
AFDELING INFORMATICA

H.W. ROOS LINDGREEN

stichting

mathematisch

centrum

A FILE SYSTEM FOR MULTI-SEQUENTIAL FILES

IW 10/73

IA

~
MC

OCTOBER

2e boerhaavestraat 49 amsterdam
BIBLIOTHEEK. MATHfMATlSCH CiNTRUM

A-MS'n'.RDAIII

Punted a:t .the Ma:thema.Uc.a.l Centll.e, 49, 2e BaeJtha.a.ve1i.tJia.a.t, Am.6.te.Jtdam.

The ,Ma:thema.Uc.a.l Ce.ntll.e, 6ou.nded .the 11-.th 06 FebnuaJLy 1946, ,l6 a. non
pno6U: ,i.nt,;tltu;tlon cumi.ng a:t .the pnomaU.on. 06 pune ma:thema.UC6 a.nd .lt6
a.ppUc.a.Uon6. I.t ,l6 .6pon6oned by .the NetheAR.a.nd.6 Gove,ll,n.men.t fuough .the
NetheAR.a.nd.6 Onga.niza.Uon 0an .the Adva.nc.emen.t o,6 Pune Re1ieaAc.h (Z.W.O),
by .the MuniupaLU:y 06 Aml>.te,ll,da.m, by .the UniveMU:y 06· Am.6.t.e,ll,da.m, by
.the Fnee UniveMU:y a:t Am.6.t.e,ll,da.m, a.nd by indM:f:Jueli.

ACM - Computing Reviews - category: 4.41

ABSTRACT

A useY oriented description of a file system is given, and also an imple

mentation of that system in the form of an ALGOL 60 program. It is a

dynamic system in the sense that there are no fixed upper bounds for the

number of files or the length of a file. A new type of file access, multi

sequential access, is introduced, allowing the user to have sequential

access to a file at various entry points of that file simultaneously. All

files within the system presented are of this access type and therefore

termed multi-sequential files.

It is assumed that the system is embedded in an operating system having

dynamic storage allocation features. The specific requirements of the file

system with respect to that operating system are listed. Underlying con

cepts of both implementation and design of the file system are given.

TABLE OF CONTENTS

O. PREFACE

I . INTRODUCTION

I.I. Some general remarks

1.2. History

1.3. Results

1.4. Report get-up

2. GENERAL

2.1. Technical information

2.2. General concepts of the implementation

2.3. General design considerations

3. POINTER ROUTINES

3.1. The routines

3.2. Implementation

3.3. Pointer resetting

4. ACCESS ROUTINES

4.1. The routines

4.2. Implementation

4.3. Designing the access actions

5. FILE OPENING

5.1. The routines

5.2. Implementation

6. FILE CLOSING

6.1. The routines

6.2. Implementation

6.3. Implicit closing

7. FILE NAMING

7.1. The routine

7.2. Implementation

8. INQUIRY ROUTINES

8.1. The routines

8.2. Implementation

8.3. Design considerations

3

3

4

4

6

7

9

10

24

26

27

28

31

32

32

34

35

40

40

43

49

50

51

54

55

55

56

58

58

59

60

i

ii

TABLE OF CONTENTS (continued)

9. DYNAMIC STORAGE ALLOCATION MODULE

9.1. External description

10. INTERFACE FILE SYSTEM/ OPERATING SYSTEM

IO.I. Routines, constants and variables

IO. 2 • Act ions

10.3. Hidden interface

11. TESTING THE SYSTEM

12. THE PROGRAM

12.1. The program text

REFERENCES

61

61

64

64

68

69

71

73

74

103

O. PREFACE

The present report contains a detailed description of a file system. This

detailed description consists of an integral program text and also of an

ample explanation of that text and of the underlying concepts.

In programming literature the term "file system" rather often occurs,

mostly in one of the three following significations [5,8,9,11]:

• an operating system heavily leaning upon the use of files. Files· then

serve data transmission between users, between user and system, and

between various parts of the operating system itself. Such a system

preferably should be called a "file oriented system" •

• one of the modules of an operating system. This module, the file module,

deals with all file actions. In this report the terms "file module" and

"file system" will be equivalent •

• an information retrieval system in which in general a lot of attention

is paid to the data structures within the files. Such a system prefera

bly' should be called a "filing system".

The file system presented here can be considered to be a system for dynam

ic files. This term needs some clarification. A file often is considered

as being either static or dynamic depending upon the frequency of file

alterations. In this report, however, files are termed dynamic, because

they can grow and shrink in number and length.

The files are named multi-sequential after their method of access. Some

general types of access such as direct, random, word addressable, sequen

tial, indexed sequential, etc. do not aptly apply to the method of access

practiced here. The term multi-sequential is introduced because the way of

accessing is of sequential nature and has some analogy with (the accepted

term) multi-access [9]: the user has a variable number of reference points

on his file and he accesses the file sequentially via those references.

Files may stay in the operating system permanently. Attention has been

paid to such matters as unique naming, scratch files, multi-read files,

private and public files, but not to matters such as creation date, reten

tion period, extra cycles, passwords or priorities.

2

Special attention is paid to the use of the system by ordinary programs

(opposed to system routines), which resulted, among other things, in

extensive error checking and the distinction between fatal and venial

errors.

No attention has been paid to special data structures within a file.

A file is a linear memory that is not structured. Each file is of some

species, the species dictating the type of the memory cells, that may be

different for different files. To give an impression of what is meant: we

can speak about "real files","boolean files", etc. This allows efficient

storage in case all information to be stored in a file is of the same type.

l • INTRODUCTION

1.1. Some general remarks

A file is a macroscopic information unit. In general it is of no basic

importance in what way a file is represented, nor which media are used.

Therefore, a file can be consi~ered a logical entity. When a file is

observed more in detail, a microscopic structure might be noticed •. In

general a file consists of a number of blocks, each block consisting of a

number of records and each record consisting of a number of elements. The

files presented here consist of a number of elements and no other hierar

chy is of importance of the user.

Files supply the following wants:

• Large operating systems need some means for internal data transmission.

Using files an operating system is able to standardize communication

between its modules •

• Communication between an interactive user and the system is done easily

and smoothly via files •

• Files form an excellent medium for permanent storage of data, programs,

etc.

When handling large amounts of information, files can be of prime assis

tance.

A -6,Ue. 1.>y.6.tem is a collection of routines that

• enables the user to create, read, alter, store permanent and/or delete

files •

• forms a module of the operating system it is embedded in; a module that

is pretty well autonomous.

In view of the important role files (are able to) play in nearly all

system actions, a file system belongs to the basis, the kernel of any

advanced operating system.

3

4

1.2. History

The development of a time sharing system for the computer tandem con

sisting of the Electrologica X8 _and DEC PDP8-I led to the design of a file

system •. This design contained the concepts of both sequential aci;ess files

and random access files. A proposal for the sequential access files .was

given in [2]. This proposal was a starting point for the investigation

reported here. Although an accurate description of the file routines was

given in [2], it did not answer some questions of vital importance to some
\

act~al implementation of the files, such as what to do in case of space

exhaustion, what is the maximal file length, etc. (quoted from [2]: "This

proposal does not go into the matter of the principally finite length of

a file".). To these and other questions this report gives a full answer.

While considering some of the aspects of the proposal just mentioned, it

was decided to reconsider all of it, which resulted in a·completely new

proposal, done by L.J.M. Geurts, L.G.L.Th. Meertens and the author [l].

One of the main improvements is the concept of the multi-sequential file.

All files in this proposal dispose of a method of acces·s that facilitates

the user to manipulate his files in a way that gives him pseudo random

access.

The next question to be answered was if the proposal was implementable.

It was answered in the affirmative with the proviso that some sort of dy

namic storage allocation scheme should be available. It was decided to

realize the file system within the existing operating system for the X8,

Milli [3]. The first step in this process was made by L.G.L.Th. Meertens

and the author. They developed and coded a dynamic storage allocation mod

ule for the X8 [6]. The next step was to implement the file system itself,

which activity is given account of in this report.

