
ti tr

AFDELING INFORMATICA

R. BOSCH, D. GRUNE and L. MEERTP'1S
ALEPH, A LANGUAGE ENCOURAGING PROGRAM HIERARCHY

t r

AFDELING INFORMATICA

stichting

mathematisch

centrum

R. BOSCH, D. GRUNE and L. MEERTENS

IW 9/73

ALEPH,!::_ J:.ANGUAGE fNCOURAGING £:.ROGRAM 1:ilERARCHY

~
MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

Ptun:te.d at .the. Ma,t,hema,ti.c_a,f__ Ce.ntJt.e., 49, 2e. BoeJr.ha.aveoiJr.a1Lt, Am.o.teJr.da.m.

The. Mathema,ti.c.a1. Ce.ntn.e., 6ou.nde.d .the. 11-:th 06 Fe.b1u.1J1Jl.y 1946, Lo a non
p1t.06U inowu.tlon cu.ming a,t, .the. p1tom0Uon 06 pu!Le. ma.thema..t-i..c..o a.nd ili
appUc.aUon.t-. I.t Lo .6pon.o01te.d by .the. Ne..thVtla.nd6 GoveJr.nme.n:t .thltou.gh .the.
Ne..theJci.and6 OJt.ga.nizaUon 601t .the. Advanc.eme.n:t 06 Pu/Le. Re..oe.a1tc.h (Z. W. 0),
by the. Mwu.upo.Li..ty 06 Am.o.teJLdam, by :the. Un,lveJr..oliY 06 Am.oteJr.da.m, by
.the. FJr.e.e. Unive.MUy a,t, Am.6.teJr.dam, and by ,lndu..o:ttueo.

ACM - Computing Reviews - category: 4.22

IW9 AIEPH, A Language Encouraging Program Hierarchy

AlEP-.d, !:::, !;anguage ~ncouraging !'.rograrn !!ierarc's1.y

Rob Bosch, Dick Grune, Lambert Meertens
Mathematical Centre, Amsterdam, the Netherlands

p'.1.blished in ProGeedings of the International Co.:nputing Symposium 1973 in
Davos, Switzerland

An ALEPH program consists of a set of gramm~like definitio::i.s of input,
actions to be performed and output, properly interrelated. The syntactic
and semantic simplicity of Al.Elli has three important consequences: aspects
of the dynamic behavior of the program cari be derived statically,
substantial optimization can be achieved thro~gh simple algorithms, and
portability is high. The aspects of the dynamic behavior include a check on
the use of uninitialized variables and a consistency check on useI'--declared
dynamic properties of rules. The optimizability of ALEIB programs allows
the programmer to formulate algorithms wlth all the elegance inherent in a
top-do;;rn :formulation and nevertheless obtain good. machine code.

1 . Introduction.
ALEPH is a high-level programming language designed to induce the user to
write his programs in a well-structured way. The language is suitable for
any problem that suggests top-down analysis (parsers, search algorithms,
co.:nbinatorial problems, artificial intelligence problems etc.).
An ALEPH program is a top-down description of what is to be done: complex
actions are defined in terms of (us,J.ally) less complex ones, which in turn
are defined in terms of still simpler ones, and so on, until a level is
reached at which further deco.:nposition is undesirable.
An ALEP-.d program consists of a set of such definitions, in a notation not
unlike the rules of an affix grammar (Koster [1,2], Cro·;.re [3]). In fact,
many of ·the ideas in ALE P.H were derived from the theory of affix grammars;
for example) repetition is expressed, not by a goto 8r while statement but
by what in a grammar would be called 'rigbt reclITSion'.

The syntax a:.<1.d sem.a.11.tics of ALEPH are so simple that it is possible to
statically derive interesting properties of the dynamic behavior of the
program. For example, the compiler can easily verify that no variable will
be used before obtaining a value. Thus the use of uninitialized variables
is prevented in a natural way) without resorting to the (dangerous)
trick of automatic initialization. Also) the compiler ca.11. detect logical
constructions that imply what is generally called 'backtrack', and provide
a message. The signalling of inadverted backtrack app~ars to 'Je a powerful
weapJn against messy program:ning.

