
AFDELING INFORMATICA

ANDREWS. TANENBAUM

stichting

mathematisch

centrum

DESIGN AND IMPLEMENTATION OF AN ALGOL 68
VIRTUAL MACH I NE

~
MC

IW 4/73 JUNE

2e boerhaavestraat 49 amsterdam

-,.lBLIOTHEEK MATHEMATISCH CEi'JTRUM

PJt..lnted a:t .:the Ma:thema:ti.c.a.i. Cen.tll.e, 49, 2e BoeJLhaa..vu.ttw.a:t, Am.6.teJLdam.

The Ma:thema:ti.c.a.i. Cen.tlle, 6ou.nded .the 11-.th o0 FebJc.u..o.Jl.y 1946, .ui a non
pM6li ..ln1>.tUU,t,lon a,i.m,i.ng a:t .the pll.omotion 06 pu!l.e ma:thema:ti.C6 and w
app.U.c.a:ti.ow.i. I.t .ui 1:ipon1>0Jc.ed by .the Ne.the.Jti.a.ndl:i GoveJLnment .thll.ough .the
Ne.theJ11.a.nd1:i 0Jc.ganiza:ti.on /;oil. .the Advancement 06 Pu/l.e RueaJc.c.h (Z.W.O),
by .the Muniupa.i.Uy 06 Aml:i.teJLdam, by .the UniveJLoliy o0 Aml:i.teJLdam, by
.the FJc.ee UniveJLoliy a:t Aml:i.teJLdam, and by indM::tlu<U>.

ACM - Computing Reviews - category: 4.1, 4.2

ABSTRACT

A virtual machine specifically designed for running ALGOL 68 programs

is proposed. The instructions and addressing of this machine are discussed

in detail. A method of implementing the run time organization for this

machine, based upon use of descriptors, is given. Memory organization,

garbage collection, procedure and range entry and exit, and parallel pro

cessing are among the topics covered.

The machine has been designed such that a hardware implementation of it

could have a single instruction for all assignations, and a single instruc

tion for garbage collection.

Introduction

Descriptors

Table of Contents

Advantages of a descriptor based machine

Memory organization

Specification of the ALGOL 68 virtual machine

Virtual instructions

List of ALGOL 68 virtual instructions

Semantics of the virtual instructions

Example of an ALGOL 68 program and its translated form

Instruction design and addressing

Garbage collection

Procedure call mechanism

Range entry and exit

Jumping out of a procedure

Dynamic scope checking

Parallel processing

1

5

15

17

23

26

27

30

53

55

59

64

67

69

72

74

-1-

Introduction

Any attempt to produce a portable compiler for ALGOL 68, or any other

language, must solve two fundamental problems: insuring that the compiler

itself can be moved from machine to machine easily, and insuring that the

object programs produced by the compiler can be moved from machine to

machine easily. The compiler itself can be made portable by writing it

either in a language that has already been implemented on many computers,

such as ANSI standard FORTRAN, or by writing it in a very simple language,

a compiler or macro processor for which can be implemented from scratch in

a short time, due to its simplicity.

The problem of object code portability is more difficult. Consider,

for example, a compiler written in ANSI standard FORTRAN which produces

object code for the IBM 370. Although the compiler can be moved to a

CDC Cyber 70 with almost no work.at all, it will continue to produce object

code for the 370, which is, of course, totally useless on the Cyber 70.

This report discusses a solution to the object code portability problem

based upon the concept of having the compiler produce object code for some

virtual machine, which can be implemented on various existing machines,

called the target machines.

There are at least four ways to implement a virtual machine on a "real"

computer: by macro expansion, by procedure calls, by compilation, or by

interpretation. A virtual machine (assembly) language program consists of

a series of statements in prefix form, that is, the operator preceeds the

operands, as is customary in assembly languages. For example, A :=B might

be MOVE A,B, but not A MOVE B. Putting the operator (in this case MOVE)

first simplfies the syntax of the language.

An implementation of a virtual machine using macros consists of defining

a macro for each virtual machine instruction, with the macro body consisting

of zero or more statements in some language already implemented on the real

computer. Thus by string substitution, a program in the virtual machine

language is converted into a program in some other language, which can be

assembled or compiled on the existing machine. To run ALGOL 68 programs on

a new computer requires writing macro definitions for the new computer.

-2-

An implementation of a virtual machine using procedure calls requires

writing a procedure for each virtual instruction. These procedures are

written in some language available on the target machine. The virtual

machine program is regarded as a list of procedure calls, which together

with the procedures form a valid program in some language available on the

target machine. This method may require some trivial syntax changes to the

virtual machine program, for example MOVE A,B may have to be changed to

MOVE (A,B). Implementing the virtual machine on a new target machine re

quires writing a new set of procedures, unless the previous set is in a

language available on the new machine.

A third possibility for implementing a virtual machine is to write a

compiler for the target machine which compiles from virtual machine lan

guage. Such a compiler might be available with options to do more or less

optimizing. A new compiler is needed for each new target machine.

The fourth way of implementing a virtual machine is to provide an

interpreter or emulator for the target machine, which successively fetches,

examines and carries out the virtual instructions, possibly after first

having compiled them to a syntactically simpler intermediate form. An in

terpreter itself may be portable.

These methods have various advantages and disadvantages with respect to

execution time, execution space required, ease of implementation, ease of

debugging ALGOL 68 programs etc. They may also be mixed to combine the

advantages of several methods.

In summary, the proposal is to implement the ALGOL 68 compiler as a

two part process. The first part consists of writing a portable compiler

which compiles ALGOL 68 programs to virtual machine language programs. The

second part consists of making a (machine dependent) implementation of the

virtual machine on each existing target machine. This method has several

virtues.

I. Several implementations of the virtual machine may be available on the

same target machine, for example, an interpreter written quickly while the

other implementations were being developed, a highly optimizing multipass

compiler for production jobs, an interpreter for student jobs designed to

-3-

detect as many run time errors as possible, such as unitialized variables,

subscript range errors etc.

2. The problem of writing the compiler is simplified by breaking it up into

two parts, each of which is more manageable than the original. The syntac

tic and semantic analysis of ALGOL 68 is in the compiler, and the machine

dependent optimization is in the virtual machine implementation.

3. The separation of the machine independent and machine dependent parts

will be very clean, and the compiler will be highly portable.

One of the design parameters is the "level" of the virtual machine.

The virtual machine instructions could be designed to have the "flavor" of

ALGOL 68, e.g. instructions like enter range, select and generate.

Alternately they could be designed to have the flavor of a third generation

computer, e.g. load register, add two integers, and branch on zero. Of

course, intermediate designs are also possible, In general, the higher the

level, the less trouble idiosyncrasies of particular target machines cause,

the more work needed to implement the virtual machine, and the more effi

cient the system will be. The lower the level, the easier it will be to

implement the virtual machine, but the less likely it will be that an effi

cient implementation will be produced. In essence, machine independence can

be traded off against efficiency.

In this report, a high level virtual machine is proposed. The principal

reason for this is to keep open the possibility of actually constructing

the virtual machine from hardware, or at the very least providing an emula

tor for it on a microprogrammable computer. Such a hardware or micropro

grammed virtual machine would be very efficient compared to the other imple

mentation methods, particularly if the architecture of the virtual machine

were designed for ALGOL 68.

It is exceedingly difficult to design an architecture independent vir

tual machine at the present state of the art. For example, consider the

question of memory organization. A design intended for a machine with a

small address space will run on a machine with a segmented virtual memory,

-4-

but possibly very inefficiently, not only because program and data will

straddle page and segment boundaries arbitrarily, but also because the

software will be simulating features either provided for in, or made un

necessary by, the hardware. A design intended for a machine intended for a

segmented address space will likewise cause difficulties on a machine

lacking this feature. Compromises and tradeoffs made here tend to favor the

future over the past.

This report is both preliminary and incomplete. Preliminary in the

sense that some of the solutions are not optimal, and incomplete in the

sense that some aspects of the virtual machine are not mentioned at all,

notably transput. Furthermore, optimization is not treated in much detail.

The report contains two general parts: a description of the ALGOL 68

virtual machine, and a discussion of an ALGOL 68 run time design. The run

time design could be used to implement the virtual machine, or it could be

used in a traditional design where the compiler produces code for a specif

ic target machine with no attempt at portability. Similarly, the virtual

machine described may be implemented by a technique other than the one

given here. Because the memory organization is critical to the virtual ma

chine, the memory organization will be described first, including the con

cept of descriptors. Then the virtual machine will be described in detail.

Following that, aspects of the run time design, i.e. the virtual machine

implementation are covered.

The reader of this report is assumed to be somewhat familiar with

ALGOL 68 Implementation, edited by J.E.L. Peck, North Holland Publishing

Co., 1971.

-s-

Descriptors

One of the main goals of this design is to permit the construction or

emulation of an "ALGOL 68 machine". Various studies have shown that 50 to

70 percent of the statements in higher level languages are assignment

statements. Therefore it would be highly desirable to be able to build an

"assignment instruction" into the hardware or microprogram. Such an in

struction should be able to perform an assignment of values of any mode in

a single instruction. Because a majority of statements are assignment

statements, this will greatly improve the machines performance compared to

a conventional machine. In particular, the need to fetch a large number of

instructions from main memory will be eliminated. In a conventional comput

er, assigning a 1000 element array will probably require fetching at least

3000 instructions, 1000 each of load register, store register and condi

tional jump. If an assignment instruction were built into the hardware,

these could all be eliminated. If the assignment instruction were micro

progrannned, the micro-instructions could be fetched from a high speed read

only control store.

Another important advantage of a built in assignment statement is the

possibility of performing assignments of elements of an array or fields of

a structure in parallel. With the recent appearance on the market of a gen

eral purpose digital computer with a 12 microsecond cycle time, stack hard

ware an instruction repertoire of over 40 instructions, and a cost of under

$100, the possibility of having hundreds or even thousands of processors

performing parallel assignments must be taken seriously.

Because there are an infinite number of possible modes in ALGOL 68,

such an assignment instruction will have to find out the mode of the source

from the data itself. This suggests the use of run time descriptors, dis

cussed shortly.

Another feature of ALGOL 68 that has a profound effect upon the run

time design is the use of the heap and its attendent storage management

problems. Unlike objects created by local generators, objects created by

heap generators cannot be acconnnodated on a stack. They require a garbage

collection type of storage management. The garbage collector must be aware

of all run time objects in order to trace and mark all pointers. ,,

-6-

Finding most pointers presents no problem since they are located on or

are pointed to by the identifier stack, which contains, roughly speaking,

the variables. However, the results of many virtual instructions are put

on a different stack, the working stack, which is used for temporary stor

age. For example, if the results of an operator is a heap ref ref[] int,

the first pointer in the chain will not be traceable from the identifier

stack.

In order to trace all objects pointed to by the working stack, it must

be possible for the garbage collector to identify the mode of each object

on the working stack. One way of accomplishing this is to have the compiler

produce a list of all possible configurations of the working stack and

give each one a number. During run time, a global variable giving the cur

rent configuration of the working stack would be maintained.

Whenever the configuration changed, this number would have to be updated.

Since nearly every ALGOL 68 statement affects the working stack, this

would be not only time consuming, but wasteful of space as well, not only

the space used to store the configurations (templates), but the instruc

tions used to update the configuration number as well.

An alternate method of providing the garbage collector with the con

figuration of the working stack is to maintain the mode information on the

working stack itself. The descriptors needed for the assignment instruction

provide exactly the correct information needed by the garbage collector.

Thus the use of descriptors eliminates the need for updating the working

stack configuration number, and in fact, dispenses with the entire idea of

a working stack configuration. At any point in time the garbage collector

can find out what is on the working stack simply by looking there.

As a consequence of this, it is possible to design a general purpose

garbage collector. A hardware instruction 11garbage coll,ect" can be provided

or emulated. Such an instruction would eliminate the need for fetching in

structions from main memory during garbage collections, since all the in

structions could come from a high speed read only control store, or be

built into the timing circuits themselves. Furthermore, parallelism in the

microprocessor or hardware can be exploited. This design does not preclude

either a recursive garbage collector or a non recursive one, so the type

-7-

most appropriate can be chosen. If the target machine is microprogrammable,

the best solution would be a recursive garbage collector using a paged

control store for the stack. When the stack filled up it could be paged in

to main memory, which would be used as a backup memory. Conceivably the

main memory itself could be paged onto a disk or drum if need be.