1.3. Results

As mentioned before, an interesting by-product of the construction of the

file system was a dynamic storage allocation module. A very brief descrip

tion of its external behaviour will be given in chapter 9.

5

The file system as it is realized consists of a number of ALGOL 60 proce

dures that have a well determined interaction with routines that belong to

the operating system. Those routines have to do with memory reservation,

job scheduling, etc. and therefore lay beyond the scope of the file module

itself. The dynamic storage features for a good deal dictated the data

structures the files are administrated within. To test the file module

without having it actually embedded in the operating system, vital system

routines and most of the dynamic storage allocation routines were simulated

in ALGOL 60. Since all tests were performed with the ALGOL 60 version, no

measured figures can be given about rather important system characteris

tics, such as the access time for one file element. In order to give a

fairly good estimate for the characteristic just mentioned, the routine

trans el was coded in assembler language. It was concluded that on the X8,

with disk drive(s) serving as mass storage and with the file system instal

lation parameters, such as blocklength, set to some likely values, the

access time for file elements read sequentially would be about 1 milli

second per element. This seems rather expensive for the X8 with a mean

instruction time of 5 microseconds. It is accounted for by the great number

of checks to be made at run time, due to the flexibility of the system.

A next step in the process of system development should be making the file

system operative within the Milli system. For that purpose the following

actions must be taken:

• incorporation of the dynamic storage module in Milli •

• extending Milli with routines for communication with disk drives •

• adapting the measures Milli takes upon program termination •

• coding the ALGOL 60 procedures of the file system into assembler code.

This is not really needed since Milli disposes of an ALGOL 60 library,

but it surely would make the system more efficient. Furthermore, in coded

form the operating system itself can use the file routines in a way far

more elegant and surveyable than in case they are in ALGOL 60.

The actions spoken of above were not taken after reaching the here pre

sented state of affairs as one might have expected. They were not taken,

because a new computer was about to arrive, meant to replace the X8. Since

this new machine was to be equipped with a file system and since the days

6

of the old machine were numbered, it seemed a considerable waste of time

and effort to make the system operative.

1.4. Report get-up

In this report different type fonts are used. Chapter 12 merely consists

of the integral program text, which is given in lineprinter symbols. Parts

of the program are reproduced elsewhere in this report and in some·places

programming language was used instead of English language if such seemed

to increase clearness. Wherever program text is used, it is represented in

italics, e.g. begin. At the introduction of a technical term, the new

notion is given in ~lape-Wtuting. File variables that have an equivalent

program variable with a different identifier are apostrophed, e.g. 'spec'

is a file variable that has as equivalent program variable (the location

addressed as) des - SPEC IN DES.

Because the implementation was done in ALGOL 60, file actions are taken

by calling the file system procedures. In the sequel it is preferred how

ever to talk about "routines" that perform those actions, rather than

"procedures", to emphasize the generality of the system presented.

The chapters 2 up to and including 8 all are structured in the same way,

as is shown by the table of contents. It may be of service to the reader

to know that this structuring is done according to the following schema

(which is inspired by that of [4])

2 3 4 5 6 7 8

general information

• I technical information

.2 implementation

.3 design considerations

2. GENERAL

A 6ile is a virtual memory, consisting of consecutive po-0ili.onJ.i, numbered

in a natural way and defined from the 6Ue begin, the first selectable

7

file position, up to and including the 6Ue end, the last selectable

position. The natural numbers attached to the file positions can.be con

sidered to be the addresses of the locations of the virtual memory. It is

emphasized that the user of a file in general will be completely ignorant

about the physical resources called upon by the system to realize the file.

Despite this allowed, and in a sense encouraged, ignorance about the exact

where-abouts of his files, it might help the user in manipulating his files

to have a vague notion about the implementation. Also it could have a fa

vorable effect on the efficiency of file handling. In the present imple-

mentation the major part of a (large) file is on back store; a rather small

part will be in main store. Nearly all of the inevitable file administra

tion is kept in main store. In this report both the terms back -0to~e and

disk are to be understood as a notion for some, so-called backing storage

or mass storage device, preferably easy to access. Where the term main

-0to~e or core is mentioned, some storage device easier to access than back

store is meant, preferably central memory.

The contents of a file position are called a 6Ue elemer,x. All elements of

a file are of the same species, the 6..U.e -0pecie-0, which may be different

for different files. It is the file species that dictates the size of a

file position, i.e. the number of bits it takes.

The 6Ue length, i.e. the number of elements a file contains, if not a

fixed value. The file is allowed to grow or shrink at user's connnand,

though the existence of an upper bound is of perforce.

The 6Ue claim, i.e. the maximal number of elements a file can contain is

not fixed either. If possible it will be enlarged automatically as soon as

the user needs more elements than available.

Addressing a file element can be done only in an indirect way, via a

pointer on that file. Such a pointer, a 6Ue poinxeJL, thus plays a role of

vital importance. The number of pointers on a file is not fixed, but left

to the user of the file. Because more than one pointer on the file is al-

8

lowed, the files are called mul.ti--0equenti.a.l. The va.fue 06 a point.ell. is the

position the pointer points at.

Once established a file can be preserved for some space of time, may be

for ever. A preserved file is called pell.manen:t..
Any file carries a name, the oile name, that serves two purposes:

• it allows identification of permanent files •

• it distinguishes between -0cJr.a.teh oilv.i, which carry the scratch name,

and own oilv.i which carry a name different from the scratch name.

In the present implementation the -0cJr.a.teh name is identical to the empty

name. The name of a permanen·t file cannot be the scratch name.

A file is called ae,tive if the user has access to it. If a file is not

active, ina.c.tive, it is either an empty scratch file, only virtually exis

ting, or a permanent file.

Active files can be classified according to the following criteria:

• a file is either an own file, i.e. a permanent file, or a scratch file •

• a file is either a work file or a read file. A file is called a wo~k oile
if the user is allowed to change the file in whatever respect (the con

tents, its length, its name, etc.). File and user are said to have the

wo~k pell.mil. If a file cannot be changed at all by its user, the file is

called a ~ead oile •
• a file is either an old file or a new file. An old 6ile is an activated

permanent file. A new oile is a file freshly created, possibly carrying

a name different from the scratch name.

Activating a file is called oile operung. Making a file inactive is called

0ile elo-0lng.

Considering the three classification criteria: new/old, work/read, own/

scratch, we are able to observe eight possible combinations of them. Only

five actually exist. They are listed below, accompanied by the file class

attached to them.

9

combination file class

new scratch work new '° ctta:tch oile
new own work new own oile
old scratch work old .octta:tch 6ile
old own work old WOll..k. oile
old own read old ll..ea.d oile

new scratch read}
new own read "impossible"

old scratch read

The following digraph shows the connections and possible transitions

between active and passive files (the nodes of the graph) and the routines

involved (on the edges of the graph).

permanent files active files

old work new idf old scratch

old read scratch

new own new idf new scratch

The user who created a permanent file is called the ownell.. of the file.

Permanent files can be changed by no one but their owner. The moment a

permanent file is created, the file owner marks it as either public or

private. Puva.:t.e oile.o can be accessed only by their owners, whereas public

oile.6 can be read by anyone, i.e. public files are multi-read files.

2.1. Technical information

Active files are identified not by their names, but by a oile numbell.., a

positive integer distributed to the user by the file system when the file

is opened. File numbers are always denoted here as fin plain text and as

fin program text. In the latter case "file f" means "file with file

number f", where f equals the contents of the variable f.
As is pointed out in chapter 3, much the same holds for the integers that

identify pointers, the poin;t.eJL na.me.6. They are denoted here by p·in plain

text and by pin program text. The beginpointer, endpointer and workpointer

are denoted by hp, ep and wp respectively. The value of pointer pis de

noted by p and p denotes the value of the pointer the name of which is

contained in the program variable p; hp stands for the first position of

the file, etc.

