stichting

mathematisch |

centrum MC
AFDELING INFORMATICA IN 18/80 AUGUSTUS

(DEPARTMENT OF COMPUTER SCIENCE)

C.J. RUSMAN

B-SPLINE ALGORITHMS

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centrne, 413 Kuuislaan, Amstesrdam.

The Mathematical Centre , founded the 11-th of February 1946, is a non--
profit institution aiming at the promotion of pure mathematics and Lits
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.0.0.).

1980 Mathematics subject classification: 65D05, 65D07

ACM-Computing Reviews-category: 5.13

B-Spline Algorithms

by

C.J. Rusman

ABSTRACT

B-spline algorithms, given by C. de Boor, are being made suitable for
the graphical system of the Mathematical Centre, while the theory leading
to the algorithms is treated in detail. An alternative algorithm for B-

spline interpolation is developed, and compared with the 'de Boor' algo—

rithms.

KEY WORDS & PHRASES: computer graphics, B-spline approximation, interpola-

tion

CONTENTS

1. INTRODUCTION
2. PIECEWISE POLYNOMIALS

3. SPLINE FUNCTIONS
3.1. Introduction

3.2. Determination of a spline function

4. B-SPLINES

4.1. Introduction

4.2. Definition of a B-spline

4.3. Normalization of a B-spline

4.4. A recurrence relation for calculating B-splines

4.5. Calculating B-splines

5. INTERPOLATION WITH B-SPLINES

5.1. Multiple knots

5.2. The B-spline basis

5.3. B-representation for splines

5.4. Interpolation

5.5. Differentiation of splines and B-splines

5.6. Solving a linear, banded system

6. A NEW ALGORITHM FOR B-SPLINE INTERPOLATION
6.1. Introduction

6.2. B-spline polynomials

6.3. B-spline interpolation

6.4. Measurements
APPENDIX A. Divided differences and some related theorems
APPENDIX B. The MC-graphical system and the C-programming language

#

APPENDIX C. Supplementary procedures

1. INTRODUCTION

This is an essay on algorithms for interpolation by polynomial splines,
being determined by linear combinations of B-splines.

Assuming that hardware facilities would make it possible to plot poly-
nomials from their coefficients, the ultimate goal was set at representing
the polynomial splines by the coefficients of the composing polynomials.

Chapter 6 is the outcome of this endeavour. On the other hand, while
studying the theory of polynomial splines, it became apparent that when hav-
ing existing algorithms available in the graphical system of the Mathematical
Centre, this would enrich the system. This is the reason why the rest of the
essay is concerned with making the procedures of the 'de Boor-set' (cf. [2],
[47) suitable for the system.

The theory leading to the respective algorithms is quite self-contained,
in that complete proofs are given for almost all the theorems. The few that
make the exception would lead to considerations which are of no relevance
for the presented work.

Although the greater part of the procedures can be used for splines of
arbitrary order, in the examples and in the procedures of Chapter 6, the
order has been fixed at 4.

The procedures, as presented here, are not given in their most efficient
form, but in a way that facilitates reading in relation to the text.

Some mathematical foundations are given in Appendix A, the graphical
system mentioned and programming language used are briefly described in
Appendix B, while the procedures which do not follow directly from the pre-
sented theory have been put together in Appendix C.

ACKNOWLEDGEMENT

This work was carried out as a "doctoraal scriptie" while working at
the Mathematical Centre. The work was supervised by Prof. Th.J. Dekker and
Drs. P.J.W. ten Hagen. The new algorithm of chapter 6 is based on a method

developed by P.J.W. ten Hagen.

&

2. PIECEWISE POLYNOMIALS

Assume we want to construct a curve of the form y = y(x), and that we
require thezfurve to fit the set of datapoints (xo,yo),...,(xn,yn) where
(xi,yi) e R, i=20,1,...,n and X, < X, <...< xn.

Classical methods of numerical analysis which tackle the suggested prob-
lem by polyhomial fitting, have, to their disadvantage, either the tendency

“to oscillate (fitting with high-degree polynomials) or insufficient fit at
the datapoints (least squares approximation).

A way to circumvent these disadvantages is to construct a piecewise
polynomial, consisting of successive low-degree polynomials, which inter-

polates the given datapoints.

n
DEFINITION 2.1. Let (xi)i_ be a strictly increasing sequence, xi € IR, and

0

let k € WN. Let po'pl""'Pn— be a sequence of polynomials of order k

1
(degree k-1), then the piecewise polynomial £, denoted by pp, is defined by:

£(x) := pi(x) if xi < x < xi , 1i=20,1,...,n-1.

+1

At the interior points Xi' which we, together with xO

breakpoints, the pp £ now may be considered to have two values.

and xn, will call the

f(xi) =p,

(x.) and f(xf) =P, (x,).
i-1"741 i i i

In order to obtain a single-valued function, we choose to define f to be

continuous from the right:
f(x,) :=p.(x,), i=1,2,...,n-1,
i ii

and extend the domain of f by X, and X :

f(xo) 1= po(xo)

f(Xn) =P (xn)

n-1

Looking for a useful representation for a pp, that interpclates the

given datapoints (x,,y,)?_ ; we consider the subinterval [x,.,x. ,)., -
i1 i=0 k-1 i"7i+l (k=2)
< i< n- = . - . Lo,
0 £1i £ n-1. Let pi(x) ao+a1 X+ 4-ak_1 X , then pi'Pi' 'Pi

exist on [xi,xi+1), and the k-1 derivative is continuocus and differenti-

able on [x,,x.
i’

+1). Then for every X € [xi,xi+1) we have (Taylor)
(x-x) ¥
p. (%) = p, (x.) + (x-x_) .p! (x,) +...4 ——— . p%) (g)
i i i i'FL oo k: R
(k) _
where & ¢ (xi,x). But pi (x) = 0, so
k-1
(x-x.) :
_ i (k=-1)
Py () = py () Het T - Py (xy)
(X—Xi)k_l
= co,i-kclli(x-xi) +...+ ck—l,i' TR

where c¢. . =p 3 (x.), 5 =0,1,...rk=1, 1 = 0,1,...,n-1.
3.1 1 i

We give the representation of a pp £ in terms of these derivatives
cj 17 which is particularly handy when f and some of its derivatives are

4
to be evaluated at a number of points:

DEFINITION 2.2. The pp-representation for a pp f consists of

(1) order k
(ii) number of polynomial pieces n

(iii) the strictly increasing sequence x

0
(iv) the matrix (cj i)?_é g:é of its right derivatives in the breakpoints
, = =

,xl,...,xn of its breakpoints

XO,. ° .,Xn_l

From this definition it follows that

n-1 k-1 (xx)’
(N £(x) = izo jZo cj,i' 3 ; X € [xo,xn]
and
(m) k-1 (x—xi)j_m .
(2) £V (%) =) ¢ it TG X € [x,,%;), 0 <i<n-2

X € [xn_l,xn], if i = n-1.

¢ t]
For the evaluation of the m h derivative of the pp £ at the point

x ¢ [x.,x. ,), we see from (2) that
i" i+l

£ (m) A A A

+= (o (.
2le Cooe QT " 1,4

A
x) =c ;+7le m+2,1 73

m,i

))...)

m+l,1i

where A = x—xi r which is used in the following procedure:

double
ppval(breaks,order,numpol,pcoef,x,der)
double breaks[], pcoef[][MAXORDER], x;
int order, numpol, der;
/% This procedure calculates the value of the “der”th
* derivative in the point x, of the piecewise polynomial
* given in (breaks, order, numpol, pcoef).
The procedure uses the procedure “interval”, that
* gives in “left” the number i such that
* x[1] <= x < x[i+1].

{ double val, delta;
int n, left, £, 1;

val = 0;
if (der < order) /* else the procedure yields 0 */
{
interval(breaks,numpol,&left,x,&f,&lastleft);
delta = x - breaks{left];
for (n = order~l; n >= der; n--)

val = (val*delta)/(n+l-der) + pcoeffleft][n}];
}

return(val);

3. SPLINE FUNCTIONS

3.1. Introduction

The interpolation as suggested in the preceding section will generally
result in a curve that is not smooth at the breakpoints. Since this is an
undesirable feature, we seek a composite function ¢, which has the following

properties:

(i) over each subinterval [xi,xi), i=0,1,...,n-2, and over [Xn—l’xn]'

+1
¢ is a polynomial,

(ii) at the breakpoints XyreeorX ; the function ¢ is as smooth as possible.

n-1

The smoothest pp on the breakpoints x ree X g is the pp that has as many

0
continuous derivatives at the interior breakpoints as possible. This leads

to the definition of a spline function:

DEFINITION 3.1.1. Let xo,xl,...,xn be a strictly increasing sequence of

points. Let ¢ be a function on [x

O,xn], which has the following properties:

(i) ¢ is a polynomial of order k on each subinterval [xi,x,),

i+l
i=0,...,n~2 and on [x ,,x]
n-1""n

(ii) ¢ and its first k-2 derivatives are continuous at the points

xl,...,xn_l.