In summary, two significant advantages of using descriptors are the

possibility of building a hardware or microprogrammed general purpose as

signment instruction, something not possible without descriptors due to

the infinite number of potential modes it may have to deal with, and the

possibility of a hardware or microprogrammed garbage collector without the

necessity of maintaining configuration numbers or templates. Other advan

tages will be discussed later.

-8-

The descriptors referred to earlier will now be explained in detail.

The reader should avoid confusing them with the multiple value descriptors

used in the ALGOL 68 report. Historically, the use of the word "descriptor"

in the sense used here predates the ALGOL 68 report by at least a decade.

A descriptor is an object present in the machine at run time. It con

sists of three fields

type scope address

The number of bits required for a descriptor is machine dependent, but for

a given target machine all descriptors have exactly the same size. This is

a crucial property, without which the entire method to be presented would

not work. Every instance of a value, be it a plain value, a structured

value, a multiple value, or other value has associated with it a

descriptor. In addition, certain objects which are not values, such as

unions and parallel control blocks also have descriptors.

Values are accessed only via their descriptors. All instructions ad

dressing objects contain not the address of the value, but the address

of the descriptor. The address field of the descriptor gives either the

address of the value, or the address of another object from which the

value can be found.

The scope field of a descriptor contains the scope of the value.

The type field of a descriptor provides mode related information. The

types are

int long int reference

real long real row

bool short int structure

char short real union

bits long bits void

bytes long bytes empty

proc long long int semaphore

format etc parallel control block

-9-

Note that these are related to modes but are not modes, for example proc

is not a mode, but it is a type. Additional types for longer and shorter

plain values may be provided. The number of bits in the type field is

determined by the number of lengths of plain values provided, an implemen

tation dependent parameter.

Every identifier occurring in the program is associated with a descrip

tor. For every procedure in the program there is a unique set of N identi

fiers used within all the ranges of that procedure. This set includes the

formal parameters. When a procedure is entered, space is reserved on a

stack called the identifier stack for a descriptor for each identifier.

One important optimization will be used. Values of modes not beginning

with ref will be stored as if they had been declared as ref modes. This

may seen peculiar at first, but the distinction between an int and a

ref int at run time is of little value unless one assumes the existence of

immediate operand instructions, something we will not due because of their

lack of universality. Keeping that distinction turns out to be quite costly

however. In other words, storage for i in int i=4 is allocated just as

though it had been declared as inti :=4. This causes no problems because

any run time operation that need be performed on i can still be performed.

This optimization does not change the syntax or semantics of an ALGOL 68

program, of course, any more than using the same representation for inte

gers and reals, as many ALGOL 60 compilers do.

The address field of a plain value descriptor points to a cell con

taining the value.

For example, consider

proc p= (int i,j, ref int k, bool b) void:

begin real x,y; char c;

skip

end

-IO-

The identifier stack for this procedure contains:

variable

i

J

k

b

X

y

C

int

int

int

bool

real

real

char

scope address IT]
scope address IT]
scope address - --m
scope address - ➔ltruej

scope address

scope address ~

scope address - ~~

Note that the representation of i and k are the same, despite their dif

fering modes, This is the optimization discussed. Thus as far as the run

time system is concerned, it is possible to use i as a destination in an

assignation, but of course no such instructions will ever be generated by

the compiler. All machine instructions know whether they need a reference

in front of the mode or not,so no ambiguity arises. For example, if the

standard prelude integer addition operator is given i and j, it knows that

it needs two integers, not two ref int's. Similarly, an assignation with i

as source and j as destination automatically implies that i must be an int

and j must be a ref int.

All values of mode ref~ for~ a mode of the form ref ml ~ have a

"reference" type descriptor, with the address field pointing to the de

scriptor for~- Some examples follow:

ref ref int I ref I scope I -+-->j int j scopej Tl 40 I

ref ref ref bool I ref j scope I ---➔ I ref scopej + bool scope

I false

At this point the optimization should become clear. If it were not done, a

an extra descriptor would be needed for ref int etc., and since it is

expected that ref int will be more common than int, this price seems too

high.

-11-

Descriptors for structured values have type "struct", with the address

pointing to a block of memory of size N+l descriptors, where N is the

number of fields in the structured value. The first descriptor space in

the block consists of the integer N. The remaining descriptor contain de

scriptors for the fields. For example,

struct (inti, bool b)

struct I scopej l) 2

i int scope ., 40

b bool scope r true

struct (int j, ref bool bb, char c)

struct I scopej + 3

int scope -r 40

ref scope - !. boo 1 I scope I
char scope -r I "x"

struct (inti, ref struct (int j, bool b,c, char d)r)

struct scopel +
i

r

int

ref

2

scope -
scope -

~ 40 I
~ jstruct I scope! +

j

--+]-➔➔ I true

l

4

int scope 40

b bool scope true

C bool scope false

d char scope

Descriptors for multiple values have type "row" with the address

pointing to an ALGOL 68 multiple value descriptor, as discussed in the

report. In addition to the fields described by the report, and certain

other fields required for garbage collection, the multiple value descriptor

must contain a descriptor of the type appropriate for the elements. For

example,

"x II

[1:3] int

j row I scope! + bounds, offset
etc.

int scope

[1 :3] ref int

row I scope! + bounds, offset
etc.

ref scope

[1:3] ref ref int

row I scppej +bounds, offset
etc.

ref scope

[1:3] [1:2] int

rowj scopel + bounds, offset
etc.

row scope

-12-

lint I scope I ➔ 1 40

jint !scope! '> I 41

lint I scope I ➔ 1 42

I ref I scope I ~lint I scope I :+--GQJ
I ref I scopej ~lint I scope! +--@J
I ref I scope! ~lint I scope! ~~

bounds, offset
etc.

int scope

bounds, offset
etc.

int scope

bounds, offset
etc.

int scope

40

41

I so I
DD

~
I 62 I

-13-

[1: I] struct (int i, bool b)

I row I scope! bounds, offset p 2
etc. int scope r 40

struct I scope! _J bool scope - true

[I:2] struct ([1:2] int ii, real r)

bounds, offset

I row I scope! + bounds, offset 2 etc.

·etc. row scope int scope

struct scope real scope 3. I 5

bounds, offset
2 etc.

row scope int

real scope 3.13

Descriptors for procedures have type 11proc 11 with the address pointing

to a block containing a code pointer, a display pointer, and (possibly) a

procedure number. For example,

l.__p_r_o_c_,___s_c_o_p_e~I-~~.=;---~> code pointer

display pointer

optional procedure
number for debugging

Descriptors for unions have type "union" with the address pointing to

a block similar to that of a proc. The first word of this block contains a

mode number and the second word contains a descriptor for the value.

The mode numbers may be assigned in any convenient way. For example,

-14-

union (int, real)

)union I scope I I > 126 (int)

int I scope I - 40

or

junion scope I 214 (real)

.___re_a_l___._j_sc_o_p_e___._l_-__.----1 3. I 3

As with the primitive modes, the run time representation of a structure

and reference to a structure are the same, i.e. The initial reference is

suppressed as an optimization. The same arguments apply to rows and unions

as well.

-15-

Advantages of a descriptor based machine.

1. Assignations can be carried out directly in hardware, or in any event,

at a level below that of the virtual machine language. Since the major

ity of statements in higher level languages are assignment statements,

this will be a highly efficient method of carrying them out.

2. Garbage collection can be carried out directly in hardware, because all

the information needed is in the machine at run time.

3. The compiler is freed from having to generate instructions to update

the working stack configuration number, and the running program is

spared the time and space required to carry out this updating.

Furthermore the compiler need not waste time trying to optimize this

calculation, since it is no longer necessary.

4. Because descriptors have a uniform size, a highly efficient form of

addressing is possible. This saves both space and time. It will be

discussed in detail later.

5. Unions have no residuals in this representation. In other representa

tions, the unused static part of a union causes complications for the

garbage collector.

6. There is no need to implement references to local objects and heap

objects differently. In some representations, inti; and heap int j;

would be handled quite differently. For the local variable, i, space

would be reserved on the identifier stack for an integer, whereas for

the heap variable j, the identifier stack would contain a pointer to the

heap. Thus not only is the amount of space required different, but the

garbage collector must be informed of which integers are pointers and

which are not. With descriptors it can just look.

7. Only descriptors are passed parameters. This makes the procedure

mechanism simpler. The called procedure itself can examine.

The actual parameters' descriptors to see if copying is needed. In some

cases the decision to copy or not copy can only be made at run time.

-16-

8. Uninitialized variables can be easily detected in many cases by having

the address field of an uninitialized descriptor set to 0. Because

there are no extra bits in integers and reals and bits and bytes in

general, this information would be difficult to provide in other repre

sentations.

9. Scope cheeking can be provided in hardware, and furthermore, it can be

done in parallel with other actions, such as copying.

-17-

Memory organization.

Memory is conceptually divided into a number of independent segments:

1. the program

2. the administration

3. the identifier stack

4. the working stack

5. the local generator stack

6. the heap

7. the garbage collector's stack

8. constants and environment inquiries.

The program segment contains the executable code constituting the

program. Little more need be said about it.

The administration stack contains information saved when a procedure

is called, and which must be later restored, including

1. all the stack pointers

2. the display

3. the return address

4. information for dumping and tracing (debugging)

5. information for managing storage upon range entry or exit.

The identifier stack contains an entry for each identifier appearing

in an identity declaration, and for a few compiler created internal iden

tifiers.

The working stack can be used for or by:

I. collateral clauses

2. row displays

3. structure displays

4. assignations and identity declarations

5. operands of standard prelude operators

6. results of ENCLOSED clauses

7. results of procedure calls

-18-

8. results of operators

9. results of deproceduring

10. results of certain coercions, e.g. widening

11. subscripts

12. format elaboration

13. generators

14. selections

as well as other constructions when that is convenient, e.g. identity

relations.

The local generator stack is used for local generators, excepting their

descriptors. The identifier stack contains the descriptor for each iden

tifier and the local generator stack or heap contains the rest of the ob

ject. The heap is used by heap generators.

The garbage collector stack is used by the garbage collector. Garbage

collection will be discussed later.

It is not necessary to maintain a separate segment for each of these

·conceptually separate items. On a machine such as the IBM 370 with a

moderate sized address space (224 bytes) it may be better to have a few

large segments than a number of small ones. The merging of segments is not

accomplished without some cost in complexity however, and this is reflected

in the size and performance of the compiler and program. At the present

time the computer industry is undergoing a transition from computers with

out virtual memory to computers with virtual memory, and this design is

something of a compromise, with an emphasis on the future, rather than the

past.

The program, constants and environmental inquiries are all static and

can be merged without problems. The administration stack, identifier stack

and local generator stack can also be merged easily, giving rise to the

range stack.

It is desirable to split the working stack into two parts. The descrip

tor working stack (DWS) contains only descriptors. The object working stack

(OWS) is used for the objects themselves. The descriptors on the DWS may

point to the local generator stack, object working stack or heap.

-19-

Whenever the result of an operator, procedure etc. must be created and

put onto the working stack, the descriptor goes on the DWS and the rest

goes on the object working stack.

The reason for maintaining the DWS as a separate segment is as follows.

This arrangement enables the garbage collector to find all objects not

pointed to by the identifier stack. Every object has a descriptor either

on the working stack or the identifier stack (or both).

The origin of the DWS is globally available, and the top of it is kept

in a register, the DWS pointer, so the garbage collector can trivially

locate all objects pointed to by the working stack, regardless of which

procedure activation they occur in.

Space on both the DWS and object working stack are recovered dynami

cally as objects are removed from the working stack. When an object is

popped off the DWS, the DWS stack pointer is reset, and if the object is on

the object working stack, its stack pointer is reset too.

In addition, because all objects on the DWS have the same size, the

DWS can be indexed into to find the N-th object from the top. If objects

were of different sizes, this would not be possible.

Furthermore, although the working stack could be merged with the range

stack, this would introduce complications into the compiler. Because of

the rules concerning the scope of local generators, the compiler would

otherwise have to reserve local generator space in advance, and figuring

out when to do this and when it could be optimized out increases the com

plexity of the compiler.

