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MA THEM A TICS 

STRUCTURE OF GROWTH IN LINDENMAYER SYSTEMS 

BY 

PAUL M. B. VITANYI 

(Communicated by Prof. A. VAN WIJNGAARDEN at the meeting of January 27, 1973) 

SUMMARY 

Growth of word length in some rewriting systems (DOL'8) is investigated by 
combinatorial arguments concerning the structure of production trees of individual 
letters. Several growth types are distinguished and algorithms are obtained to 
classify letters, DOL'8 and semi DOL'8 in these types. It is shown that polynomial 
growth can not occur without accompanying limited growth. A conceptually easy 
characterization of the nature of the different growth types is given, yielding 
expressions for the slowest growth possible in each growth type. 

l. INTRODUCTION 

Lindenmayer systems or L-Systems are automata theoretic develop
mental models for filamentous growth arising from biological consider
ations [2]. An L-System consists of an initial one dimensional array of 
cells (a filament) symbolized by a word, and the subsequent stages of 
development are obtained by rewriting every letter of a word simul
taneously at each time step. We shall be concerned with the case where 
the rewriting rules are deterministic and where a cell is not influenced 
by its neighbors (i.e. zero input). Such systems are called DOL-Systems. 
With each DOL-System we can associate a growth function fo, where 
fo(t) is the length of the filament produced at time t. Growth functions 
were studied first by SZILARD [5], later by DOUCET [l], PAZ and SALOMAA 
[3] and SALOMAA [4]. In [4, section 2] exponential growth is shown to 
coincide with the occurrence of certain space-time patterns of letters in 
the sequence of produced words. Previously, in VITANYI [6] a similar 
technique was used to characterize DOL-Systems generating finite lan
guages. Here we improve and extend the study of the structure of growth 
in DOL-Systems of [4] using the approach of [6]. 

2. DEFINITIONS 

We shall customarily use, with or without indices, i, j, k, m, n, p, r, t 

to range over the set of natural numbers 0, 1, 2, .... ; a, b, c, d, e to range 
over an alphabet W, and v, w, z to range over W* i.e. the set of all words 
over W including the empty word Jc. IZI denotes the cardinality or size 
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of a set Z; \z\ the length of a word z, and \?cl= 0. A semi DOL-System 
(semi DOL) is an ordered pair S = < W, o) where W is a finite nonempty 
alphabet and o a total mapping from W into W*. A pair (a, o(a)) is called 
a production rule and is also written as a--+ o(a). We extend o to W* 
by defining o(?c) =A and o(a1a2 • .. am)= o(a1)o(a2) ... o(am). oi is the compo
sition of i copies of o and is inductively defined by o0(v)=v and oi(v)= 
= o(oi-l(v)). A DOL-System (DOL) is a triple G = (W, o, w) where S = <W, o) 
is the underlying semi DOL and w E W*\{A} is the axiom. The DOL 
language generated by G is L(G)={o1(w)\i;;;.O}. The growth function of G 
is defined by fa(t)= \ot(w)\. Clearly, if for a DOL G= <W, o, w) holds 
m= max {lo(a)I \a E W} then fa(t)<mt\wl for all t. Hence the fastest 
growth possible is exponentially bounded. The growth in a DOL G is 
exponential (type 3), polynomial (type 2), limited (type l ), terminating 
(type 0), if there is no polynomial p(t) such that fa(t) <p(t) for all t, the 
growth is not exponential and there is no constant m such that fa(t) <;,m 
for all t, there is a constant m such that O < fa(t) < m for all t, fa(t) = 0 but 
for a finite number of initial arguments. Previously [3, 4 and 5], ex
ponential and non-exponential growth have been termed, with biological 
connotations, malignant and normal growth. The presently used adjectives 
seem more elucidating in a mathematical context. The general form of 
fa is given by fa(t) = k=i Pt(t)ctt where Pt(t) is a polynomial and Ct (ct ,f;cJ 
if i ,;t,j) a constant [ cf. l, 3 or 4]. Therefore, if fa is not exponential, then 
fa is indeed a polynomial. It is easily seen that if G=<W, o, a1a2 ... am) 
then fa=fa1 +/a2 ..• +lam where Gt=(W, o, ut) for L;:i<;,m. If we at
tribute to a letter ai the growth type of Gt then the growth type of G 
is the highest numbered growth type of the letters in its axiom. We 
designate the growth type of a semi DOL S=<W, 15) by X3X2X1X0 where 
Xi=i if G=<W, 15, a) is of type i for some a E Wand Xt=0 otherwise. 

