
~

I

AFDELING iNFORMATICA IW 8/73 JUI\JE

T.J. DEKKER and D. GRUNE
PROPOSALS FOR THE REPRESENTATiON OF ALGOL 68 PROGRAMS

AFDELING INFORMATICA

stichting

mathematisch

centrum

T.J. DEKKER and D. GRUNE

IW 8/73

PROPOSALS FOR THE REPRESENTATION OF ALGOL 68 PROGRAMS
.I

~
MC

JUNE

2e boerhaavestraat 49 amsterdam

PJr.1..n.ted a..t .the Ma.thema.:ti.c.ai. CeYLVz.e, 49, 2e. BoeJLha.avu.tM.a;t, Am.o.te.11.dam.

The. Ma.thema.:ti.c.ai. Ce.Y!.Vl.e., nounde.d .the. 11-.th on Fe.b11.u.aJr.y 1946, ,u, a. non.­
pita 6-i.t .i.n..o.ti.:tu;tlon a,im,ing a..t .the. p11.omo.Uon on pWte. ma.thema.:ti.cL:. a.nd La
app.U.c.a..tion.f-.. I.t .l6 .opon601te.d by .the. Ne..the.Jda.nd6 Gove/1.nme.nt: .thJtough .the.
Nethe.Jtla.n.d6 011.gan..i.za.:ti.on no1t .the Advanc.ement: 06 PUite. Ru e.a.11.c.h (Z. W. 0) ,
by :the Mwu.clpal..lty on Am.6.te.11.dam, by .the. Unlve.M..i.ty 06 Am.6.te.11.dam, by
.the F1tee UnlveM..i.ty a..t Am.6.te.11.dam, a.nd by .i.nd!l6.tll..i.U.

ACM - Computing Reviews - category: 4.22

Prop:,sals for the :representation of ALGOL 68 programs.

Abstract

June 8th, 1973.

Theodoru.s J • Dekker,
University of Amsterdam.

Dick Grune,
Mathematical Centre, .Amste:ro.am.

Criteria are given for "acceptable" representations of programs. The
resulting requirements are applied to ALGOL 68. It appears that they
can be satisfied by very superficial changes in ALGOL 68, mainly in
"string item".

1. Motives.
The essential part of a computer language is its semantics. It is less
f'undamental how.this semantics is controlled (through a syntax) as it
is less fu.ndamentaJ. how this control is represented (through a
hardware representation). Syntax and representation have much in common:
a. In both fields decisions are essentially arbitrary: there is no

scientific proof that the form "i:= 3" is better suited for an
assignation than "set i to 3 tes" or "3=: i". In practice it is
im:p:,ssible to prove'thatsomeone is wrong.

b. In both fields ambiguities lurk everywhere (am. are patched up
after discovery) •

c. Different people tend to reach very different solutions.

In both fields standardization has a heaJ.thy influence:
a. Implementers no longer have to spend their t!!!me on taking arbitrary

decisions.
b. Since there is only one scheme on which more people can concentrate,

we have a better chance of eventually :removing aJ.l ambiguities.
c. It greatly eases the education of programmers and the exchange

of programs .

. The syntax of .AIGOL 68 is well standardized. The standardization of
representations, however, leaves much to be desired: consequently
in that field chaos rages.

We therefore submit this (annotated) proposaJ. for standardization
of representations. The text is of a mixed nature: proposals for changes
are indicated in the margin by a solid line, pro:p:,saJ.s for suggestions
are indicated by a dotted line.

2. Considerations.
First we must get our terminology straight. Through the process of
"production" we obtain from 'particular-program' a sequence of 'NOTION­
sym.bol Is to be called "symbols" s. Through the process of "representing"
we obtain from this sequence of symbols a sequence of (generally)

2

readable, printable, punchable hardware phenomena, to be called 11mark11 s.
Through the process of 11derepresenting11 (lexical analysis) we can
reconstruct from the sequence of marks the sequence of symbols. Tb.rough
the process of "parsing" we can reconstruct from the sequence of symbols
the 'particular-program'.

part.-prog.