Two types of errors can occur when using files:

6a.:to...R.. e/Vl..OM. They produce some error message and cause job termination.

ven,lai, e/Vl..OM. They do not produce an error message and the program is

continued after being supplied with some information about the error

detected. This passing of information always is done via the routine

identifier. If this routine is of type boolean, true means no error

occurred and false means the only venial error possible was detected. If

the routine is of type integer, a positive result means all was correct

and a negative result means some venial error occurred. More information

about the error will be contained in the value of the negative result.

Related with this approach is the fact that f, p and p always are positive

integers.

2.2. General concepts of the implementation

Any file, passive or active, is structured as a logically consecutive row

of blocks. Each block consists of a number of logically consecutive cells

and each eeii. consists of one or more elements, depending upon the file

species. In the present implementation a cell is realized in two consecu

tive machine words. A file block resides in back store or in main store.

In both cases the cells contained in it are physically consecutive. All

blocks of a permanent file are in back store. Those of an active file are

either in main store or in back store, with an exception for read files:

the blocks of a read file all are in back store and incarnations of them

11

may be existent in main store.

2. 2. I'. Main store management

Besides the info-space needed by an active file to accommodate file blocks

in main store, administration space in main store is needed to keep all

vital information about the active file. Reservation of info- and adminis

tration space, i.e. reservation of all main store required by a file, is

not done statically, in a fixed region, nor in a run-time stack, but in

another region, termed the heap, in which garbage collection techniques

may be used for storage retrieval. (The term was borrowed from [10]).

Claiming from the heap rather than from some other source is more or less

demanded by the various dynamic file parameters such as length, number of

pointers and even number of files.

The heap is controlled by the dynamic -0to1ta.ge alloca:tion -0y-0tem. This

authority allows structured values on the heap, but they cannot be of

great complexity. Therefore the file administration had to be "layered" in

order to achieve the complexity needed.

The skeleton of the file administration is given below, in two versions:

• a description in terms of ALGOL 68 [10] •

• a pictural approach in which the skeleton is linked to the program.

It was decided to give this skeleton with the emphasis shown, because this

information seems of crucial importance to a proper understanding of large

parts of the program.

mode fad

struat aad

struat des

mode sad

= [1:0]flex ref aad;

= (ref des des,ref sad sad,ref pad pad,ref bad bad,

ref bia trans);

= (int spea, bp, ep, nsegm, offset, nbics, nptrs,nelpw,bpel,

nbloaks,nelpb,nfree,last bloak,aatpos,transaor,nfreebias,

bool new,saratah,work,segmad baakad,string idf);

= [1:0 flex] sadaell;

struct sadaell = (segmad segmad, [1:nbps] bool bitwrd);

mode pad = [1:0 flex] padaell;

12

struet p_adeeU

strue.t p_tr

struet hie

mode info

struet bad

mode Bef!!!!.ad

=
=
=

=
=
=

(ref p_tr ptr,ref hie hie);

(int val,wrd,elt,block);

(int bloek,int,ntrans,bool mod,info info);

[1 :infol * nelpw] elt;

(ref bad next,ref hie hie);

[1:nbps] bloekad;

mode bloekad =can actual-declarer specifying the mode of a file block

on back store£;

mode elt =can actual-declarer specifying the mode of a file ele

ment. This mode depends on the file species£;

Access to a file is obtained through an index for a multiple value of mode

fad. This index is called the file number. So:

mode file

As said before, the actual form of the file administration depends on the

information structures allowed by the dynamic storage allocation system.

This system allows:

mode Pi = [1:0 flex] int;

mode rho = [1:0 flex] ref str;

struet lab = (ref lab lab,ref str str);

union str = ('J.!:b lab, rho);

FAD

j rho I nexf I

f

I
I I

~

CAD

rho

If an object is depicted with a

notched bottom, this object can

grow or shrink dynamically.

Otherwise, if the bottom is smooth,

the object is of fixed length •.

DES
SAD

1>-1r----------------------, pi desl DESB

SADB

PADB

BADB

TRANSB ;t

--.----PAD-------1 pi I sadl I
I rholpadl I

PTR SEGMAD

BITWRD

PTRB pi ptrl

BAD I BICB VAL
,- - - - - -• I

__ l__ ll~J
I I 1------
1 1 I

I O-t-7
•- - - - _, I

I

WRD I
1-

I

~ I ELT
I

~ BLOCK
L __

I

I lab BIC -

pi bicl

BLOCK

MOD

INT

NTRANS

INFO

SPEC

BP

EP

NSEGM

OFFSET

BACKAD

NEW

SCRATCH

WORK

NBICS

NPTRS

NELPW

BPEL

NBLOCKS

NELPB

NFREE

LAST BLOCK

CATPOS

TRANSCOR

NFREEBICS

IDF---

13

14

The administration can be split up into the following parts:

• a general file administration (per job), oad .
• a segment administration (per file), Jad •
• a pointer administration (per file), pad •

• a block-in-core administration (per file),. bad •

• a core descriptor (per file), de!.>.

These parts will be discussed in some detail in the next sections.·

2.2.l.1. Fad

If a program uses the file system it will nave a fad, otherwise it will

not. Each active file of the program has exactly 1 entry in fad, fad being

a table of references. This entry yields the reference to the rest, i.e.

nearly all, of the administration of the file. Entering fad is done via

the file number. As soon as the program tries to activate its first file,

fad is claimed, from the heap, and initialized. Activating a file means,

among other things, selecting a free entry in fad, i.e. picking a file

number; if no such entry is available fad is extended.

2.2.1.2. Sad

Before explaining the segment administration, the notion segment is intro

duced. It is evident that the choice of how to perform the bookkeeping of

the back store is strongly related to the choice of how to do back store

distribution. Both choices are made, simultaneously, in the next section.

And it is there that the notion segment pops up.

2.2.1.2.1. Segments and blocks

File blocks remain either in main store or in back store. In the latter

case their addresses, back addJc.e1.>-0e1.>, in general are not consecutive. So

we need some administration to be able to get hold of the back address of

any particular block, any particular time. Four ways of performing this

administration are discussed below and one is selected.

A. A very simple way to do the bookkeeping is to link all blocks in a

linear (singly- or multi-) linked list, e.g. each block indicates its

successor (or/and predecessor). Such a method will be inefficient if

some form of random access to the file is allowed. Since this is the

case in the file system discussed, method A is rejected.

B. The administration has the form of a table, having an entry for each

block and containing its physical address. For a large file with

relatively small blocks such a table will be of formidable proportion.

It will be so big, it has to be acconnnodated in a file - a file of

block addresses. This file needs block administration, and so on.

Indeed it is possible to realize this kind of administration, but in

the present implementation it is rejected because a simpler form could

be used.

15

N.B. The solution just ruled out, suits fine the implementation of so

called "sparse files" - files containing large gaps, maybe Oby default.

For such files very little space, say I word, is needed to describe a

whole block as empty (non-existent, zero). At the cost of multi-stage

addressing of the blocks sparse files thus can be stored in a very

compact way.

C. A combination of the methods A and B: a number of logically consecutive

blocks form a Je.gment. The segment address is to be found in a table

and within the segment the blocks are linked in some way. This seems

o.k. but we can still do better by taking advantage of the specific

qualities of the application in the file system.

D. A practical variant of C: the segment address resides in a table. The

table contains the address of the first block of the segment. The loca

tions of the other blocks within the segment are found easily, because

we choose all blocks in a segment to be physically consecutive. That is,

on back store. This way of administration is selected for the file

system. It can be described in short as "a form of indexed sequential

addressing".

If a block resides in main store its exact location is provided by a

linked list in core. This list cannot possibly grow beyond reasonable pro-

16

portions since it deals.with core blocks, and only relatively few blocks

are allowed in core simultaneously. Locations of core blocks are found

through a linear search in the list mentioned.

