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Operational and mathematical semantics for recursive polyadic

*)

program schemata

W.P. de Roever

Abstract

The language PL for first-order recursive program schemes with call-by-
value as parameter mechanism is described using models for sequential and
independent parallel computation. The language MU for binary relations

over cartesian products which has minimal fixed point operators is defined.
An injection between PL and MU is specified together with the conditions
subject to which this injection induces a translation,

MU is axiomatized using a many-sorted generalization of TARSKI's axioms for
binary relations, SCOTT's induction rule and fixed point axiom and new
axioms to characterize projection functions, whence by the translation

result a calculus for first-order program schemes is obtained.

*) Reprinted from Proceedings of Symposium and Summer School "Mathematical
Foundations of Computer Science", 3-8 September 1973, High Tatras,
Czechoslovakia, pp. 293-298.






OPERATIONAL AND MATHEMATICAL SEMANTICS FOR
RECURSIVE POLYADIC PROGRAM SCHEMATA

W.P. de Roever

Mathematisch Centrum

I. First we define PL, a language for recursive polyadic program schemata.
These schemata are abstractions of certain classes of programs. The statements contained in these
programs operate upon a state, whose components can be isolated by means of projection functions; a
new state is obtained by (1) execution of elementary statements, the dummy statement or projection
functions (2) calls of previously declared and possibly recursive procedures P, (3) execution of
conditional statements (p - S‘,Sz) (4) the parallel and independent execution gf statements S,...Sn
in the call-by-value product [sl""’sn]’ a new construct which unifies properties of the assignment
statement and the call-by-value parameter mechanism and allows for the expression of both of these
concepts (5) composition of statements. A declaration is a possibly empty collection of pairs
Pj<#= Sj which are indexed by some index set J; for each j e»J such a pair contains a procedure
symbol P. and a statement Sj’ A program is a pair consisting of a declaration and a statement. By
abstracting from the particular meanings of elementary statements, predicates and constants one
obtains statement schemes, declaration schemee and program schemes. .
The definition of the operational semantics of these schemes involves an abstraction from the actual
processes taking place within a computer by deseribing a mcdel for the computations evoked by execu~
tion of a program. The main problem in defining this model is the fact that the computations in-~
volved cannot be represented serially in any natural fashion: factors S‘...Sn of a product
[Sl;...,sn] first all have to be executed independent of each other, before computation can continue.
Therefore the computations involved are described as a parallel and sequentially structured hierarchy
of actions, a computation model, which is defined below.
Let Oobe an initial interpretation, i.e., an interpretation of the elementary statement symbols,
predicate symbols and constant symbols of PL, and D be a declaration scheme. Then a computation model
for x S y is a pair

< xlslif2 oes annxn+‘, cM >

where 8; is, for i=1,,..,n, a statement scheme, S’ =5, x = x, and Koop = Vs consisting of a computa—

tion sequence and a set of computation models (relative to 00 and D), which satisfy the following

conditions:

a, If Si = R or Si = R;8' with R an elementary statement symbol or constant symbol, then

1 = = '
R ITE T OO(R) and i = nor S s'.

il
1
c. If S, =(p~+8',8) or S, = (p~>5",8";S" and 0.(p)(x,) is either true or false, then x, = x,
i P i 0 i —_— —— i+l i

. = = Ql = Qtegt 3 = : = g"

and, if OO(p)(xi) true then Si+l S' or Si+l S§'3S", and, if Oo(p) false then Si+| S

- S";S"' .

) = sqt
b, 1If Si Pj or Si Pj,S and (Pj¢=Sj) ¢ D, then X i 141

= %, and S, =8, or S, = §,;8'.
J i+ 3

or Sit}

d., 1If Si = [VI""’ka or Si = [Vl,...,Vk];S', then x.

i#] = <Y s+ees¥, >, where CM contains computa-
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tion models for x.V.y;, for 1 = l,...,k, and i = n or SiH = g',
This definition leads to the characterization of the imput-output behaviour or operational seman-
tics O0(T) of the program scheme T = <D,3>, in terms of which correctness criteria for T can be
formulated.
The main technical result of this part is the union theorem (cf, DE BAKKER and MEERTENS [2al):
Consider the simultaneous declaration of recursive procedures Pl.'..l’n with bodies Slﬂ°'sn’ respec~
tively; for j = 1,...,n, Sj contains occurrences of PI...Pn, whence we write sj(Pl""’Pn) for

purposes of substitution, Then this theorem states that

© . N
Pj =y O(S;), with S; defined by S? = 0, the undefined statement scheme, and
i=0 . ‘

s;” = sj(s’;,...,s:), j=l..n.