/~

We now :require the (de)representing mechanism to be inde ndent of
the roductio arsing is requirement has several advan-
tages. t ren:oves sources o confusion ("for the packing of bold tags
we have to lrnow if we are in a string, for finding out if we are in a
string we must be able to recognize coll'.IIrents, for the recognition of
comments we must be able to pack bold tags, etc."); it gives a clear
division of responsibilities,; it forces us to define a clean interface
on the level of symbols; and, last but not least, it allows us to
formulate our next requirement: The (de)representing must be as simple
as possible~ This will make our third requirement easy to fulfil:
straightforward convertibility of programs.

It should be pointed out here that in a classic compiler design such a
strict separation of derepresenting and parsing is necessary. The de­
representing mechanism cannot rely on syntactic information from the
parser since it is generally one or more symbols ahead of the parser,
nor can it provide its own syntactic information since there is no
guarantee that parser and de:representer will always agree on it.
Consider, for example, the input ; y:= ar"tan(x); . Most parsers
will be clever enough to discard the " whereas the derepresenting routine
will not.

3. The symbol level.

3.1. Experience has shown that as little significance as possible should be
attached to layout; as, ho-.,rever, experience has also shown that some
codes do need layout on the level of marks, the symbol level is the
lowest level on which layout can be declared meaningless. We therefore
require: Layout between symbols has no meaning.
The requirement that (de)representing be simple entails that symbols
should only be composite if strictly necessary. Since from the syntax of
ALGOL 68 it follows that a bold tag can follow a bold tag but a tag cannot

3

follow a tag, a bold tag must be a symbol since its decomposition into
bold-LETI'ER-symbols would lead to ambiguities; but a tag need :not be a
symbol and can saf'ely be decomposed into IE'ITER-symbols. As an automatic
consequence, layout is allowed inside tags but not necessarily inside
bold tags.

3.2.Decomposing every item as far as possible has another advantage: it
uncovers facts about the language that a.re now concealed by the syntax.
It is not at al clear why a language that has a 'becomes-symbol', a
1 colon-symbol' and an 'is-symbol' should prevent the sequence 'becomes-­
symbol', 'colon-symbol'. However, if the language has:

becomes composite: colon symbol, equals symbol.
is composite: colon symbol, equals symbol, colon symbol.

then 'becomes-composite', 'colon-symbol' looks suspicious. Anyhow, a
syntax of this form must already be in use with many people that keep an
eye on possible ambiguities.

3.3.At present there are two kinds of bold-TAGs, those for which there is a
representation, like tag; and those for which there is not, like begin.
A simple representingrnechanism cannot be expected to tell the (rather
unnatural) difference. The :responsibility for preventing for example
the definition of an operator begin lies clearly with the "production
part" of the language.

3.4.We therefore propose:
a. to change the rule for NOTION-token to

NOTION token: pragment sequence option, NOTION composite.

and then amend 9.4. along the following lines:

for composites whose representation consists of only one mark,
e.g., letters:

lE'ITER composite: IET'IER symbol.

for composite for which there a.re more (non-bold) representations,
"b II. e.g., ecomes .

becomes composite: {be comes symbol f :- .(if anybody has it} } ; }
point symbol, equals symbol;
colon composite, equals symbol.

for composites for which there is a bold representation, e.g., 11 of11
:

of composite: of symbol {~} ;
bold letter o letter f symbol.

Such an approach would also pacify those that are now claiming that
they cannot see the difference between a 'label-symbol' and a
•colon-symbol' .

4

b. to replace TAG-symbol in 5.5. 1. and in 4.6.1. by TAG and to define
TAG analogous to the definition in the Old Report.

c. to rephrase :

TAB:: bold NONRBSERVED symbol; SIZEI'Y STANDARD.
TAD:: bold NONRESERVED symbol; DY.AD ••• etc.
TAM:: bold NONRESERVED symbol; MONAD ••• etc.

"A metaproduction rule must be added for the metanotion 1NONRESERVED'
whose alter.natives are of the form 'TAG' such that the notion
'bold-TAG-symbol' is not produced anywhere else in this Report."

d. as a matter of clean tenninology to rename 1bold-begin(end, cormnent,
pragmat)-symbol I to 'word-begin(end, con:m:ent, pragmat)-symbol 1 , and
to add rules 1 ike :

word begin symbol: bold letter b letter e letter g letter i
letter n symbol.