Then ¢ is called a spline function of order k on the knots x_,X ree e X g

01
and the subintervals are called the spans.

We see that a spline function is a piecewise polynomial which is as
smooth as can be, without simply reducing to a polynomial!
The desired interpolating function then is the function ¢ which has

the properties i) and ii) of definition 3.1.1, and for which
¢(Xi) =Y, i=20,1,...,n.

We call this function the spline function with the knots XO""'xn'
which %pterpolates the datapoints (xo,yo),...,(xn,yn). The interval [xb,xn]
is called the support of the spline.

If the order is 4, we call the spline function a cubic spline.

For interpolation problems, splines of even degree are not often used,
since they have certain characteristics that make them less suitable

(C11, ch.3).

3.2. Determination of a spline function

Consider the cubic spline function ¢ (order 4), with knots X .,X, ,...,X

01 n
and datapoints (xo,yo),...,(xn,yn). Since ¢ is cubic, ¢" is linear in x.

Consider the span [x, ,xj], 1 <3 <n, and let hj = xj -x, ,.

j-1 j-1

We have
XX, 4 X -X
(3.2.1) P (%) = ¢M(x.). — 4+ ¢ (x,). ——
J h. j-1 h,
J J

Two integrations then result in

" (x.) " (x. ,)

- - 3,31 —x)3 -
(3.2.2) ¢ (%) en. - (% Xj—l) + eh. . (xj x) " + C1.X'+Cz
J J
and we will try to determine clyc2 and ¢"(x0),...,¢"(xn). Take x = xj:
3

¢"(Xj).h.

(3.2.3) ¢(xj) ='——~ETET~1-+ cl.xj-i-c2
J
and x = xj_l:
3
¢"(X
____;L______

(3.2.4) ¢(xj_1) 6hj + cy- xJ 1-+02.

Subtracting (3.2.4) from (3.2.3) gives

_*1;21

(3.2.5) ¢(Xj)—¢(xj_1) = (¢ (xj)-¢ (xj—l))' o+ cl'hj'
This gives

d(x.)-¢(x, ,) h,

= J 3_1 . " AN _J

(3.2.6) cy hj (¢ (xj) ¢ (xj_l))- 3
and c2 can now be evaluated from (3.2.3) and (3.2.6):

P (x,)-¢" (x, ,)
(3.2.6) c J it NN

2 - 6 Yy

On the span [Xj—l'xj] we get, after once integrating (3.2.1) and using

(3.2.6):
" (x,) " (x, ,) d(x.)-p(x, ,)
. -3 _ 2 _ -1 o2 3 j-1
¢ (x) 2.1, - (%) Zn, c FyR A B
¢II (Xj)_¢ll (xj—l)
- G . hj.
Take x = xj:
' Ei Ei ¢(X.)—¢(xj_1)
(3.2.7) ¢ (xj) = . 0 (xj—l) + 3. ¢ (xj) + o
3+1
Now on the span [xj,xj+1]:
¢"(xj+1).(x—xj)2 ¢"(xj) 5 ¢(xj+1)-¢(xj)
' (x) = 2h. BTN T h.
j+1 j+1 3+1
i ¢ (xj+1)—¢ (xj) .
6 Bt
Take x = xX,:
J
h, h, o(x, ,)=-d(x.)
' R i N _ 4w j+l j+1 5}
(3.2.8) ¢ (Xj) 3 . ¢ (xj) o (xj+1). e+ hj+1 .

Since we have continuity of the first derivative at the knots xl""'xn—l'
we find by equalizing (3.2.7) and (3.2.8) for j = 1,2,...,n-1, exactly

(n-1) equations:

Ei Ei. hj+1 hj+1
(3.2.9) g - ¢l F e TG b) e 9 (k) =
_ ¢(xj)—¢(xj_1) . ¢(xj+1)—¢(xj) .

hj hj+1

We were trying to calculate the n+l1 unknowns ¢"(x0),...,¢"(xn), so we need
precisely two additional relations to enable us to determine the spline func-
tion ¢ unambiguously wvia (3.2.2) and (3.2.6).

The cubic spline can thus be constructed by using the n+l function values in
the knots, and just two other items of information, making (n+3) items of

data in all.
The additional relations will, depending on any specific application,

be chosen from one of the following possibilities:

(i) free ends : let the spline function be straight outside the inter-
val [xo,xn]: ¢"(x0) = ¢"(xn) = 0. The resulting spline
is called a natural spline

(ii) fixed ends : let the slope of the spiine function be given at the
endpoints: ¢'(xo) = a, ¢‘(xn) = b. The resulting spline
is called a complete spline

(iii) 'not a knot': let the first and second polynomial pieces coincide on
[x.,%.), and the last and one but last polynomial pieces

0" 2
coincide on [x ,xn]. This means that x, and x are

-2 -1
not considerednas knots, and we have n—31polyno;ial
pieces rather than n-1, together with two interpolation
points which are not breakpoints.: The additional rela-
tions are generated by taking ¢" continuous across the

knots x1 and xn-l'

3.3. Example

Let xo,x1

points, and let ¢"(x0) = ¢"(xn) = 0. Then equation (3.2.9) yields

,...,xn be a strictly increasing sequence of equidistant

¢(xj)—¢ (Xj—l) . ¢(xj+1)-¢(xj) \
-h h ’

= fo)l

¢"(xj_1)+4.¢"(xj)+¢"(xj+1) ==, (

.7 i=1,2,...,n-1.

il
o
L)

In matrix form:

>

q)n (xi)

>
RN

» o0 @5 & 8 DR O B8 B Y B
1

5 & & % 2 & ¢ 2 ¢ O @ B O O

—
[
<
X
3
!
[ary
]

n-1

4. B-SPLINES

4.1. Introduction

Consider a cubic spline ¢ with ¢(x) = ¢'(x) = ¢"(x) = 0 at both
the endpoints of the range defined by the knots. Then those 6 relations
enable us to compute a spline with 6-2 = 4 knots. This spline turns out to
be ¢(x) 0.

If we take 5 knots xi,xi+1,xi+2,xi+3,xi+4
piece of information. To ensure that the spline is not identically zero, we

[

r we just need one additional

specify a function value at an internal knot.

By extending this spline from its endpoints by straight lines along
the axis, we get a cubic spline over an indefinite number of spans, which
is non-zero only on 4 adjacent spans. This function will be called a B-
spline (Basic, Bell shaped, fundamental) of order 4, and is denoted by

M4,i (see fig. 4.1.1)

25 C Kli+1] x(1+2] x[1+3] wl1+4]

The B-spline is determined by the knot-set on which it is defined, and one
function value # 0. The support of this spline is minimal: if we take away
one knot, the B-~spline degenerates into the function which is identically

zero everywhere.

4.2. Definition of a B-spline

Fa

We will formally define a B-spline in terms of divided differences,

and need one preliminary definition:

10

DEFINITION 4.2.1. The truncated power function tt is defined as:

& if tzo0
tk =
+
0 if t <0
+ . . 3
where k € W and t € IR. Now consider the function f£(x;z) = (z—x)+, of

which we form the 4th divided difference with respect to the strictly

increasing sequence X, ,X,. X, X, X,
g sequ 17T i+ T2 71437144

By using theorem A.l1 we get

4 (x —x)3
itk O+
(4.2.1) d(x) == flxsx ,X_ /X, /X, X, 1= Z ___'1_______
IR B I 15/ Rt I e R ko @ (xi+k)
where 4
wix) = kzo (x—xi+k).

When we study this relation, we find that because of definition 4.2.1:

$(x) =0 if x 2 X4

and that because of theorem A3:
d(x) =0 4if x < X, -

Each of the functions (xi —x)i is continuous in the point xi r k=20,1,2,

+k +k
3,4, up to its second derivative, so ¢ is a cubic spline with knots X1

X, ,1X. ~1X. /X,
1417142771437 144 i+d

From the foregoing in section 4.1, we recognize ¢ as the cubic B-spline

, which is identically zero for x < xi and x 2 x

M4 i° This leads to the definition of a general B-spline:
7

DEFINITION 4.2.2. Let X,,X, ,7...X. be a strictly increasing sequence of
i77in i+n

points, and let

= (o D1
fn(X;z) = (z X)+

&

+
where n € N .