Now we turn to the problem of implementing the memory organization.

There are 5 segments to be implemented: the program, constants, and range

stack in the first, and the two working stacks as the second and third,

and the heap and garbage collector stack as the fourth and fifth.

The range stack is organized as a series of frames, one for each pro

cedure entered, but not yet left. The main program is regarded as a proce

dure for these purposes. The structure of a frame is shown below.

DP➔
display
ointer)

One frame of the range stack

previous display pointer

previous DWS base

previous DWS pointer

previous ows base

previous ows pointer

proc # (for debugging)

return address

descriptor for first parameter

descriptor for second parameter

: .
descriptor for last parameter

descriptor for first identifier
. . .

descriptor for last identifier

descriptor marking end

pointer to first descriptor

pointer to first descriptor
of statically endosing proc

: .
pointer to outer proc

sp for first range

sp for second range
. . .

sp for deepest range

static parts of identifiers

dynamic local generators

: .

-20-

,,
'>

I•

I•

>

}

previous
state
info

D
ba

ws -se

D
point

identifie
stack

display

range
table

local
generator
stack

ws
er

r

DWS

. . .
result

~d . escr1ptor

• . .

~ top of DWS

ows

tatic
art of
esult

ows
pointeri------1

-21-

The range stack frame consists of 5 parts:

1 • the previous state information

2. the identifier stack

3. the display

4. the range table

5. the local generator stack.

The previous state information contains all the pointers that need to be

saved. The identifier stack contains one descriptor for each formal para

meter and identifier. The display contain pointers to the start of the

identifier stack for the frame itself, and all the statically enclosing

procedures. The range table has as many entries as the maximum depth of

range nesting. Whenever a range is entered the value of SP is saved in the

corresponding position so that it can be restored when the range is left.

Thus although space for descriptors is reserved for the entire time a

procedure is active, local generator space is released upon range exit and

need not wait for procedure exit. The local generator stack follows the

range table.

On a machine with a segmented memory, the program, rarige stack, DWS,

OWS, and heap would be separate segments, each free to grow and contract

independent of one another. On a machine such as the IBM 370, with a linear

address space of moderate size, a portion of the address space would have

to be allocated to each segment, e.g. addresses between 15,000,000 and

16,000,000 for the DWS. If the program actually used a quarter of a million

32 bit descriptors, it would run out of address space, but it seems exceed

ingly unlikely that such a situation would ever occur except in programs

written for the purpose of seeing what happened when it occurred. It should

be noted that the DWS is never pointed to, and therefore it is completely

relocatable. The entire DWS could be moved in the address space and only

the DWS pointers would have to be changed. If a hardware register were

available to dynamically relocate all DWS references, only this register

would have to be changed when the DWS was moved.

If the target machine is a second generation machine with no virtual

memory and a small address space, and a programmer writes a large, highly

-22-

dynamic program, in which, for example, the operands of a formula frequent

ly invoke other operators whose operands invoke still other operators etc.,

the progrannner will discover that the machine is finite. There is no magic

way to allow programs that need an arbitrarily large amount of space to run

on a small finite machine. It is true that by merging stacks the program

might have been able to run a bit longer, but it is also known that when

programs using dynamic storage allocation are stopped because storage is

exhausted, they do so in a.most unpleasant way. In particular, near the end

they cause successively more frequent garbage collections, each recovering

successively less space. Thus the merged stacks would have an obvious ad

vantage for programs that needed only the space available elsewhere, but

the obvious disadvantage of prolonging the death throes of programs that

were not going to make it anyway, and few computer centers give refunds for

CPU time used to discover that there was not enough memory for the program.

-23-

Specification of the ALGOL 68 virtual machine.

Each virtual machine instruction consists of an optional label field,

an opcode and zero or more addresses. Instructions are terminated by semi

colons. Eight kinds of addresses are used

I. dereferenced identifier

2. non dereferenced identifier

3. environment inquiry

4. constant table

5. working stack reference

6. integer

7. label

8. null.

These will now be discussed in turn.

1. Dereferenced identifier.

Dereferenced identifiers will be written as a triple in the form:

(1, display level, id number)

where display level is O for the current static level, 1 for the enclosing

level etc. The higher the number the more global the range of the level.

Each identifier within a display level (which in this design is a procedure)

has a unique number, with numbering beginning at 0. The actual parameters

of a procedure are also accessed using this mechanism, with the first

parameter having the address (1,0,0), the second parameter having the

address (1,0,1) etc. The numbering of the identifiers follows that of the

parameters.

2. Non dereferenced identifier.

These addresses are written in the form:

(2, display level, id number)

The difference between type 2 addresses and type 1 addresses is that the

-24-

latter are not dereferenced and the former are. Dereferencing is provided

as an explicit instruction, therefore type 1 addresses are not strictly

necessary, but are useful for optimization. If the first identifier in

display level 0 has mode reference-to-integral, then a push operation with

address (1,0,0) will push an integral onto the working stack, whereas a

push operation with address (2,0,1) will push the address of an integral

onto the working stack.

3. Environment inquiry.

Addresses of the form:

(3, index, length)

are used to make environment inquiries. The list of objects in the

standard environment of the revised report is not known as this is being

written (1973), but for the original report these are: int lengths,

Lmax int, real lengths, Lmax real, L small real etc. These are numbered

starting at 0. The second parameter, length, is 0 if no longs or shorts

are used, 1 for long, 2 for long long etc. For short, short short etc. the

values -1, -2 etc. are used. For example (3,1,2) is the address of

long long max int.

4. Constant table.

This form of addressing is used to access constaµts preloaded by the

compiler. The constant table is global to an entire program, to avoid

having small constants such as 0, land true stored in many procedures.

An address of the form:

(4, index)

accesses the constant table, entry index, where index is a zero origin

counter.

5. Working stack.

An address consisting of a 5 pops one object off the working stack.

The object popped off may be of any mode or size, and the stack pointer is

reset.•

-25-

6. Integer.

An address may be an integer. This form of addressing is only used

in situations where no ambiguity arises. Integer addresses are commonly

used for counting, e.g. the number of fields in a structure, or numbering,

e.g. a mode number.

7. Label.

Labels are used for internal jumps. For reasons of efficiency it

would be desirable for the compiler to generate all labels of the form

" ln" where n is an integer.

8. Null.

It occasionally occurs that an address is optional in a certain

instruction. The loop instruction has an address field for the controlled

variable. When compiling to 3 do newline it is nevertheless necessary to

provide an address in that field. In such cases 8 is used.

Some instructions have multiple addresses. It is important to note

that the order in which the addresses are evaluated is significant. As an

example of this consider the evaluation of the formula (i+j) - (k+l).

This will be compiled as code to elaborate the left operand and push it

onto the working stack, code to elaborate the right operand and push it

onto the working stack followed by the (conceptual) instruction sub 5,5

which proceeds in 4 steps:

I. The right operand is popped from the stack

2. The left operand is popped from the stack

3. The subtraction is performed

4. The result is pushed onto the stack.

Note that the right operand is popped before the left operand. Thus we have

the rule: address fields are elaborated right-to-left. This holds for all

virtual instructions.

-26-

Virtual instructions.

Each virtual instruction has a mneumonic given below, although once

the compiler has passed the debugging stage these should be mapped onto

the integers for efficiency. Instructions may have O or more addresses, as

described earlier. A few of the virtual instructions are really pseudo

instructions in that they provide information but generate no object code.

The virtual machine has been designed in such a way as to ease the

construction of a hardware or microprogrammed ALGOL 68 machine. In partic

ular, an implementation involving descriptors is not precluded. Each

instance of a value would have associated with it a fixed sized descriptor,

giving information about the mode of the value, the scope of the value, and

the name of the value. In many cases these descriptors could be manipulated

instead of the values themselves. For example, the instructions for

standard prelude operators might put descriptors rather than values on the

working stack. Also, in the case of multiple values this might save con

siderable time in many cases.

Below is a listing of the virtual instructions. A detailed discussion

follows.

-27-

List of ALGOL 68 Virtual Instructions.

Group 1. Declarations and structuring

I.

2.

3.

4.

5.

6.

begin

end

mode

constant

procedure

endproc

mode nr, type, details, bounds

index, mode nr, value

proc nr, depth, nr of params, nr of ids, range depth, modes

proc nr

Group 2. Generators.

7. idgen index, mode nr, range

8. locgen mode nr

9. heapgen mode nr

l O. skipgen mode nr

11. nilgen

Group 3. Assignment, pushing, popping etc.

12. assign

13. iddecl

14. push

15. pop

mode nr, source, destination

mode nr, source, destination

mode nr, source

mode nr, destination

Group 4. Operators, coercions, etc.

16. dyop op nr, length, left operand, right operand

17. monop op nr, length, operand

18. deref mode nr, source

19. widen type, length, source

20. idrel mode nr, left source, right source

21. monbound mode nr, type, source

22. dybound mode nr, type, left source, right source

23. random length

-28-

Group 5. Selecting and slicing.

24. select mode nr, primary, field nr

25. ref select mode nr, primary, field nr

26. subscript mode nr, primary, subscripts

27. ref subscript mode nr, primary, subscripts

28. slice mode nr, primary, result dims, bounds

29. refslice mode nr, primary, result dims, bounds

30. descrip mode nr, primary, result dims, bounds

Group 6. Creating objects.

31. createproc mode nr, label, display, range

32. createunion union mode nr, value mode nr, source

33. createstruct mode nr, fields

34. createrow mode nr

Group 7. Flow of control.

35. enterrange range nr, nr of ids

36. exitrange range nr, nr of ids

37. call mode nr, primary, parameters

38. deprocedure mode nr, primary

39. return mode nr, proc nr

40. jump label

41. dirtyjump label, proc nr, range nr

42. jumptrue source, label

43. jumpfalse source, label

44. loopsetup variable, counter, from, by, to, label

45. while source, label

46. loop variable, counter, by, label

47. fork nr of branches, control block, successor, labels

48. join label

49. internalcall label

50. internalreturn

51. conform mode nr, source, nr of alternatives, outlabel, alternatives

Group 8. Miscellaneous.

52. nilcheck

53. check

54. copy

mode nr, source

type

mode nr, source

-29-

-30-

Semantics of the virtual instructions.

I. begin

The first virtual instruction of each program is begin.

This serves to identify the start of a program. A connnent may appear

after begin.

2. end

The last virtual instruction of a program is end.

This serves to identify the end of a program.

3. mode mode nr, details, bounds

Mode is a pseudo instruction used to convey information about modes to

the virtual machine. Mode statements are not executable and do not generate

object code. The term mode as used in this context is similar to, but not

identical with, the ALGOL 68 concept of an actual mode declarer. In partic

ular actual bounds are considered to be part of a mode. Thus as far as the

virtual machine is concerned, [I:n] int and [l:m] int are distinct modes.

A mode virtual instruction provides enough information for a local or heap

generator to generate an object. To avoid confusion, the term "virtual mode"

will be used when an ambiguity might otherwise result. Examples of distinct

vitual modes are

[1:10]

[l :5]

[l :n]

bool

int

int

int

ref int

ref long long int

union (int, bool)

struct (int [1:2], bool)

Note that field selectors are not part of the virtual mode, because they

are not used at run time. Fields are selected by position.

Each virtual mode is assigned a unique number by the compiler, presum

ably consecutively from 20, since 0-19 are reserved. The ordering is arbi

trary. Virtual mode numbers are used to identify virtual modes. For example,

-31-

the virtual heap generate instruction specifies the number of the virtual

mode of the object to be created on the heap. The first address field of

the mode instruction contains this compiler generated identifying number.

The second address field, type, contains an integer specifying the

outermost structure, a row of something, a structure with some fields, a

union of something, a reference to something, a long something, etc.

The following types are available:

o. int

]. bool

2. char

3. real

4. bits

5. bytes

6. format

8. compl

9. string

10. sema

11. void

12. long

13. short

14. row

15. ref

16. proc

17. union

18. struct

19. parallel processing control block

Virtual modes 0-11 are predefined as above and should not be explicitly

declared. Virtual modes 12-19 should be avoided to prevent confusion on the

part of the human beings doing the implementation.