(or some abbreviation through a convention).

3.5. Other notions giving rise to symbols are 'otheI"-string-item', 'MA.TCH­
other--PRAGMENT-item' and 1lette:rYJTHERALPH.A'. These must now be
considered in :rrore detail.

3.6. Concerning 'othel"-string-item1 •

Prime consideration:
Given an environment and a character code known in that environment,
an ALGOL 68 program nru.st be able to produce any character output that can
normally be produced by and accepted by that environment. That is, it
must be able to write input for itself and for other programs and must be
as good as normal. punching equipment.

3.6.1. The only way of specifying character output (explicitly or implicitly) is
through 1ro"W-<>f-character 1 and an important instrument in specifying
•~f-character' is the 'string-item'. Any "character" should
therefore correspon:l to an easy-to-write • string-item 1 •

It is very attractive to reg_uire a one-to-one correspondence between
the punched marks representing the 'string-item's and the 11 character11 s
in a 'row-of-character'. This requirement, however, breaks down on
three occasions:

a. 11 character" s wi tbout corresponding inp.1t punchings,
b. the I space-symbol ',
c. bold-TAGs.

Ad a.
The n:ode char defines a set of values. To each such value there corres­
ponds an integral value n such that O < n < max abs char. We propose that
conversely to each integral value O < ii < max abs char there corresponds
a character val.ue (to which there will not necessarily correspond a
transputtable mark). (This "character space11 might be shared by different

codes in one compiler). The set of' vaJ.ues of char is often larger than
the set of' available punchings. It is, however;--awkward to have a set of'
values without denotations for every vaJ.ue. So there must be a way to
denote any value of ~ by its corresponding integral. value. The only
way of doing this is by writing down the 'integral-denotation' yielding
that integral. value. However, this 'integral-denotation' must be marked
as such: there must be a special symbol to do this. We shall caJ.l this
symbol the 'exception-symbol'. The end of the 'integral-denotation• must
be demarcated (since 'digi tr-symbol' may follow 'string-i-tem 1 but it mey
not follow 'integral-denotation'): the obvious choice is PACKing it.
But then we can allow a list of' 'integral-denotation I s as well. There is
no reason to exclude conm:=mt from this item, on the contrary, corm:nent
may be very helpf'ul for elucidating the m=anings of the 'integral­
denotation' s.

5

The above suggests the following rule (to be added in "String denotations"):

general item: exception symbol, integral denotation list PACK.

It may be objected that this is a machine-dependent feature, but so
is the use of repr and abs and the correspondence between II character" s
and II integer" s-:--

Ad b.
Since the 'space-symbol' does not denote itself but the I space-layout-mark'
instead, there IID.lst be a way to specify the 'space-symbol• itself. In view
of the above the solution is obvious: a 1 space-symbol 1 preceeded by an
•exception-symbol' denotes the 'space-symbol' itself. However, the
(necessary) task of assigning a mark to the 'space-symbol' is embarrassingly
difficult in (almost) all codes: a multi-mark is unacceptable for
practical use., and nobody has a bold point.
The reg_uirement that layout between symbols be meaningless prevents us
from using the • space-layout-mark' as 'space-symbol' (which would mean
denying the usefulness of a I space-symbol' at all). The problem would be
solved by a n:ore appropriate representation for the I space-symbol' (or in
our new terminology, a better production rule for I space-composite 1). We
propose:

space composite {produced by 'string-item'}
point symbol.
fa 'space-composite' denotes the 11character11 that
corresponds to the •space-layout-mark'.}

string point composite {produced by 'string-item'} :
exception symbol, point symbol.
fa 'string-point-composite' denotes the "character" that

corresponds to the 1point-mark •.}

point composite {produced by 'fractional-part' etcJ
point symbol.

