing as the reverse lo­
cator mapping.

-.29 -

Final remark on input: The valuator in GKS is not
forced in the range [0,1]. It is an error in the report.

~-~ control

The major differences discussed were:

1. Error handling

2. Batch of updates

3. Levels versus modules

4. Initialisation

Error bandling:

GSPC comments: GSPC believes there are only two kinds
of errors in a debugged system: GKS type I and III. GKS
lists errors of type I and III only. (Type II errors in GKS
attempt to save current graphics data). In the CORE there
is a distinction between errors and warnings.

GKS comments: Error handling is not a specific graphics
issue. Chapter 7 sofar is only a guideline.

It is established that one can standardise which errors
to report, but error handling cannot be standardised.

RECOMMENDATION 3..1:

Errors should be listed and numbered in one place in
the document. Also each function should specify which er­
rors must be detected before any status change, and which
need not be so detected.

This kind of classification determines some details of
an implementation strategy.

In the CORE a user supplied error handler can be called
instead of the standard error handler.

RECOMMENDATION .3.Z.:

GSPC should establish a seperate list of errors and er­
ror numbers.

RECOMMENDATION .3.3.:
~

A user defined error handler cannot call any GKS or
CORE functions. GKS should make this explicit.

- 31 -

With respect to picture change control(UPDATE):

I/0 buffering is desirable
transmission. It causes problems
visibility;

for having efficient
however with immediate

There are a few device dependencies hidden in the con­
trol section:

In GKS a workstation can refuse to store segments.

In CORE an output level 2 driver cannot store segments
even in an output level 3 implementation

RECOMMENDATION 3.!l:

Try to define all device dependencies in the control
area.

- 32 -

~- Future~

The report of this editorial board meeting will COQ-
tain:

- A clear statement of the editorial boardB status.

- Minutes and Recommendations.

- A list of areas where further clarification is
needed before any recommendations can be made.

- The comments from ISO/TC97/SC5/WG2-members con­
cerning the comparison.

The report should be ready with sufficient number of
copies within approximately one week to be distributed
amongst ISO-members and correspondents, DIN, ANSI and GSPC
people. As a consequence high polishing of the text will
not be possible.

An attempt will be made to get as much feed back as
possible from the GSPC Boulder meeting as well as the next
DIN meeting. In general it is expected that feedback should
contain at least:

- Comments on all recommendations, especially con­
taining arguments when rejected.

- All clarifications asked for.

Feedback is requested from ISO/TC97/SC5/WG2-members as
well.

The amount, quality and content of the feedback will
decide if and when the next meeting of the editorial board
will take place.

- 33 -

~- Final Technical Remarks

Finally a number of minor questions are briefly dis­
cussed.

Some names need reconsideration: DIN feels that CORE
names for some logical devices sound to much like physical
devices (keyboard, button). CORE feels that names of logi­
cal input devices should sound like input (e.g. "pick" does,
"text" does not).

In GKS the word SET in the input functions REQUEST SET
OF •• ~ is really a sequence or a tuple.

GKS will maintain an explanatory part next to a precise
definition.

GSPC suggests rule zero on page 40 (GKS):

All GKS functional capabilities have to be accessible
for each laguage dependent layer defined.

Question rule 2 (GKS pige 40): Will error report change
after renaming?

Michener: Can there be a single standard device driver
interface? GKS: This is meant to be an implementation guide
line.

State "segment open" is three states really.

Can a workstation arbitrarily refuse any pen represen­
teation? DIN: Yes, this is implementation dependent.

- 34 -

clarification Areas

This list contains a number of undefined or unclear
areas in both reports, which are not indicated as part of a
Recommendation. Every area is preceded by a page number
refering to a page in this report.

It is also indicated which one of the two reports,if not
both, is addressed.

(17) (GKS,CORE) What is the strategy of setting attri­
butes and default attributes inside and/or outside segments?

(19) (GKS,CORE) Should
accumulated,replaced or both?

image transformations be

(21) (GKS) Give motivation and case for change of pen
causing picture modification. What attribute changes cause
picture modification?

(22) (CORE) What happens if a view surface cannot sup­
port a segment type?

(26) (CORE) Give a definition of a logical input dev­
ice.

(28) (GKS,CORE) Give motivation for locator->NDC->user
space mappings, plus order of importance.

Appendix

comments u rn1rn1~/JiQ2.-members:

- G. Krammer et al, Hungary

- D.S.H. Rosenthal, U.~.

- R. Williams, U.S.A.

- K.W. Brodlie, U.K.

- BSI DPS13/WG5, U.K.

- J. Encarnacao & P. Wisskirchen, B.R.D.

- F.R.A. Hopgood, U.K.

The reader should be aware of the fact that these com­
ments had to be provided in a very short period of time.
They nevertheless enabled t~e editorial board to completely
compare and comment on the documents concerned in a 3-day
meeting.

The design of the GSS80 graphic subsystem is a· result

of experience collected home and abroad. Much use of

the Seillac methodology papers, the CORE and the GKS

standard specifications has been made. Since this

document follows in time tho.se mentioned, it is proper

to refer to them as many proper decisions are taken

over, or result from their analysis, while certainly

our mistakes may not be theirs and if theirs, may be

CQrrected in subsequent editions.