11

The B-spline Mh ; of order n is given by the nth divided difference of

r

fn(x;z) with respect to X, 1%, for fixed x, i.e.

e eesX,
+1°7° """ i+n

Mn,i(x) = fn[x;xi'xi+1""'xi+n]
: _eyn=1
_ i+n (x. x)+
oy wix)
where = -
n
w(x) = T (x=-x. .)
k=0 itk

4.3. Normalization of a B-spline

By establishing definition 4.2.2, we have fixed the non-zero function
value at some internal knot, which helped determine the B-gpline as intro-
duced in 4.1, in such a way that the property of the following theorem
holds:

THEOREM 4.3.1.

+o0

¢
J Mn i(x)dx =

-

3

14

For the proof of the theorem we need the following (cf. [10]): Consider

+
functions of the class C? 1 ; a,b € R, and let linear functionals of the

a,bl
following type be defined over this class:

(n)

b
8(f) = J [ao(x)f(x)-+a1(x).f'(x)+...+an(x).f (%)].ax
a

Jo ’ 31 In (n)
¥
+ _Z b, o-f(x;0) + 'Z b, £ (xi1)+...+.2 b, W (x,
i=1 i=1 i=1

where the ai(x) are assumed to be piecewise continuous over [a,b], and the

points xij lie in [a,b].

LEMMA 4.3.2. (Peano) Let 8(p)

n
for all £ ¢ C[a,b]'

0 for all polynomials p of degree <n-1. Then

2

b
B(f) = J £ 4y k(v .at
a

12

where

1 n-1
K(t) = TE:ITT'QXE(X_t)+ 1.

The notation ex means that the functional 9 is applied to (x—t)i—l, con-

sidered as a function of x. K(t) is called the Peano kernel of 8.

PROOF'. Recall Taylor's theorem:

£ _ . {n-1) (x—a)n—1
(x) = f(a) + £'(a).(x~a)+...+f (a) . ————
(n-1)!
X
1 (n) n-1
DT J E7(8) . (x-t)" “dt
2 ,
Write the last term as
b
1 (n) _ n-1
(n-1) I £). (x-t)
a

and apply 9 to both sides of the expression: because 0 annihilates all the
polynomials on the right hand side, we get:
b

-1 (n) . yn-1
8(£f) = 1) ! 8(J £ (0) . (x t)+ dt)
b a

S (n) . n-1

= oD J £ (0.0 [{x-t) "lat

a

b
= J £ (4 k(e .at. 0

a

.3.3. ees X [i i i
LEMMA 4.3.3. Let xi,xi+1, Xn be a strictly increasing sequence of points,

and let f£(x) = xn. Then

It

f[xi,xi+1,...,x] 1, V¥Yn € NWN.

i+n

PROOF. Induction on n:

&

n=1: £(x) = x;

13

XEin
fix_,x,+1] = ;i—gi—— = 1.
i i i+t

Assume for k < n and f(x) = xk, that

7oee X,]=1.

f[xi,xi 51k

+1

Put f(x) = X = xn—l.x = g(x) .h(x). With theorem A.4 we then have:

i

z. g[xi""'Xj]'h[xj"""xi+n]

It

flx, reeerx, 1
1 i+n .
J=1

g[xi'""xi+n—1]'h[xi+n—1'xi+n]

+

g[xi,...,xi+n].h(xi+n)

1.1 + O'h(xi+n) = 1.

The other terms are zero because of h(x) = x and theorem A.3. 0

Proof of theorem 4.3.1. (cf. [10]) Let GX be the functional defined by
Bxf = f[xl,xi+ +1

1,...,xi+n], whire X, X, .
sequence of points, and f ¢ C[w, o] Sx takes the n divided difference of
— '(x)

""'Xi+n is a strictly increasing

f with respect to xi,xi as a function of x. According to theorem

+17°7 " %i4n
A.3, the functional Gx annihilates all the polynomials of degree <n-1, and

thus Gx fulfills the hypothesis of lemma 4.3.2, so:

oo

(4.3.1) fo = f[xi'xi+1""'xi+n] = .[f(n)(t)'K(t)-d(t)
where

1 n-1
(4.3.2) K(t) = ?H:TTT'BX.[(X—t)+ 1.

n
For £(x) = ﬁT-we get with lemma 4.3.3 and (4.3.1)

[ra)

= [K(t).dt.

-—00

. 1
nt

14

Now:

s

1 = J (n-1) ! .X(x) .dx
n

-0
and this gives with (4.3.2):

oo

1 n-1
(4.3.3) o= J et[(t—x)+ lax.

- 00

-1
If we put fn(x;t) = (t—x)i , then fn € C? , and then (4.3.1) gives

..oo,oo]

et(fn) = fn[x;xi,...,x]

i+n
Now (4.3.3) gives

1

I

ES Jax
n

n—-
fet[(t-x)+

[Gt(fn)dx

-

o o]

i

(o]
fn[x;xi,xi+1,...,xi+n]dx = ‘(Mn'i(x)dx. 0
0

- OO

EXAMPLE: (cf. [8]). Let

x1=x0+h,
x2 = xO + 2h,
x3 = xO + 3h,

and set

8(f) = —f(xo)-+3.f(x1)-3.f(x2)~+f(x3)

® annihilates all the polynomials of degree 2, so following lemma 4.3.2

&
we have

15

K (£) = —21— 0L (x—t)f_].

This gives

3 2 2 2 .
2.K(t) = (x3—t) —3(x2—t) +3 (xl—t) = (t—xo) if X <t < Xy
2 2
— — — — . <
(X3 t) (X2 t) if x, < t < X, -
=(x—t)2 if x. £t < x_.
3 2 3
The Peano kernel K(t) has the following form for xO =0, h=1:
-
\\.\
/\ \\
e S

fig. 4.3.1

4.4, A recurrence relation for calculating B-splines

In order to calculate a B-spline, we can use the straightforward ways
of definition 4.2.2:

= either form the divided difference table and compute fn[x,xi,...,xi+5]
i+n (XJ —X) E—l

- or compute the sum 35_1 ——UJ—'—(—}-{;_)’—_

Both ways have to their disadvantage that they include subtractions that
make those methods numerically unstable.
A better method makes use of a recurrence relation by DE BOOR ([2]1,[31)

and cox [5]:

THEOREM 4.4.1. Let X.,:X. ,yeerX, be a non-decreasing sequence. Then
i77i+l i+n
: (x—xi) (xi+n-x)
° @ = mmm————T - - + T L 3
(4.4.1) Mn,i(x) (x. -x.) Mn—l,l(X) (x. -x.) Mn-1,1+1(x)

i+n i i+n 1

16

for all x € IR.

PROQF. Put ﬁl(x;z) = (z—x)i_l. According to theorem A.1 we have

M, (x) folxix, ,x. ,,eees%x. 1
n i'7i

n,i +1 i+n
i+n f(x.)
(4.4.2) = LW (x0)
=i i,n 7J
where wi’n(x) = (x—xi)(x—xi+1)...(x~xi+n) and
i+n
wi,n(xk) = jgi (xk—xj)
j#k
i+n
= (xk—X.). m (x -x,)
J=i+1
j#k
i+n-1
= (xk—xi+n). .ﬂ. (xk—xj)
J=1
j#k
We then have:
[— - ' = — 1
(4.4.3) wi,n(xk) (x, -x,) .wi+1'n_1(xk) (x, ~x,) "”i,n—l(xk) .

Taking the right hand side of (4.4.1), we get with (4.4.2):

X-X i+n—-1 (—x)n"2 X -X i+ (x --x)n.-2
i ° 7R 4 —dtn Xn 7
- . b — ® 1
Xi4n *1 §=i ‘*’i,n—1(xj) Xion X5 3=i41 %ie1,n-1%3)
X-X. (x.—x)n_2 i+n-1 (x.—x)n“2
i i + +
X -x, lw! (x.) * w! (x.)
i+n i\ i,n-1""1i j=i+1 "i,n-1"73
n-2 . n-2
. Xi+n—x (xi+n—x)+ . 13? 1 (x. x)+
- ° 1 1
Xien %1 \%i+1,0-1 Fan) =i+ Cie1,n-1)
Using (4.4.3) this gives:
(x,-x)n—1 i+n-1 (x,--x)n—2 X~X, X, -X
i + 5 + i i+n 3
(4-444) ol _(x)) = x0 G =) * ol (x)’
i,n i j=i+l i+n i i,n-1"3 i+l,n-1""5

17

(xi+n_x)+
+ T
w! _(x.)
i,n"j

t
The j h term of the middle term of 4.4.4 becomes, using 4.4.3:

(x.—x)n—2 X-X, X, —-X
3 + (i + i+n)
x, -x, = ol (x) w! (x,)
i4+n i i,n Jj i,n 3Jj
X, -X, X, X,
i+n J i
n-2
(x .-x)+ (x '_Xi+n) . (x—xi)+(xj—xi) (xi+n-x)
- < ;) =
, X, w!' (x,)
i+n Ti i,n jJ
n-2 n-1
(gj x)+ ((xi+n—xi).(xj x)) _ (xj—x)+
X, -x, ° w! (%)) w (%)
i4+n i i,n j i,n j
{4.4.4) then gives:
i+n (x,—x)i—l
(4.4.5)) -59——7§—7~ .

j=i “i,n j
Recalling definition 4.2.2 of the B-spline, we see that (4.4.5) is the B-

spline M_ FRCoOR 0

14

4.5. Calculating B-splines

We note that the recurrence relation (4.4.1) does not require the

absecis x to be in any specific interval:

Repeated use of the relation generates a table that can be used to

compute a B-spline. For instance, M4 i be computed from the table
I 4

1,i
M
My ,it+t M3,1
My, i+t Ma,1
My, i+2 3,i+1
M, i+2

18

The table shows the need to have disposal of the first order B-splines,

which can be found by means of the following theorem:

THEOREM 4.5.1.