IW9 AIEPH, A Language Encouraging Program Hierarcey 2

The syntactic simplicity of AIBPH programs can be utilized for a different
p'l.rpose: optimization. The compiler can transform. the program into a
directed graph and thereby readily detect recursion, thus permitting a
more efficient translation of non-recursive constructs. Furthermore, this
directed graph can be used for storage optimization. Thus the programmer
can formulate algorithms with all the elegance inherent in a top-down
formulation and nevertheless obtain good. machine code (probably even more
compact than he could have safely written himself).

Because the semantic primitives needed for the translation are small
in number and simple in nature ('pass parameter', 'call procedure
conditionally', etc.), the transfer of the compiler from one machine
to another is q_uite straightforwa:ru.. As, ho;i-ever, additional semantic
primitives may be defined by the programmer (e.g., multilength arithmetic,
1 convert to hash code 1 , or whatever he thinks is a primitive of his
problem), the portability of the program (as opV-)sed to that of the
com:9iler) is determined by the p::,rtability of these programmer-defined
primitives.

The present work is a continuation of the research started by C.H.A.
Koster, which resulted in the development of CDL (Compiler Description
Language) [4]. His CDL-compiler gave us a great deal of experience with
affix-grammar-like languages, from which ALEPH has benefitted.
A two-pass compiler is available and an optimizing two-pass compiler is
under construction. These compilers, themselves w.ritten in ALEPH, are to a
large extent machine-independent. Our versions yield assembly language code
for the CDC Cyber Co.np~ters.
AI.EPH is presently being used for the construction of a machine-independent
ALGOL68 compiler.

It should be borne in mind that this paper is not an ALEPH manual: it does
not cover the complete language. Instead a motivated account of the most
salient p::>ints is given. An ALEPH manual is due to appear in a few months
at the Mathematical Centre, Amsterdam, The Netherlands.

2. Criteria.

2.1. Goals.
Our main gosls in the design of ALEPH were the following:
a. It must allow goo:i programming at a reasonable effort and a moderate
price.
b. Since AIEPH is a tool and not a go.31 in itself the co.::npiler for it must
be simple.
c. To allow the application of the algorithms written in ALEJ?H on a wide
range of machines, the compiler must be portable (as far as possible).

The above requirements were augmented by two more req_uirements of a more
practical nature:

IW9 AIEl?H, A Language Encouraging Program Hierarchy 3

d. Since in our institute AIEPH is mainly intended for compiler
writing, sorting algorithms, text-editing, etc., emphasis is on facilitating
non-numeric symbolic programming. (Note: this text was justified by a text
justifier written in ALEPH).
e. Since it was clear that we shall have to do for a long ti.Ire to come with
early and mid third genereation computing equip:nent, the compiler must not
require any advanced hardware.

2.2. Go::>d progran:nning.
Two different approaches were taken for the effecting of such a vague
notion as "go::>d programming". Firstly the literature contains ideas about
what constitutes good programming (Dahl [7], Dijkstra [5, 8], Wirth [9], to
mention a few); many of these ideas were incorporated. Secondly, we often
found it mllch easier to recognize bad programming and forbid it than to
recognize good programming and to promote it.
It is not generally possible to disallow bad programming: a language that
is powerful enough to formulate any algorithm in it is also powerful enough
to formulate it messily. Nevertheless, it is often possible to make the
"desirable" constraction more convenient than an "undesirable" one: the
usage of a language does not so mu.ch depend on its p::>ssiblities (it's
a Turing machine anyway) as on the conveniency of these possibilities.
Although it is parfectly possible to write recursive routines in FORTRAN,
hardly anybody ever does so since the administration is just too cumbersome
and, conversely but analogously, it is perfectly possible to "jump all
over the place" in .AIEPH but hardly anybody ever does so since the
administration is just too cumberso.:ne.
It should be noted that, surprisingly, it is sometimes possible to forbid
bad programming: for example, most high-leverlanguages effectively prevent
a jump to data.