6

The same technique can be used to denote tbe I exception-mark. 1 :

exception composite {produced by 'string-item'} :
exception symbol, comm.a s;ymbol.
{ an 'exception-composite' denotes the "character" that

corresponds to the 'exceptioil:-i'.lla.Iic' .J
Note 1.
From tbe above syntax it follows that 'exception-symbol' will never be
followed by a 1IETrER-symbol'. This fact is used in 4. 1 ••

Note 2.
It must be emphasized that the above has nothing to do with a bolding­
convention: the 'exception-symbol' and its prod.ucing rules belong to the
"production part" and a.re of no concern to tbe representing mechanism.
All codes will need an 'exception-mark', corres:ponding to tbe 'exception­
symbol 1 • That this 'exception-mark' can al.so be conveniently used in a
tag-bolding convention, is due to, let us say, a fortunate coincidence.

Note 3.
Once having created tbe 'exception-symbol 1, we might consider what m:>re
services it could re mer. It does not occur yet outside 'string-denotation's,
so its occurrence outside 'string-denotation' s (and of course 'character-­
denotation I s) is unambiguous. Furtherm:,re we want to maintain the rule that
an 'exception-symbol' is never followed by a 1LETI'ER-symbol •. Consequently,
the candidates are 10)] N and O • The) and] are pointless
in this respect, m:,re :representations for 'skip' and 'nil I a.re not really
useful, so the 10 remains. Since the 10 is a sore point in many codes
anyhow, it will be useful to define:

times ten to the power composite:
letter e s;ymbol;
t~s ten to tbe power symbol;
exception symbol.

(which would come in place of the 1times-ten-to-the-powe~choice1).

Ad c.
There is no reason to categorically forbid bold-TAGs in strings. On the
contrary, if one did, an implementation that uses capitaJ.s for bolding
would be ha.rd put to print

REF REAL xx;

from a string. One could argue that if bold letters a.re present in the
code they should be 'othe~string-item' s in their own right: this,
however, -would make a strict separation between derepre sen ting and
parsing impossible. Even the requirement that in a string such letters
should be separated by layout, (thus: "R E F. R E A L. xx,; 11) would not
help since the single R would still be a bold-TAG, not to speak of the
nuisance vaJ.ue of such a feature and its unteachability. So we propose to

allow 9bold-TAG 8 s as 'string-item's with the semantics:

A bold-TAG-symbol denotes
- if the set of "character"s contains a bold alphabet and

bold digits:

7

the sequence of bold characters that constitute that TAG
-{otherwise undefined, e.g., a sequence of, in some suitable

way corresponding, characters } . ·

3. 6 • 2 • We now reach the following definitions of 'string-item' and 'character-­
glyph I:

string item:
character glyph; quote composite; bold TAG symbol;
space composite; exception composite; general. item,;
string point composite {instead of point symbol};
other string item.

character glyph:
LETI'ER symbol; DIGIT symbol; open symbol; close symbol;
connna symbol; plus symbol; minus symbol.

•other-string-item' produces al.l symbols that correspond to marks in the
given code that a.re not 'quote-symbol', 'point--symbol I or 'exception-symbol'
and are not produced by I character-glyph 1 •

The occurrence of 'time&-ten-to-the-power-symbol' and 1:plus-i-t:i.mes-symbol 1

in 1characte~lyph' -would make them ":required" (see 4.3.) which is
very undesirable regarding small character sets. They should come in
through 'other-string-item•.

3. 7 .Concerning 'MATCH-other-FRAGMENT-item' •
I The present definition causes no problems. Nevertheless, it might. be
: useful to give users and implementers some leeway by allowing here an
1 'incorrect--symbol 1 that -would only be produced by 'MA.TCH-othel'-PRAGMENT-
1 item', and that during de:representing would originate from any mark
l or sequence of marks that carmot be properly derepresented (like viola­
I tion of the bolding convention or parity error).
I

3. 8.Concerning 'lette:t'-OTHERALPHA t. l Since one of our aims is the easy convertibility of programs from one
t hardware representation to another it is not advisable that CJI'HERALPKA
: should produce other alphabets. Preferably it should not produce anything
I at all.

4. The (de)representing mechanism.
The representing nechanism is completely dependent on the given code. This
means that it is not possibl.e to define these mechanisms in the Report
(but the above has laid a basis for their structure). Consequently our
only hope to curb the chaos lies in supplying guidelines for the con­
struction of such necha.nisms.