-1 i
(X1+1_Xi) if x, £ x < xl+1
My, %)=
0 otherwise.
PROOF':
0
i+l (x_—x)+
M, ,(x) = ;
1,1 w! ,(x.)
J=i i,1 73
0
_ (% _X)+ + (Xi+1—x)+
T ox,-x%, X, ,-x, U
i i+l i+l i

Now if we take n to be fixed in e.g. the interval (xi +2) the table

X
+| ’ j

M3,i+1

since all the remaining elements in the original table are zero by virtue

of theorem 4.5.1. The actual calculation is numerically stable, because

all the numbers Mk ; are positive, and the relation (4.4.1) only performs
14 .

additions:

THEOREM 4.5.2.

ositive if x, < x < %,
p i i+k

Me,i® =

0 otherwise.

PROOF. By induction on k: k = 1: theorem 4.5.1. Assume the theorem holds

for k = n: then, using 4.4.1:

.
X=X, X. -X
M e i oy 4 At
n+l,i x. -x, " n,i x, -x “Tn,i+l°
rd i+n~-1 “i ! i+n+1 !

19

Since Mn i and Mn,i+1 are positive, it follows that Mn+1,i is positive. O

14
The recurrence relation also leads to an algorithm for the simultaneous
generation of the values at x of all the B~-gplines of a certain order, which

are possibly not zero there. The matching table is:

- M i
- n,i-n+l1

" T My, i-n+2
4,i-3"
M3,i-2 M, i-n+2
M, i1 Ma,i-2 :
Mii M3 i1 :
M2,1 M4,1—1 :
M34 M, i-2
Ma,ie
\\\‘~\\\\ n,i-1
) n,i

If all the entries in the last column are to be calculated, then the table pre-
supposes the existence of 2.n knots. More precisely: If a sequence of knots

tO'tl"°"ts is available, and M 1,---,Mn,‘iare to be calculated for
x € (ti'ti+1

the j-1 column, 2 £ j £ n, where n is the order of the desired B-splines.

n,i-n+
), then i-n+l = 0 and i+n < s. Now suppose we have calculated

The jth column then follows with the recurrence relation (4.4.1).

(4.5.1) M = (x_ti“j+1+r)'Mj—lli-j+1+r+(ti+r+1_X)'Mj—l,i—j+r+2
J,i-j+i4r ti+1+r—ti—j+1+r
r=20,1,2,...,3-1, 2 £3j < n.
Y = 0: Mj—l,i—j+1 =0
=37l My g i =0

_ . j-2

Supposg, we have stored Mj—l,i—j+1+r (r =1,2,...,3-1) in (bs)S=O (there

is no need to store the zero-values of M, .. and M, .. .4), and that
j-1,i-j+1 j-1,i+1

20

we are going to store Mj,i—j+1+r

gives the following system:

r Biv1”
b! = —=>—"———— D>
O ti417Fge1 O
- . + - .
o et P10 P
s t, -t, .
(4.5.2)) i+l+s i-j+1+s
2<3<n
s =1,2,...,3-1
bj—l =0
Put:
.
L
§ ::=x -~ t.
s i-s
R
18° =t -
s i+l+s
s = 0,1,2, ,n—-1
then
L
..t = (S
i-j+s+1 j-s~1
t, -X = GR
i+s+l s
Y rstl _ti-—j+s+1 = Yiett _x+x—ti—j+s+1 =

This converts (4.5.2) into

, 5
| R, AT,
2y sResl Py
0 j-1
s b +88.p
b' = j-s~1 "s-1 "s s
(4.5.2") {® sRus”
s Jj-s-1
2< 43 <n
“ s =1,2,...,3-1
*bj—l = 0.

s

(r =0,1,...,5-1) in (b)Y, then (4.5.1)
s’ s=0

j—s~1°

Starting with M, , = b_ = ———1~——-, repeated application of (4.5.2') for
1,1 0 ti+1—ti
j=1,2,...,n produces the values of all the B-splines at x of order n.

This results in the following algorithm:

begin
by := 1/(tli+1]-tliD);
85 := x - tlil;
(Sg := tli+l] - x;

for j from 2 to n

do
L \ .
6j—1 = x ~ tli+1-3];
R .= t 4] - xs
(Sj_l 4 t[l’i'J] X7
saved := 0;
blj~11 := 0
for s from O to j-1
do
L
term := &, * saved;
j-s~1
saved := blsl;
bls] := (term + saved * SR)/(SR + 6%)
s s j-s-1
od

21

22

bsplval(knot,order,left,x,b)
double *knot, x, *b;
int order, left;

/*

B % % N ¥ % ok % N W N ¥ N % ¥ % ¥ X N N ¥ ¥

*

*/

The procedure “bsplval” uses generation of the complete
table implied by the recurrence relation (4.4.1)
Therefore, for a given knot set t[0],...,t[s] and a
given order, it will produce M[order,left-order+1], and
therefore left-order+l >= 0, thus left >= order-1;
It will also produce M[order]{left], and since the
recurrence relation uses tf[left+order], it follows that
lefttorder <= s.
Then, if we use the procedure to calculate the B splines
on tf{left],t[left+l] we will have to choose

order-1 <= left <= s-order
The procedure produces in b[j] the values of the polynomial
of order “order”, taken in x, that agrees with the B spline
M[order][left—-order+j+1] on the interval t{left],t{left+1].

b[0] contains M[order][left-order+l]
b[{1l]) contains M[order]{left-order+2]
b[2] contains M[order][left-order+3]

b[order-1] contains M[order][left]
There is no check on violation of the condition:
order-1 <= left <= upperbound(knot)-order

{ int i,j,r;
double deltal[MAXORDER], deltar[MAXORDER];
double term, saved;

b{0] = 1/(knot[left+l] - knot[left]);
deltal[0] = x - knot[left];
deltar[0] = knot[left+l] - x;

for (j=2; j<=order; j++)

{ deltal[j-1} = x - knot[left+l-3];
deltar[j-1) = knot[left+j] - x;
saved = 03
b[j-1] = O;
for (r=0; r<j; r++)

term = deltal[j-r-1} * saved;
saved = b[r];

b{r] = (term + saved * deltar{r]) / (deltar[r] + deltal{j-r-1]);

}

/* Example 1: */

main()

{

23

/* We aim to calculate and plot the cubic B-spline M4,3 */

int i,left,last,flag;
double t{11], bfé&4}], x1, values[21];

t[0]= =4.0; t{l]= ~3.0; t[2]= -2.0;
t[{3]= -1.0;
t{4]= -0.5;
t[5]= 0.0;

t{6]= 0.5;
t[{7]= 1.0;
t[8]= 2.0; t{9]= 3.0; t[10]= 4.0;

/* Leftmost evaluation point -1.0 ,

* rightmost evaluation point 1.0 .

*# Step towards this last point with steps 0.1 .
*/

x1l= =1,03;

/% Calculation: */

for (i=0; i<=20; 1i++)

{ interval(t,10,&left,x1,&flag,&last);
/* if x1=t[7] take left=6: */
left=min(left,6);

/* Now for each x1 we have found the
* approplate interval.
*

bsplval(t,4,left ,x1,b);
/* Now b[0] contains M4,left-3 ,
b[{l] contains M4,left-2 ,

* b[2] contains M4,left-1 and

* b{3] contains M4 ,left.