2. 3 • Ef'f ort.
We require the "good
effort". Consequently,
in programming languages
should be present.

2.4. Price.

programming" to be available "at a reasonable
if a feature that is normally present and useful
is banished fro::n. AlEP.H, an acc.ep-table alternative

We also require the II good programming" 11 at a reasonable price". Since the
only way to program a machine efficiently is in hard machine coae, we
should be willing to accept certain losses for writing in a high-level
langllage. These losses, however, must not depend on the style of
programming in such a wa;/ as to foster bad programming: for example, in
many high-level languages it is more efficient to pass information to
subroutines in global variables than in parameters. Consequently, the ALEPH
compiler will have to do thorosigh optimization, and, for simplicty, the
constrllctions in the language should allow easy optimization.

2. 5. Simplicity.
The required simplicity of the co::n:piler conflicts with the tend.ency to
make ALEPH as high-level as possible and with the need for exGensive
optimization. So.me trade-off is to be expected here.

IW9 AI..EP.H, A Language Encouraging Program Hierarchy 4

2.6. Portability.
The greatest problem in p:)rtability is the p:::,rtability of the object code.
Our solution is to produce machine-inde1>=ndent object code of an extremely
simple nature. This code can be produced internally and converted directly
t-o pertinent machine code (for production) or can be produced externally
and then be converted separately by a simple ad-hoc program (during
half-bootstrapping).

2. 7. Hardware .
Fancy hardware like virtual memory, hardware stack or :microprogramming is
not supposed available. Consequently, some fairly elaborate optimizations,
like check on non-recursiVity, are worth while. Nevertheless the object
code could still make go,;:xl usage of the above advanced features.

3 • The Language •

3. 1 • The grammar form.
It is well known. that a grammar is an excellent means for specifying
clearly and transparently the input to a program. With the same ease with
which we specify a list of numbers separated by commas:

input: number, rest numbers option.
rest numbers option:

comma symbol, number, rest numbers option;
empty.

(or., in Backus Normal Form,
<input>: : = <nu.mber><rest numbers option>
<rest numbers option>::=

<comma symbol><number><rest numbers option>
<empty>)

we specify a (seemingly m11ch more co:::nplicated) parenthesized tree in infix
notation:

tree: item;
open symbol, tree, item, tree, close symbol.

item: letter.

It is also well koown that under a wide variety of circumstances such a
grammar can be considered as a program to read the input described: for
reading "input", read a "number" and then read a "rest numbers option". For
reading a 11 rest numbers option", either if there is a comma read it, read a
"number" and read a "rest numbers option", or yo'.l're done.
Of course there is no reason why a gra.mmar should only be used for the
definition of input instructions. The grammar

sort: split into twu lists, sort first list,
sort second list, merge.

sort first list: is ordered; sort.
sort second list: is ordered; sort.

IW9 ALEPH, A Language Encoaraging Program Hierarchy 5

describes a widely-used sorting technique, or rather a family of these.
Here the great value of grammars as a programn.ing device becomes prominent:
we are forced first to ~efine the general skeleton of the program in a
clear way and then to refine the algorithm by filling in the details in a
hierarchical descent. Af'ter the above definition the actual. fonn.s of "split
into two lists", "merge" and "is ordered" are still open. The rule for
11 is ordered" could decide that only one element is o:ro.ered, or even that
up to three elements are omered by straightforward rearrangement, without
affecting the basic workings of the algorithm. "split into two lists" could
just cut the list in the middle and then 11merge" would have to be fairly
complicated, or it could split the list into two lists in such a way that
all the elements in the first list are smaller than those in the second
list, "merge" -would then be empty and we -would obtain Quicksort (Hoare
[10]).