(For information only: a sort of acknowledgement we

intend to put in front of GSS80).

'" H.15.01. 79. METHODOLOGY

THE FORTRAN~SYNDROMA

', I ., :f. -

The standard should be LANGUAGE-INDEPENDENT and reflect

STATE-OF-THE-ART or ACCEPTED-PRACTIC:E.,The ·1ast tv10 are
. . •• ,1

in contradiction with each other (and we confess:·no

decision yet).

Both CORE and GKS use FUNCTIONS to describe the standard,

a~d this FUNCTIONS may be mapped one-to-one onto FORTRAN

subprograms (with the modification: ~T•f.~G LENGTH+VECTOR).

Other_s - especi~lly ILP . - use hign l~Vfi; constructs.
If the second practice is accepted, it m~y still allow

the standard for the application interfa'-?e "to be

transported ••• " from the KERNEL to the LANGUAGE DEPENDENT

LAYiR " ••• with f;'"'.srnall ~mount~ oi· r~~t..~,• ~~te~at}ons ..• ".
(See CORE l/1.3);t:· •, t~ .. · ·.

J . ' i ' ' .

This would not effect the portability of FORTRAN programs

between two FORTRAN-machines (machines w;ith FORTRAN

compilers). If accepted, however, the whole standard should

be reformulated (e.g. a

DISPLAY-ON

WITH
THE

END-DISPLAY;

workstation-identifier

viewing-transformcition

picture-type-expression

is not easily explained with FUNCTIONS and TABLES.
1.

Certainly a FORTRAN-like standard is easf to implement

in higher level languages.-

H.15.O1.79. LEVELS OF STANDARD

It is proposed to postpone decision on the "levels of

standard".

It is also proposed to form "functional capability

groups" (fcg's) within the standard being defined and

later define "workstation classes", "levels of standard",

etc.

In general, we agree with the GKS practice to omit the

discussion of certain questions from the standard's

text. Thus: reduce Part II of the CORE volume and

augment Part III (as explanatory document).

·v

H.15.01.79.

' 0
N

1.

CORE GKS

2. ----- WORLD-COORDINATES

GSS80

· 3. LEFT/RIGHT RIGHT LEFT/RIGHT

2D VIEWING

remarks

MODEL TRANSFORMS

COORDINATE SYS

4. --.-NORMALISED-DEVICE-COORDINATES------------

5. --------2D-WINDOw------------------

6.

7.

a:

9.

10.

11.

12.

2D-VIEWPORT

LIPP-ON/OFF
• . .

CLIPP-TO CLIPP-TO ?

VIEWPORT C.RJ;:CTANGLE

NOC 2 NOC 2 ?

specify retrieve

- SPECIFY-DISPLAY-SPACE for next drawing

via inquieries via specify size

"metric viewport"

-----2D-IMAGE-TRANSFORMATIONS------------

13. in NOC in WORLD ? LOCATOR data

14. VIEW-UP-2D

Notes: 1. NOC is conceptual only except for 13 in CORE.

2. Image transformations only at HIGHER LEVELS.

'H.15.O1.79. 3D VIEWING

(GKS is left out from this comparison since it does not

deal with 3D. This comparison contains some references

to PRIMITIVES and INPUT and may differ from the details

expressed there. Consider principles only here.)

1./ CORE: 2D and 3D intermixed: once 3D has been used 2D

primitives are shorthands for 3D's with Z = zcp·

No

2. I

3. I

4. I

GSS8O: 2D and 3D completely separated: internal

TABLES store both 2D and 3D viewing parameters

separately. (Consider LOCATOR to work in a third,

"gniweiv" system based on "normalised locator

coordinates" and "input window".)

The nD primitives use nD viewing and the redefinition

of nD viewing parameters does not change rnD (m = 5-n)

viewing.

CORE GSS8O remark

? VIEWPORT on 2D screen

NDC 3D ? ?

VIEW-REF-POINT through variables projection

VIEW-PLANE ii parameters

VIEW-UP II

PERSP/PARLEL II

'PARL' dir refp, e • e) PROJECT ('CENT' ,
cent

,

PLANE-to-SCREEN ma;eEing

·VIEW-PLANE y

WINDOW .Y

s. /

6. /

- 2 -

CLIPPING

ON/OFF y

FRONT/BACK y

PLANE

DEPTH CLIPP y

ON/OFF

Activate Erojection

at CREATE

SEGMENT

at PROJECT

7./ PRIMITIVES

2D primitives

MARKER-3D

LEGEND-3D

Notes: 1. For MARKER 3D(n) and LEGEND 3D(string), the

current 3D position is projected and mapped

onto the viewport and there a "flat" symbol

is drawn; the 2D CP is not effected. Real 3D .
markers may be implemented later. Texts as

parts of the picture may be properly transformed

if defined through LINE/MOVE/POLYLINE

primitives (from MACRO's?).

2. The activation (and check) of PROJECTION is

in effect the same for the both systems.