* On the span t{3],t[4] then b3

*# on the span t[4],t[5] then b[2
* on the span t[5),t[6] then bl
* on the span t[6],t[7] then b[O
*/

values[1] = b[6-1left];

printf("x = Zf M4,3 = Zf\n", x1l,values[i]);

x1 = x1 + 0.1

%

] contains M4,3
] contains M4,3
}] contains M4,3
] contains M4,3.

and

/* Plotting fig. 4.5.1 : */

pict(2,"M4,3");
xl = -1,0;3
for (i=0; i<=20; i++)
{
line(xl,values{1i]);
x1 4= 0.1;

}
.newpel();
line(-1.0
line(1.0
newpel();

s
k4

/* Put pen at position 0.5,0.5: */
1ine(0.5,0.5);
text("The B-spline M4,3");
1ine(0.5,0.45);
text("of example 1");

endpict();

}

RESULTS:

x = -1.000000 M4,3 = 0.000000

x = -0,900000 M4,3 = 0,000667

x = -0.800000 M4,3 = 0,005333

x = —-0,700000 M4,3 = 0.018000

x = -0.600000 M4,3 = 0.042667

x = ~-0,.500000 M4,3 = 0.083333

x = -0.400000 M4,3 = 0.141333

x = ~0.300000 M4,3 = 0.207333

x = -0.,200000 M4,3 = 0.269333

x = -0.100000 M4,3 = 0.315333

x = 0.000000 M4,3 = 0.333333

x = 0.100000 M4,3 = 0.315333

x = 0,200000 M4,3 = 0.269333

x = 0.300000 M4,3 = 0.,207333

x = 0,400000 M4,3 = 0.141333

x = 0.500000 M4,3 = 0.083333

x = 0.600000 M4,3 = 0.042667

x = 0.700000 M4,3 = 0,018000

x = 0.800000 M4,3 = 0.005333

x = 0.900000 M&4,3 = 0.000667

x = 1.000000 M4,3 = 0,.000000

confer fig. 4.5.1
fig. 4.5.1
The B-spline M4,3
of example |

e N
- -~ \‘"\
e - \

/* Example 2:
* We aim to calculate and plot the four polynomials that make up
* a cubic Bspline. We remember from the procedure bsplval, that
* it produces in b[j] the polynomial which agrees with the B spline
* M4 ,left-4+3+1.
* Hence b[6-left] contains that polynomial for M4,3.
* Further on we can take x anywhere we want, so we can calculate
* b[{6-left] and thus the polynomial over a bigger interval than that
% where the B-spline M4,3 agrees with the polynomial.
*/
main()
{

int i,j,left,s;
double x,dx, biatx{[4], t[l1l], pol[4][40];

t{l]=t[2]=t[3]=t][0])= -3;
t[4] = -2

t[5]1=0;

t[6]=1;
t[8]1=t[9]=t[10]=t[7]=3;

/* Interval =-4,4 */
x = =4
dx = 0.2

for (i=0; i<=40; 1i++)
{
for (left=3; left<7; left++)
{ bsplval(t,4,left,x,biatx);
pol{left-3]{1i] = biatx[6-left];

x = x + dx;

}

pict(2,"bspline”);
with(); window(-1.0,-1.0,1.0,1.0);
scale(0.3,2.0);
thick(0.001);
draw();
for (3j=0; j<=3; j++)
{

X = =43
with();
draw(); for (i=0; i<=40; i++)
{
line(x, pol[jllil]);
x = x + dxj
}
ward();

ward();
endpict();
}

fig. 4.5.2

The polynomials that
make up a B-spline

9¢

27

5. INTERPOLATION WITH SPLINES

5.1. Multiple knots

In (4.4.1) we did not regquire the knots to be distinct. This means
that a given sequence of knots may contain identical knots!

If we have a non-decreasing sequence of knots yo,yl,...,ys, we will call
v; a ki—fOJd knot, or a knot with multiplicity ki' if Yi:=yi+1=°"=yi+k,—1'
The effect of a ki—fold knot on a spline function ¢ of order n, is the +
decrease of continuous differentiability at Y, to n—l-—ki continuous deriva-
tives.

If ki = n, then there are no continuity requirements whatsoever, and
we therefore restrict the multiplicity ki of any knot Y by the inequality
k, <n. If k, =0 for all i ¢ {0,1,2,...,s} then the spline function is
continuous up to its n--1th derivative: the spline is actually just a poly-
nomial and the knots are being called pseudo-knots.

The support of the B-spline Mn , is always the interval [x, ,x, 1.

1 1 1+n
This implies that the width of the support of Mn i is equal to n spans:

14
thus multiple knots induce spans of zero length, and a corresponding reduc-

tion of the support of the B-spline.

/* Example:

* We now plot some B—splines with multiple knots.

* Bearing in mind theorem 4.3.1, we expect the maximum
* of a Bspline with multiple knots to get bigger as

* the total mutliplicity increases!

*# In fig 5.1.1.7 the same B~splines as in fig 5.1.1

* are drawn on one horizontal axis.

*/

28

main()

int i,j,left,last,flag;
double t[12], b[4], bspline[8][81], =x1;

t{O0]=t[1]=t[2]=¢t[3]= ~1.0;
t[4]= —-0.5;

t{5]= 0.0;

t{6]=t{7]= 0.5;
t[81=t{9]=t[10]=¢t[1l1l]= 1.0;
x1 = -1.0;

for (i=0; 1i<=80; i++)

{ interval(t,8,&left,x1,&flag,&last);
left=min(left,7);
bsplval(t,4,left,x1,b);
x1 += 0.0253

for (j=0; j<4; j++)
) bspline[left—-3+3][41) = b[j];:

pict(2,"multiple knots™);
with();window(~1.0,-1.0,1.0,1.0);
scale(1.0,0.5)3
draw();
for (3=0; j<8; j++)
{ x1 = =-1,03;
with(); translate(0.0, 0.75 = j*0.25);
draw(); for (i=0; 1<=80; i++)
{ line(x1l,bspline{j][1]);
x1 += 0.025;
}

ward();

}
line(1.0,0.75);
text("M4,0");
1ine(1.0,0.50);
text("M&4,1%);
1ine(1.0,0.25);
text("M4,2");
1ine(1.0,0.00);
text("M4,3%");
line(1.0,-0.25);
text("M&4,4");
1ine(1.0,-0.50);
text("M4,5");
line(1.0,-0.75);
text("M4,6");
line(1.0,1.0);
text("M4,7");

ward();
1ine(0.5,0.85);
text("fig. 5.1.1");
endpict();

29

\ fig. 5.1.1

M4,0 M4,7

fig. 5.1.1° -

M4,6

U

tlel=tl11=t{27=t({3] £i43 : tis] tl6l=t17) ti{B8l=t[91=tl101=t[11]

30

5.2. The B-spline basis

We denote the linear space of spline functions of order k on the non-
decreasing knot sequence £ = {yo,yl,...,ys} by Sk,g'
Without proof, we now give the theorem of CURRY and SCHOENBERG (1966),

which postulates that any ¢ € S can be expressed as the sum of multiples

k,&
of kth order B-splines, that are defined on a knot set that envelopes £.

A proof can be found in [2] or [6].

THEOREM 5.2.1.

(i) Let & = {yo,yl,...,ys} be a non-decreasing knot sequence. We consider
a [.
$ € S

(ii) Form v = {xo,x ""'Xﬁ} from § by taking in increasing order, the

1
numbers in § at most once. Then v is a strictly increasing sequence.

Assume that for i = 0,1,...,£, the number Xi occurs precisely ui

times in §, i.e. multiplicity (yi) =a. Put
£-1
(5.2.1) n:=k+) 0o-.
. i
i=1

and

A
0

IA
IN

5 .

<
Xp = 8 2k-1

k k+1
Now ¢ can be expressed as the sum of multiples of B¥splines
Mk,O'Mk,l""’Mk,n—l defined on the (n+k) knots tO'tl""’tn+k_1’ which

are given by:

31

0 0
= , #e.)
5 s2 4 s: k
t = 8 J
tk“l _ k"l . ! #. n h
kY1
k+1 Y2 £-1
. r #y: Z oy
i=1
En-2 T Y52 b fe: nik
n-1 - Ys-l J
n = %k)
- d #5: k
Chik-2 = Sax-2 ’
thak-1 = Sok-1/
¢ is to be considered as a function on [tk_l,tn].
COROLLARY. The B-splines Mk,O'Mk,i""'Mk,n-l form a basis for Sk,E' with

dimension n as determined in (5.2.1).

The theorem leaves open the choice of the first k and the last k knots.

A convenient choice is t0=t1="'=tk—1=x0 and tn=tn+1 =tn+k—1

then allows us to include the choice of these knots under the same pattern

e s e

= XK' which
as the choice of the other knots by taking
ao = uz = k.

The choice of § specifies the desired amount of smoothness at a point in
terms of the number of knots at that point, with fewer knots corresponding

to more continuity.

EXAMPLE. Let:
Yo =Yy =2

vy, = -1

32

k = 4.

Then:
xo = =2 uo = 2
Xy = -1 al =1
x2 = 0 az =1
x3 =1 a3 = 2
x4 = 2 a4 = 3

n =4+ (1+1+2) =8 (5.2.1).