Whether a block is in core or on back store is told by one bit especially

reserved for each block. These bits form a bit table, that in the imple

mentation is split up and distributed over the segment-address-table in a

convenient way.

2.2.1.3. Pad

The pointer administration consists of a table of padcells. Each pointer

is connected with a padcell, which can be selected from pad by the pointer

name. When an own pointer is created a free cell is selected from pad, i.e.

a pointer name is picked. If such a free cell is not available pad is

extended. Standard pointers have fixed entries in pad.

A padeell consists of two items: a reference to a bic and a reference to

a ptr. More information about the bic will be given in the next section.

The p.t!L consists of four plain variables:

'val'

'block'

'wrd'

'elt'

- the value of the pointer.

-)
)
)

-)

2.2.1.4. Bad

The 'elt'-th element in the 'wrd'-th word of the
1block'-th block of the file is the element in the

'val'-th position of that file.

Bic stands for "space-for-a-block-in-core". How a bic is structured and

made use of is explained later on. First the administration of bics is

dealt with.

Bad is a "normal", one-way-linked list, containing as information no more

than references to hies. Each time a cell has to be added to the list, a

next cell is claimed from - and each time a cell becomes obsolete, it is

returned to - the heap. Bad is a list of all bics, a list that is consulted

whenever a hie has to be located that is not necessarily connected with

some p.ointer. The routines free semifree, try bic release and ask for block

all essentially are based upon the existence of bad.

2.2.1~4.1. On bics

A b.lc. consists of space to contain a file block and of space to keep the

bic administration. This administration space takes four variables:

'block' - the block number of the file block contained in the bic. If the

bic does not contain any block (yet) the bic is said to be a

n4ee b.lc. and its 'block' will be a negative value.

17

'mod' - a boolean value, giving information about the block being modi

fied or not. If 'mod'> 0 then the block is modified by the

user: it is not, or no longer, a copy of a block on back store,

so, sooner or later the block must be transported to the back

store.

'int' - a counter, indicating the number of pointers that are interested

in the block contained in the bic. The values of those pointers

all select an element of this block. If 'int' = 0 no pointer is

interested in the block and if at the same time 'mod'< 0 we call

the block pM-0ive.

'ntrans'- a counter, indicating the number of transports required for the

block and not yet completed. Usually 'ntrans' will be O or but

under circumstances it can become more than 1. If 'ntrans' = 0

then the bic is said to be a.:t ne.6~.

Overall administration about the bics is partly conducted in the list bad,

and partly in some variables of the core descriptor des. These variables

are 'nbics' and 'nfreebics'. Further descriptor variables involved are

'nptrs' and 'last block'.

An active file always has at least as many bics as it has pointers, with

a lower bound of l. This guarantees:

• once a pointer is established, moving this pointer along the file never

will cause fatal errors due to space exhaustion •

• in all situations at least one active pointer can be attached to the

file without causing such errors.

18

To give an impression of hie-handling, a bird's-eye view of the most

important system routines dealing with hies is given below.

integer procedure claim bic (f,aZJ; value f; integer f; Zabel al;

function: Heap space is claimed for a bic of file f. If this space is not

available, control is transferred to al, otherwise the bic address 1.S

delivered. The bic 1.S initialized as free, unmodified, passive and

at rest. Its address is added to the list bad; 'nbics' and 'nfreebics'

both are increased by 1.

integer procedure claim free bic (f); value f; integer f;

function: This routine is called only if 'nfreebics' is at least 1. The

list bad is scanned until a free bic is fourid, the address of this

bic is delivered and 'nfreebics' is decreased by 1.

procedure try bic release (f); value f; integer f;

function: All bics of file fare inspected by scanning the list bad. A bic

that is not, and never more can become, of any importance to the file

is returned to the heap, unless that bic is modified or not at rest.

If it is modified a transport is asked for, so the status of the bic

becomes not-at-rest. Bies not at rest are ignored and taken care of

the next time the routine is called. Returning bics to the heap is

stopped as soon as all bics are inspected, or in an earlier stage: it

is guaranteed that at least "the maximum of 'nptrs' and I" hies will

stay connected with the file.

pr>ocedure deer int in bic (f,p); value f,p; integer f,p;

function: Pointer p of file f looses its interest in the bic it is con

nected with. The bic address is taken from the table pad and replaced

by the reference nil. The 'int' of the bic is decreased by 1 and if

it becomes O the next steps are carried ·out:

if 'mod' > 0 then a transport to back store is asked for, otherwise

if pis the beginpointer or the endpointer the bic is discarded

through a call of try bic r>elease.

procedu:re ask for block (f,p);_value f,p; inteaer f,p;

function: The block connected with pointer p of file f is wanted in core.

The bic containing that block is to be linked to that pointer via

pad. If the block already is in core, the relevant bic is selected

from bad, otherwise a free hie is picked from it and the transport

from back store to bic is started.

2. 2. I • 5. Des

19

Des is a descriptor, the core descriptor of a file. It contains an overall

administration of it, consisting of some variables, global to the file.

The descriptor is of fixed length. Its variables, together with a short

description of each one of them are listed below.

'spec' - the file species. In the present implementation this is an inte

ger value meaning the number of elements per word, with the ex

ception that O means I element per 2 words. So, relating the

value of the species to a type could be done as follows (supposing

the word to be an X8 word, i.e. a word of 27 bits):

0 - real 2 - card column

- integer 6 - plotsym

27 - boolean

3 - char

'bp' - the value of the beginpointer.

'ep' - the value of the endpointer.

'nsegm' - the number of segments assigned to the file.

'offset' - an auxiliary variable of block administration.

'backad' - the back address of the long descriptor of the file if the file

is not a scratch file. Otherwise the value is undefined.

'new' - a boolean variable telling whether the file is new or old.

'scratch' - a boolean variable telling whether the file is scratch or own.

'work' - a boolean variable telling whether the file is work or read.

'nbics' - the number of bics attached to the file. All these hies are kept

trail of in the list bad.

'nptrs' - the number of active pointers of the file.

20

'nelpw' - the number of elements per word. In this implementation this

variable is a copy of 'spec'.

'bpe1' - the number of bits per element. This is calculated directly from

the number of bits per word and 'nelpw'. This calculation is done

only once, in order to increase the speed of the access. routines.

'nblocks' - the number of blocks that contain information of this file.

'nelpb' - the number of elements per block, easily derived from the number

of words per block and 'nelpw'.

'nfree' - the number of free positions of the file, i.e. the maximal number

of elements that can be written into the file without intermedi

ate destructive read, unstack or file space extension.

'last block' - the number of the block pointed at by the endpointer.

'catpos' - the position of the short descriptor of the file in the catfile,

if the file is an old read file, otherwise the value is unde-

fined.

'transcor' - an auxiliary variable of file space extension.

'nfreebics' - the number of free hies of the file.

'idf' - a consecutive number of integer variables, each of them containing

one or more characters. Together they form a representation of the

file name. In the present implementation each word contains three

characters •

2.2.2. Back store management

The back store is divided in a scratch pool and in an own pool. This

division is of an administrative kind and need not be a physical one. The

.t:,CJta;tc.h pool consists of scratch segments only; the own pool consists of

own segments and of own blocks as well. These blocks are claimed one at a

time and do not serve to keep file elements, but they keep information

about the file, as will be pointed out in the next s.ection.

Permanent files are stored in back store. The file catalogue is to comprise

all information about those files, needed to enable the system activating

a specific own file. This information is not static of nature. It will vary

in length and in meaning as well. Because of this dynamic character the

file catalogue is acconnnodated in a file, the c.atai.ogue 6Ue.

2.2.2.1. The file catalogue

The ca.:t6Ue, short for catalogue file is the only file that can be called

a system's file. It diverges from a normal file in no more than a. tiny

detail: some of the information about the catfile is kept in main store,

instead of in the catfile.