Examples of semi DOL types. 

type 321 S1=<{a, b, c}, {a--+ a2b, b--+ be, c-+ c}) 
type 31 S2 =({a, b}, {a--+ a2b, b--+ b}) 

type 3 S3=<{a,b},{a--+b,b-+ab}) 

type 21 S4 =<{a,b},{a--+ab,b--+b}) 

type I Ss=({a,b},{a--+b,b-+b}) 
type 0 S5=<{d}, {d ➔ ?c}) 

We form the types 3210, 310, 30, 210, 10 by adding d and d _,..}. to the 
alphabets and production rules of 81-85, respectively. The other possible 
combinations, i.e. 320, 32, 20, and 2 will be excluded by theorem 9. 

3. ALGORITHMS FOR DETERMINING GROWTH TYPES 

We present simple algorithms for determining growth types of letters, 
DOL's and semi DOL's. Lemma 2 and theorem 3 plus corollaries are 
taken from [6]; theorem 6 is due to SALOMAA [4]. 
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Let S = ( W, o) be a semi DOL. A letter a E W is mortal (a EM) iff 
oi(a) = ?c for some i; vital (a E V) iff a (/3M; recursive (a ER) iff oi(a) E 

E W*{a}W* for some i>O; monorecursive (a E MR) iff oi(a) E M*{a}M* 
for some i>O; expanding (a EE) iff cJi(a)EW*{a}W*{a}W* for some i. 
Clearly, if a EM, R, MR then there is ,mi as above such that i<;/M/, 
/RI, /MR/, respectively. A letter a E W is accessible to G = (W, o, w) 
iff cJi(w) E W*{a} W* for some i. We define an order relation < on W by: 
a< b iff there is an i > 0 such that ot(b) E lV*{a} W*. Clearly, R = {a/a< a}. 
The equivalence relation ,...._, on R is defined by: a ,_, b iff a< b & b < a. 
The relation ,..._, induces a partition on R in equivalence classes and 
R/"-'= {[at]lb E [at] iff b ,..._, at}-

LEMMA l. There is an algorithm to determine R and R/"-' for a semi 
DOL S=(W, o). 

PROOF. Define for each a E W a sequence of nested sets as follows 

U1(a)={blo(a) E W*{b}W*} 

ui+l(a) = Ui(a) u {bjo(c) E W*{b} W* & C E Ut(a)}. 

By observing 

(i) Ut(a) C Um(a) CW for all i;,, 1. 
(ii) If Uk+1(a)=Uk(a) for some k then Uk+J(a)=ih(a) for allj. 

We obtain: there is a k<:/WI such that Uk+J(a)=Uk(a) for allj. Denote 
Uk(a) by U(a). Clearly, U(a)={b/b<a}. Since R={a/a E U(a)} and [a-i]= 
= {b/b,..., at}= {b/b E U(at) & at E U(b)} we have R/,..._,= {[at]/at ER}□. 

EXAMPLE. S7 =({a, b, c, d}, {a---+ cd, b---+ a2bc, c---+ c, d---+ ?.}) 

U1(a) = {c, d} U2(a) = U1(a) U(a) = {c, d} 

U1(b) = {a, b, c} U2(b) = U1(b) u {d}= W U(b) = W 

U1(c) = {c} U2(c) = U1(c) U(c) = {c} 

U1(d)=0 U(d)=0 

Hence R={b, c}, [b]={b}, [c]={c} and R/,._..,={{b}, {c}}. A. sequence 
ao, a1, ... , ak, k > 0, is called a loop of a recursive letter a iff ao = ak = a, 
lli+1 is a subword of o(at) for 0<i<k, and a1 =1=a for 0<j<k. Clearly, 
every recursive letter has at least one loop. 

LEMMA 2. Let S = ( W, o) be a semi DOL and a E W a monorecursive 
letter. Then there is exactly one loop ao, a1, ... , ak of a. Moreover, at ,6a; 
for O < i <j < k, {ao, a1, ... , ak-1} = [a] and for all t holds: ot(a) E M*{at}M* 
where i = t mod k. 

THEOREM 3. Let G= ( W, o, w) be a DOL. L(G) is finite iff 

01 w\(Ru M) 1(w) E (Mu MR)*. 
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COROLLARY. A DOL language is finite iff all recursive letters which 
are accessible are monorecursive. 