Take:
ty =t =ty =ty = -2
t4 = =1
t5 =0
t6 = t7 =1
t,=t, =t =t =2

Ngw any spline ¢ of order 4 with knots {YO""'YS} can be expressed as

I c.M,6 .
j=0 J 4.3’

the knots tO’t1'°"'t11'

cj € R (cf. fig. 5.1.1), where the M are being taken on

4,3

33

5.3. B-representation for splines

By virtue of theorem 5.2.1, every spline has a representation in terms

of B-splines, of which we now give the definition:

DEFINITION 5.3.1. The B-representation for a spline function ¢ of order k on

the knots yo,yl,...,ys consists of:

(1) k: order of ¢

(ii) n: dimension of B-spline basis, obtained from (5.2.1).

(iii) the vector t = (ti)gig_l, containing the extended knot sequence,
constructed in the way of theorem 5.2.1.

(iv) the vector B = (Bi)?:é of the coefficients of ¢ with respect to the
n-1 -

basis (Mk i)i=0'

In terms of these quantities, the value of ¢ at a point x ¢ [tk_l,tn], is
given by
n-1
£(x) =) B ML)
. r1
i=0
In particular, if tj < x < tj+1' for some j ¢ [k-1,n-1], then
)
£(x) = B. . (%) .
i=j-k+t T i

From this we can see a nice point of representing a spline function as a sum
of B-splines: because of the local support of the B-splines, only a finite
(viz. order of the spline) number of B-splines contribute to the spline,

while they can be calculated accurately with the algorithm of 4.5.

5.4. Interpolation

We now are in a position to tackle the problem of kth order spline
interpolation using B-splines. There are several possibilities, but they
all include an extension of the given knot set by 2(k-1) knots, which can
be taken arbitrarily (cf. theorem 5.2.1). First of all we can define the
strictly increasing knot sequence tO'tl""'tﬂ beforehand, extend it, and
ask for the kth order spline ¢ which interpolates a given function g in

the data points (xo’g(xo))'(xl'g(xl))""'(xm’g(xm))'With the abscissae

34

X X

o Peser¥X all in [to't£]° The points HyreeorX will be called nodes.

1
SCHOENBERG and WHITNEY [13] have shown that there exists exactly one

th
k order spline ¢ that agrees with g at x_,x reeerX g where m = k+{-2,

. 01
if and only if Mk i(x) #0, i=20,1,...,m, and that
14

m

¢ = 'Zo a;-M

3=

for certain coefficients ai. These coefficients can be found from the

linear system

m
izo ai'Mk,i(Xj) = g(xj), j =0,1,...,n.

t
Another possibility is to ask for the k h order spline which inter-
polates the data points (XO'YO)'(Xl'yl)""'(xl’yl)’ and to take the nodes
XO'XI""'XK as knots of the spline. Extend this knotset, and use theorem

5.2.1:

k+£-2
¢ = z c..M

i=0 i k,1i

We can determine the coefficients c; via the system

k+L-2
(5.4.1) iZO ci.Mk,i(xj) = vy 3 =0,1,...,8

but see directly that we will need k-2 additional relations to come to a

solution of the system!

We shall restrict ourself to the last possibility, and take k = 4, thus
needing 2 additional relations; these can be obtained as discussed in section

3.2,

EXAMPLE. A i i < <eono oo
ssume that in the points Xq x, < X0 the values YO’Yl' Y10

are given. Take x gree-r¥Xyg a@s knots t3,t4,...,t13, and extend this set

0'*

with 3 additional knots < t3, and 3 additional knots = . As we have seen,

t
13

there is no prescription for the choice of the additional knots. In order

to have 3 non-zero B-splines at t3 and t13, we choose tO = t1 = t2 = xO -1

and t14 = t15 = t16 = x10 + 1. Compute at each node the three B-splines

that are non-zero there, e.g. M3, M4 and M5 at t6.
This can be done with 'bsplval' (cf. 4.5). If the value at t_ is Yyr we

[&)
have from (5.4.1):

= - . + o
Yy = Cq:My 3t My 4t gy g

in which Cqr c, and 05 are the unknowns. For each of the 11 nodes there will
be a similar equation. Since there are 11 +2 = 13 B-splines, there are 13
coefficients to be determined, and so two more equations are needed to be
able to compute the coefficients:

POSSIBILITY l: free ends at X and X0t ¢"(x0) = ¢“(x10) = 0. We then get

= . 11 + . 1 + . 11}
O =cyMy ot My ¢ ¥4

= Mt + MY + .M"
C10Ma,10 T C11 My, 11 T S0 Ma, 10

and this leads to

n 1" 11}
o M M)y 0
0 0 .0
MO M1 M2 0 ¢y yo
11 1
0 M, M, M, O c, v,
2 2 2 i
(5.4.2) 0 M2 M3 M4 0 : = .
L. . .0 : :
10 10 10
0 MM, M, 14 Y10
" " ”
Mio M11. M0 19 0
(Mj =M (x.)).
i T M,

POSSIBILITY 2: built-in ends at XO and X10° ¢'(x0) = a, ¢'(x0) = Db, a,b € IR.

We ther get

36

.M? + c

]
a,0 7 M

¢ 4,1

M!
0

+
€2:%4,2

c,,.M!

11°M,11 %

012.M

= - 1 +
10'M4,10
which leads to a similar system as (5.4.2).

POSSIBILITY 3: Let x1 and x9 not be knots.

4,12

first and second cubic polynomial pieces to coincide in [x

the prescribed wvalue in X, - This leads to:

Mo(xo) Ml(x Yy M, (%)

Mo(xl) Ml(x) M) M, (x,)

3"
3 2)
) M3(x3) M4(x3)

0" "2
) My (x
Ml(xz) M2(x) M, (x
M2(x

w N = O

M7(x8) M8(X8) Mg(xg)

M7(x9) M8(x9) M9(x9) M

M (x

Mg (x4 o) Mg

10

(

*9

)

10"M10 %10

0

This means that we choose the

:X2], and have

o ¥y
©1 Yy
€2 Y
?3 73
“s g
9 g
“10 710

In this situation, we have a B-spline basis of 11 B-splines, instead of the

13 of possibility 1) and 2), and of course the extended knot set has only

15 knots.

In all three possibilities, a banded linear system needs to be solved,

and for the possibilities 1) and 2), we even need to be able to calculate

derivatives of B-splines.

In next sections we shall develop algorithms which tackle these prob-

lems.

5.5. Differentiation of splines and B-splines

In order to find the derivatives of a B-spline, we go back to the

definition of a B-spline, and to the theory of divided differences.

= (205

Consider fk(x;z)

(cf. definition 4.2.2). If we take the n

th

37

divided difference of fk' with respect to z = X, ,x 1""'x1+n' then we get
with theorem Al:

i+ .
i+n fk(x,xj)

fk[x;xi,x_ reeesX 1l =

i+l i+k L wt(x))
J=1 J
i+n (x,—x)k_1
_ +
TLE e (x)
J=1 J
Then -2
a i+n (xj—x)
?‘; I:x X lx 1!---lxi+n = —(k_l) X W

j=1 3

1l

—(k—l).fk_l[x;xi,...,xi+n].

This gives for n = k-1:

Ji-f [x; P X

dx k l+1’.'.'x 1= _(k_l)'fk_l[xfxilv--1X,]

i+k-1 i+k-1

Sy

Now, using the definition of divided differences (def. A.1), we get:

Mn,i(x) = f [x; R I 1,...,xl+n]
) f [x; R +1,...,Xi+n_1]-fn[x;xi+1,x e %y 2""'Xi+n]
- (x,-x,)
1 i+n
and
a B e U R P L
EE'Mn i(x) - (x,—x)
! i i+n
d n-1
(-3 My, 1™ = Mt i, 5
i+n Ti

h
We shall derive a formula for the it derivative of a spline function

38

t
Taking o; = 0, i # p, and qp = 1, then gives the j h derivati

spline Mn

14

Assume n to be a fixed integer, and put

s-1

)

i=r-n+1

¢ (x)

where X € [tr,tS]. Then, with (5.5.1), we have

Sil d
¢l(x) = o, 7T .(X)
i=r-n+1 i dx n,d
S-X'l n-1
(5.5.2) §'(x) = o Mg Mg i)
i=r-n+1 Xjqn¥y A7led onmlidd
s-1
=] B(mD.M ., M
i=r-n+1 T arled nnledd
= (n—l).{Br_n+1- n_l,r_n+1~8r—n+1'Mn*l,r—n+2+
—Br—n+2'Mn—1,r-n+3+
'Bs—l'Mn—l,s}
s-1
- (n-l).{Br_n+1-O + _ X (61_61—1)'Mn—1,i+6
i=r-n+2

since X € [tr,ts], and thus M =0 if i ¢ [r-n+2,s-1]

n— 1 ’ i
s-1
(5.5.3) o' (x) =) (n-1) . (B;=B; _)-M 4 5
l=r—n+2
where
%5
g, = .
1 xj_+n i
If we put a% = (n-1).(B,-B._,), then (5.5.3) gives:
i 1 1—1
S-}:l 1
(5.5.4) ' (x) = . . -B 1y
. i=r-n+2 1 n-1,1

where

ve of the B~

B

.M
r-n+2 n-1,r-n+2

...+B .M

s~1"n-1,s-1

10}

1
o, = (n-1).(B,-B. ,)
i i "i~1
a o
. (1
= (n-1) . (c——— - =)
X, —X, X, =X,
itn i j+n-1 “i-1
i =xr-n+2,...,s-1.