2. Next we define MU, a language for binary relations over cartesian products, which has
minimal fixed point operatore in order to characterize the input—output behaviour of recursive
programs. )

As the binary relations considered are subsets of the cartesian product of one domain or cartesia;
product of domains and another domain or cartesian product of domains, terms denoting these rela-
tions have to ﬁe typed in order to define operations on them., On account of limitations of space
types will not be mentioned or discussed unless explicitly needed; we refer the interested reader
to DE ROEVER (8] for a more extensive account.

Elementory terms are individual relation constants, boolean relation constants, logical relation
constants (for the empty, identity, and universal relatioms n,>E, U and projection functions ni)_

N

and relation variables.
Compound terms are constructed by means of the operators ";" (relational or Peirce product), "u"

(union), "n" (intersection), "“" (converse) and "—" (complementatipn) and the minimal fixed point
operators "ui", which bind for i = 1,...,n, n different relation variables in n~tuples of terms
provided none of these variables occurs in any complemented subterm, i.e., these terms are syntac-
tically continuous in these variables. ‘

Termg of MU are elementary or compound terms,

The well-formed formulae of MU are called asgertions and are of the form ¢ | ¥, where & and ¥ are
gsets of inclusions between terms.

The mathematical semantics m of MU is defined by: : .

(1) providing arbitrary (type-consistent) interpretations for the individual relation comstants and
relation variables, interpreting pairs <p,p'> of boolean relation constants as pairs
<m(p),m(p')> of disjoint subsets of identity relations (cf. KARP [5]) and interpreting the
logical relation constants as empty, identity and universal relations and projeetion fumctions,

(2) interpreting ";", "u", "n“, WM, Me—? 25 usual,

(3) interpreting u-terms uix!...xn [ol..;on] as the i-th component of the minimal fixed point of the

functional <o e0e0 > acting on n-tuples of relations,

1
An assertion ¢ | ¥ is valid provided for all m the following holds:
If the inclusions contained in ¢ are satisfied by m, then the inclusions contained in ¥ are satisfied

by m.

The main technical result concerning MU is again a union theorem:

@ .
J 2 =
M(uixl'°’xn[°l"’°nj) = jgo m(oi), i=1,...,n0,

F3

with oi similarly defined as Si (see section 1). In the proof of this theorem the semantic continuity
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of the terms OpoecesOps which follows from their syntactic continuity, plays an important role.

One of the implications of this theorem is the validity of Scott'’s induction rule, to be defined in

gection 5.4,

3. The precise correspondence between the operational semantics { of PL and the mathematical
semantics m of MU is specified by the tramslation theorem of chapter 3 of DE ROEVER [8]:
After defining an injection {1 between program schemes and terms (see the table below) we prove that
i1 induces a meaning preserving mapping, i.e., a tranaslation, provided the interpretation of the
elementary statement constants and predicate symbols specified by 0 "agrees" with the interpretation
of the individual relation constants and boolean relation constants specified by m. -

If these requirements are fulfilled, the resulting correspondence between PL and MU is illustrated

by

o) = m(i4(T))

_Thus we conclude that, in order to prove properties of T, it is sufficient to prove properties of
in(T), whence the axiomatization of MU in section 5 below leads to a calculus for recursive polyadic

program schemes.