The form.1.ll.ation of algorithms in the form of a grazmnar has, in the three
years of our experience, proven to be an excellent technique for enhancing
their well-structured.ness.

Once having decided that the gramna.:t"-for.m will be the basis of our
language we must answer three fundamental q_uestions. What is the exact
flow-of-control? Hoir do rules communicate? And how is the semantics
specified for rules that are not further decomp::>sable (terminal symbols)?
Furthermore we shall have to provide data types and some input-output, and
for the benefit of the user ·we shall have to add some syntactic sugar.

3.2. The flo;;i,-of-control.
From a formal point of view the rule for "tree" mentioned above should be
read as: there is a tree either if there is an item or if there is an
open-symbol, followed by a tree, an item, another tree aru! a close-symbol.
The flow-of'-control suggested by this is obvio:is: check for the presence of
an item and, if that fails, check for a succession of' open-symbol, tree,
item, tree and close-symbol and if these are not all present then there
is no tree. This interpretation is unacceptable since it can only be
implemented through the use of automatic backtracking. Moreover, it is not
even adequate. Suppose we wa.11.t to inspect two objects, if they are both
integer add them and if they are both character concatenate them:

combine:
is first integer, is second integer, add;
is first char, is second char, concatenate.

If "is first integer" now succeeds and II is second integer" fails, then we
are not at all interested in the second alternative and "combine" should
fail right away. In our experience the best programs are those in which
in all rules the first members of the alternatives succeed under mutually
exclusive circumstances. The first member of' an alternative can then be
considered as the key to that alternative: if the key fits, the other
alternatives are no longer of interest. There is a strong analogy here with
LL(1)-grarm:nars (Knuth [11]). In an LL(1)-grammar, if' the first symbol is
present (the :first ~mber succeeds) the rest of the alternative is known to
be present (further members cannot fail), thereby completely removing the
problem of ·backtrack. The above example, ho..rever, shows that this is too

IW9 .AIEPH, A Language Encouraging Program Hierarchy 6

stringent a requirement f'or a computer language since it would effectively
forbid the logical conjunction. So ·-;re arrive at the following rule for the
floiT of control: the first member selects the pertaining alternative, if
any; the rule succeeds if all members in the pertaining alternative succeed
and it fails if one of these members fails or if no alternative was
selected.

As an important consequence there is only one wa;y to reach a given member
M in a given alter.native A: all first members of alternatives preceding A
must have failed and all members in A preceding M must have succeeded. This
simple rule is often used in deriving assertions about the program, both
mechanically (e.g., check on status in 3.3. and check on let't,-recursivity)
and by hand.

The above interpretation reintro:iuces the problem of backtrack. However,
not all "two q_uestions in a row" give rise to backtrack: in the simple
comparison of three numbers:

equal a b and c: equal a and b,equal b and c.

the first member ~ succeed and the second fail, without requiring
backtrack. Therefore rules are divided into two groups, those that effect
global changes ("have side-effects") and those that do not. The rule for
constructing alter.natives is then: once a rule with side-effects has been
called, the rest of the alternative must be guaranteed to succeed.

Although the co.::npiler could itself detennine whether a rule has
side-effects, this is not done. Instead, this infonnation is given by
the user and checked by the co.::npiler, as a form of useful redundancy.
Often a conceptual error results in a rule that was thought to be free of
side-effects having side-effects.

In the above, rules are used to decide the presence of the desribed
constructs, e.g., trees (and, possibly, to process them). In many cases,
however, the programmer knows that the construct is present: the tree must
be present or something iswrong:

tree: item;
open symbol, tree, item, tree, close symbol;
error .message.

Rules are again divided into two groups: those that can fail and those
that alwa;ys succeed. As before, the compiler could find this out, but for
reasons explained above the programmer specifies his opinio::i on the rule,
which opinion is then checked by the co::npiler. And again, this form of
redundancy proves to be very use:f'ul.