Repeat the operation of (5.5.2) on (5.5.4):

s-1
) =) ol —B2
. 1 X,
i=r-n+2 i+n-1 71
s-1
1 1
=) (n=2) . (B,~B,) .M__ .
i=r-n+3 !
where 1
ol = %
i —

X, X,
i+n-1 i

If we put ai = (n—2).(8%—61_1), then this gives:

i
s-1
2
" (x) =) at.M
j=r-n+3 + P 2,1
where
2 1 1
o, = (n-2).(B,~B, ,)
i i i-1
1 1
o, @y
= (0-2) . (e -)
i+n-1 i i+n-2 “i-1
i =r-n+3,...,s-1.

Repeated operation of (5.5.2) produces the following formula for the jt

derivative of a spline:

. s-1 s=1 .
(5.5.5) DI(] o.M)= ¥ ad.M
i=r-n+l ! i=r-n+i+j
0 .
where ai = ai, i=rxr-n+tl,...,s-1
o371 o3t
ol = (n-j) (—= T L) .
i X -

s L aTXK, X, X,
. i+n-j+1 "1 i+n-j "i-1

-, n—z,i"Mn-z,i+1)‘

n-j,1i

39

40

j=1,...,n-1, i = r-n+l+j,...,s-1.

If we take o, = 0 if i # p, and ap = 1 we get from (5.5.5):

. s-1 .
(5.5.6) vy =] ol
TP iertt43on I

where 0

ap = 1 . .

- S
o] = (n=3).(-)
itn-3+1 1 Fien-3 o i-t

and

i=1,2,...,n~1, i = r-n+l+j,...,s-1.

double
splderiv(knot,order,basdim,bcoef,x,der)

41

double knot{], bcoef[], =xj
int order, basdim, der;

/* The procedure calculates the value of the der”th derivative
* of the spline given in its B-representation

* (knot, order, basdim, bcoef), at

* the point x. According to theorem (5.2.1), the spline is to
* be considered as a function on the interval

* knot[{order-1],knot{basdim]. The point x shall therefore

* be restricted to be in this interval.

* The method is to locate the interval knot{left],knot[left+l]
* such that knot[left] <= x < knot[left+l], or

* knot{left] <= x <= knot[left+l] when left+l=basdim,
* and then use the formula (5.5.5) to do the calculation.

* In this calculation only the for the interval relevant

* B-splines are used, and the summation 1is done over

* “order-der” indices.

*/

double value, alpha[MAXBASDIM

], b[MAXORDER], d1, dr,saved,trans;
int left, f, 1, j, imax, 113

if (x € knot[order-1] ||l x > knot[basdim])
bsplerror(DERIV);

imax = basdim + order - 13

value = 03

if (der < order) /* else value stays 0 */

{interval(knot, imax, &left, x, &f, &1l1);

/* if x = knot[basdim], take left = basdim-1 : */
left = min(left,basdim—-1);

/% first difference the coefficients “der” times. */
for (1 = left-order+l; 1 <= left; i++)
alpha[i] = bcoef[i];

for (§ = 1; j <= der; j++)
{ saved = alpha{left-order+jl;
for (1 = left-order+l+j; 1 <= left; i++)
{ dr = knot[i+order+1-3j] = knot{i];
dl = knot[itorder -j] - knot[i-1];

trans = alpha[i];
alpha[i] = (order—j)*(trans/dr - saved/dl);
saved = trans;

}

/* Now calculate the values of the B-splines of order (order-der)
* at x for the relevant B-splines, for the interval

* knot{left],knot{left+l].

%/

bsplval(knot,order~-der,left,x,b);
/* and now b[O] contains M[order-der][left-order+l+der],

* and blorder—-der—-1] contains M{order-der][left].
*# Calculate the sum.

®/
for (1 = left-ordert+lt+der; 1 <= left; i++)
value += alpha[i] #* b[i-lefttorder-1l-der];

return(value);

42

5.6. Solving the linear, banded system

We aim at solving the system

n-1

) a .M

j=0

j(Xi) =Y i=20,1,...,n-1.

Since all Mk 5 are positive (cf. theorem 4.5.2) the system has a positive
r

definite matrix, and Gauss-elimination without a pivoting strategy can be

performed (cf. [21).

We will store the band matrix M of degree n in the following way:

Let

It

diagonals above the main diagonal

diagonals under the main diagonal.

Use a double-subscripted array A[il[j] for the storage of

Put the most upper diagonal in A[0J], the main diagonal in

lowest diagonal in Ala+ul, in the following way:

01
11
21
21

%12
39 . 0 Ay
339 -, . = | %00 %11
Bup -t 310 %21
e 220 %31
00 a4 A

In the new representation, the columns correspond to

the original matrix.

the at+u+l diagonals.

Alal, and the

a12....a

a22....a

3% "

a42....0

n-2,n-1

n-1,n-1
0

0

a

the columns of

43

decband(mat,dim,above,under)
double mat{][MAXPOINTS];
int dim,above,under;
/* The diagonals of the matrix are stored in the rows of mat
* Above = #diagonals above main diagonal,
Under = #diagonals under main diagonal.
There are abovetunder+l rows in mat.
The most upper diagonal is stored in row mat[0], the main
diagonal in row mat[above].
* Dim is the rank of the bandmatrix.
*/
{ int middle,i, j,k, jmax,kmax;
double fac,pivot;
middle = above;
if (under == 0) /* upper triangular matrix. */
{ for (1=0; i<dim; i++)
{if (mat[middle][i] == 0)
bsplerror(SINGULAR);

% % ¥ A

}
}
else .
if (above == 0) /* Then mat is a lower triangular matrix. */
/* In order to be able to use the
* solving procedure, we must get
* all 1°s on the main diagonal !
* Divide column elements by the
* corresponding diagonal elements.
*/
{ for (i=0; 1i<dim; i++)
{pivot = mat[middle}[1]; /* diagonal element */
if (pivot == 0)
bsplerror(SINGULAR);
else
{jmax = min(under,dim~1-1);
for (j=1; j<= jmax; j++)
mat[middle+3j)[i] /= pivot;
}
}
}
else
{ for (i=0; i<dim; 1i++) /* column O through dim-2. */
{pivot = mat[{middle][i];
if (pivot == 0)
bsplerror (SINGULAR);
jmax = min(under,dim-1-1);
kmax = min(above,dim-1-1);
for (j=1; j<=jmax; j++)
{fac = mat[middle+j}[i] / pivot;
for (k=1; k<=kmax; k++)
mat[middle-k+j][i+k] == fac * mat[above-k][i+k];
mat[middle+j}[i] = fac;
}
}
if (mat[middle][dim=1] == 0)
bsplerror(SINGULAR);
}

44

solband(mat ,dim,above,under,b)
double mat|] {MAXPOINTS], b[];
int above,under,din;
/* Matrix stored as in decband. */
/* solution in b. */

int 1,3, jmax,middle;
middle = above;

if (under == 0 && above == 0) /* One (main) diagonal */
{for (i=0; i<dim; i++)
b[{i] /= mat[O0])[1] ;

else
{1f (under > 0) /* then forward substitution */
{for (i=0; i<dim-1; 1i++)
{
jmax = min(under,dim-1-1);
for (j=1; j<= jmax; j++)
b j+1i] -= bf{i] * mat[{middle+j][1];
}
}
if (above > 0) /* then backward substitution */
{for (i=dim-1; 1i>=0; 1--)
{
jmax = min(above,1);
b[{i] /= mat{middle][1i];
for (j=1; jJ<=jmax; j++)
b[i-3] == b[1i] * mat[middle-j][i];
}
}
}

45

brep(xnode,ynode,basdim ,t,bcoef,extra,phiaccO,phiacecl)
double xnodel],ynode{],t[],bcoef[],phiaccO,phiaccl;

/

% W % N W % % R NN RN NN NN

BN W % N % % % N N % N N W

int basdim,extra;
The procedure generates the B-representation (t,4,basdim,bcoef)
for the spline interpolant of order 4, interpolating the nodes
xnode in ynode. The 2 extra conditions are being determined
by the value of “extra”.
This feature accounts for the choice of order 4.
Let nnode = #nodes
Input:
The nodes xnode and their y-values ynode.
The integer basdim :
-the number of nodes decide basdim:
-in case extra = FREE or BUILT then basdim=nnode+2
—-in case extra = NOT then basdim=nnode.
The parameters extra, phiaccO0 and phiaccl:

If extra FREE free ends: phi”"=0 at node[0] and

at nodef[nnode-1],
basdim = nnode + 2

extra = BUILT built in ends:
phi“=phiacec0 at node[O0},
phi“=phiaccl at node[nnode-1].
basdim = nnode + 2
extra = NOT nodefl} and node[nnode-2] are not knots.
basdim = nnode
Output:

The knots t
The B-coefficients bcoef.