*

- 3 -

3. For N° 3-4-5 the visual meaning and easy

modification is of prime importance. N° 3

seems good. N° 4 is not too visual, still

no better solution.

An auxilliary VIEW-SPHERE(r) and a VIEW-BRICK
* (PLFD, PLFU, PRBU) (in WORLD-COORDINATES)

definition of the VIEW-VOLUME is provided

but implemented through the truncated

piramid concept.

4. Dimetric and other visualization methods

(ACCEPTED PRACTICE) provided and implemented

through the basic methods already described.

5. In GSS8O: VIEWPORT parameters stored at

workstation. WINDOW parameters stored at

both WORKSTATION and "central-CORE". On

ACTIVATE-WORKSTATION effective MAPPING

parameters sent to WORK-STATION.

"List of stored segments" stored at WORKSTATION

(as in GKS) as opposed to "list of VIEWING­

-SURFACES" for each segment (as stored in

CORE).

Point-left-front-down, point-left-front-up and

point-right-back-up.

,,

H.15.O1.79. GKS FILE

CORE GKS GSS8O remark

1. GKS-f Y/2 see notes

Notes

1./ GKS may use the ~S-file

- to create, s<are (DELIVER, GENERATE) and reference

(INSERT) repetitive pictorial symbols e.g. standard

to an application

- to store segments and re-use on the same or on

another device

- to remember current status of drawing being edited

(example in GKS).

2./ None of these belongs to a lowest LEVEL CORE.

3./ The first (libraiy) function is to be implemented

in GSS8O as a higher level function.

4./ The second function needs more than the ~S-file:

picture-macros with parameters, conditional expressions

etc.

At present programming language procedures are to be

used, which is not far from a more idealistic solution:

graphics as a proper extension of the programming

language.

5./ The third function is exhibited by the example. If

this is a hardcopy device, than better have a

"hardcopy-attribute" for workstations to produce a

snapshot of the screen. The workstation may emulate

this via /~<:~t, of GKS-file.
.), ~~ cJ \

!fit is documentation drawing than the proper

way·is to

- edit a modell of which

- only parts are shown on the screen and with

possibly different notations (titles, symbolic

elements etc.)

- and at the end a different branch of the program

is to produce the documentation drawing

H.15.01.79. SEGMENTS

Functions

No CORE GKS GSS80 remark

1. CREATE SEGMENT OPEN SEGMENT BEGIN ~"

2. CLOSE SEGMENT CLOSE SEGMENT aND s ...
3. DELETE SEGMENT DELETE SEGMENT y

4. DELETE ALL SEGMENTS ? a

5. RENAME SEGMENT ?

6. BATCH-OF-SEGMENTS ?

a./ The REQUEslNEW DISPLAY SPACE display space function of

GKS deletes all work station segments.

b./ The functions BATCH, NEW-FRAME, RENAME, DELETE-ALL,

etc. resp. UPDATE, REQUEST-NEW-DISPLAY, etc. still

not decided for GSS80.

Dynamic segment attributes

1. VISIBILITY VISIBILITY y

2. HIGHLIGHTING HIGHLIGHTING y

3. DETECTABILITY DETECTABILITY y

4. IMAGE TRANSLATE 2 y

5. IMAGE TRANSLATE 3

6. IMAGE ROTATE 2 y

7. IMAGE ROTATE 3

8. IMAGE SCALE 2 y

9. IMAGE SCALE 3

10. TRANSFORM SEGMENT a

a./ Not applicable while segment open.

- 2 -

b./ Inquiery for attributes in GKS is left to the

LANGUAGE-DEPENT-LAYER, while in CORE it is part

of the standard.

Static segment attributes.

Np CORE GKS GSS8O remark

1. RETAINED/NON RETAINED STORED/NON STORED Y a

2. IMAGE TRAFO type y b,c

a./ In CORE: static attribute, in GKS: function parameter.

b./ In CORE for a segment the type of applicable IMAGE

TRAFO must be pre-declared.

c./ In CORE IMAGE TRAFO affects the clipped image. GKS

does not explicit about that. In GKS all STORED WORK

STATION SEGMENTS may be TRANSFORM-ed (if WORK STATION

is capable).

Two different typings of GKS differ in that TRANSFORM

affects GKS FILE SEGMENTS or not. If GKS FILE SEGMENTS

may be TRANSFORM-ed, than this happens definitely

before clipping.

H.15.O1.79. PRIMITIVES

Main differences

No CORE GKS GSS8O

1. 3D including 2D 2D only 3D and 2D separated

2. CURRENT POSITION Yes

3. form CP y
to endpoint

4. form x 1 to x2
5. from CP

? with Ax

6. GKS file segment Yes

a./ Separation of 2D and 3D increases CLARITY of the

STANDARD and EFFECTIVENESS of an implementation.

b./ Both CORE and GKS has a COMPACT and COMPLETE set

of output primitives.

c./ In CORE explicitly exluded (1.4.2.).

remarks

a

b

"relative".,
b

b

"incremental",
b

C

~
I

- 2 -

Output primitives

No

1.

2.

3.