IW9 AIEPH, A Language Enco:iraging Program Hierarchy 7

The two division criteria can be combined, yielding four groups:

can fail, has side-effects: 'predicate'
ca..11. fail, has no side-effects: 'question'
cannot :fail, has side-effects: r action'
cannot fail, has no side-effects: 'function'

In this terminology "tree 11 should. be an 'actio~1.'. Now the item between the
two trees may be missing, so a programmer might write:

'action' tree: item;
open symbol, tree, rest tree;
error message.

'action' rest tree:
item, tree, close symbol; error message.

The compiler would find two errors (given suitable definitio.as for the
missing rules). "Rest tree" is not an 'action 1 , and the II close symbol"
causes backtrack (over tree and item). These two errors, admittedly
simple as they are, would probably not be detected in most conventional
programming languages and would be called by many people II conceptual
errors" rather than II syntactic errors11 •

3.3. The parameter mecha.~ism.
All the above grammars are context.-free a:n.d as such they are inadequate to
express actual algoritbms. What is needed is away of communication between
the notions in a rule. Form.ally such a way is provided by the af'fixes in an
affix-grammar (Koster [2]): ALEPH uses a parameter mechanism that is very
much akin.

All formal variables (parameters) are lo::!al to the rule they belong to,
as are the local variables. So;:ne formal variables are prefilled at
call entry with the values of the actual parameters (corresponding to

1 -bound-af'fixes), some formal variables are still uninitialized at call
entry but their values will be used by the calling rule (corresponding to

cS -bound-af'fixes), and so.:ne are both (not corresp::mding to an affix type).
All local variables are uninitialized at call entry. The rule is obliged to
give values to those parameters that will "be used by the caller. However,
if t.he rule fails, the caller will never need these values: they will
not even be passed back at call exit, so that in that case the rule
does not have to provide them. This 11 copy-maybe-restore11 mechanism has
the advantages of the standard 11 copy-restore11 (transparency, efficiency of
p9..rameter access, no machine addresses on the stack) and moreover provides
a one-level backtrack free of' charge: a rule may tentatively mess up its
parameters, and if it then decides to fail, nothing needs to be restored
(since only copies were spJiled).

AI.EP.H, A Language E:ncoJ.raging Program Hierarchy 8

Since the status (initialized or .aot) of aJ..l formal and local variables is
kno-wn at call entry; since this status before the execution of a member,
together with the parameter description of that member, dete:rmines the
status after the execution; and since there is only one way to reach a
certain p)int in a rule, the compiler can readily construct the status
at all p.:>ints and perform a reliable check on the use of uninitialized
variables.
This again proves to be very helpful in detecting (logical) errors.

Fo~ an example we
mentioned in 3.1.,
print the sUill:

return to the list of numbers sepsrated by commas
and we suppose that we want to read them, add them and

'action' inp~t - res:
number + res, rest numbers option + res,

result + res,
'action' rest numbers option+ >res> - :r:urib:

co.Jlllla symbol, number + :nmb, sum + rrmb + res.,
rest numbers option+ res;

+.
•action• number+ res>:

get int + input file + res;
error + bad number, 0;;, res.

'action' sum+ >x + >y>:
add+ x + y + y; error+ overflow.

The pluses affix the affixes to the rules. Co-ordering with pluses is used
rather than s 1.ib-ordering with parentheses. The use of parentheses would
have implied the possibility of nesting: this nesting, however, is not
allowed. Moreover, parentheses are already being used extensively in a
different way (see 3.6.1 .).
The minus signals a local variable. The right arrow-head in fro:it of "res11

indicates that 11 :res" will be prefilled, the one at the back of 11 res11

indicates that after the call the value will be returned to the caller.
The local variable 11 res 11 is uninitialized at the colon in "input", :from the
declaration of 11 number11 it follows that it will not use the value of 11 res11

(which would have been illegal) but will retur.a a value to it. So, at
the first comma 11 res11 is initialised. a..nd may be affixed to 11 rest numbers
op"'.;ion" which uses its value.