8

The representing resuJ.ts in a sequence of marks which are elements of
a set of marks (cal.led the "code") • This code is divided into two
subsets, one containing the marks that correspond to (perceptible)
prints (called "non-layout--mark" s) and one containing marks that control
the p:>sitioning of non-layout-marks or are imperceptible (called
"J.a.yout-mark" s). GeneraJ.ly a non-layout-illark occupies one position;
some codes, however, contain marks that do not occupy a position
(e:!.ther directly or through a trick), like non-shift underline,
non-shift umlaut (cal.led "diacritical--mark"s). In oro.er to avoid
problems over the subtle difference between for exampl.e a single­
underlined letter and a double-underlined letter, a mart{ together
with its diacritical-marks must be considered as one mark.

4. 1. The main task in designing a representation mechanism is to establish a
l convention by which bold-TAG-symbols a.re made recognizable. Since from
1 changes proposed above it follows that the 'exception-symbol' can never
I be followed by a 'IE'ITER-symbol 1, the •exceptio~• can render good
I
1 services.
I

4.2. The second task is to decide on the admissibility of leyout-ma.rks. For
: this purpose the leyout-marks in the given code are split into two groups:
I 's:l.gnificant-layout-mark' s, inclu.d:iilg the I space-leyout-ma.rk1 (generally
: kno'Wll as "blank") and possibly others; and 'dUI!D1lY-layout-ma.rk1 s,
t incl.udi.ng all those marks that a.re generated or discarded by the system
: beyond programmers control (like • st.opcode 1 , 'end-of-ca.rd•, 1end.-of-record 1 ,

1 'blank-tape', 'ring-bell', etc.) and possibly others.
j Significant-layout-marks are allowed between symbols, dummy-layout--ma.rks
, a.re allowed everywhere.
I

4.3. The thiro. task is to set up a correspondence between non-bold symbols
: and :non-layout marks. It is highly advisable that this be a one-symbol­

one-mark correspondence: any attempt to use multi-marks for one symbol
opens up abysses of ambiguities (if not today then in three mnths).
M:>reover, one mark. cannot be used for mre than one symbol: a simple
derepresenting would be :impossible.
It. is, however, perfectly admissible to have more than one mark corres­
pond to one same symbol. In fact this situation ma;y arise in codes for
wh:l.ch subsets are defined. For example, in the ASCII64 set the exclamation­
mark will probably be used for the stick-s;ymbol but in the ASCII96 set
the interrupted-b~k is a better candidate. In order to preserve
the subset character of ASCII64, both the exclamation-mark and the
interrupted-bar-mark should correspond to the stick-symbol in the
ASC II96 set.

For the purp:>se of establishing the desired correspondence, the non:-bol.d
symbol-set of the reference language in the Re rt is divided into two
subse s: hose s.J --s for w: ch a correspond.ing mark is reqw.red, in the
sense that without these marks it is not convenientJ.y possibl.e to write
ALGOL 68 programs (those symbols will be cal.led "ind.ispensable" symbols);
and those symbols that are defined but not ":indispensable" in the sense
of the above (called "dispensable" symbols). For reasons of terminology
the symbol-set is also divided into "operator"s (i.e., DY.AD-symbols),
and "syntactic" s (the rest).

4.3.1.
I
I
I
I
I
l
I
I

4.3.2.

Tbose that are ":indispensable" must be supplied by any representing
mechanism. It concerns the following symbols:

syntactics:
I.ETIER-symbol
DIGIT-symbol
exception-symbol
open-symbol
close-symbol
point-symbol
comma-symbol
quote-symbol
formatter-symbol

operators:
pl us-symbol
m:inus-symbol
times-symbol or asterisk-symbol
divided-by-symbol
equals-symbol.