The third address field, details, continues the specification of the

virtual mode. In the case of the primitive modes, with types 1-11, the type

provides all the needed information, therefore the details and bounds fields

are omitted. For other virtual modes, more information is needed, for

-32-

example, if the type is 15, reference to, the details field specifies the

virtual mode referred to The interpretation of the details field depends

on the type field, as follows.

For types 12-15 (long, short, row, ref) the details field contains a

virtual mode number. These modes have the form:

long!!!_

short m

[] m or [,] m

ref m

or [,,] m etc.

The details field contains the virtual mode number of m. Note that for

modes of the form[][]!!!_, the details field contains the virtual mode of

[] m.

For types 16-18 (proc, union, struct) several virtual modes must be

specified, and thus the details field contains a list of virtual modes

separated by commas. For proc, these are the virtual modes of the para

meters, followed by the virtual mode of the result. For union these are

the virtual modes from which it is united. For struct these are the virtual

modes of the fields.

The details field for a parallel processing control block is an integer

equal to the number of constituent units in the parallel clause it de

scribes.

The fourth address field, bounds, is omitted unless the type field con

tains a 14 (row). For rows, this field is used to specify where the actual

bounds are to be found when a generator of this mode is elaborated. The

bounds field consists for an N-dimensional multiple value contains 2N+l

subfields. The first subfield contains the number of dimensions. For[] m

this is 1, for[,]!!!. this is 2, etc. The remaining subfields specify the

lower bound of the first dimension, upper bound of the first dimension,

lower bound of the second dimension, etc. Each bound may be any of address

kinds 1-5 as described earlier. Thus an actual bound may be in a variable,

in the constant table, or on the working stack. In the case of a bound

which is a closed clause, the compiler will generate code for evaluating

the closed clause, possibly as an internal procedure, with the value being

-33-

left on the working stack. The subfields are evaluated right to left, for

the same reasons given earlier.

As an example of the use of the mode virtual instruction, consider the

following modes.

(1) bool

(0) int

(20) long long real

(21) ref ref ref bool

(22) [I: if random < .5 then n else m fi] int

(23) proc (int, int) bool

(24) struct (long long real, proc (int, int) bool

(25) union (ref ref ref bool, long long real, char)

If these modes were all used in the same program, the following virtual

instructions might be generated. The symbol i will be used to denote com

ments to aid the reader.

mode 20, 12, 26; i mode 20 is long long real,£

mode 21, 15, 27; i mode 21 is ref ref ref bool ,£

mode 22, 14, 0, I, (4,0), 5; i mode 22 is a row. i
mode 23, 16, 0, 0, 1; i mode 23 is proc (int, int bool) t
mode 24, 18, 20, 23; i mode 24 is a structure

mode 25, 17, 21, 20, 2; t mode 25 is a union t
mode 26, 12, 3; i mode 26 is long real t
mode 27, 15, 28; i mode 27 is ref ref bool i
mode 28, 15, 1; t mode 28 is ref bool t

One thing should be noted about mode 22. It is assumed that entry O in the

constant table is 1, and that whenever an object of mode 22 is to be gener

ated, the upper bound will have been elaborated and pushed onto the working

stack. Thus upon encountering

.•• heap [1: if random <. 5 then n else m fi] int •••

the compiler will first arrange to have the value of norm on the working

stack, either by in line code or an internal procedure call, then generate

a virtual heapgen instruction with address 22.

-34-

4. constant index, mode nr, value

There is a single constant (denotation) table loaded along with the

object program in which constants of all modes and all ranges are kept.

The table is global to the entire program, and can be accessed from any

where within it. Each constant has a number, by which it is accessed, with

the numbering beginning at O. The address (4,i) references the i-th entry

in this table.

The field "index" is the number of the constant, presumably O for the

first one, 1 for the second one, etc. The field "mode nr" is the number of

the mode of the constant. The "value" field contains the constant itself.

String constants are enclosed within quotation marks. The boolean denota

tions are T and F respectively.

For each unique constant occurring in the source program, one

"constant" pseudo instruction will be generated, no matter how many times

that constant occurs in the source program. Some examples follow.

constant O, O, T;

constant I, 3, 3.14;

constant 2, 2, x;

5. procedure proc nr, depth, nr of params, nr of ids, range depths.
modes

This non-executable statement is used to indicate the beginning of a

procedure or operator definition. At run time, no distinction is made

between procedures and operators. For simplicity, we will refer to

"procedure" in this report to include both procedures and operators.

Each procedure is assigned a number by the compiler, which is the first

address field.

"Depth" is the static depth of nesting of the procedure. Depth= 1

corresponds to procedures declared in the outermost range. Depth is needed

to determine the number of entries in the display, including the outermost

one. It is intended that only procedures are counted in nesting, not ranges.

For example, in

-35-

begin inti; skip;

int j; skip; begin

begin proc p= (int i,j) bool: (int k;skip); skip

end

end

end

procedure p has depth I.

The decision to organize memory by procedures has been made for two reasons.

First, to reduce the size of the display, thus saving not only space, but

time as well, since copying it will be faster. Second, to speed up range

entry and exit, because range entry and exit will be much simpler than

procedure entry and exit. This strategy will not release all the space

used in a range until the containing procedure is left, but if descriptors

are used, only the space for a descriptor will be held onto, and not the

space for the object itself. This will be discussed later.

The third field contains the number of parameters. This information is

needed for storage allocation, as the actual parameters are copied onto the

called procedure's identifier stack.

The fourth field is the number of identifiers in the procedure. Each of

these is accessed via the identifier stack, i.e. address forms (l,i,j) and

(2,i,j). This number is needed for storage allocation purposes.

The fifth field, "range depth" is the depth of range nesting at the

deepest point in the procedure.

The sixth field, "modes" consists of a list of the mode numbers of the

parameters, if any, followed by the mode number of the result.

6. endproc proc nr

This statement delimits a procedure definition. The number specifies

which procedure definition is finished. The pseudo-instructions "procedure"

and "endproc" are used to bracket procedure definitions.

-36-

7. idgen index, mode nr, range

For every identifier occurring in a procedure, there is one idgen

instruction. These are used to allocate space for the descriptors (or

static parts) of all objects, including procedures of course, the static

part of a procedure being a few pointers, rather than code. The "index" is

a number used for accessing the object. All identifiers in a procedure are

numbered consecutively, regardless of which range they occur in. If the

procedure has N formal parameters, then these are numbered 0, 1, ••. N-1,

and identifiers are numbered beginning at N. Presumably the idgen state

ments will occur in consecutive order. They must appear before the first

"enterrange" and before the first executable statement. Mode nr is the

mode of the object. Range is in the range in which the object was declared.

As an example, consider the program

begin proc p= (int i ,j) void:

begin int k; real x,y; skip

end;

p(l9,29)

end

This will be compiled into

begin;

mode 20, 16, o, 0, 11 ;

constant 0, o, 19;

constant I , 0, 29;

idgen o, 20, 0;

procedure 1 ' I ' 2, 3, I ' 0, 0, l I ;

idgen 2, 0, 0;

idgen 3, 3, 0;

idgen 4, 3, 0;

I ;

¢ mode 20= proc (int,int) void¢

i integer 19 ¢

¢ integer 29 ¢

,; p is only identifier here i

¢ 2 parameters, 3 identifiers ¢

i k ¢

¢ X i
¢ y i

endproc

call

end;

20, (l,0,1), 2, (4,0), (4,1);

-37-

within the procedure, the first actual parameter can be accessed using the

address (2,0,0) and x can be accessed using the address (2,0,3) or (1,0,3),

depending whether the address or contents of xis needed. Within p,

p itself can be accessed using (2,1,0), for a recursive call, for example.

It should be noted that the actual storage for a dynamic object will

be reserved within the procedure itself using a locgen or heapgen instruc

tion. Idgen just reserves space for the descriptor and the static part, i.e.

the part whose storage depends only upon the mode.

Idgen is also used for temporary variables, e.g. loop counters.

8. locgen mode nr

This instruction generates an object of the specified mode on the

local generator stack. The descriptor for the generated object (or address,

if descriptors are not used) is pushed onto the working stack.

9. heapgen mode nr

This instruction generates an object of the specific mode on heap. The

descriptor for the generated object (or address, if descriptors are not

used) is pushed onto the working stack.

10. skipgen mode nr

This instruction generates a new instance of some value of the speci

fied mode. The object so generated is placed on the working stack. The

virtual machine implementer is free to choose the value.

11. nilgen

A nil is pushed onto the working stack.

12. assign mode nr, source, destination

-38-

This instruction is used for all assignations.

Mode nr specifies the mode of the source, not the mode of the destination.

The second and third fields specify the source and destination respective

ly. If the mode is O (integer), then the source must be an int and the

destination must be a ref int. The details of the assignment are left open

for the virtual machine implementer.

It should be noted that this instruction leaves the compiler consider

able freedom, because the source may accessed via the working stack, the

constant table, a display address etc. The compiler could always insure

that the source was on the working stack, for example. Or alternately, the

compiler could always insure that objects of certain modes and not other

modes were on the working stack.

13. iddecl mode nr, source, destination

This instruction is used for identity declarations, where necessary.

It is expected that contracted identity declarations will be handled using

idgen, which is much more efficient. If the identity declaration is not

contracted, idgen is still needed to reserve descriptor space on the iden

tifier stack, and in addition, iddecl is needed to put a descriptor there.

Iddecl is similar to assign, except that mode nr is the mode of both the

source and the destination, since they must both have the same mode (after

coercions). The compiler can, of course, treat all noncontracted identity

declarations as though they had been contracted, for convenience, if it

wishes e.g. int i=4 can be treated as inti:= 4 if appropriate dereferenc

ing is provided. This is purely an implementation point. The programmer

will never know the difference.

14. push mode nr, source

This instruction pushes an object of the specified mode onto the

working stack. Source is the address of the object. Normally the source

will be an identifier stack entry, dereferenced or not, a constant table

entry, or an environment enquiry. It hardly makes sense to pop the top

item off the working stack and then push it back onto the working stack.

-39-

15. pop mode nr, destination

This instruction is provided for synnnetry with push. It is in fact a

special case of assign, with the source on the working stack. Pop removes

the top item from the working stack and moves it to destination. If the

destination is address type 8, the item popped is discarded, thus providing

an instruction for voiding.

16. dyop op number, length, left operand, right operand

This instruction is used for all the standard prelude, dyadic opera

tors. Each operator has a number, which together with its length uniquely

identifies it. Length= is long. length= 2 is long long etc.

Length= -1 is short, length= -2 is short short etc. Length= 0 is the

standard length.

The third and fourth fields specify the operands. The result of the

operation is placed on the working stack. The operator numbers, based upon

the unrevised report follow. If the revised report contains changes to the

standard prelude dyadic operators, this list will have to be modified.

The "and becomes" operators are not included. They are compiled as

though the expanded form had been written.

-40-

DYADIC OPERATORS

R. 10.2.2 R. 10.2.4 (real,int) 54. s ~t,compl) R. 10.2.8

(bool,bool) (real,real) 38. < 5-5. = 74. + (bits,bits)

I. V 19. < 39. s 56. ;t 75. - 91. =

2. A 20. s 40. = 57. > 76. X 92. ;t

3. = 21. = 41. ;t 58. 2: 77. I 93. V

4. ;t 22. ;t 42. > 59. + (realcompl) 94. A

23. 2: 43. 2: 78. + 95. s

R. 10.2.3 24. > (int,real) R. 10.2.7 79. - 96. 2:

(int,int) 25. 44. < (complcompl) 80. X 97. t

s. < 26. + 45. s 60. = 81. I 98. D

6. s 27. X 46. = 61. ;t (complint)

7. = 28. I 47. ;t 62. - 82. t R. 10.2.9

8. ;t 29. .L 48. > 63. + 83 • = (bytes,bytes)

9. 2: 49. 2: 64. X 84. ;t 99. <

10. > R. 10.2.5 (real,int) 65. I (complteal) 100. s

II. (real,int) so. .L (compl,int) 85. = 101. =

12. + 30. + (int,real) 66. + 86. ;t 102. ;t

13. X 31. 51. .L 67. - (intcompl) 103. >

14. -. 32. X (real,int) 68. X 87. = 104. 2:

15. T: 33. I 52. t 69. I 88. ;t 105. D

16. I (int,real) (compl,real) (realcompl)
17. t 34. + R. 10.2.6 70. + 89. =

18. .L 35. (char,char) 71. - 90. ;t

36 X 53. < 72. X

37. I 73. I

R. 10. 2. 10

(string, string)

106. <

107. ~

108. =

109. ;t

110. >

11 t. ;;;:

(string,char)

112. <

113. ~

114. =

115. ;t

116. >

117. ;;;:

(char,string)

118. <

119. ~

120. =

121. ;t

122. >

123. ;;;:

(string, string)

124. +

17. monop

(string,char)

125. +

(char,string)

126. +

-41-

op nr, length, operand

This instruction is used for all standard prelude monadic operators.