The above notation precludes the introd.uctio.::1 of operators and type
procedures in AIEP.H, and in fact they do not exist in ALEP.H. .Although
we readily concede that operators and type proc:edures often allow a very
elegant forrnula;tio.o. of an algorithm, we aJ.so feel that they tend to lead
to unjustifiable simplifications. By the nature of it., an operator or type
procedure yields only one result (if we disregard messy tricks). Now, it is
doubtful if, e.g., the:result of the inversio.::1 of a matrix can be expressed
in one matrix, and it is simply not trlle that the result of the addition
of two integers can. be expressed in one integer (since overflow may
oecur). Especially the latter fact is poorly appreciated both in
high-level languages a.11.d in hardware. In the worst case what is called the
11 add-instruction11 is in fact a bit-shaffler that happens to yield the sum
in about 75 percent of the cases. In a slightly better case the program

IW9 ALEPH, A Lan.gu.age Encouraging Program Hierarchy 9

comes to a grinding halt or some pre-attached program is called, with all
the misery inherent in interrupts. In fact there is no add instruction: all
there is is an add request, which, like any other request, can fail to
be satisfied and which is a 'question' in the sense of the above. This is
correctly recognized by that hard.ware that sets an overflow bit, which bit
is then, m::>re often than not, boldly ignored by the high-level language.

There are a few requests that ca.11. always be fulfilled: e.g., it is always
possible to set oc1e variable equal to the value of the other. Indeed the
assignment is written with the aid of an operator: 110 -> res" in the
example above. Note that this instruction is necessary to sustain the claim
that 11number11 always assign a value to its formal variable "res>-": we are
not allowed to let the program carry on with a 11 ghost11 value, even after an
error--message.

3.4. Primitive rules.
Rules are specified by their decompositio~ into other rules. This process
must end somewhere; it can end in one of three ways:
a. The required action is a primitive of AIEPH, e.g., assig:runent.
b. The required action is known to the compiler under a standard name,
e.g., the 'predicate' "get int" and the 'question' 11 add11 in the example
above.
c. The required action is part of the problem but cannot be decomposed
(e.g., the activation of particular hardware) or must be described on a
lower level for reasons of efficiency (e.g., the calculation of a hash
address from a given string).

In cases a) and b) t,here is no problem for the user and only a one-time
problem in transferring to another machine: the primitives must be
reprogrammed. Case c) is exceedingly rare but must be catered for. Rules
can be declared I external' in ALEPH under specification of the parameters
and the co~1.cen1ing sema.11.tics must be supp.lied by external means, e.g.,
at the level of machine co:ie (in which case, of course, there is no
porta"bility).

3.5. Data types.
The language defined so far does not rely in any way on the properties of
the data typ,=s (except perhaps that rules as data would be inconvenient and
would violate simplicity requirements). We are still at liberty to define
the data types we need. For 0:1.r applicatio~s and for reasons of simplicity
we have resticted 0:1.rselves to integer data (already introduced above) and
stacks of these. The latter have the usual property that top elements may
be added, inspected and removed. In addition, they have the following
properties:
a. All elements c8Xl. be reached, thus the stack can act as an array.
Arrays in the standard sense cannot be allowed since they may contain mixed
initialized a..~d uninitialized variables.

AIE PH, A La..r1.guage Encouraging Program Hierarchy 10

b. Bottom elen:ents can be removed, thus the stack can act as a queue. If
the queue walks out of physical memory it is simply pushed back by the
runtime system and since all references to s. stack go through its base
address only this base address needs to be updated. Bottom elements cannot
be added: a deq_ue (Knuth [12]) is much more complicated to implement, is
hardly ever useful and in emergencies can be simulated by two queues.
c. Each stack has its o;m private piece of the virtual address space
(which in total extends from minus the maximum integer to plus the
maximum integer), so that if an integer is used as an index to a stack,
it identifies that stack. Thus dynamically co:nplicated objects can be
efficiently unraveled by extracting stack identification from the given
index.