4.
C'
..J •

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

a./

b. /

C • /

CORE GKS GSS8O remark

MOVE ABS 2 MOVA2

MOVE ABS 3 MOVA3

MOVE REL 2 ? a
....--...

M'0VE REL 3 ? a

LINE ABS 2 LINA2

LINE ABS 3 LINA3

LINE REL 2 ? a

LINE REL 3 ?

POLYLINE ABS 2 POLYLINE P(J)LA2 b

POLYLINE ABS 3 P(J)LA3

POLYLINE REL 2 ? a

POLYLINE REL 3 ?

TEXT STRING STRING

MARKER C

MARKER ABS 2

MARKER ABS 3

MARKER REL 2

MARKER REL 3

POLY.MARKER

INSERT SEGMENT y d

DRAW CURVE e

The necessity of relative coordinates is deleted yet.

CORE and GKS POLYLINE differs in the- starting point. - -

MARKER in GSS has only one parameter: the marker

number.

- 3 -

d./ A macro facility is an important part of a RICH

and COMPACT system. We want to implement such an

extension, but the form and level is not yet

decided.

e./ A curve generator function will be implemented in

GSS80.

Static primitive attributes

No CORE

1. CURRENT PICK ID

1.5 level

2. CURRENT COLOUR

3. CURRENT INTENSITY

4. CURRENT LINESTYLE

5. CURRENT LINEWIDTH

GKS

1 level

6. PEN REPRESENTATION

7. PE~ NUMBER

8 . CURRENT CHARPLANE

9. CURRENT CHARSPACE CHARACTER SPACING

10. CURRENT CHARSIZE CHARACTER SIZE

11. CURRENT FONT TEXT FONT

12. CURRENT CHARQUALITY TEXT QUALITY

GSS80

y

1.5 level

a./ If number of candidate units for manipulation is

in the range of number of candidate units for

operator-pick, the two systems are equi-potent.

If, however, the second is relatively high, 1.5

, levels may save plenty of storage and some time

aswell.

remark

a
PICTURE
STRUCTURE

b

b, c

- 4 -

b./ InGKS it is easyer to change program for different

devices.

c./ GKS text doesn't specify_clearly whether the

linetype(style) and linewidth affects texts or not.

H.15.O1.79. INPUT

1./ Input mode

GKS: "single wait mode", that is: one device

ENABLED at a time, and program suspended

until the end of input action.

CORE: "non-wait mode 11
: any number of devices

ENABLED at a time, program runs until AWAIT

encJ~tered. Input data queued.

GSS8O: "selective wait mode": any number of devices

ENABLED, program runs until AWAIT enc6¢tered,

however the first input action DISABLES all

devices. No input queue, the DEVICE NUMBER

received by AWAIT is used to retrieve data

from the proper device.

2./

No

1.

2.

3.

4.

5.

6. ,,

To avoid loss of data it is advisable to

AWAIT immediately after the required number

of ENABLE's and retrieve data immediately

after AWAIT. (Not a beautiful solution.)

Logical input device classes

CORE GKS GSS8O remark

PICK PICK PICK b

KEYBOARD KEYBOARD KEYBOARD b

BUTTON·· CHOICE_ BUTTON- a,b

LOCATOR LOCATOR LOCATOR b

VALUATOR VALUATOR VALUATOR b

CLOCK ?

a./ BUTTON in CORE is not ORTHOGONAL in the sense

that the knobs on a box are different DEVICES,

not different codes from one device.

b./ In GKS all input devices used in a POLY-input

mode.

3./ Device characteristics and special functions

Prompting, initial value setting, echoing, inquiry.are

highly implementation dependent features

GKS is more hORest to confess dependency, CORE functions

are very much implementation dependent.

4./ Input functions

No CORE GKS GSS80 remark

1. device class

2. ENABLE Yes

3. DISABLE

4. AWAIT YES a

5. queue

6. ASSOCIATE

7. DISASSOCIATE

8. single input data Yes

9. - input group
of data

10. READ LOCATOR Yes

11. READ VALUATOR Yes
,.

- 3 -

No CORE GKS GSS8O remark

12. GET PICK DATA REQUEST S-ET OF GET PICK DATA see 8·. , 9.
PICK DATA

13. GET KEYBOARD REQUEST _TEXT GET KEYBOARD see 8 • , 9.

14. REQUEST SET OF GET BUTTON see 8. , 9·.
CHOICE

15. GET LOCATOR REQUEST SET OF
LOCATOR DATA

16. GET VALUATOR REQUEST SET OF
VALUATOR DATA

a./ GSS8O doesn't have TIME parameters, the CLOCK device

may be ENABLED instead.

b./ CORE data received·by AWAIT.

s. I Minimum set of input devices

No CORE GKS GSS8O remark

1. 1 1 l PICK

2. 1 1 1 LOCATOR

3. 1 1 1 KEYBOARD

? ASCII 96 ASCII 96 "resolution"

4. 8 1 1 BUTTON

1 ? 8 "resolution"

5. 4 1 1 (?) VALUATOR

6 bits ? 6 bits "resolution"

b

INTRODUCTION

GKS/CORE COMPARISON - SEGMENTATION

D.S. H. ROSENTHAL

The following is an attempt to identify the semantic differences between
the graphics pseudo-packages specified in the ACM-SIGGRAPH Core Report and the
DIN Proposal in the area of segmentation. It consists of a description of
this area of each package in a compatible format, and a comparison of the two.