Each operator has a number, which together with its length, uniquely iden

tifies it. The length field is interpreted as in dyop. The result of the

operation is pushed onto the working stack. The list of monadic operators

(and procedures) from the unrevised report follows. The revised report

may require some modifications.

R. 10. 1

(char)

200. abs

(int)

201. repr

R. 10.2.2

(bool)

202. l

203. abs

R. 10.2.3

(int)

204.

205. +

206. abs

207. leng

208. short

209. odd

210. sign

R. 10.2.4

(real)

21 I.

18. deref

-42-

MONADIC OPERATORS

212. + R. 10.2.9

213. abs (string)

214. leng 231. ctb

215. short

216. round R. 10.3

217. sign (real)

218. entier 232. sqrt

233. exp

R. 10.2.7 234. ln

(compl) 235. cos

219. re 236. arcos

220. im 237. sin

221. abs 238. arsin

222. conj 239. tan

223. 240 arctari

224. +

225. leng R. 10.4

226. short (int)

241. I
R. 10.2.8 (sema)

(bits) 242. i'

227. abs 243. t

228. bin

229. btb

230. l

mode nr, source

This instruction is used for explicit dereferencing. In many cases,

use of addresses of the form (l,i,j) will provide the required dereferenc

ing, but in those cases where the dereferencing must be explicit, for

example if a ref ref ref ref bool must be coerced to a bool, this instruc-

-43-

tion can be used. Mode nr is the number of the mode before dereferencing.

Source specifies where the object to be dereferenced is. The dereferenced

object is placed on the working stack.

19. widen type, length, source

This instruction performs widening. The "type" field selects the type

of widening desired:

0 = int to real

1 = real to compl

2 = bits to [] bool

3 = bx:tes to [] char

If other types of widening are added to the revised report, they can be

added to this list. The "source" field specifies the address of the object

to be widened. "Length" specifies the length of the object, with length= 1

meaning long, length= 2 meaning long long; length= -1 meaning short etc.

The result is put on the working stack.

20. idrel mode nr, left source, right source

This instruction performs identity relations. Mode nr is the mode of

the objects. The second and third fields specify their addresses. The

result of this instruction consists of true or false being pushed onto the

working stack.

2 1 • monbound mode nr, type, source

This instruction is needed because lwb and upb are not operators, thus

the mode of the multiple value must be given explicitly. Monbound is a

monadic operator, not a dyadic operator. The second field is:

0 for lower bound

for upper bound

-44-

Source specifies the object whose bound is desried. The result is pushed

onto the working stack.

22. dybound mode nr, type, left source, right source

This instruction performs dyadic lwb and upb pseudo-operations, such

as 2 upb x. Other than that, it is the same is monbound.

23. random length

This instruction is needed because random is neither a dyadic operator

nor a monadic operator. Thus it forms a special category by itself. A

random number is pushed onto the working stack. "Length" determines the

length of the random number.

24. select mode nr, primary, field nr

This instruction is used for selecting fields from structures.

Mode nr specifies the mode of the structure. Primary specifies the address

of the structure. Field nr specifies which field is desired, with O for the

first one. The selected field is put on the working stack.

25. refselect mode nr, primary, field nr

This instruction is needed as a consequence of section 2.2.3.Sb of the

unrevised report. It selects from a reference to a structure and puts a

reference to one of the fields on the working stack. Consider the following

examples

struct (int i,j) s; int k:= i of s;

ref struct (int i,j) s; i of s:= 2; -
ref struct (int i,j) s; int k:= i of s;

In the first case "select" is used. In the second case "refselect" is used.

In the third case, sis dereferenced, perhaps by address type 1, and select

-45-

is used. Like select, the result of refselect is put on the working stack.

26. subscript mode nr, primary, subscripts

This instruction is used to access a single element of a multiple

value whose mode is specified by mode nr, and whose address is specified

by primary. The last field contains all the subscript addresses, each

address being a display address (l,i,j), or (2,i,j) a constant or environ

ment enquiry, or a working stack reference. These addresses are elaborated

right to left, as ususal, for reasons relating to the operation of the

stack described earlier. The element chosen by the subscripts is pushed

onto the working stack.

27. refsubscript mode nr, primary, subscripts

This instruction bears the same relation to subscript as refselect

bears to select. The need for this instruction arises from section 2.2.3.Sc

of the unrevised report. It is used in those cases where a ref[] mis sub

scripted to yield a ref~- Other than that, it is the same as subscript.

28. slice mode nr, primary, result dims, bounds

This instruction creates a slice and leaves it on the working stack.

The mode nr and primary pertain to the multiple value to be sliced. Result

dims is the dimensionality of the slice. Bounds is a list of addresses,

arranged in groups of 3. The first group of three is for the first trim

script, the second group of three is for the second trimscript etc. Each

group of three consists of the lower bound, the upper bound, and the new

lower bound. If any one (or more) of the 3 was omitted in the source

program, it should be translated as address 8. This instruction creates a

new multiple value descriptor and a new multiple value on the working

stack.

-46 ...

29. refs lice mode nr, primary, result dims, bounds

This instruction bears the same relation to slice as refsubscript does

to subscript, i.e. it is a result of section 2.2.3.Sc of the unrevised

report. It could be used, for example, when a ref[,,]_!! is sliced to

yield a ref[] m. the result is left on the working stack.

30. descrip mode nr, primary, result dims, bounds

This instruction is intended for creating a new multiple value descrip

tor, without creating a new multiple value itself. For example, in

a[l:5]:= b[l:5]. A slice is made of b, and the multiple value descriptor

and multiple value itself are copied to the working stack. A new multiple

value descriptor is needed for a[l:5] but no new copy of the .values them

selves are needed. This instruction provides that. The parameters are the

same as for refslice. The multiple value descriptor will normally be used

as the destination of a subsequent assign or-iddecl instruction.

31. createproc mode nr, label, display, range

This instruction is used to create a routine from a routine text plus

scope information. Mode nr specifies the mode of the procedure to be

created. "Label'' is the address of the executable code for the procedure.

The scope of the procedure must be some range within some procedure (if

any). The third field specifies which procedure, 0 for current one, 1 for

enclosing one etc. Range is the range within the procedure whose scope is

the scope of the procedure. The result is put on the working stack.

32. createunion union mode nr, value mode nr, source

This in'struction carries out uniting coercions. The first address

gives the mode of the union to be created. The second address gives the

mode of the object from which the union is to be made. The third address

specifies where that object is. The union is left on the working stack.

-47-

33. createstruct mode nr, fields

This instruction takes a list of fields and from them creates a struc

ture. The first address specifies the mode of the structure to be created.

"Fields" consists of a list of addresses, specifying the fields. The fields

are elaborated right to left, as usual, in other words, if all the fields

are on the working stack, the last field is popped off first, etc. The

result is left on the working stack.

34. createrow mode nr

This instruction creates a multiple value, including its multiple

value descriptor, and leaves them on the working stack. The mode of this

multiple.value is given by mode nr. Unlike createstruct, where the number

of fields is known at compile time, the number of elements in the row is

not known. Therefore the elements themselves are not individually addressed,

but rather are taken from the working stack. Thus this instruction removes

0 or more elements from the working stack, and replaces them by a single

multiple value. The order of the elements on the working stack must be the

order implicitly specified by the unrevised report, section 8.6.1.2.

This may remove the need for copying in some cases.

35. enterrange range nr, nr of ids

The execution of this instruction invokes the administration necessary

for entering a new range. "Range nr" is the level of the range being

entered, with the outermost range of each procedure being 0. A procedure,

or the main program, may have many ranges at level i, disjoint of course.

The field "nr of ids" is the number of identifiers in the range, and is

used for storage management.

36. exitrange range nr, nr of ids.

This is the inverse of enterrange. It is used to release space when a

-48-

range is exited. The addresses have the same meaning as in enterrange.

37. call mode nr, primary, parameters

This instruction calls a procedure (or an operator). It supplies the

mode of the procedure called and the address of its primary. The third

field is a list of the addresses of all the actual parameters, in the same

order they are listed in the source program, although they are elaborated

right to left here.

38. deprocedure mode nr, primary

This is the same as call, but for procedures with no parameters.

39. return mode nr, proc nr

This instruction terminates execution of· a procedure and returns

control to the calling procedure. The two parameters are the mode and

number of the procedure being terminated.

40. jump label

This instruction causes a jump to label. This form may only be used

when the label is within the same procedure and range as the goto state

ment.

41. dirtyjump label, proc nr, range nr

This instruction is used to jump out of a procedure or range. Such

jumps require storage administration actions to be performed. Most virtual

machines will handle dirtyjump by interpretation, unraveling the stack

range by range. This will be slow and deservedly so.

-49-

42. jumptrue source, label

This conditional jump instruction tests the source, and if it is true

jumps to label. This may not be used to exit a procedure or range. If that

is needed, a conditional jump to a dirtyjump should be used.

43. jumpfalse source, label

This conditional jump instruction tests the source, and if it is false

jumps to label. It may not be used to exit a procedure or range.

44. loopsetup variable, counter, from, by, to, label

This instruction is used to set up for-loops.

"Variable" is the display address of the controlled variable. "Counter" is

an internal variable used only in this statement and the corresponding

loop statement. "From", "by" and "to" are from the !2!_ statement, which may be

display addresses, constants, working stack etc. This instruction performs:

variable := from;

counter := if by = 0 then -I

elsf (by> 0 A from ~ to) then (to-from) . by+

elsf (by< 0 A from ?: to) then (from-to) . by+

else 0

fi;

if counter= 0 then goto label fi;

Counter is an internal variable initially set to the number of times

the loop is to be executed, if finite, and -J if infinite as in: while

b do S;

45. while source, label

This instruction is identical to jumpfalse. It is included for reasons

of optimization.

-so-

46. loop variable, counter, by, label

This instruction is used at the bottom of loops to jump back to the

top. The meaning is:

variable+:= by

if (counter -:= I) ~ 0 then goto label fi;

47. fork nr of branches, control block, successor, labels

This statement is executed whenever a parallel clause is begun.

"Nr of branches" is the number of units in the parallel clause. "Control

block" is the display address of the control block where the administration

for the parallel ckause is kept. 11Successor 11 is the label following the

parallel clause, i.e. the place to jump to when the clause is finished.

"Labels" are the labels for the constituent units.

48. join label

This is a backwards jump to the corresponding fork at label. It is

used at the end of a parallel clause. At the end of each unit is a jump to

here.

49. internalcall label

In addition to the procedures present in the program, there may be

internal procedures used to eliminate the need for inline coding. For ex

ample, in

mode~= [0: (read{n); 100 + n x n)] int

the closed clause can be compiled as an internal procedure leaving its

result on the working stack. Whenever a local or heap~ is needed, the

compiler can generate an internal call to this procedure. Internal proce

dures are only used for non recursive code. If the code is not known to be

non recursive, then the full procedure call machinery is needed. Further-

-51-

more, internal procedures do not call any other procedures, internal or

otherwise. This makes the administration simple.

50. internal return

Return for the internal procedure call

51, conform mode nr, source, nr of alternatives, outlabel, alternatives

This instruction is used for case conformity clauses. The mode nr and

address of the object whose mode is to be tested are the first two para~

meters. The number of alternatives in the in part follows. That is fol

lowed by the label to jump to if there is no match. "Alternatives" consist

of a list of pairs, mode, label. If the source has the mode of the i-th

pair, a jump is made to the i-th label. For this statement the ALGOL 68

mode and not the virtual mode is the important one, so bounds in multiple

values are ignored.