The above data types are easy to implement and constitute very convenient
tools for data handling that have proved their value in practice,
especially in combination with data-description-like rules for the
pNcessing of data. Fo:r exdmp.le, a list (in "list stack11) whose elements
consist of items (called 11 item11) and indices to the next element (called
11next 11) is processed by:

'action' list+ >har:idle:
process + itemXlist stack[handle],

rest list+ nextXJ.ist stack[handle].
'action' rest list+ >handle:

was + list stack + handle, list + handle; +.

where "process" must be given by the user and "was11 is a 'question I known
to the co:npiler which tests whether 11 handle11 is an index to 11list stack"
(if' it fails there a.re no more elements).

Al though these data types are safer than the usual data typ2s in
languages (all reachable variables have a value and most logical errors
are caught immediately by indices being applied to the wro:::-i.g stack),
they unfo·;:-tuantely lack the rigour and reliability of the flo;.r-of'-con.trol
explained in 3 .2. and 3 .3. (rt.J..ntime checking is still necessary and the
11dangling reference" problem is not solved). The reason is simply that the
state of the art :in grammars and in hierarchical programming is much more
advanced than that in data structures. Even the presently most advanced
data structures, those of ALGOL 68 (va.ri. Wijngaarden [13]) cannot be graf'ted
in a simple way to Al.Elli: we would lose the adv&1tages meo.tioned above
the AJ.f'.iOL 68 solution to the "dangling reference" problem (scop2 checking)
still needs dynamic checking and is not readily applicable to AI.EPH, and
indices can still be out of bounds. We ho:p= and expect that many of these
trouble-spots can be mended in the near future.

3,6. Syntactic sugar.
In 3.6.1. ro'ld 3.6.2. some examp.les are given of features solely intended to
make the language n:ore coD.venient to use.

IW9 AIEPH, A Language Encouraging Program Hierarchy , ,
3.6.1. Flo-rn-<>f-control.
When we read the short program given in 3 .3, we can easily see that it
is overly recursive. The recursive caJJ. of' 11 rest numbers option11 in "rest
numbers o:ption11 pL1.ts a COIJ'J 11 r-~s' 11 o::' 11res11 on the stack, works on 11 res'"
and then restores "res11 to 11 res' 11 : it could as well have worked on "res"
directly. Moreover, the said caJ.l puts a return link on the return link
stack that p:,ints directly to a "return over return link stack11 instruction
(since 11 res11 needs no longer be restored and the present call is the last
o::ie in an aJ. ternati ve) so it could as well be lef't out. All t.hat is lef't
of the call is the (re)-activation of "rest numbers optio:i." and as such it
corresp:mds to .3. simple am. clean jump. The user is aJ.lowed to write:

'action' rest numbers option + >res> - nmb:
cormna s:ymbol, number + nmb, sum + runb + res,

: rest numbers option; +.

Co:.1.versely, he may use the jump o:uy as a last member o.f an alternative
in an 'actio:i.' or 1t'unction' and it is then co.nsidered shorthand for a
recu.rsive caJ.l with the sane parameters as the original.

Although the compiler would have found. this optimization, the user, by
indicating this simplification himself, has gained something: 11 rest numbers
option" is oo·i:r only called in one place, in 11 inpu.t11 , and can be substituted
there. The same holds for II S'..lll111 , so that the program reduces to:

'action' input - res: number+ res,
rest numbers optio.:.1. - nmb:

(comma symbol, number+ nmb,
sum:

{add + nmb + res + res;
error + overflow),

: rest numbers option;
+),

result + res.

'action' number + res>:
get int+ inp~t f'ile + res;
error + bad number, 0 •-> res.