GKS SEGMENTATION

In GKS all segments have names, and the segment associated with a
particular SEGMENT...NAME can be in one of five distinct states:

1. Non-existent.
2. Open.
3. "On" at least one work station.
4. "In" the GKS file.
5. "On" a work station and "In" the GKS file.

The GKS description is not completely clear about multiple work stations;
the following assumes only a single work station.

Transitions between these states are caused by applications of the
following GKS functions:

A.
B.
C.
D.
E.
F.
G.

OPEN SEGMENT
CLOSE SEGMENT
DELETE SEGMENT
RESET GKS FILE - -CLOSE WORK STATION
GENERATE GKS FILE SEGMENT FROM RECORD - - - -REQUEST_NEW_DISPLAY_SPACE

The transitions between states caused by each function are set out in the
following table:

TO STATE

l 2 3 4 5

s l A F /
F T 2 B B B
R A 3 CEG
0 T 4 CD
M E 5 C D EG

* I assume that function GENERATE GKS FILE SEGMENT FROM RECORD in
state "Work Station+ GKS File Active" results in a work station
segment as well as a GKS file segment, the document is not clear
on this point. ,,

CORE SEGMENTATION

<.,l

In the Core, segments are of two main types. Non-retained segments have
no names, but the retained segment associated with a particular SEGMENT NAME
can be in one of three distinct states:

1. Non-existent
2. Open
3.· Closed

2

-
Transitions between these states are caused by application of the

following core functions:

A. CREATE SEGMENT
B. CLOSE SEGMENT
C. DELETE SEGMENT
D. DELETE ALL SEGMENTS
E. RENAME SEGMENT

The transitions which they cause are set out in the following table:

TO STATE

1 2 3

F
s 1 A!.. -L
T 2 CDE+ B

R
A 3 CDE

0
M T

E

+ See reso1'1tion of issue_ 3. i. 6.

COMPARISON

1. The Core permits access to the open segment by name (DELETE_SEGMENT,
RENAME_SEGMENT and inquiry). GKS only accesses the open segment
implicitly, and permits DELETE SEGMENT only when no open segment
exists.

2. GKS provides no RENAME_SEGMENT function, whereas the Core does.

3. The Core distinguishes two types of segment, "retained" and "non­
retai:ged". GKS distinguishes two types of segment, "work station"
and GKS file", though a single name may have both types of segment
simultaneously associated with it. These concepts differ as
follows:

3.1 All GKS segments have names.
names.

Only retained Core segments have

3.2 GKS work station segments survive until explicitly deleted or
their work station is closed. Non-retained Core segments
disappear at a new frame action.

3:3 GKS work station segments may undergo image and visibility
transformations, if the work station supports them. Non­
retained Core segments may not undergo such transformations.

Thus it appears thata'll GKS segments are "retained".

4. The support of image transformations is a propertr of the GKS work
station; and all segments on that work station may be transformed.
The support of image transformations is a property of the Core level,
and only segments of appropriate type may undergo image"transformations.

5. The Core provides, from level 2 up, only one place where segments may
be stored, in the display file. GKS provides three places, namely
"On" the work station, "In" the GKS file, and in a user record. GKS
rejects the argument (a) of Core issue 3.2 and insists that all imple­
mentations include at least one display file (the GKS file). This
decision means that there is no prohibition on functions parsing the
display file (e.g. INSERT_SEGMENT).

SIGGRAPH

Connnents on the Graphical Kernel System (GKS) and the GSPC
proposal with respect to their differences.

NOTE: These reactions are mine only reporting as an
individual and do not represent a view of IBM.

Output primitives and Generation Functions

GKS has no "current position" concept and no MOVE function;
GSPC has both. While GKS is cleaner (less confusion); GSPC
tries to encompass current practice.

Input Primitives

Is GKS CHOICE input a kind of "button" or switch input. It
needs clarifying.

Input functions

In GKS input occurs when a device is used; in GSPC input
devices are enabled and then separately read. GSPC also has
"event handling" and an "Await-event function".

Storage of Graphical Information

GKS has two levels of std'rage "segments" on the work station
and "segments" in the GKS file. Also mentioned is record
I/O in GKS file functions, but "record" and format/structure
of a record is not discussed. GSPC has segments only in one
sense (the GKS file sense). GSPC has no work station but
leaves the 'display file' management to the device driver
level. GKS assumes a memory in the workstation but a
storage tube terminal and a plotter may not have a memory.
However the two proposals are not very different but only
seem to be. For instance in GKS one cannot read back a
segment from the work-station memory, it is for output only
and therefore a GKS station is like a GSPC device
view-surface. Also GSPC has the concept of retained
segments or non-retained segments (analogous to GKS states:
work station active or not with GKS file active). In GKS
segments are named in GSPC segments and primitives in a
segment are named and identified respectively for more
refined 'picking' in interactive applications however GKS
"Draw" has an unexplained "generalized primitive
identifier". A Pseudo-segment file in GSPC (I'm not certain
of its latest characteristics) allows segments to be
multiply reusable, as also are GKS file segments. The
files, view-surface, work-station could benefit by a common
nomenclature and definition system. The intentions appear

PAGE 2

to be close enough to become one. Where do intermediate
files for device drivers fit with respec;..t to a work-station?