21

Each own file is represented in the catfile by a -0hotz..t d~c.JU,p.to~, giving

details about the file name, owner, use and where to find additional infor

mation (the back address of the long descriptor):

short descriptor:

file name use owner backad of long descriptor block

The variable 'use' tells something about the momentary use of the

file:

'use'< 0 - the file is used as work file.

'use'= 0 - the file is inactive.

'use' > 0 - the file is used as read file by 'use' users.

The long d~c.JU,p.to~ of a file is a block in back store, giving details

about some file parameters, namely 'spec', 'hp', 'ep', 'nsegm' and

'offset'. Furthermore it contains the segment administration, in other

words, tells where file segments are to be found in back store. The differ

ence between this administration and the one in main core (sad) is that

sad contains an additional bit table for the blocks.

The tiny difference between the catfile and an own file is that the catfile

is not represented in the catfile by a short descriptor. Its long descrip

tor resides in a back block with a location well known to the system.

The catfile capacity will always be sufficient; it is guaranteed that never

an error occurs due to catfile exhaustion. This can be guaranteed because

of the very small size of the short descriptor.

Since the long descriptor contains all segment addresses and is of the same

22

size as file blocks, a file cannot consist of more than (block length - 5)

segments. This upper bound can very easy be raised if a long descriptor is

allowed to be continued in one or more extra blocks. However, this raising

seemed unnecessary in the present implementation because of the following

calculation. For reasons of XS-disk limitations, the block length is

decided to be 260 words. Therefore the long descriptor is able to contain

the administration of 255 segments. A segment is to contain 10400 words in

this case, so the maximal file length that can be realized in the present

implementation is 2652K words which seems a very reasonable upper bound.

2.2.2.2. Catfile core space

The minimal amount of core space needed by an active catfile equals, of

course, the minimal amount of core space needed by any active file.

Straightforward implementation of opening an own file therefore would re

quire twice as much space as would be required once the opening were done.

Furthermore, straightforward implementation of closing an own file would

require extra space at the moment of closing. In the worst case this space

might be unavailable, so preserving the particular file would be out of the

question; a most inconvenient situation. The obvious solution, to reserve

space for the catfile permanently is rejected, because ·it takes up more

space than really necessary. The answer to the space problem lies in the

fact that the file being opened or closed is in fact inactive, part of the

time. The progrannning "trick" performed in both opening and closing allows

the catfile administration to be acconnnodated in the file space of the file

to be opened or closed (the file then being inactive).

2.2.2.3. Catfile routines

Some of the routines concerned with the catfile are mentioned and dis

cussed below.

integer proaedure look up (f,idf); value f; integer f; array idf;

f is the file number of the file that acconnnodates the catfile, so it

can be regarded as the file number of the catfile itself. The work-

23

pointer of the file is assumed to be active.

The catfile is scanned from the position indicated by the workpointer

till the end of the file. As soon as a short descriptor containing

the file name idf is detected the scanning is stopped and a catfile

position is delivered. This position indicates the rest of the infor

mation (beyond the file name) comprised in the selected short descrip

tor. If, on the other hand, the file name idf does not occur in the

catfile, then a negative value is delivered.

integer proaedure pos in aatfile (f,idf,work,user); value f;work,user;

integer f;user; boolean work; array idf;

Again f is the file number of the catfile. The workpointer on f is

assumed to be active, its value l. By means of a call of look up some

file of name idf is traced (the first one to appear in the catfile).

If the user user appears to be the owner of this file then the file

wanted is found, otherwise the selected file is kept in mind and

search is continued by another call of look up, and so on. In the end

one of the following situations is achieved:

• no file of name idf is present in the catfile and the negative value

ER UK is delivered •

• no file of name idf, owned by user, is present in the catfile, but .
one or more files of name idf belonging to other owners are there.

These files were kept in mind during the search. If none of these

files is a public file then the negative value ER NY is delivered.

Otherwise the public file of name idf is looked at more closely:

if work, i.e. the file is wanted as work file, then the negative

value ER NP is delivered, otherwise if the file is wanted as read

file it is possible that the public file is involved in some upda

ting process performed by its owner. In that case the negative value

ER NN is delivered. The one possibility left - the file is a public

file, not used by someone else as work file, and is wanted as read

file - yields a positive value: the position in the catfile of the

rest of the selected short descriptor.

a file of name idf, owned by user, is present in the catfile. If

24

work and the file is a public one being read by someone (or being

updated by the user himself) then the negative value ER NN is de

livered. Otherwise this routine gives as result a po_sitive value:

the position in the catfile of the rest of the information con

tained in the selected short descriptor.

boolean procedUl'e update catfile (f.,idf.,des.,private.,work.,new.,scratch);

value f.,des.,private.,work.,new.,scratch; integer f.,des;

boolean private.,work.,new.,scratch; array idf;

Again f is the file number of the catfile. The parameter des gives

the address of the core descriptor off. The file of the present user

with file name idf is about to be closed as (if private then private

else public-) file, so the catfile has to be updated. Additional

information about the file is given in the self evident boolean param

eters work, new and scratch.

In case the file is a scratch file or a read file the updating is

trivial and not discussed further at this place. If the file is an

old file, its position (of the short descriptor) in the catfile is

taken from the core descriptor and the short descriptor in the cat

file is erased, i.e. replaced by a scratch descriptor. Both old and

new own files to be recorded in the catfile now find themselves in

exactly the same situation. First the catfile is scanned for other

files of the same name, to check upon possible ambiguities that would

arise from adding the new name to the catalogue. This is done through

a call of pos in catfile. If trouble occurs, appropriate measures are

taken, such as giving the file some other name. The ambiguity matter

settled, the new short descriptor is added to the catfile, replacing

the first scratch short descriptor to be found. If no such "gap" ex

ists the catfile is enlarged through writing elements via the end

pointer instead of via the workpointer. The value true is delivered

if no new name had to be given to the file, the value false otherwise.

2.3. General design considerations

2.3.l. File length and file extension

25

It was considered desirable that, as soon as a user should reach his maxi

mal file length, i.e. exhaust his file claim, the file be extended auto

matically. This extension is easily described from the user's point of

view; it means the file claim is enlarged. Its implementation is not that

simple, because of the cyclic block administration that is chosen to com

fort the sort of file usage that stacks and reads destructive alternately.

Apart from this complication, dealt with by the routine extend fiZe,

another matter had to be settled. Namely, how to inform the user in case

file extension cannot be managed because of file space exhaustion (on the

physical devices). To obtain the possibility of a venial error - the fatal

one of course means no trouble at all - file extension is done in the fol

lowing manner. In case write eZ meets the situation that after writing the

element the file is filled completely it tries to extend the file. If this

is impossible at the moment, no further actions are taken. The user can

observe that the file length equals the file claim and conclude that file

extension is not possible, so, without special measures (such as the dele

tion of another file), the next call of write eZ for that file will cause

a fatal error.

In the present implementation the ·initial claim of a file is one segment.

File extension adds one segment to the claim each time it is successfully

tried.

26

3. POINTER ROUTINES

Two ~inds of file pointers exist: standard pointers and own pointers. A

pointer is identified by its name, the pointer name, a (small) positive

integer value. S:tandalc.d pointell.f.i have standard names - they are identified

by integers chosen once and for all, known to the system and all.users.

Own pointeJl.f.i are created as a private enterprise of the user. Their names

are invented by the system at the moment of pointer creation and passed

on to the user.

A pointer is said to be ac.tive. if a file access can be achi~ved via that

pointer. All own pointers are active during their entire existence, but

standard pointers may be inactive and still in existence.

Point.ell. ac.tivation, i.e. activating a standard pointer or creating an own

one, will seize a part of main storage for reasons of administration.

If this amount of space is not available the pointer activation will not

get any further than the attempt. Whether a pointer can be activated or

not depends on the actual core distribution. However, it is guaranteed that

any active file can have at least one active pointer.

If a pointer is deleted the occupied space in main storage will be re

leased. If the pointer deleted is an own pointer then the pointer ceases

to exist. If it is a standard pointer it survives as an inactive pointer

that does not take up considerable amounts of core space.