3 .6. 2. Da:ta types.
In addition to formttl. and lo:::al variables .ALEPH allows global variables.
Although we are aware of their undesirability and of' the great
opprotunities they afford in bad programming (Wulf, Shaw [6]), we do not
see a way to do without them in the present framework. Some information

(like, e.g., a character counter on the input in a compiler) must
eventually be available to virtually all rules (since, again in a co::n.piler,
virtual.ly all rules can cause a call to the error-ro:itine which prints a
diagnostic m=ssage including said character counter). Consequently, this
information must be passed as a pa't'ameter to aJ.l these rules. The same in
essence applies to all I/□ information. By way of experiment we rewrote a
fai!'-sized AI.Ef?H program (co.::i.cerning mode-handling in ALGOL 68) under the
elimination of global variables (except I/0 information) and fo:.md that the
average mlIDber of af'f'ixes per rule went up from 1 .5 to 1+.5. We co:::isider

IW9 AIEHI, A Language Encouraging Program Hierarchy 12

this to-o high a price: o~1ly a profoundly different approach to data types
may yield a solution.
It should be noted, however, that the misuse of global V8.riables is limited
by their tendency to cause backtrack errors up:m careless handling.

Global variables must be initialized up:m decalration. Their values can be
changed by any rLl.le. It is also possible to declare initialized constants
whose values cannot be changed. Aside fro::n the convenience of' this feature
it also aids in good programming. It appears that the occurrence of a
ha.rd integer denotatio.n. in a ruJ.e is generaJJ.y unjustified. Tallying hard
integers in some sampl.e programs has taught us that o::ily roughly 1 in 50
integers is used in its integer meaning. For the rest they were either
variables of the problem that happened to be constant most of' the time
(like linewidth of the prlnter, number of "bits in a character, etc.)
or terminators in data strllctures where "nil" should have been used. We
seriously contemplate disallo;.ring hard integers in ruJ.es and only all.owing
them in initializations.

4. References.

[1] Koster, C.H.A., (t'l the construction of' ALGOL-procedures for generating,
analysing and translating sentences in naturaJ. languages, MR 72,
Mathematical Centre, .Amsterdam (1965).

[2] Koster, C .H.A., Affix-grammars, in ALGOL 68 Implementation, ed. J .E.L.
Peck, North-Holland Publ. Co., Amste:ctlam (1971) •

[3] Crowe, D., Generating Parsers for Affix Grammars, Comm. ACM .!.z., 728-734
(1972).

[4] Koster, C.H.A., A Compiler Compiler, MR 127/71, Mathematical Centre,
Amsterdam (1971).

[5] Dijkstra, E.W., Notes on Structured Progrannning, Rep 70 Wsk 03, Math.
Dept. Technical University, EindJ1oven (1970).

[6] Wulf, W., 11Global Variable Considered Harmful'\ SIGPLAN Notices 8 (2),
28-34 (1972). -

[7] Dahl., 0-J., Dijkstra, E.W., Hoare, C.A.R., Structured Programming,
Academic Press, London (1972).

[8] Dijkstra, E.W., Go To Statement Considered Ha.rrnf'ul, Comm. ACM .!.l.(3),
147 (1968).

[9] Wir-t;h, N., Program develop:nent by stepwise refinement, Co:::nm. ACM ~(4),
221 (1971).

IW9 AIEP.H, A Language Encouraging Program Hierarchy 13

[10]Hoa.re, C.A.R., "Quicksort11 , ComputerJ • .2. (1), 10-15 (1962).

[11]Knuth, D.E., Top-down syntactic analysis, Acta Informatica.!., 79-110
(1971) .

[12]Knuth, D.E., The Art of Computer Programming, Vol I, pp. 235--239,
Addison-Wesley, Io:ndon (1 969) •

[13]van Wij:ngaa.rden, A. (ed.){ Report 0:1. the Algorithmic Langauge ALGOL 68,
Numer. Math . .!!:!:, 79-218 (1969 J.