Transformations

In GKS the order of transforming
scale, rotate and shift. In GSPC
shift. These two specifications are
more consistently stated for purity.

a segment (object) is
it is rotate, scale and
equivalent but could be

GSPC uses graphics to explain the viewing transforms. (Very
helpful. When GKS is expanded to 3D it should be consistent
with the GSPC transformation.

New Display Space

I like the word ERASE or even CLEAR
new-frame, "Clear" is acceptabe for
"update" is the same as GSPC new-frame.

better. GSPC. uses
plotters too. GKS

Inquiry

GKS states that this is to be defined in the language
dependent layer; however state information is accessible.
Terminal characteristics should be made available. (#
characters in row, # rows etc.) GSPC includes a wide
variety of inquiry functions. A co·nsensus needs to be
reached .because the approaches are quite different.

Non-Standard Issues

GSPC provides a standard method to be non-standard - i.e. an
escape function. GKS does not provide such a mechanism.

Modelling Transformation

A "hook" is provided by GSPC but not by GKS.
modelling/viewing transforms are possible.

Overall Impressions

Composite

GKS gives the appearance of being clean and simple and
adequate for 2D interactive graphics. It gives one the
impression of being easier to learn initially than GSPC.
The GKS authors are to be congratulated on another fine
effort. It is hoped that we all benefit from the best of
both GKS and GSPC (and other porposals).

Robin Williams

Comparison of GSPC Core and DIN GKS

K.W. Brodlie (Leicester University)

1. Introduction

Both standard proposals specify a set of basic functions for a graphics
system, independently of graphical output device, programmi~g language or
application.

Main points are:

(a) Both proposals group output primitives into segments, but only GKS allows
the user to keep a file of segments and hence insert previously created
segments into new segments.

(b)- GKS is restricted to 2D; the Core allows 3D.

(c) Both systems use a window--viewport type of mapping from user co-ordinates
' to normalised device co-ordinates.

(d) The Core has a CP; GKS has not.

Some particular areas are compared in more detail in the following sections.

2. Initialization of system, work stations, view surfaces.

Both the Core and GKS have similar routines to initialize and terminate
the graphics system. The Core is structured into levels and so the user has
to specify via the initialization routine the level of the system he is using.
GKS allows a user-defined error procedure to be specified at initialization.

The Core supports just one work station, but that work station may have
several view surfaces, any number of which may be selected at any one time.
GKS supports a number of work stations each with one view surface, but only
one work station can be active at any time.

3. Display space control

In GKS, 'SET REQUESTED DISPLAY SPACE' lets the user define a subrectangle,
relative to the actual display space, for each work station. A paper quality
can also be defined for plotters. The Core has 'NDC SPACE 2' which specifies
a maximum width and height in normalised device co-ordinates and which applies
to all view surfaces. The GKS scheme seems more flexible, but it is not clear
if the normalised device co-ordinate space on a work station is in terms of
the actual or requested display space - presumably it is the requested space.
Also it is not clear if the normalisation is such that the maximum or minimum
dimension is 1.0.

4. Viewing transformations

Both systems have a window-viewport mapping.

The Core allows the user-space to be rotated with respect to device-space
(via the VIEW UP 2 vector) before the window is applied. There is no corresponding
function in GKS.

Both allow clipping, but in the Core there is simply an on-off switch
for window clipping. In GKS, the user can specify a clipping rectangle within
the window. This is a big improvement because it separates the notions of
mapping and clipping.

- 1 --

'5. ,. .,Segments

GKS allows the user·to maintain a display file, the so-called GKS file.
Segments written to this file can be recalled either for insertion in another
segment,or for.'delivery' to the application program, presumably for long-term
storage. Likewise a segment can be passed from the application program to·
the GKS file.

As far as can be seen, inserted segments lose tneir own identity and
assume the attributes of the segment into which they are inserted. Thus the
GKS INSERT function is simply a shorthand for a sequence of output primitives.
This needs to be made clearer in the definition of GKS.

The Core does not maintain a display file, and thus the insertion of
segments is not a possibility.

Both systems have a function to delete a segment, but only the Core has
a function to rename a segment.

Both systems have a function to transform segments at a work station:
TRANSFORM SEGMENT in GKS, and IMAGE TRANSFORMATION in the Core.

The Core allows primitives within a segment to be detected using the
PICK ID attribute. GKS has no such function.

Segment attributes of visibility, detectability and highlighting seem
similar in the two systems.

6. Primitive attributes

In the Core, all attribute setting is done within segments. In GKS,
colour, intensity, linewidth and linestyle cannot be specified directly
within a segment. Instead the user must define a set of conceptual pens
outside a segment, these pens having attributes of colour, intensity, etc.,
and any change within a segment is achieved by pen selection. This is a
good scheme because it allows segments to be defined in a device-independent
manner.