52. nilcheck mode nr, source

If the source is nil, true is pushed onto the working stack, otherwise

false is pushed onto it.

53. check type

This pseudo instruction enables run time checking. Type specifies the

type of checking

I • sopes

2. subscripts

3. integer overflow

4. real overflow

5. real underflow

6. assignment to nil

7. use of skip where improper

-52-

8. use of flexible submane, if relevant

A program may contain more than I check statement.

54. copy mode nr, source

A copy of the object specified by source is made and its address or

descriptor put on the working stack.

-53-

Exampl~ of an Algol 68 program and its translated form

(proc

begin

end;

compsqrt= (compl z) compl:

real x = !!:. z , y = im z;

real rp= sqrt((abs x + sqrt(xt2 + yt2))/2);

real ip= (rp = ololy/(2xrp));

(x~0 lrp i ip labs ip i (y~0 lrpl-rp))

compsqrt(-1)

)

begin;

mode

constant

constant

constant

idgen

procedure

enterrange

idgen

idgen

idgen

idgen

monop

iddecl

monop

20, 16, 1 1 , 11 ;

0, 0, 0;

1 , 0, 2;

2, o, -1 ;

o, 20;

0, 1 , 1 , 4, 1 , 8,

0, 4;

1 , 3;

2, 3;

3, 3;

4, 3;

219, 0 (2,0,0);

3, 5, (2,0,1);

220, o, (2,0,0);

8;

¢ proc (compl) compl i
¢ integer 0 ¢

¢ integer 2 i
¢ integer -1 i
i compsqrt i

,J_ X </.

i y r/.
i rp i
,f. ip i

i real x = re z i

iddecl

monop

dyop

dyop

dyop

monop

dyop

dyop

monop

iddecl

dyop

jumpfalse

push

widen

jump

LI: dyop

dyop

L2: iddecl

dyop

jumpfalse

dyop

jump

l3: monop

dyop

-54-
/

3, 5, (2,0,2);

213, o, (1,0,1);

52, o, (1,0,1), (4,1);

52, o, (1,0,2), (4,1);

26, 0, 5, 5;

232, 0, 5;

26, 0, 5, 5;

33, o, 5, (4, I);

232, o, 5;

3, 5 (2,0,3);

40, 0, (l,0,3), (4,0);

5, LI ;

0, (4,0);

0, o, 5;

l2;

36, o, (4,1), (1,0,3);

28, o, (1,0,2), 5;

0, 5, (2,0,4);

43, o, (1,0,1), (4,0);

5, 13;

if. real y = im z ,f.

,f. abs x if.

if. xt2 if.

if_ yt2 if_

t xt2 + yt2 if.

if. sqrt(xt2 + yt2) ,f.

if. abs x + sqrt(xt2 + yt2))/2 t
if. (abs x + sqrt)x 2 + y 2))/2 t
,f. sqrt () ,f.

,f. real rp = sqrt () if.

if. rp = 0 if.

if. if rp ~ 0 then go to LI f i if.

,/. push 0 t
t real (0) if.

i 2xrp if.

if. y/(2xrp) if.

t real ip = (rp=ololy/(2xrp)) t

29, 0, (1,0,3), (1,0,4);i/. rp .i ip t
4;

213, 0, (1,0,4); if. abs ip if.

43, 0, (1,0,2), (4,0); if. y~0 ••. t
jumpfalse l5;

push

jump

LS: push

monop

l6: dyop

L4: exitrange

return

endproc

call

end;

3, (1,0,3);

L6;

3, (1,0,3);

211, o, 5;

29, o, 5, 5;

0, 4;

20, O;

0;

20, (2,0,0), (4,2);

t rp if.

if. rp if.

if. -rp ¢

if. abs ip .i () ,f.

-55-

Instruction design and addressing.

The number of bits per second that can be fetched from a memory is a

parameter of the engineering design of the memory. If the bit transfer

rate of a memory is N bits per second, and the average instruction length

is L bits, then the machine will not be able to execute instructions at a

rate exceeding N/L instructions per second. If the amount of time neces

sary to decode and execute an instruction is much less than L/N, then the

memory bandwidth is the limiting factor in the machine speed. At the

present time this is the case, and furthermore, memory is usually far more

expensive than the CPU, so having several memories running in parallel is

an expensive way to increase the speed of the whole system,

An alternate approach is to decrease the average instruction length.

This can be done not only by clever addressing techniques, but also by

providing sophisticated instructions that replace two or more simpler

instructions. An ALGOL 68 machine might provide special instructions, in

addition to the ones described above, for handling certain commonly

occurring cases. As an example we will examine an instruction add d, sl, s2

which performs d:= sl + s2 for integers. This would be of value in an

implementation of the virtual machine consisting of an optimizing compiler,

which compiled virtual machine code to the machine language of an ALGOL 68

machine. The add d, sl, s2 instruction would be the result of replacing

dyop 12, 0, sl, s2

assign O, 5, d

in the virtual machine code.

isl, s2, d represent display addresses¢

A very important point about descriptors, is that they all have exactly

the same size. This means that it is possible to specify the number of a

descriptor and have the hardware (or microprogram, of course) find the

object by a simple indexing operation. An important observation is that

most procedures reference variables declared within the procedure (includ

ing the parameters) and variables declared global to the entire program far

more often than they reference variables declared in intermediate levels.

This suggests the use of a frequency dependent addressing mechanism.

As an example of such a technique, consider an 8 bit address field,

-56-

appropriate for byte oriented machines. The first 2 bits of the 8 bit

field would determine the type of address as follows:

00 identifier stack, current level

01 identifier stack, outermost level

10 working stack

11 constant table (including environment inquiries)

For 00 and 01, the remaining 6 bits would specify one of up to 64

descriptors at the selected level. Thus for eaxample, if a procedure had 32

parameters, all of which were structures or arrays, and 32 local variables,

all of which were structures or arrays, it would still be possible to ad

dress any parameter or local variable in only 8 bits. This is in strong

contrast to _a more conventional design in which the variables themselves

are on the identifier stack, and in which far longer addresses would be

needed to address them. The saving here comes from the fact that descrip

tors are all of the same size, even if that size is several machine ad

dresses, since finding the i-th descriptor is a simple operation.

For address type 10, the remaining 6 bits could be an index into the

DWS, with 1 as the top item and 63 as the 63rd item from the top. Six zero

bits could be reserved for something special, such as popping the top item

from the stack and resetting the stack pointer(s).

For address type 11 an entry in the constant table would be referenced,

with the remaining 6 bits specifying which one. Environment inquiries would

be stored as constants. Constants would use the same descriptor mechanism

as other objects.

In summary, an 8 bit address could access any one of 64 local variables,

64 global variables, 64 constants, or the working stack. Although this is

likely to suffice for most programs, an escape convention must be provided

for cases. where this is not adequate.

One possible format for instructions of the form add d, sl, s2, as

discussed above would be an 8 bit opcode, and three 8 bit addresses. This

would allow d:= sl + s2 to occupy a total of 32 bits, as shown below.

-57-

-8 bits ➔ -8 bitS---'l> ---8 bits~ ~8 bits~

opcode type offset type offset type offset

destination source I source 2

It is instructive to compare this to machines designed for assembly

language, rather than for ALGOL 68. On the IBM 360/370,

would require

On the CDC

If memory

L

A

ST

Cyber

SAi

SA2

IX6

SA6

cycle

RI, SI

RI, S2

RI, d

70 series

SI

S2

xl + x2

d

(32 bits)

(32 bits)

(32 bits)

(96 bits total)

it is even worse

(30 bits)

(30 bits)

(15 bits)

(30 bits)

(105 bits total)

time were the limiting factor in processor

d:= sl + s2

execution time,

the ALGOL 68 machine could run three times as fast as either of the above

using the same technology memory hardware, due to the fact that it was

designed to run ALGOL 68 and not assembly language.

Although 32 bit instructions of the format discussed above would be

widely used, other formats would be needed as well. For example, a 24 bit

format consisting of an opcode and two 8 bit addresses would be useful for

instructions with two operands, and whose result was left on the working

stack. Furthermore, a 16 bit address could be provided, with the first two

bits interpreted as above. The remaining 14 bits of type 00 could be broken

up into a display level and descriptor offset perhaps 4 bits display and

IO bits offset, allowing up to 1024 variables at each of 16 levels. For

even more flexibility, the hardware might provide a way to switch from

4-10 to 3-11 or 5-9 or another combination of display and offset sizes.

-58-

The 01 type address would provide for 16384 distinct global variables

and the 11 type address would provide for 16384 distinct constants, surely

sufficient for all but the most voracious programs. Since instructions

would have 0, 1, 2, or 3 addresses and two possible address lengths would

be provided (8 and 16 bits), a total of 1+2+4+8 = 15 different formats

would be needed. This could be accomodated by reserving opcodes Oto 240

for the standard format, 8 bit addresses, with the number of addresses op

code dependent. Opcodes 241-255 would signal an extended opcode, with the
'

number 241 to 255 specifying the instruction format, and the succeeding 8

bits specifying the actual opcode. A maximum of 3 16 bit addresses could

follow.

-59-

Garbage collection.

The use of descriptors makes garbage collection particularly simple.

Although a nonrecursive garbage collector is possible, it is known to be

slower than a straightforward recursive one. The garbage collector can

either use a specially reserved area of memory for its stack, or swap

part of the program to secondary memory during garbage collection. If a

segmented virtual memory is available, the garbage collector's stack can

occupy a special segment.

The garbage collector is designed so that a single hardware instruc

tion, collect garbage, could be hardwired or microprogrammed. In both

cases the sequence of instructions needed to carry out the garbage collec

tion could come from a high speed read only memory instead of the slower

main memory. A few hundred words of very high speed (and very expensive

per word) read/write memory could be provided for the garbage collector's

stack. In the event that the garbage collector encountered a tangled

object that caused it to recurse more than a few hundred times, an un

likely event to say the least, the garbage collector's stack could be

swapped to main memory or secondary memory if need be.

The garbage collector has three distinct phases. The first phase

marks the objects on the heap still in use. The second phase compacts the

heap, squeezing out the garbage. The third phase updates pointers (descrip

tors).

The garbage collector must be able to find all descriptors that point

to the heap. Because the heap occupies a separate segment or area of the

address space, an address can be checked to see if it points to the heap

in one or two comparisons. Every object on the heap that can be accessed

by the program must have a descriptor either on the. identifier stack, or

on the descriptor working stack. The garbage collector must systematically

check every descriptor in every frame of the range stack, and every de

scriptor on the descriptor working stack.

The current display pointer allows the garbage collector to find the

display. From the display entry for the current level, the origin of the

descriptors in the current frame can be found. All the descriptors for the

-60-

parameters and local variables are consecutively stored, terminated by a

specia "empty" descriptor, marking the end. From the previous display

pointer (the first item in the frame, located a fixed distance ahead of

the first descriptor, whose location is known) the display for the previous

frame can be found. From this display, the descriptors for that frame can

be located. This process can be repeated until the entire identifier stack

has been traced.

Tracing of the working stack is even easier, The origin of the DWS is

a known constant, i.e. address Nin segment K, and the top of the DWS is

pointed to by a global pointer. The garbage collector systematically checks

every descriptor between these pointers. This process is simplified by the

fact that the DWS contains only descriptors, and no holes.

The garbage collector has a bit table, one bit per heap address. On a

machine with metabits (e.g. parity bits) these metabits could be used. The

bit table is initially set to all zeroes. Whenever a heap address is dis

covered to be active, the corresponding bit is set to I. After the tracing

phase is finished, all heap addresses whose.bits are set to zero contain

garbage to be squeezed out of the heap, and all heap addresses whose bits

are set to one contain useful information that must be preserved.

The first phase of the garbage collector consists of a part responsible

for the administration of finding all the descriptors. Every time it finds

a descriptor it calls an internal procedure, trace descriptor, passing the

descriptor as a parameter. In due course of time, trace descriptor will be

called with every descriptor on the identifier stack and every descriptor

on the DWS as parameter. Thus if trace descriptor correctly traces a de

scriptor, all active objects on the heap will be located.

Trace descriptor works as follows:

I. if the descriptor is a primitive, e.g. int, long, real, bool, proc, etc.

and it points into the heap, mark the place pointed to. Otherwise

do nothing.