Three standard pointers exist:

• the be.ginpointell. bp, always pointing at the first file position, the

filebegin. Its name, I, is fixed in and obtainable from the systems

constant BP. The pointer will never be active in a spontaneous way:

if needed it must be activated explicitly by the user •

• the endpoint.ell. ep, always pointing at the post-last file position, the

(in fact non-existing) ·position "file end+ I". Its name, 2, is fixed in

and obtainable from the systems constant EP. The pointer will be active

directly after file creation or, of course, an explicit activation.

the wo~kpointell. wp. Its name, 3, is fixed in and obtainable from the

systems constant WP. The pointer will be active and pointing at the

first file position, directly after opening an old file or, of course,

after explicit activation.

3.1. The routines

3.1.1. pPoaedure stand.aPd ptr> (f,p); value f,p; integeP f,p;

fatal errors: ER WF - f is not a file.

ER ST - pis not a standard pointer.

ER RE - pis a standard pointer already active.

ER CE - core space exhausted.

function: The standard pointer pis activated. If pis the work

pointer its value is set to that of the beginpointer. Otherwise

p has to be the beginpointer or the endpointer and already

possesses a value - which it keeps.

3.1.2. boolean pPoaedure standa:r'd ptP 1 (f,p); value f,p; integeP f,p;

fatal errors: ER WF - f is not a file.

ER ST - pis not a standard pointer.

ER RE - pis a standard pointer already active.

venial error: (ER CE) - core space exhausted.

function: As standard ptr.

If a venial error occurs then the value false is delivered,

true otherwise.

3.1.3. integeP pPoaeduPe new ptr> (f,pos); value f,pos; integeP f,pos;

fatal errors: ER WF - f is not a file.

ER PO - pos is not a position within file f:

pos < bp or pos ~ !,P•

ER CE - core space exhausted.

27

function: a new, own pointer is created and activated. Its initial

value is set to pos. The pointer name, a positive integer value,

28

is delivered.

remark: As a consequence of the test on the fatal error ER PO it

is not possible to create an own pointer on an empty file.

3.1.4. integer procedure new ptr 1 (f,pos); value f,pos; integer f,po~;

fatal errors: ER WF - f is not a file.

ER PO - pas is not a position within file

pas< bp or pas~ ep.

venial error: (ER CE) - core space exhausted.

function: As new ptr.

If a venial error occurs a negative value is delivered.

remark: As new ptr.

3.1.5. procedure delete ptr (f,p); value f,p; integer f,p;

fatal errors: ER WF - f is not a file.

ER WP - pis not a pointer of file

function: If pis an active standard pointer on f then it is made

inactive and if pis an own pointer it is deleted. In both

cases the pointer no longer can serve as a means to access the

file. The core space seized by the pointer pis released.

3.1.6. procedure reset wp (f); value f; integer f;

fatal errors: ER WF - f is not a file.

ER WP - the workpointer of file f is not active.

function: The value of the active workpointer is set to that of

the beginpointer.

3.2. Implementation

The pointer routines are implemented in a way that does not need very
~

much explanation. They merely consist of the claiming and returning of

main store.

3.2. l. l. procedure standa,rd ptr (f,p); vaZue f,p; integer f,p;

:!:f_, standard ptr 1 (f,p) then error (ER CE);

3.2.1.2. integer procedure new ptr (f,pos); vaZue f,pos; integer f,pos;

begin integer p; new ptr:= p:= new ptr 1 (f,pos);

if p < 0 then error (ER CE)

3. 2. 2. booZean procedure standard ptr 1 (f,p); vaZue f,p; integer f,p;

begin hard check on f (f);

29

:!:f_ p ~ BP A p ~ WP A p ~ EP then error (ER ST); comment p must de

note a standard pointer;

:!:f_ ptrb (f,p) ~ 0 then error (ER RE); comment standard pointer p has

to be inactive;

SYS not;

create ptr space (f,p,no); comment administration space for the

standard pointer pis claimed, such as ptr and hie.

If the space required is not available, control is

transferred to no;

initiaUze ptr (f,p,vai of ptr(f.,:!:f_ p = WP then BP eZse p)J;

comment the ptr of the pointer pis initialized. If p de

notes the endpointer, the pointer value will be set to the

post-last position of the file, otherwise it will be set to

the first position. Furthermore the file block connected

with pis assured to be in core;

:!:f_ true then standa,rd ptr 1:= true eZse

no: standa,rd ptr 1:= faZse;

SYS ton

end s tanda,rd ptr 1;

30

3.2.3. integer procedure new ptr 1 (f.,pos); value f.,pos; integer f.,pos;

begin integer p; hard check on f (f); hard check on pas (f.,pos);

comment if pas< bp or pas~ ep then a fatal error is re

ported;

SYS not;

p:= new ptr number (f.,no); comment a padcell is claimed from pad.

If not available, pad is extended. If this extension is not

possible due to core space exhaustion, a transfer of control

to no is performed;

create ptr space (f.,p.,no); comment see explanation in 3.2.2.;

initialize ptr (f.,p.,pos); comment the ptr of pointer pis initia

lized. The value of the pointer is set to pas. The file block

that is connected with the pointer pis assured to be in core;

if..~ then new ptr 1:= p else

no: new ptr 1:= ER CE;

SYS ton

end new ptr 1;

3.2.4. procedure delete ptr (f.,p); value f.,p; integer f.,p;

begin integer adp.,adn; hard check on f and p (f.,p);

adn:= desb (f) - NPTRS IN DES;

adp:= padb (f) - (p-1) * PADCELL - PTRB IN PAD;

SYS not;

incr (adn.,-1); comment decrease 'nptrs' by I;

deer int in bic (f.,p); comment see 2.2.1.4.I.;

if.. fetch (adn) > 0 then delete core (adp) else

begin comment core space required by one pointer is preserved, even

if all pointers of the file are deleted;

store ref (cadb(f) - TRANSB IN CAD., fetch ref(adp));

comment 'transb' serves as temporarily depository for the

reference to the preserved pointer space;

store ref (adp.,O)

SYS ton

end delete ptr;

3.2.5. proaedUPe reset wp {f); value f; integer f;

begin hard aheak on f and p (f, WP);

SYS not;

dear int in bia (f,WP); aomment see 2.2.1.4.1.;

31

initialize ptr (f,WP,val of ptr(f,BP)); aomment the ptr of the work

pointer is initialized. The value of the workpointer is

reset to the first position of the file. Furthermore the

block connected with that position is assured to be in core;

SYS ton

end reset wp;

3.3. Pointer resetting

A natural routine not present in the file system would have been:

proaedUPe set ptr (f,p) to position: (k);

function: set the value of pointer p of file f to posidon k.

This routine is omitted because it would encourage the user to have random

access to a file quite easy and very inefficient. Discouraged users who

still need such an operation can always help themselves via a detour over

delete ptr and new ptr.

The routine reset wp is of the type set ptr. It is selected because it

performs the operation "rewind", undoubtly indispensable.

32

4. ACCESS ROUTINES

Accessing a file, i.e. reading an element from it or writing an element

into it, is done via a pointer on that file. All access actions have a

side-effect on the value of the pointer that is involved. This value will

always be increased or decreased by I when reading or writing an element.

The three actions that will be discussed are named after their pointer

effect: 1/J/U..t:e 6oJr.tAX:Vtd, ~ea.d 6oJr.tAX:Vtd and ~ea.d baekiAxvi.d •

• Writing forward an element via pointer p can be done by calling the

routine write eZ. The element is written into position p of the file.

Writing forward via the endpointer is called ~:t.aefung and causes file

growth •

• Reading forward via pointer p can be done by calling the routine

next eZ. The element in position p of the file is delivered.

Reading forward via the beginpointer is called ~ea.cling d~bw.c.tively
and causes file diminution •

• Reading backward via pointer p can be done by calling the routine

prev eZ. The element in position p-1 of the file is delivered.