The definition of £& is given below, with arguments to the left and images to the right:

PL Mu
Elementary statement A e Individual relation constant A
Dummy statement o s e Identity relation E *
Projection function L7 e e m
51;52 s e tﬂ(sl);Id(Sz)
(p > 8,5,) .. p3in(8,) v p'3dn(s,)
.\I .V
[Sl,...,SnJ . e ih(S'),nl Nesah t&(sn),nn
Pi’ relative to a declaration . . . uixl...xn[tn(sl(xl,...,xn))...tn(sn(xl,...,xn))],
scheme {P, & S.} R where IA(sj(xl,...,xn)) denotes the image
j=t...n

. of S, under 4, with occurrences of P ...P
for i = 1,,.,..,n, h] 1 n

replaced by X ...Xn, respectively, for i,j = l,f..,n.

1
4, In [6] MANNA and VUILLEMIN discard call-by-value as a computation rule, because, in their
opinion, it does not lead to computation of the minimal fixed point. Clearly, our translation theorem

invalidates their conclusion. As it happens, they work with a formal system in which minimal fixed
points coincide with recursive solutions computed with call-by-name as rule of computation, Quite
correctly they observe that within such a system call-by-value does not necessarily lead to computa-
tion of minimal fixed points. We may point out that observations like this one hardly justify

discarding call-by-value as rule of computation in general,

5. The axiomatization of MU proceeds in four successive stages:

5.1. Axiomatization of typed binary relation congtante
Consider the following sublanguage of MU, called MUO:
The elementary terms of MUO are restricted to the individual relation constants, relation
variables and logical constants 2, E and U of MU, i.e., boolean constants and projection
functions are excluded.
The compound terms of MU0 are those terms of MU which are constructed using these elementary
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terms and the "3, "u", "a", "M 4nd "—" operators, i.e., the "ui' operators are

excluded.
The assertions of MUO are the assertions of MU containing inclusions between terms of MUO.

MUo is axiomatized by the following axioms (greek superscripts denoting types):

a, The typed versions of the axioms of boolean algebra.

b. The typed versions of Tarski's axioms for binary relations (cf. [10]):
T :}_(xnne;¥9:§);zgtg - xn’eg(Ye'c;ch’jE)
T :l_in’g - xn,ﬁ
:l__(xn!e;Yevg)V - ye;i;‘ime
T :}-x"’E;EE'E = X"
T 3 (xﬂve;YevE) n Z“!E - Qn,E !_(YS.E;ZT\.E) n ﬁn.e - ﬂe'n
c. u Sl'Un’E 3 Un.G;UG,E
The introduction of axiom U is necessitated by the introduction of types (otherwise is

}_Un,i = U"’e;lie'E no longer provable).
In addition to (1) the results of TARSKI [10], properties such as

(2) Fxs¥nz=x5(%;2 0 Y) n 2z, and
3) FXx= (GUnE)SK FX0aE=%X0E XU = (X0 0 E);U and
Xe¥, 59 c E | (X0 n E)3Y = X

can be proved using these axioms (cf. DE BAKKER and DE ROEVER [2]).

5.2, Axiomatiaation of boolean relation constante

MU0 is extended to MUl by adding the boolean relation constants of MU to the basic terms
of MUO.
MU‘ is axiomatized by adding the following axioms to those of Muot

P] : }__pl'hﬂ < En’ﬂ’ pq’fhﬂ 3 Enm
. Ny 1NN nyN
P2 : F P np =

The translation theorem implies O(p + §1s5,) = m(p;xh(s‘) u p';tﬂ(sz)J, provided O(p) 1is
represented by <m(p),m(p*)>. Thus leads axiomatizationm of MUl to & theory of conditionals, e.g.,
the usual azioms for conditionals, cf. McCARTHY [7], can be derived.

As first consequence of Pl and P2, one obtains

(&) Fp=pip, psa=pnaq.
In expressing correctness properties of programs frequently'the following operator is used:

Xop = X3p3;U n E. The properties of this operator are collected in
DEF

S
(5) }—(X:Y)op = Xo(¥op), | (RUY)op = Xop U Yops | (X0Y)op = X3p3Y n B, |Rip € XopiX,
St
XX ¢ E |- Xjp = XopsX and X3p & 43X FXop c q

and proved in DE ROEVER [8],
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5.3, Axitomatimation of binary relatione over cartesian products

The language MU2 for binary relations over cartesian products is obtained from MU] by adding,

for i = 1,...,n, projection function symbols

nlx...xnn ni
., ® to the basic terms of MU,. (A term with superscript <n

HeaeX [:]
i Nn?