2. if the descriptor is a reference pointing into the range stack, ignore

it. If it is a reference pointing into the heap, mark it if need be and

go process the descriptor pointed to. This need not and should not be

recursive.

-61-

3. if the descriptor is a structure, mark it if need be and follow it to

the table of descriptors to which it points. Obtain the count from the

first field of this block and set up a loop to call trace descriptor

for each descriptor in the block.

4. if the descriptor is a union, follow the pointer, pick up the descrip

tor and process it. Mark the union descriptor if it is on the heap.

5. if the descriptor is a row first check to see if it is a slice. If it

is, find the multiple value descriptor (the kind discussed in the ALGOL

68 report) for its ultimate parent, the multiple value of which it is

a slice. The multiple value descriptor for a slice must contain a

pointer to its ultimate parent, the unsliced multiple value from which

it is descended. The ultimate parent is to be put on a chain of multiple

values to be marked at the end of the tracing phase. Set up counters and

trace all elements of the row using trace descriptor.

At the end of the tracing phase, all the multiple values on the chain of

ultimate parents must be marked, but not traced. Thus if xis declared by

[1:10] ref!!!_ x, and only x[IO] is currently active, the heap objects

originating from x[l] to x[9] must not be traced and marked.

If at any point in the tracing, trace descriptor is passed a descriptor

that has already been marked, it does not have to trace it again. It simply

returns, indicating tracing of the descriptor is complete.

Compacting consists of squeezing out the unused garbage from the heap.

Although an algorithm exists for performing the compacting without using

any extra storage, it is slow and therefore not reconnnended on any machine

where it can be avoided. The compacting begins at one end of the heap and

works toward the other end. Whenever a block of useful information is en

countered, it is moved towards the end where the compacting began, and an

entry is made in a table indicating the former and new addresses of the

block. This process is repeated until the entire heap has been compacted.

The third phase consists of tracing and marking, the same as the first

phase, but in addition whenever a heap pointer is found, the old address

is looked up in the table of old and new heap addresses, and the old ad

dress is replaced by the new address. An associative memory would be help

ful here.

-62-

The control blocks used for parallel processing must also be traced

and marked. These will be described later.

It should be pointed out that garbage collection an virtual memory

computers, especially computers with a very large virtual address space,

is somewhat different than on a computer without virtual memory. In the

case of MULTICS, for example, a program that acquired one word of heap

storage every 10 microseconds would have to run for 24 hours before it

filled up the virtual address space. Thus few programs would actually

require garbage collection.

However, as the heap becomes very spread out there will be many page

faults, and thrashing may set in, so garbage collection may still be

desirable. Because space does not suddenly run out, it may be difficult to

determine when garbage collection should be intiated. Carefully monitoring

the history of page faults, and initiating garbage collection when perfor

mance begins to degrade appreciably may be one approach. Unfortunately per

formance may degrade for reasons unrelated to heap usage, e.g. a rapidly

changing working set, so this is tricky. This -whole area is not well under

stood at present.

It is most important to keep a proper perspective on garbage collection

and virtual memory. Garbage collection was invented as a method of running

programs with large storage requirements on small machines. If at some

point in the future salt crystals provide 1023 bit memories, garbage col

lection may crease to be an interesting subject. Virtual memory is a step

in the direction of getting rid of garbage collection altogether, by pro

viding a larger address space. One should be careful about not coming to

regard garbage collection as a desirable end in itself.

Virtual memory does simplify the garbage collection process in some

ways, nevertheless. In particular, garbage collection can often be post

poned more or less indefinitely, until it is convenient. With a very large

virtual memory it is possible to make and justify assumptions like "garbage

collection will never never occur while actual parameters are being elabo

rated" by simply postponing garbage collection until all actual parameters

of pending calls have been elaborated.

The three phase garbage collector described above can be used with

-63-

virtual memory, of course, but the tracing may cause large numbers of page

faults if the program is very deep into recursion and there are many frames

on the range stack. Another possible strategy is to mark entire pages as

used or not, rather than individual addresses. This produces a list of free

virtual pages. Instead of compacting and updating, the garbage collection

is terminated. Subsequent heap generators use the list of free virtual

pages. This leads to a heap scattered over a wide range in virtual address

es, and a more complicated mechanism for heap generators, but it may

greatly speed up garbage collection. Another virtue of this method is that

a bit table with 1 bit per word for 1010 words will require a large, prob

ably paged, bit table, whereas 1 bit per page helps by about 3 orders of

magnitude. More experience with ALGOL 68 on virtual memory systems will be

needed before this subject can be statisfactorily resolved.

-64-

Procedure call mechanism.

When a procedure is called (or a deproceduring takes place or an oper

ator is invoked) a new frame is set up both on the range stack and the

working stack (both parts). Part of this set up is done by the calling

procedure (caller) and part by the called procedure (callee).

When a procedure pl calls another procedure p2, either p2 is visible at

the point of call, i.e. p2 is directly accessible to the point of call

according to the ALGOL 68 rules scopes, or it is not. In the latter case,

p2 must either be accessible via a parameter or global variable.

First cons~er case 1. Either pl is declared inside p2 or p2 is declared

inside pl. As an example of the former consider the following skeleton:

proc x = () m

begin proc p2 = () m2 :

begin proc pl= () ml

begin skip;

end

p2 ¢ point of call. static depth= 3¢

end; skip

end; skip

As an example of p2 declared inside pl, consider the following skeleton:

proc x = () m

begin proc pl = () ml :

end

begin proc p2 = () m2

begin skip;

end;

p2 ¢ point of call. static depth= 2¢

end; skip

The static depths before and after the call of p2 in both these examples

are:

-65-

pl declared p2 declared

inside p2 inside pl

static depth before call 3 2

static depth after call 2 3

A procedure call may increase or decrease the static depth, and hence

the size of the display. However each routine knows how large its own

display is, and therefore how many display entries to copy. To make a copy,

it needs the old display pointer, which is available. The display entry for

the new level must point to the descriptor for the first parameter, or

local if there are no parameters.

Now consider the case where p2 is not visible at the point of call,

for example:

begin proc pl= (proc void p2) void

begin skip;

end

p2 ¢ point of call ¢

proc p3 = void

begin skip

end;

pl (p3).

In this case p2 is a formal parameter. The effect of the call p2 is to

activate p3 from inside pl, although a direct call to p3 there would be

prohibited by the scope rules of ALGOL 68. Calls of this type are imple

mented by using the descriptor for p2 to find the code and display pointers.

Once these have been found the procedure p3 can be started.

When a procedure is called, the following steps must be carried out by

the caller and callee.

caller: 1. push a descriptor for the result onto the DWS

2. reserve space on the OWS for the static part of the result

(pointed to by the DWS)

callee:

-66-

3. save all the stack pointers on the range stack

4, save the return address on the range stack

5. push descriptors for actual parameters onto range stack

6. set SP to point to descriptor for last actual parameter

7. jump to called procedure

I. set SP to point to last word in range table

2. set up identifier stack descriptors

3. put "empty" descriptor after identifier stack

4. set display pointer to point to place where display will

s. copy display into place

6. update DWS and OWS base and top pointers

7. copy parameters if need be

8. enter first range, if any

go

When a procedure is left, the following steps must be carried out by

the callee (the running procedure) and the caller (the procedure returned

to).

callee: I. reset working stack pointers

2. reset display pointer

3. reset local generator stack pointer

4. return

caller: I. move part of result, if need be.

-67-

Range entry and exit.

The storage allocation mechanism described so far allocates space for

descriptors when a procedure is entered, not when a range is entered.

Space for the objects themselves is allocated and released when ranges are

entered or left, however. The advantage of this method is to reduce the

size of the display and minimize the amount of time needed to enter a

range, at the price of a small increase is storage during outer ranges.

Since space for multiple and structured values is released on a range

basis, rather than a procedure basis, the total amount of extra storage

used by this method will be comparatively small, except for procedures with

very large numbers of variables.

It should be noted that in programs in which all procedures are declared

in the outermost range, a very connnon occurrence, the display will be of

length 2, independent of how complicated the range structure is. Thus this

method will save time in copying displays, by reducing the size of the

displays.

When a range is entered, the following steps are carried out:

range entry: I. SP is saved in the range table

range exit

2. space is claimed for the objects in the range to the

extent that is known at range entry time

I. SP is restored from the range table, releasing the space

used in the range.

The ALGOL 68 scope rules cause certain problems with implementing

storage management for slices. These problems are closely related to the

claiming and releasing of storage when a range is entered or left. One

manifestation of the problem is the case of a slice of a multiple value

created in a subrange of the range of the multiple value itself. The scope

of the slice is the scope of the multiple value itself, and therefore the

slice must not disappear until the range containing the multiple value has

been left. However, no space will have been reserved for the multiple value

descriptor in the range of the multiple value. As an example of this prob-

ft

-68-

lem, consider the following program:

begin ref [] int xx;

end

[1 :4] int x; flex [1 :3] int y;

begin read(n); [t:n] int z;

xx:= if random< .5 then y else x[1 :2] fi

end;

L: ¢ at this point xx may refer to x[l:2] ¢

The question is: where does the multiple value descriptor for x[l:2] go?

It must be in existence at L, but when the inner range was entered it was

not known whether it was needed or not. One possibility would be to re

serve space for it in the outer range, whether needed or not. However, this

is not sufficient. At the time of this writing it is not known whether

flexibility will remain in ALGOL 68 or not, and if so, in what form. If it

does remain in, then the action to be taken depends upon the source in the

assignment to xx. If the source is x[I:2], a multiple value descriptor must

be created in the place reserved for it in the outer range, and the descrip

tor for xx on the identifier stack must be set to point (indirectly) to it.

If, on the other hand, the source is y, only copy of its multiple value

descriptor may exist, and it can not be copied to the place reserved. If

more than one copy of the multiple value descriptor of a flexible array

existed, trouble would arise when only one version of it were changed.

A run time test is needed to see which case prevails.

A completely different strategy is simply to put the unwanted multiple

value descriptor on the heap, with the proper scope of course. If flexibil

ity vanishes from the language, this problem will be simplified, in any

case. Rowed coercends present a similar problem, and can be handled by

similar methods.

-69-

Jumping out of a procedure.

There are 2 cases to be distinguished.

Case I. The jump is to an explicit label in the environment. The compiler

knows the machine address of the label, the procedure number, and the

range number in which the label is contained. The jump is performed by a

call to an interpretive routine internal to the run time system. It's

parameters are the procedure of the procedure containing the label, and

the range# containing the label.

The jump interpreter then begins searching backwards on the stack,

following the chain of pointers, until it finds a proc with procedure nr

equal to its first parameter. The pointers are reset, restoring the range

stack and local generator stack to the right positions. The working stack

must also be reset if needed. The working stack will always be empty at a

label.

Case 2. The jump occurs as a result of deproceduring one of the formal

parameters, or as a result of elaborating a jump contained in a procedure

whose execution was initiated, directly or indirectly, by deproceduring a

formal parameter or by using one as the primary of a call. The simple

method of case l fails in the case of recursive procedures. As an example,

consider

-70-

begin proc p = void:

begin proc x = (int n, proc void label) void:

begin int depth= n;

if n-:= < 0 then label

fi;

1: print (depth)

end;

else if random< • 5 then x(n, 1)

else x(n, label)

fi

x (int k:= 10, proc void (goto 11));

11: print ("monkeys")

end;

p

If the random numbers are:

.35, .15, .45, .15, .55, .95, .25, .65, .55, .85, .55

it should print: 4 monkeys.

The case of deproceduring a formal parameter which is a jump can be

handled by a traceback routine that uses not only the proc nr, but the

display pointer of the procedure as well. In fact only the display pointer

is needed if a different routine handles this case than the routine that

handles case 1. Frames are removed from the stack until the frame containing

the procedures display pointer is reached. The descriptor for the formal

parameter points to a block containing the display pointer.