Reading backward via the endpointer is called u~:t.aefung and causes

file diminution.

Repeatedly stacking without a countering unstacking or reading destruc

tively causes continued file growth, so, one moment the file claim will

become insufficient. The system will take steps to prevent fatal errors

resulting from file overflow; the system tries to enlarge the file claim

in time.

4.1. The routines

4.1.I. proaedure 'ltJI'ite eZ (f,p,eZ); value f,p,eZ; integer f,p; reaZ eZ;

fatal errors: ER WF - f is not a file.

ER WP - pis not a pointer of file f.
ER NW - the file is not a workfile.

ER PL - p points below the beginpointer (p < bp)

ER PH - pis not the endpointer and p points

above the file end (p ~ ep & p ~ ep).

ER FE - the file is filled to capacity and can not

be enlarged, due to filespace-exhaus_tion.

function: 1. If the file is filled to capacity an attempt is made

to enlarge the file claim. If this attempt is not sticcesful

a fatal errormessage is given.

2. If the size of el does not match the filespecies off, el

is made to measure by cutting the most significant bits of el.

3. the (possibly truncated) element el is written into the

file on position p.
4. The value of pis increased by 1.

5. If the file is filled completely, i.e. file claim= ep - bp,

then an attempt is made to enlarge the file claim. The result

of this attempt is not of innnediate importance to the system.

(However, it can be to the user, see 2.3.2.)

33

remark: in case pis the beginpointer of the file, the file shrinks

at the front and the element just written is inaccessible

ever after.

4.1.2. real procedure next el (f,p); value f,p; integer f,p;

fatal errors: ER WF -f is not a file.

ER WP -p is not a pointer of file f.
ER PL - p points below the beginpointer (p < bp).

ER PH - p points above the file end (p ~ ep).

function: 1. The element on position p of file f is delivered

(through the procedure identifier).

2. The value of pointer pis increased by 1.

4.1.3. real procedure prev el (f,p); value f,p; integer f,p;

34

fatal errors: ER WF -f is not a file.

ER WP -p l.S not a pointer of file f.

ER PL - p points below the second element (p :;;; bp).

ER PH -p points above the end pointer (p > ep).

function: I. The value of pointer pis decreased by I.

2. The element on position p of the file is delivered (through

the procedure identifier).

remark: pointer p always points to the element next to the

element to be delivered.

4.2. Implementation

The three routines run very much along the same .lines so their bodies

are swept together and form the routine trans el, the kernel of the file

system.

4.2.1.1. procedure write el (f,p,el); trans el (f,p, 1, el);

4.2. 1.2. real procedure next el (f,p); next el:= trans el (f,p, 2, 0);

4.2.1.3. real procedure prev el (f,p); prev el:= trans el (f,p, 3, 0);.

4.2.2. Tr>ans el.

This routine performs all kinds of accesses to a file and in order to get

an impression of its degree of complexity it is programmed in a form of

about the lowest degree of complexity possible. Dummy labels serve to

regain readability. It was felt useful also with respect to clearness to

use bit manipulation procedures [7] for fumbling elements in and out of

the file cells. The routine does not need much functional elucidation. Each

time a file element is accessed, the pointer value involved is stepped up

or down, depending on the direction of the operation. This stepping the

pointer value influences element count, possibly word count or even block

number count. In the latter case special care is taken to evoke the "next

block". This is done through a call of ask for block. As soon as the new

J

block is referenced, its presence is assured through a call of assure

presence bZock. In case of a forward operation this is done at the moment

the next element is wanted (for read or write); in case of a backward

operation it is done immediately. Moving the beginpointer (in forward

direction) causes special actions such as a possible change of 'offset'

through a call of consider offset. This is done because the file shrinks

at the front. If the endpointer is moved in backward direction the file

shrinking is administrated via a call of one bZock down.

4.3. Designing the access actions

Sequential use of a file is extorted more or less from the user. He can

access a file in just one way, via a pointer, and the number of pointers

at his disposal will be relatively small (as opposed to the number of

file elements). Moreover it is not easy-and-free to change the value of

35

a pointer to an arbitrary position of the file. Now that haphazard accesses

to a file are ruled out, to emphasize the sequential nature of the files,"

we focus on typical sequential operations to be offered to the user. They

must be intrinsically sequential, that is, couple an access with stepping

up or down the pointer involved. Furthermore efficiency should be guaran

teed. Having in mind a file that can grow and shrink at both head and tail,

four actions at least must be available, all having a side-effect on the

value of the pointer: it is increased or decreased by 1. The routines are

named after their effect on the pointer:

WF = write element in forward direction.

WB = write element in backward direction.

RF= read element in forward direction.

RB= read element in backward direction.

Implementation can be done in a number of ways, so, before proceeding three

desiderata are stated:

i. The actions must be clear to the user (almost at once, at first sight)

All of them should be easy to remember without the possibility of

serious confusion between some of them.

ii. The whole pack· of operations should be consistent and work together,

36

gear into each other, in a direct and obvious way.

iii. The actions should be easy and efficient to realize, to implement

'within the system, because here we have to do with the most elemen

tary file actions.

If each action consists of: write (or read) an element and increase (or

decrease) the pointer, or the other way round, then surely i. and iii.

will be satisfied. So we concentrate upon ii.

In the sequel the following short-hand-notation will be used:

X write an element 0 read an element ,
+ increase pointer , decrease pointer

An example: x+ stands for "write an element and afterwards increase the

value of the pointer involved by I".

The notation serves both as external description and as way of implementa

tion of an operation. So, in the example x+ is to be conceived as both the

description and implementation of the operation WF.

The four operations mentioned above now can be implemented in 16 different

ways by using all combinations of the given primitives. We are looking for

one that is in accordance with ii.

Let us choose the implementation x+ for WF and proceed from this choice.

A reasonable consequence of ii. can be described as follows:

"WF(a); WF(b); x:= RB; y:= RB" should yield the result "x=a, y=b". In

other words, WF and RB should act as stacking and unstacking actions. This

leads to the choice of -o for RB. Now by ii.:

"x:= RB; y:= RB; yy:= RF; xx:= RF" should yield "xx=x, yy=y". This inevi

tably suggests the choice of o+ for RF. By ii.:

"WB(a); WB(b); x:= RF; y:= RF" should yield "x=b, y=a" (reverse stack

mechanism). So we choose -x for WB. Summarizing the results we see that

the one acceptable set of operations starting with the choice x+ is:

WF = x+ WB = -x RF= o+ RB= -o.

In case the initial choice were +x, the result would be, of course:

WF = +x WB = x- RF= +o RB= o-.

We have now dealt with all 16 possibilities, leaving two acceptable ones.

These two implementations are equivalent (the mirror image of each other)

and the first one mentioned is adopted.

We have defined four elementary actions, all having side effects on the

pointer involved and we wish to add some operations that do not influence

the pointer, like:

W = write an element without changing the pointer value.

R = read an element without changing the pointer value.

Again we want the set of operations to be in agreement with i., ii. and

iii. In the end it appears that this is not possible, so, in the end the

two operations just mentioned are rejected.

We consider two evident ways to satisfy i.

37

A. The operation (e.g. R) has to do with the element most recently involved

with the pointer via which the operation is done. We do not worry about

difficulties of "initial kind". Assume the sequence "WF(a); WF(b)" to

have taken place via the pointer observed immediately before we start

our investigation:

actions

RB RB

R R

RB R

R RB

results wanted (demanded by ii.)

b

b

b

b

a

b

b

?

If we choose R not to change the value of the pointer at all, then?

has to be band so "R; RB; R; RB" should yield b, b, b, a. Clearly ii.

is violated this way.

If we choose R to change the pointer value in convenient situations,

the implementation will not be simple at all, thus violating iii.

Taking into account the operation Wand making combinations of all

operations allowed, thus increasing complexity, it soon becomes clear

that it is not possible to serve both ii. and iii.