”-..X9m>

X...XD_ ) x (D, %,,.%XD, ), where D and D, are domains of
n <] £} n, 0,

i n 1 m i j

type n, and Bj, respectively, for i = 1,,..,n, j = 1,...,m),

is interpreted as a subset of (Dn

MU2 is axiomatized by adding thé following two axiom schemes to the axioms of MUlz

N XewaXN_gN . X40oXn
i n’ 'l n

C, fﬂ ;¥ neeon m ¥ =E
i 1’71 n’'n

. » - .V 3 . 3 .
c, .{-xl,Y| Neeon XY = (5% no.n xn,wn),(npyl Neen w Y ).

An assignment xizn f(xl"'xn) is modelled by a program scheme [“l""’"i-l's’“i+|""’"n]'
The translation theorem implies that

0([ﬂl,...,wi_l,s,wi+l,...,ﬂn]) = m(nl;ﬁl Neson m, 3%

i1 P " tn(S);%i now, 3% NeoeN "n;%n)'

1+1° 7549

Thus leads the axiomatization of MU2 to a theory of assignments. It can be verified that this class

2
i~

of assignments coincides with the class of assignments described by HOARE in [4].

Axioms C| and C2 imply the following new results:

XeaoX . MesN. XeseX X4 10X Xy 40X . ars
My R R LA ™ e ™y "n ™ My Nyst myx xnn,g
(6) L7} oE = E » fﬂi sU LI Y »
. HoweX HeoaX : 1
L7 A “n',r M L - En1,01
"y iy ’ .
MzsNyXeoeXn NyXeeoXN_ N, NssN
k¥, 0 "y ! U Ly for iz g, d,5 ® 1heee,n.

(7) For k,1 < n :

(V4 ol
l—x. oE3..o3X. oE3( n X, 3Y )3Y L Es..e$Y E=(n X, 3%, )s( nnm_ 3Y ).
3y 1 i85m0k, o e T 8 jui 1374 ey 8 8y
t=1,..1

5.4. Axiomatization of the Mu i" operators

MU is obtained from MU2 by introducing the minimal fixed point operators "ui", and axiomatized
by adding Scott's induction rule I,formulated for the first time in SCOTT and DE BARKER [9],

and axiom M to the axioms and rules of MUZ:

LY 3 n_»E
1: ofva! 2™

n, & n_,§
" k4
&9 | ¥, ',...,on o

® f W(ulx,...xn[n‘...cn],...,unx ...Xn[ol...on]).

1
with ¢ only containing occurrences of Xi which are bound, i.e., contained in
(sub) terms uk...xi...[...ti...], and ¥ only containing occurrences of Xi which are

not complemented, i=1,...,n.

M }{oj(ulx,...xn[a'...un],...,unx‘...Xn[cl...on]) < qul...Xn[o]...on])j

&

2f,een
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Now properties such as monotonicify of terms and the fizxed point property (cf. SCOTT and
DE BAKKER [9)), the minimal fized point property and iteration (cf. HITCHCOCK and PARK [31),
and modularity (cf. DE ROEVER [8]) can be proved. '

6. The calculus for recursive polyadic program schemata can be applied to the axiomatic
characterization of recursive data structures such as the natural numbers, lists, linear lists and
ordered linear lists (cf. DE ROEVER [81), strings of symbols (cf. DE BAKKER (1]) and trees
{cf. DE BARKER and DE ROEVER [2]). Also finite domgine with a fixed number of elementé can be
characterized, Numerous pr;pertiés of both recursive schemata, such as the regularization of linear
recursive schemata (cf. WRIGHT [11]), and recursive data structures and schemata manipulating these
structures can be deduced, culminating im a correctness proof for a schema of the TOWERS OF HANOI
(ef. DE ROEVER [81). ’
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