Jumping out of an actual parameter may cause difficulties unless one

is careful, since possibly a new frame is only partially constructed. The

traceback routines must be able to deal with this situation e.g.

begin proc p = (int i,j,k) void: print ((i,j,k));

end

p (3,.if random<.5 then goto 1 else 2, I); exit;

1: print ("it jumped 11
)

-71-

Jumping out of a range or display is similar to jumping out of a

procedure in the sense that pointers must be restored e.g.

begin [1:5] inti; int n:= 10;

end

1: if n-:= 1 < 0 then goto stop else print ("x") fi;

i:= (0, 1,2,3, if random< .2 then 4 else goto 1 fi)

-72-

Dynamic scope checking.

Each descriptor contains a scope field~ The scope is the scope of the

object described, i.e. the range in which it was declared. Because only

one display entry is used per procedure, the display cannot be used for

scope information. In fact, even if every range were given its own display

entry, it would not work, as shown by this example:

int n:= O;

proc p = (ref ref inti) void:

begin int j;

end

proc pl= (ref ref int k, ref int m) void:

(k:= m i scope check here¢);

proc p2 = void: (ref int ii; n+:= 1; p(ii));

if n = 0 then p2 else pl (i,j) fi

In the above, the display of pl obvious does not provide information about

the scopes of k and m, since both are accessed via the current level, yet

the assignation is clearly wrong.

The actual numerical value of the scope is unimportant. All that

matters is that an ordering of all scopes is maintained. One method is to

use the range tables as a basis for assigning scopes. Both the address and

contents preserve the ordering, but the address is known at procedure

entry time, whereas the contents is only known at range entry time.

Another method is to have a global range counter, initially 1. When

ever a range is entered, this counter is incremented by 1. Whenever a range

is exited, this counter is used for all local scopes. Global scopes are

all 1. This method is similar to the first one, except that smaller numbers

will be needed. This allows the number of bits in the descriptor to be

smaller.

In both methods, a larger number means a less global scope, in other

words if the scope of i is less than the scope of j, that means that i was

-73-

declared first. The condition that an assignment is valid is

scope of destination~ scope of source

This quarantees that the source will not be unstacked before the destina

tion. At worst they will be unstacked together.

The scope of a ref~ is the range in which it is created. The scope

of a plain value is the program. The scope of a structure can only be

determined by examining the scopes of its fields. The scope of the struc

ture is the smallest scope of any of its fields, i.e. the largest numerical

value. The scope in the struct descriptor can be invalidated by changing

any of the fields. The hardware could help here by automatically setting

the scope field of the struct descriptor to O whenever a field was changed.

This might save some checking. The hardware could also catch changes in the

structure that made its scope numerically larger (less global), but not

vice versa, at least not easily. Similar remarks apply to multiple values,

where the scope of the multiple value is the scope of the element with the

largest numerical scope.

-74-

Parallel processing.

This discussion primarily describes how to implement the ALGOL 68 par

feature on a machine with a small address space and a single processor.

The generalization to true parallel processing follows from it, however.

A constituent unit of a parallel clause has some environment, con

sisting of all the ranges in which it is nested. To run the unit, the

environment must be made available.

example:
(int i,j;

par (par ((int k,l; x: skip), (int m,n; y: skip)))

At point x, the environment consists of i, j, k, and 1, whereas at y it

consists of i, j, m, and n. In general the stack will take the form of a

tree where each node represents the A

(dynamic) execution of a par symbol,

and the branches emanating from each

mode correspond to the constituent

void clauses. Each of these units

may in turn also split into several

parts. A piece of code along with

all the state and environmental

information needed to execute it

is called a process.

The problems introduced by parallel processing are of two sorts:

1. The envrionment of a process must be stored upon occasion and recon

structed later.

2. A process may stop running, either as a result of a semaphore operation

or as a result of finishing its work. It is therefore necessary to have

a systematic way to find other processes to run.

When a procedure that contains I or more par symbols is entered, a

descriptor is put on the idstk for each par symbol, as though it were an

-75-

object. The address of each such descriptor points to the local generator

stack for that procedure where a control block is kept. The control block

contains information for the parallel clause as a whole, as well as a

structured entry for each of the constituent strong void units contained

in the parallel clause.

•
The global information is:

I. The number of constituent void units in the parallel clause.

2. A pointer to the control block of the father of this control block.

In the above figure A, B, C, Dare all control blocks. A has 3

constituent units, B, C, and D. The first constituent unit of A

later also splits, yielding another control block on the stack.

The father of this control block is the control block for A.

3. An index into the control block pointed to by item 2. i.e. if this

1 1 db h .th . . . h contro bock was spawne y t e 1- constituent unit int e par

clause pointed to by 2, the index is i.

From any control block it is possible to retrace the path back to the

main program. The father of a par clause not nested within another par

clause is Oto indicate that it is a root. Since the program may con

tain many such independent trees, the data structure needed is a forest

of stacks (i.e.~ 0 trees).

The entry for each constituent void clause contains the following

information:

I. status

= finished running

2 = blocked by a semaphore operation

3 = not yet started

4 = ready to run (it was in state 2, but the semaphore was upped)

5 =forked.During the elaboration of the clause, another parallel

clause was encountered, so the status of this one depends on the

status of its children.

-76-

Statii 3 and 4 may be combined, but in a particular implementation

it may be desirable to make a distinction between them for purposes

of scheduling.

2. link field.

Thi,s holds a pointer to a control block and an index into it, i.e.

a unique process is specified. Associated with each semaphore is a

linked list of all the processes blocked on it. The link field is

used to thread them together. In this way no heap space is required

for the lists.

3. restart address.

If it is decided to restart this process, the address where to re

start it must be available. That address is kept here.

4. stack hiding place.

While the process is not being run, its private stacks (both range

and working) are kept on the heap. By private stack is meant those

frames that came into existence as a result of some action by the

process. A process that did nothing would have no private stack,

even though its environment contained a large stack. This field

contains the heap address of the private stack. The range stack is

stored first, then working stack.

5. Size of private range stack.

Used when process is to be run, i.e. how much stack must be loaded.

6. Size of private working stack.

See 5.

7. Pointer to control block (if forked).

If the process itself encounters a parallel clause, the elaboration

of the clause ceases, and the elaboration of one of its sons begins.

This field points to the control block for the sons, so I of them

can be chosen. Although the clause itself may contain many parallel

-77-

clauses, only 1 of them, at most, can be active at any instant, so

1 field is enough.

8. Origin of private stack.

While the process is running, the origin of its private stack must

be remembered somewhere, namely here. Note then this field is only

needed while the process is running (including its sons). Field 4

is only needed while the process is not running. A clever imple

menter might use the same field in the control block.

Each processor keeps an internal record of which process it is process

ing i.e. a pointer to its control block and the index within the block.

The ALGOL 68 representation of an n clause control block is:

mode control block=

struct (int count,

ref control block father,

int index of father,

[1:n] struct (int status,

)

) ;

ref control block link field,

int link index,

int restart address,

int heap address,

int range stack size,

int working stack size,

ref control block sons

int stack origin

Note that this is a doubly linked tree. From a given control block one can

find both the ancestors and the descendants.

-78-

There are 5 semantic actions associated with parallel processes:

1. Forking (beginning elaboration of a parallel clause).

2. Halting a process because it is finished.

3. Resuming a process.

4. Performing an up on a semaphore.

5. Performing a down on a semaphore.

These will now be discussed in turn.

Forking.

The control block for the fork is initialized at the time the proce

dure containing it is entered. A process is chosen from the control block

for the new parallel clause, and it is started. The status of its father

is set to 3:

An algortihm for choosing a process from a control block.

The entries in the control block are examined in turn. The first one whose

status is 3 or 4 is selected and run. If none of the processes have status

3 or 4, a search is made for a process with status 5 (forked). If ne is

found,

1. The stacks (range+ working) needed are brought in from the heap and

put in place after the present stacks. The stack origin field is

updated.

2. The choose-a-process algorithm is called using the control block

pointed to by the forked entry. (i.e. one of the control blocks

just brought in is used)

If none of the processes in the original control block have status 3,

4, or 5, the father block will be examined. This implies that the stack

associated with the current process (which among other things contains the

current control block) will have to be moved to the heap and the entries

updated (see halting a process).

After the stack is removed to the heap, the father is examined for a

candidate using the choose-a-process algorithm.

If it is noticed while searching a control block that all the processes

have status 1, the entry in the father's control block that points to it

-79-

(and which has status 5) should be changed to status 1.

End of choose-a-process algorithm.

Several points concerning this algortihm deserve mention. First, the

copying of stacks needn't actually be done immediately. Consider fig. 6.

The control block for Bis being

examined for a process to run.

Imagine that C is the only un

blocked process. The algorithm

will first bring in E's and

later G's stack. Then it will

remove them again. This moving

can be eliminated by keeping

track of needed moves but not doing them until a ready process has been

found.

Second, the algorithm is a tree traverser. One might think at first

that a stack or mark bits in each node are needed, but this is not so

because the tree is doubly linked. If the searching algorithm begins always

at process 1 and works consecutively to process N, no stack or mark bits

are needed. Consider what happens in the above figure when it is discovered

that entry 2 of Bis a fork. The path is followed and eventually nothing is

found.Bis retried when the algorithm finds nothing interesting in E.

Since the pointer in E says "entry 2 in Bis my father", the algorithm

continues searching with entry 3 in B. If the pointer from E to B merely

said "Bis my father" then a stack or counter would be needed to remember

where to continue from in B.

Restarting a process.

First a process to restart is chosen. This implies that its stack will

have already been brought in from the heap. The processor remembers the

control block address and index for the process. The process begins

executing at the restart address. Just before it begins interpreting the

process, the processor performs an up on the processor scheduling semaphore

to let another processor begin scheduling.

-80-

Halting a process (due to its finishing).

To halt a process, the following steps are performed.

1. The stack origin is looked up in the control block

2. The stack length, N, is computed from the stack origins and SP's.

3. A block of N words is requested from the heap manager

4. The private stack of this process, N words long, is copied into the N

word block provided by the heap manager

5. The heap address and stack lengths are entered into the control block.

The status is made 1

6. A new process is chosen from the control block and run.

Performing operations on semaphores.

sema scope value of sema

descriptor start of linked list

A semaphore consists of the usual descriptor. and a two entry object to

which it points. The first entry is the value of the semaphore. The second

is either O (no processes are waiting on the semaphore) or the address of

a control block plus an index into it. If processes are waiting on the

semaphore, a linked list of all of them is maintained. The second field in

the semaphore points to one process. The link field in the process points

to the next, etc. The last one is indicated by a O in the link field.

A process can be added to a semaphore list in 2 steps:

1. The value in word 2 of the semaphore is stored in the link field of the

new process.

2. The control block address and index are stored in word 2 of the sema

phore.

This is illustrated below.

before

after

0

process to
be linked

0

process to
be linked

A process can be removed by:

-81-

process
waiting on sema

1. Finding the process pointed to by the semaphore

2. Removing the link field

0
process
waiting on sema

0

3. Storing the link field in the 2nd word of the semaphore.

The down operation on a semaphore is performed by:

1. Examine the semaphore. If it is 0, add the process to the waiting

list and set its status to 2. Call the choose-a-process-to run proce

dure with the control block of the halted process as parameter.

2. If the semaphore~ O, sema -:= 1.

The up operation on a semaphore is performed by:

1. Examine the semaphore. If it is O and there is someone waiting on it,

set his status to 4. Continue running. The semaphore is not changed

in value. The process set to status 4 is removed from the waiting

list.

2. If the semaphore~ 0, sema +:= 1.

Initially there are no control blocks active and only I processor is

running. Eventually a parallel clause is encountered. Some more processors

can be started. Each processor runs until either

-82-

1. its process finishes

2. its process halts on a semaphore

3. its process forks.

In cases 1 and 2, it then chooses a process from the control block of the

halted process. In case 3 it chooses a process from the control block

associated with the fork.

To avoid race conditions among the processors, each of which schedules

itself, there is a global semaphore used by all the processors called

processor scheduling semaphore. Initially it is 1. When a processor wants

to pick a process it must perform a down on that sema. When it is finished

scheduling it performs an up on the sema. This insures that only 1 processor

may be in the act of scheduling at a given time. The first processor does

a down and sets it to O when the first par is encountered.

When there really are multiple processors, each private stack should

occupy a separate segment. This eliminates the need for shuttling pieces

of stack back and forth from the heap. Because all identifier stack refer

ences occur via the display, the fact that different parts of the it are

in different segments will be transparent.