In the main program, t should be declared as an array of
(nnode+6) doubles in case extra = FREE or BUILT, and of (nnode+4)
doubles if extra = NOT, because of the extension with 2*3 knots.

bcoef should be declared as an array of basdim doubles.

46

}

double b[4], mat{5][MAXPOINTS], splderiv();
int 1i,3j,n;

n = basdim - 33

if (extra == NOT)

/* Create the extended knot set: */

t[0]=t[1]=t[2]=xnode[0]~1.0;

t[{3}=xnode[0];

for (i=4; i<basdim; i++)
t{i]=xnode[1-2];

t{basdim]=xnode[basdim-1];

t[basdim+l]=t[basdimt2]=t[basdim+3]=xnode{basdim-1]+1.0;

/* Fill the bandmatrix: */

bsplval(t,4,3,xnodef0],b);
for (1i=0; i<=2; i++)
mat{2-1i][{i] = b[i]};

bsplval(t,4,3,xnodef{l],b);
for (i=0; i<=3; i++)
mat[3-11[1] = b[i];

for (j=2; j<=basdim-3; j++)
{ bsplval(t,4, j+2,xnode[j],b);

for (i=0; i<=2; 1i++)
mat[3-1]{j~-1+i] = b[i];

bsplval(t,4,basdim-1,xnode{basdim-2],b);
for (i=0; 1<=3; i++)
mat[4-1][3+1] = b[i];

bsplval(t,4,basdim-1,xnode[basdim-1},b);
for (i=0; 1i<=2; i++)
mat{4-1][4+1i] = bi+1];

/* Fill y. We use bcoef for y. */
for (i=0; i<basdim; i++)
bcoef{i] = ynode{i];

/* Now solve the system: */

decband(mat ,basdim,2,2);
solband(mat,basdim,2,2,bcoef);

else

47

/* Create the extended knot set: */
t[0]=tf{1]=t[2]=xnode{0]-1.0;
for (i=0; i<=n; i++)

t[{3+1i] = xnodef[i];
t{nt+4]=t[n+5]=t[n+6]=%xnode[n]+1.0;

/* Fill the bandmatrix: */

/* Calculate, depending on “extra”, the appropiate B-spline

*/values in node[0] and node[n]}, and put them in “mat”:

*

for (i=0; 1i<=2; 1i++)

{ bcoef{i] = 1;

mat[2-1)[1]
becoef[i] = O

splderiv(t,4,basdim,bcoef xnode[0],2~extra);

k4
}
for (1=03; i<=2; i++)
{ bcoef{n+i] = 13
mat{4~-1)[{n+il=splderiv(t,4,basdim,bcoef,xnode{n],2-extra);
becoef{n+i] = 03

/* Niw fi1ll the rest of the bandmatrix: */
for (j=0; j§ < n; j++)
{ bsplval(t,4,j+3,xnode[j},b);
for (i=0; 1i<=2; i++)
mat[3-1][{i+j] = b1}

bsplval(t,4,basdim-1,xnode[n],b);
for (i=0; 1<=2; i++)
mat[3-1i][1i+n] = b[i+1l];

/* Fi1l y according to the value of “extra”.
* For y we use bcoef.

*/
if (extra == BUILT)
{ bcoef{0] = phiaccO;
bcoef[basdim-1] = phiaccl;
}
else
{ bcoef[0] = O;
bcoef[basdinm-1] = 0;
}

for (i=1; i<basdim-1; i++)
beoef[i] = ynode[i-1];

/* Solve the system: */

decband(mat ,basdim,2,1);
solband(mat,basdim,2,1,bcoef);

48

double
splval(knot,order,basdim,bcoef,x)
double knot{], bcoef{], x;
int order, basdim;
/* The procedure calculates the value of a spline in the
* point %, given its B-representation.

% This work can also be done by “splderiv” with der=0.
*/

double b[MAXORDER], val;
int left,lastleft,flag,i;

val = 03
interval(knot,basdimtorder-1,&left,x,&flag,&lastleft);
/* 1f x=knot[basdim]}, take left = basdim~1l: */
left=min(left,basdim-1);

bsplval(knot,order,left,x,b);

for (i=1; i<=order; i++)

val += bcoef[left~-ordert+i] * b[i-1];
return(val):

49

/* Example 1:
* We interpolate 5 points of the B-spline M[4]1[3], with
* endconditions: free ends and built in ends.
* First we determine the B-representation of the interpolating
* spline, and then calculate at some points the value of
* the spline via “splval”.
* We see from the comment in “brep”, that we have to take
*/basdim = 7, and declare 5+6 knots.
*
main()
{
double xnode{5], ynode[5}, bcoef[7], knot{ll], x, splval();
int 1, j, basdim, left, lastleft, flag;
basdim = 7;
xnode[0] = -1.0; ynode{0] = 0.0;
xnode[l] = -0.5; ynode[l] = 0,083333;
xnode[2] = 0.0; ynode[2] = 0.,333333;
xnode[3] = 0.5; ynodef[3] = 0.083333;
xnode[4] = 1.0; ynode[4] = 0.0;
for (j=0; j<=1; j++)
{ /* extra=j=0: free ends, extra=j=1: built in ends. */
brep(xnode,ynode,basdim,knot ,bcoef, ,0.0,0.0);
for (i=0; 1<7; i++)
printf("bcoef[%d] = Zf\n", 1, bcoef[i]);
x = -1.0;
for (i=0; 1<=20; i++)
{ printf("x=%f value=%f\n", x,splval(knot,4,basdim,bcoef,x));
x += 0,1
}
printf("\n\n");
}
}
RESULTS:
Free ends: Built in ends:
becoef[0] = 0.000001 becoef{0] = -0.000001
bcoef{l] = 0.000000 bcoef[l] = 0.000001
bcoef[2} = -0.000001 bcoef[2] = -0.000001
becoef[3] = 0.999999 becoef[3] = 0.999999
bcoef[4] = -0.000001 bcoef[4] = -0.000001
bcoef[5] = 0.000000 bcoef[5] = 0.000001
bcoef{6] = 0.000001 bcoef[6] = ~0.000000
%x=-1,000000 value=0.000000 x=-1.,000000 value=0.000000
x=-0,900000 value=0.000667 x==0.900000 value=0.000667
x=~0.800000 value=0.005333 x=-0.800000 value=0.005333
¥x==0,700000 value=0.018000 x==0,700000 value=0.018000
x=-0,600000 value=0.042666 x=-0,600000 value=0.042666
x=-0,500000 value=0.083333 x=-0,500000 value=0.083333
x=~0,400000 value=0.141333 x=-0.400000 value=0.141333
x=-0,300000 value=0.207333 x==-0.300000 value=0.207333

x=-0,200000
x=-0,100000

value=0.269333
value=0.315333

x==0,200000
x=-0.100000

value=0.269333
value=0.315333

x=0,000000 value=0.333333 x=0.,000000 value=0.333333
x=0,100000 value=0.315333 ¥=0.100000 value=0.315333
x#0,200000 value=0.269333 x=0,200000 value=0.269333
x=0,300000 value=0,207333 x=0,300000 value=0.207333
x=0,400000 value=0.141333 x¥=0.400000 value=0.141333
x=0,500000 value=0.083333 x=0.500000 value=0.083333
x=0,600000 value=0.042666 x=0.600000 value=0.042666
x=0,700000 value=0.018000 x=0,700000 value=0.018000
x=0,800000 value=0.005333 x=0,800000 value=0.005333
%*=0,900000 value=0.000667 x=0.900000 value=0.000667

x=1,000000

value=0.000000

x=1.000000

value=0.000000

50

/* Example 2:
* We now interpolate 7 points of the B-spline M[4]{3], with
* endcondition “not a knot”.
* The second and sixth node are not taken as knots, but
* merely as interpolation points. We see from the comment
* in “brep” that we have to take basdim = 7, and declare
* 7+4 = 11 knots.
*/
main()
{
double xnode[7], ynode[7], bcoef[7],knot{ll], splval(), x;
int i, basdim;
basdim = 73
xnode[0] = ~1.0; ynode[O] = 0.0
xnode[l] = -0.8; ynode[l] = 0.00533