9

Unfortunately there are 48 of these, one too many for a 48-character set
(which has 47 non-layout marks). If we want to cater for 48-character sets
we shall have to supply a bold-TAG alternative for at least one of those
symbols. Letters, digits, arithmetic operators, parentheses, point,
comm.a and exception do not lend themselves for such an alternative.
This leaves us the 'quote-symbol 1 and the 'formatter-symbol'. A bold-TAG
as alternative for the 'quote-symbol• would yield an awkward
'quote-composite 1 (was 'quote-image•). We therefore propose that the
bold-TAG fo be reinstalled for formatter-composite.

At present the following symbols a.re 11dispensable11

(represented here by their reference representations):

syntactics:
~ $ [] . @ \

(I =II- ➔ , JO

operators:
f 1' 1 t &· -}t-Or X ~ % < > /\ V -. N

r l D

4.3.3.A recomnendable strategy for establishing the required correspond.ence is:
I
I
I
I
I
I
I
I
I
I
I
I

•

A. Those non-layout marks in the code that "sufficiently resemble" the
reference representation of a given symbol correspond to that symbol;
the :interpretation of "sufficiently resembling" must be such that
a. there is a corresponding mark for each "indispensable" symbol,
b. no mark corresponds to roore than one symbol.

B. The remaining non-layout marks are made to correspond to terminal
productions of 'otber-string-i tem I and as far as possible to
'OTHERMDNAD--symbol' s and to terminal productions of 'MATCH-other-­
PRAGMENT-item' .

10

I:r subsets are defined for the code, then the above recipe should be
applied t-o the smallest subset(s) first, and. then to other (sub)set(s)
in such an order as to preserve the proper subset character. This
process may cause more than one mark to correspond to one same
(syntactic) symbol (not SGil for operator symbols) •

4.3.4. The above implies that every syntactic symbol in the reference language
:p::>tentially blocks a poss: bly valuable operatoI'--¾l'.la.rk. 'lb restrict the dam.age
it is useful to reconside:r- the necessity of some syntactic symbols,
especially of those that have an equal or very similar :function. There are
two such cases: the 10 and the \ ; and the ¢ and the #:. We propose
to drop the \ and the ¢ , the \ since it is not at all standard
for 'times-ten-to-the-power-symbol' and is probably much more useful
as an operator (the I exception-symbol' providing a good alternative anyhow);
and the ~ since # is nnre 'Widely available (e.g., ASCII and EBCDIC)
and t is a point of corrf'usion between codes (again ASCII and EBCDIC).

4. 3. 5. In the reference language the N is the (approx:imate) representation of
both the 'tilde-symbol' and the 'skip-symbol 1. This conflicts with the
one-symbol-one-mark principle and mreover cannot easily be :rrended
by proper :redefinition: many compilers will get themselves into trouble
over the legal construction rv:=: a . We propose the N for the

11 skip-symbol' only: then I skip' and 'nil• have symmetric representations,
and for ~ there generally are enough aJ. ternati ves.

4. 3. 6. Experience has sho-wn that the field where unanimity is hardest to reach
is that of operator representations. This is also reflected by the
avalanche of operator definitions in the Report. It is tantalizing
to see the editors use a :rrechanism of efficient operator-redefinition
and not being able ourselves to reach the same effect other than by
the rude and inefficient mechanism of redeclaring:

op// = (~ n, m) ~: n % m,

thereby entailing an additional procedure call upon each application.
We therefore propose to add a simple rename mechanism for operators:

op c~, ~)-~II==~%,
{where CONTRACTITY is EMPI'Y, operat-0r token,

PRAM :NEST operator with TAD}

not causing an additional :procedure caJ.l.
This feature would:
a. beautify chapter 10 of the Report (less ivory tower),
b. free compiler designers from a lot of awkward decisions, and compiler

writers from patching u:p the compiler afterwards when outside
pressure decides that/+ is a necessary operator for dyadic-,

c. please everybody wbo has special ideas on the appearance of
operators,

d. greatly facilitate combining of programs.

11

4.4.Example:
An actual representing nechanism, e.g. f'or ASCII64, might then look
as follows.