• 'II"
In both systems, character attributes are specified within segments.

The attributes are similar - size, spacing, font and quality. One small
difference is that in GKS high quality text is subject to the current line
attributes (i.e. linestyle, linewidth) - not so in the Core. (Incidentally
it could be argued that text font and quality should -also be associated with
a pen and specified outside a segment).

7. Output primitives

GKS has no CP, while the Core has one CP. As a result the GKS POLYLINE
primitive replaces six Core functions MOVE, LINE, POLYLINE in absolute and
relative co-ordinates.

The definition of a marker is similar in both systems i.e. device
dependent and without size or quality. In my view ·this is wrong - markers
should have size and quality attributes.

GKS has a DRAW function to act as a generalised output primitive.
There is ~o corresponding function in the Core. Probably a function such
as DRAW is best specified in a higher level standard.

- 2 -

Extract from Minutes of 5th Meeting of
BSI DPS13/WG5, held on 22nd January 1979

Minute 4: ~?mparison of the DIN GKS and GSPC Core Standard Propo~.

The meeting discussed the new·Gennan standard proposal GKS, and compared
it with the GSPC Core. The following summary of the BSI gr6up's joint views
will be sent to Paul ten Hagen as co-chairman of the ISO Editorial Board,
together with personal contributions from Bob Hopgood, David Rosenthal,
Ken Brodlie and perhaps others. Hopgood's paper was distributed at the
meeting.

It was agreed that the major difference between the two proposals was
the decision by GKS to maintain a display file, the so-called 'GKS file'.
This almost certainly influenced many of the other decisions taken in GKS,
and many of the differences between the two proposals can be traced back to
this single major distinction. The idea of maintaining a display file was
generally welcomed.

The following other points were agreed:

(a) Current Position: The GKS treatment of CP (i.e. no CP) is tidier and
more consistent.

(b) Pen Representation: The GKS idea of setting pen attributes outside
segments is a natural consequence of the decision to maintain a display file,
and in this context is welcomed. However further explanation of the advantages
of this form of attribute setting in the case of raster graphics is needed,
and in particular it is unclear if a change of pen representation affects
closed segments. The pen representation style of attribute setting is useful
for writing device independent graphics subroutines.

(c) DRAW: The generalized output primitive DRAW in GKS should not be part
of a standard at this level. Its correct place is at a higher level standard,
although there must be a 'hook' to allow a by-pass of the lower level. (This
is in order to make use of circle-drawing, ellipse-drawing, etc. by intelligent
devices).

(d) Renaming: The lack of a RENAME fhnction in GKS is considered a serious
omission. Such a function is particularly useful for extending segments which
are already closed, something which cannot adequately be done using the INSERT
function.

(e) INSERT: The INSERT function in GKS is another consequence of the display
file decision. It is assumed that the INSERT function is simply a 'macro'­
type facility for inserting output prinitives into a segment, and does not
offer true nesting of segments - but this needs to be made clearer. The
INSERT function means that symbol drawing is made very much easier in GKS
than in the Core.

(f) 2D versus 3D?: It is correct to establish a standard for 2D graphics
before tackling 3D.

~) Levels or Modules?: Clarification is needed from the Germans on further
development of GKS - whether the structure will be in the form of levels or
modules'~ The minimum needed for an implementation of GKS appears to be
greater than for level 1 of the Core.

(n) Input: A PICK ID function is needed in GKS to make the handling of
menus easier.

There. should be some facility in GKS for defining graphical responses
for prompting, and associating thes~•with various input devices •

. /
It is a poor feature of GKS that only one input primitive can be enabled

at any one time. It should be possible to enable a set of primitives, and
get GKS to interpret which primitive is received.

(i) Error-handling scheme: The option of a user-defined error procedure
in GKS is welcomed.

There were mixed views on the merits of a separate clipping and
window rectangle as in GKS, with a small majority in favour.

- 2 -

/

lJ ; 5 f k -~ t t~_;..._.,.,_

Comparison of properties between the GKS and
the GSPC proposals

1. 1) GKS is a pure 2D-system and the basis for a standard. 3D is not yet
3D· included and not to be handled in the near future.

I

Motivation: Most criterion

2) The GKS user interface does not know about a CURRENT POSITION and has
no commands for MOVTO and LINTO and no relative coordinates.
Motivation: CURRENT POSITION, MOVTO, LINTO ...

have a strong device dependent component. (device simulation)

3) The GKS user interface has an easy understandable input interface (request
input). The "state of the art", e.g. the event input has a strong device
dependent component.
Motivation: The aim is to have a symmetry between input and output commands,

e.g. additional effort is needed to make a standardization of
high-level input primitives possible.

4) The GKS user interface includes an object storage (GKS-File Object library).
Objects may be used for the (primitive) modelling of other objects.