COROLLARY. The cardinality of a finite DOL language is determined 
by: l.c.m.(k1, k2, ••• ,km)< iL(G)\ <;l.c.m.(k1, k2, ... ,km)+\ W\R\ where k1, 
k2, ••• , km are the lengths of the loops of the monorecursive letters in 
olW\ (RUM)l(w). 

LEMMA 4. A DOL-language L(G) is finite iff the growth of G is limited 
or terminating. 

PROOF. -?-. Suppose \L(G)\ <;n. Then there are j1 <j2<.n such that 
oi1(w) = o12(w). Since for all k ok+ii(w) = ok(oh(w)) = ok(oh(w)) = ok+J2(w) we 
have fa(t) < max {loi(w)I I0<i <j2}. +-. Suppose the maximal word length 
in L(G) is equal to m, then IL(G)i < L-o \Wli □. 

THEOREM 5. There is an algorithm for determining for a semi DOL 
S=<W, o) whether a E W is mortal, recursive or monorecursive. 

PROOF. (i) Construct S' = < W, o') by, for all a E W, substituting Jl 
for bin o(a) iff o(b)=Jl. Construct S" from S' in a similar way. Hence we 
obtain a sequence S, S', S", ... , S<k), S<k+1>, ...• If S<k>=S<k+1>, which must 
happen for some k<IWI then M={a\o(k)(a)=A}. Define B=<V, o> where 
V = W\M and o(a) = o<k)(a) for all a E V. 

(ii) Determine R and Rf"-' by Lemma 1. (Applying lemma l to S 
instead of S saves work and gives the same result). By lemma 2 we have 
MR= V {[a]I if b E [a] then lb(b)\=1}0-

THEOREM 6. (Salomaa). The growth of a DOL G=<W, o, w) is ex
ponential iff there is a letter a E W which is both accessible and expanding. 

LEMMA 7. Let S=<W, o) be a semi DOL and a E W. a EE iff oi(a) E 

E W*[a]W*[a]W* for some i. 

PROOF. +-. Since there is a j 1 such that o11(a) E W*{a}W*[a]W* or 
oh(a) EW*[a]W*{a}W* there is a j2 such that oi2(a) contains 3 occurrences 
of letters from [a). By the same argument there is a j 3 such that o1a(a) 
contains (at least) k+ I occurrences of letters from [a], where k= l[a]I, 
and hence two occurrences of the same letter b E [a]. Then there also 
exists a j4 such that oi•(a) E W*{a}W*{a}W*. -- Trivially true □· 

In [ 4] an algorithm is given to determine whether a E E. By lemma 7 
we can give an improved algorithm. 

(i) Determine Rf,..__, by lemma 1. 
(ii) Replace in the production rules all b ¢ [a] by Jl. 

(iii) If there is a production rule c-?' v left such that c E W and JvJ > 2 

then [a]~ E, and [a) n E='/J otherwise. 

N.B. The algorithm works for OL-systems as well. 
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The greatest possible size of U k(a) is I WI which is also an upper bound 
on k. (cf. lemma 1). Our construction of nested sets resembles the one 
used in [4] where, however, the greatest possible size of Uk(a) is (I Wl 2 + 
+ 31 Wl)/2. Moreover, the construction of Ui+1 out of Ui presents con
siderably more difficulties there. 

To determine the growth type of a semi DOL S=(W, o) we now 
proceed as follows. 

(a) By theorem 5 we determine M, R and MR. 

(b) Determine E by the algorithm given above. 

(c) RM def R\MR and RMEdef {ala ERM & U(a) n E=0}. 

From the foregoing it should be clear that a E W is of growth type 3 iff 
U(a) n E #0, of growth type 2 iff U(a) n E = 0 & U(a) n RM #0, of 
growth type 1 iff U(a) n (Eu RME)=0 & U(a) n MR #0, of growth 
type O iff a EM, or equivalently, U(a) n R=0. We see that the growth 
type of a letter depends on the kind of accessible recursive letters. Therefore 
Sis of growth type X3(E)X2(RME)X1(MR)Xo(M) where Xi(•)=i if· #0 
and Xt( •) = 0 otherwise. 

THEOREM 8. There is an algorithm to determine the growth type of 
a given semi DOL, letter of a semi DOL, or DOL. 

EXAMPLE CONTINUED. 

87= ({a, b, c, d}, {a-. cd, b ➔ a2bc, c-. c, d-. Ji.}) 

(a) (i) 87'=({a, b, c, d}, {a-. c, b-. a2bc, c-+ c, d-. ?i.})=871/. 