Step 1:

Step 2.:

Step 3:

Step 4:

a.ft.er each 'bold-TAG-symbol' that is followed by a 'IETI'ER-symbol'
or a 'DIGIT-symbol' or nothing, a I significant-layout-mark• (11blank11)

is inserted.
in front of' every symbol a sequence of zero or more I significant-­
layout-mark I s is inserted.
every symbol is 11represented", as follows:
- if it is a 'bold-TAG-symbol' it is represented by an 'apostrophe-

mark 9 (•) followed by a sequence of IBT'.IER-marks and
DIGIT-marks that correspond. to the lETI'ERs and DIGITs in the
TAG, in that sane order (the boldi.ng convention).
if it is one of' the following symbols, it is represented by the
corresponding mark.

stick-symbol exclamation-ma.rk
quote-symbol quote-mark
brief-comment-symbol tic-tac-toe-ma:rk
formatter-symbol dollar-sign-mark
percent-symbol percent-mark
ampersand-symbol ampersan.d-mark
exception-symbol apostrophe-mark
open-symbol le:f't--parenthesif:Hllark
close-symbol righir-parenthesi&-'lDark
asterisk-symbol asterisk-iDark
plus-symbol plus-mark
COlJllila-Symbol comma-mark
minus-symbol minus-mark
point-symbol point-mark
divided-by-symbol slash-mark
DIGIT-symbol DIGIT-mark
colon-symbol colon-mark
go-on-symbol semicolon-mark
less-than-symbol smaJ.leI'--illark
equals-symbol eq uaJ.-mark
gre ate r-than-synibol gre a teI'--illark
question-symbol question-IDark
at-symbol at-mark
IB'ITER-symbol LE'ITER-mark
sub-symbol le:f't--square-bracket-m.
backslash-symbol backslash-inark
bus-symbol right-squa.re-brack.et---m.
not-symbol circumflex-mark
underscore-symbol undersco~ark

cs
C

s
cs
cs
cs

C

C

cs
C

C

C

C

cs
cs
cs
cs
cs

cs
mes

cs
cs
cs

(symbols that are 'O'IllERMJN.AD-symbol' s are marked 'm', -
tbose that are produced by 'MATCH-other-FRAGMENT-item' are marked 'c'
and tbose that are produced by 'other-string-item' are marked • s 1).

if it is not one of the above, no representation is provided.
in front of every mark a sequence of zero or more 'dummy-layout­
mark's is inserted.

12

Note 1.
If downward compatibilit;y with ASCII48 -would have been our goal, we
should have defined the ~ as an alternative representation of the
'exception-symbol' (a.ni it might at the same time govern a different
bolding-convention).

Note 2.
The code can be compatibly extended to ASCII96 by defining, for
example:

grave-symbol grave-mark
LE'ITER-symbol small-IE'ITER--m.a.rk
left-brace-symbol left-brace-mark
stick-symbol interrupted-ba.I'-ma.rk
right-brace-symbol right-brace-illa.rk
skip-symbol tilde-mark

(')
(a ..•
({)

~ l) })
("-')

mes
z)c
mes

cs
mes

cs

4. 5. The derepresenting mechanism is essentially the above in reverse order.
It might be described in .ALGOL 68 as follows.

~symbol= union(~, string);

co non-bold symbols will be delivered as ~s, bold symbols as strings~

proc symbol = symbol:
ts'Ym.bol s; while layout mark(s:= symbolette) ~ skip; s);

proc symbolette = symbol:
if ahead = apostrophe mark
then ahead:= solid mark;

if letter(ahead)

else
fi;

then string s: = ahe ro.;

else
n--
cha.r c=

while letgit(ahead:= solid mark) do s+:= ahead;
s
apostrophe mark
co balding convention co
ahead; ahead:= solid :mark; c

proc solid mark = char:.
(char c; ~ dumiiiylayout mark(c:= mark) ~ skip; c);

~ mark = char: (~ c; read(c); c);

char ahead : = sol id mark;

provided that appropriate (ASCII64) definitions of "layout mark",
"apostrophe mark", "letter", 11letgit11 and 11dum:ny layout mark" are supplied.

13

5. Summary.
A clean interface is defined between the production part and the representing
part of the la;nguage. In order to effect this interface minor changes
to the production part a.re proposed. In order to standardize the (environment-­
dependent) representing part, guidelines concerning its definition and
construction a.re proposed.