Motivation; Most criterion

I
(5) The GKS system includes the concept of a workstation (formed by any set of

output and input devices). Fundamental capabilities:
a) ability to receive a stream of standard output (picture) data
b) ability to send a stream of standard input data to another modul
c) ability to store data

6) The GKS system has only the one level naming and modification mechanism
Motivation: Symmetry

7) The GKS system has no HOOK, e.g. there is no standard mechanism for the inte­
gration in GKS of a "non standard capability" of a graphic system. High-level

'" graphic output primitives may be implemented by the DRAW commands (generalized
primitives).

- 2 -

8) The GKS system is characterized by states and operations. A special importance
is given to the operating states

. GKS closed
GKS open

. workstation active

. GKS file active

. Workstation and GKS file active

. Segment open with Workstation active

. Segment open with GKS file active

. Segment open with Workstation and GKS file active

The GKS system has so a strong syntactical structuring.
Motivation: Least astonishment

9) The GKS system allows only to activate one workstation at a time.

SCIENCE RESEARCH COUNCIL

COMPARISON OF DIN AND GSPC
(BSI Meeting Jan 22 1979)

F R A Hopgood

1 INTRODUCTION

January 3, 1979

This paper does not actempt to give a full comparison of the two systems.
One reason is that the degree of completeness in terms of the definition
differs considerably. For this reason, precise comments can often be made
about one system and nc,t the other. Also, it is possible to interpret both
systems in a variety of ways. A larger set of examples showing
implementation strategies on a variety of devices (particularly storage
tunes) would be welcome.

2 LEVELS

Both systems are defined on a level rather than module basis. Consequently,
a storage tube or plotter user bas to carry the full system •. GSPC have
shown signs of going away from the l~vel approach. In tnc DIN propos~l,
there is no method of using it without implementing segments in some way.
The DIN proposal is approximately levels 1 to 3 of the GSPC proposal but
omitting 3D. The lack of any subdivision of the DIN proposal may be a
criticism.

3 OUTPUT PRIMITIVES

The DIN proposal has made the major change of defining no current position
and insisting that all primitives are defined in absolute coordinates in the
user coordinate system. The problems experienced with current position
indicate that this is a sensible way to go and is preferable to the GSPC
approach.

As a result of this decision, man1 of the GSPC primiti,ves · translate· to a
single DIN primitive. For this reason, there is little dif~erence between
the proposed primitives in the two systems. Both include· polyline. The DIN
proposal does include a generalised primitive identif1er. which allows a
whole· series of higher level primitives. It is interesting to note that
these include area fill as well as-more complex arc drawing primitives. It
is important that these additional primitives are well defined. No
information is given concerning these and it is suggested that they may be
part of a separate standard.- Would there be one or possibly more than one
standard for these higher level primitives. Are they seen as derivatives
from polyline or separate primitives with their own attributes. Is it
poss~ble to define new attributes for them.

The DIN proposal does not allow the .concatenation of text and would expect
this to be done by buffering prior to output if even spacing of low quality
text is required.

4 PRIMITIVE ATTRIBUTES

Both systems define colour, intensity, line type, thickness, font, char size­
as primitive attributes of some kind. The DIN proposal appears to define
all but character attributes as segment attributes. If this is true, it is
likely t0 force the proliferation of segments with the corresponding
overheads. The DIN proposal has a pen number attribute which implies an
open-ended set of device dependent options. There is insufficient detail to
make any comment.

Major difference between the two proposals is the lack of a PICK-ID in the
DIN proposal. This means that each light button of a menu will reside in
.5.-:;J,iia.i."a.to ;;~gments with the consequent overheads which, in the DIN proposal,
appear large. This is a fundamental omission which needs to be assessed
carefully. Most existing systems which lack this have found a need for it.

5 SEGl-'ENTATION

The major difference between the two systems is the introduction of a
central file of segments in the DIN proposal. It allows segments to be
manipulated and output to a number of devices using this facility and the
INSERT function.

Tne DIN proposal specifically allows the user to control the flow of traffic
from system to device. Renaming and appending to segments is presumably
done by using the INSERT facility in the DIN proposal.

Both proposals provide image transformations of individual segments. This
goes against the concept of divorcing picture drawing from modelling. For
example, see the DIN test program in their document.

2

6 .· VIEWING TP.ANSFOBMATIONS
'a

The DIN proposal is only 2D and consequently much simpler.· ThThere may be
problems in extending to 3D if compatibility with 2D is to be retained •. The
DIN proposal has a separate clipping window from the viewing window.

7 INPUT PRIMITIVES

Both systems have the same 5 input functions. The DIN proposal does not
have the concept of an event and a sampled device. Instead a request is
made for a specific number of inputs from a particular device and only one
device can be active at a time. This _seems to be far too restrictive and
will certainly cause problems. It severely.restricts the operator's method
of working.

Valuators in the DiN proposal are restricted to the range (0,1) for no
apparent reason.

There is no minimal set of available input devices in the . DIN system •.
Consequently, many device dependent features will have to be implemented in
the application program. The GSPC approach of specifying a minimal set
always supported seems preferable.

The GSPC proposal allows some connection between input and echoing. Most of
the DIN proposals see this as device dependent. Consequently, the opet'ato.r
may get a significantly different view or· the system on different devices.

3