Hence M={d}, V={a,b,c}, <5=c5'\{d-+.?.}. 

(ii) Previously, we saw R={b,c} and R/,..._,={{b}, {c}}. Since lb(b)l>l 
and !b(c)l=l: llfR={c} and RM={b}. 

(b) Substituting all letters e fj [b] by.?. in 6 leaves a production b ➔ b, 
i.e. b ¢= E. Therefore E = 0. 

(c) RME C RM\E = {b }. Since U(b) n E = 0 we have RME = {b }. The 
growth type of 8 7 is given by Xs(E) X2(RME) X1(MR) X0(M) = 210. 

THEOREM 9. If G=(W, o, a) and a E RME then there is a letter 
a' E W which is both monorecursive and accessible to G. 

PROOF. Suppose a E RME and no monorecursive letter is accessible 
to G. There is aj1<IR[ and ab EV such that oh(a)=v1av2bv3 or oli(a)= 
= v1bv2av3. Since every vital letter produces a recursive letter within 
I V\R I steps there is a j2 < I VI, a letter c E R and a letter d E [a] such that 
oh(a) has c and d as subwords. Because of the assumption c, d E RME. 
By iteration of the argument we have [cJn1V 1(a)I > 2n for all n. But then 
fa(t) > 2ri1iv 17, where rrl is the entier of r, which contradicts a E RME □. 
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COROLLARY. If RME #0 then MR #0 and hence there do not exist 
semi DOL's of type 320, 32, 20 and 2. 

A biological interpretation of what we have just proven is, that we 
can have exponential (malignant) growth in DOL's with of without 
accompanying limited or terminal growth, but we can not have polynomial 
growth occurring in an organism without encountering in the same 
organism portions with limited growth (in case the organism can be 
modelled by a DOL). 

4. GROWTH TYPE CHARACTERIZATION AND SLOW GROWTH 

We conclude with a conceptually simple characterization of the neces
sary and sufficient conditions that determine the growth type of a letter 
by depicting necessary and sufficient subtrees of the production trees 
(similar to the production trees of cf grammars) of letters of class E, 
RME, MR and M. 

a 

t=IRI 
I 

I 

I 

a ,',a 
, 

; 

la Exponential. lb Polynomial. le Limited. Id Terminating. 

Solid, broken, dotted lines represent sequences of descendants bi (of a) 
such that bt E [a], bt E V\[a] & U(bt) n E = 0, bt EM, respectively. From 
this characterization it is easy to derive expressions for the slowest growth 
possible in each of the discussed growth types. 

THEOREM 10. There are DOL's Gt= <W, ot, a), i = 0, 1, 2, 3, such that 
/a3 (t) = 2rt1iw,7, la2(t) = tl +t/(1 WJ-1)7, /G1(t) = 1, /a0(0) = l and foo(t) = 0 for 
t;.. l. For every DOL G=<W, o, a') holds: if G is of growth type i then 
fa(t) > /G/t) for all t, i = 0, 1, 2, 3. 

PROOF. Let W={a1,a2, ... ,ap} with a1=a. 

03= {at - amll <i<p} u {ap - a1a1} 

02= {at_,.. amll <i<p-1} u {ap-1 - a1ap, ap---+ ap} 

01 = {ai - at+ill <i <p} u {ap---+ a1} 

oo={at-Jl.ll<i<p} 

(Note that under 03 and 01 W=R=[a], under o2 W=R=[a] u [ap] and 
under oo R=0). 
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(i) The growth in G is exponential. According to fig. la fa(t) > 2rtfk7 

where k<l[a]I for some a ER. Clearly, k..;;;[W[. 

(ii) The growth in G is polynomial. According to fig. lb there must 
be a loop a1, a2, ... , ak with c5(ai)=w1bw2at+1Ws, where b E V\[a], for some 
i E {l, 2, ... , k-1}, in the production tree of a. Since fa(O)=l we have 
fa(t) > tl +t/kl with k< I W\{b}i-

(iii) The growth in G is limited or terminating: trivial □. 

COROLLARY. Let G=(W,o,w) be a DOL and let n3 , n2, n1, no be the 
number of occurrences of letters of growth type 3, 2, 1, 0, respectively, 
in w. 

na2rt11w 11 +n21l+t/(IWl-l)l+n1+noe<fa(t) for all t where e=l for 
t = 0 and e = 0 otherwise. 

fa(t) <namt+n22rt1iwi7 +n1r+no+ l for all t;;.to for some t0 and r, where 
m= max {lo(b)I lb E W}. 
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