38

B. The operation (e.g. R) has to do with the element pointed at by the

pointer involved. The thus created set of actions gives the illusion of

being very symmetrical, but they act, on the contrary, highly asymmet

rical, in a way that violates ii. This is shown in the next two exam

ples, where we assume the sequences "WF(a); WF(b)" (in example I) and

"WB(a); WB(b)" (in example 2) to have taken place immediately before

the actions considered.

actions results actions results

(after WF) (after WB)

RB RB b a RF RF b a

R R R R b b

RB R b b RF R b a

R RB b R RF b b

(example I) (example 2)

In the examples - stands for an element different from both a and

b.

Conclusion: the elementary actions on a sequential file acceptable in the

sense of i., ii. and iii. are:

WF

WB

x+

-x

RF

RB

o+

-o

A disadvantage of the pack of operations thus left is that they are still

somewhat asymmetrical in behaviour. This should be considered the price

to be paid for the two-sidedness of the operations.

In determining upon the set of operations to be submitted to the user,

it was d,ecided to drop the operation WB. Reasons:

• implementation as a whole becomes a lot easier, mainly because a file

now cannot grow at its begin.

this way the set of operations suggests an asymmetry that exists in fact,

instead of suggesting a symmetry that does not •

• the drawback that writing in backward direction is not possible should
'

39

not be considered a very serious one, since some thinking nor some

investigation among progrannning colleagues did actually give a particular

good application of this operation. (It is admitted that taking deci

sions this way is taking the risk of throwing the baby out with the

bath).

Thus we arrived at a final choice that links up with the proposals made

in [2]. Those proposals now can be seen as special cases of the op~rations

mentioned above via some implicit standard pointers.

40

5. FILE OPENING

File'opening is the activation of a passive file. If this passive file

is a scratch file the opening is termed o,U_e. CJtea.ti.on. If the passive file

is a permanent file the action is called opening an old file. In both

cases the file is made accessible to the user who, for a start, gets one

pointer at his disposal.

File creation always produces an empty scratch file starting at position

1. The species of this file has to be specified by the user at the moment

of creation and can not be altered afterwards. The user is (of course)

allowed to write into the new file.

Opening an old file activates a permanent file that carries the name

specified by the user. Not only the file name of the file wanted has to

be supplied, but also whether the file is wanted as a read file or as a

work file. Searching through the file catalogue for the desired file, the

files of the user are examined first. If one of his own files carries the

specified file name it is this file that is activated. In case none of his

own files has the right name, search is continued in the area of all public

files. This last part of the search can only be successful if the user

asked for a read file.

The multi-read aspect of the files gives rise to some statically unavoid

able errors, such as "sorry, the file you want to write into is yours

alright, but you saved it as a public file and now someone else is reading

it - you'll have to wait till he is ready". All errors of this kind are

handled in such a way that the user can get aware of them without being

kicked off.

5.1. The routines

5.1.1. integer procedure new file (spec); value spec; integer spec;

fatal errors: ER WS - spec is not a file species.

ER CE - core space exhausted.

ER BE - file space exhausted.

41

function: 1. A brand new file is created carrying the scratch name

and with species spec. The file is empty, both beginpointer and

endpointer initialized as pointing to position 1. The file claim

gets its initial value depending upon the file species; it will

be the equivalent of an initial segment of back. store. One point

er, the endpointer, is activated, thus enabling the user to

write into the new file straight away.

2. A positive integer value is delivered, that serves as iden

tification of this file while it is active, the file number.

5.1.2. integer procedu:re new file 1 (spec); value spec; integer spec;

fatal error: ER WS - spec is not a file species.

venial errors: (ER CE) - core space exhausted.

(ER BE) - file space exhausted.

function: as new file.

remark: if a venial error occurs a significant negative value is

delivered.

5.1.3. integer procedu:re old file (idf);

fatal errors: ER CE - core space exhausted.

ER UK - no file of file name idf exists.

ER NY - the file is a private file of another user.

ER NN - the file is temporarily unavailable becau~e

it is a public file being updated by its

owner.

function: 1. The parameter idf must be either a string or an

integer-procedure-without-parameters. In the latter case the

procedure is called repeatedly by the file system, which expects

internal representations of characters and assembles them to a

string; after thus producing a file name the procedure idf should

deliver a string endmarker, a deletion symbol. So the parameter

42

idf is or stands for a string, the file name N of the desired

file.

2. If the user owns a file called N, that file is activated,

otherwise it is a public file of name N. The file is activated

as old read file.

3. Appropriate values are assigned to beginpointer and endpointer

of the file (values as they were at the moment of closing the

file).· The workpointer is initialized as pointing to position hp

of the file, and is activated so the user can start scanning the

file without further preparation.

4. A positive integer value, the file number, is delivered.

It serves as identification for this file while it is.active.

5.1.4. integer procedure old file 1 (idf);

venial errors: (ER CE) - core space exhausted.

(ER UK) - no file of filename idf exists.

(ER NY) - the file is a private file of another user.

(ER NN) - the file is temporarily unavailable because

it is a public file being updated by its

owner.

function: as old file.

remark: in case a venial error occurs a significant negative value

is delivered.

5.1.5. integer procedure old work file (idf);

fatal errors: ER CE - core space exhausted.

ER UK - no file of file name idf exists.

ER NY - the file is a private file of someone else.

ER NN - the file is a public file of the user but

it is temporarily unavailable as work file

because it is being read by another user.

ER NP - the file is a public file of someone else.

function: I. As old file.

2. If the user owns a file of name N, that file will be

activated as old work file, with a file.claim as at the moment

of closing the file.

3. As old file.

4. As old file.

remark: If a public file is opened as workfile it automatically

looses its public state, which state can be regained at

the moment of closing the file (as public file).

5.1.6. integer procedure pld work file 1 (idf);

venial errors: (ER CE) - core space exhausted.

(ER UK) no file of file name idf exists.

43

(ER NY) - the file is a private file of someone else.

(ER NN) - the file is a public file of the user, but

it is temporarily unavailable as work file

because it is being read by another user.

(ER NP) - the file is a public fi_le of someone else.

function: As old work file.

remarks: As old work file.

In case a venial error occurs a significant negative value

is delivered.

5.2. Implementation

The routines concerned with file creation have new file 1 as common part.

The routines concerned with the activation of a permanent file all lean

most heavily upon the routine open old file.

5.2.1.l. integer procedure new file (species);

begin integer f; new file:= f:= new file 1 (species);
if_ f < 0 then error (f)

end· __ ,

44

5.2.1.2. integer procedure old file (idf);.

begin integer f; old file:= f:= open old file (idf,false);

if..f < 0 then error (f)

5.2.1.3. integer procedure old file 1 (idf);

old file 1:= open old file (idf,false);

5.2.1.4. integer procedure old work file (idf);

begin integer f; old work file:= f:= open old file (idf,true);

if.. f < 0 then error (f) ..---
end;

5.2.1.5. integer procedure old work file 1 (idf);

old work file 1:= open old file (idf,true);

5.2.2. Opening a new file

The opening of a new file is done by the routine new file 1 and consists

of the claiming of file space and the initialization of it. The claiming

is done in portions, because the data structure of the core space needed

does not allow to claim all space at once. Moreover this way the opening

of a new file and the opening of an old file can share claiming routines.

Claiming core space is done carefully, that is, as soon it is detected

that some space required is not available, the space already claimed for

the file-in-the-making is returned to the heap.

5.2.2.1. integer procedure new file 1 (species); value species;

integer species;

comment species: the species of the file to be created;

begin integer k, f, segmad;

hard check on species (species); SYS not;

f:= set up first part skeleton (true, no); comment if during this run the

user has not yet opened a file, the general file administra

tion space fad is claimed from the heap and initialized.

From the file administration fad a file number is obtained.

45

If no file number is available fad is extended, an action

that includes claiming space from the heap. Parts of the

administration needed for one file are claimed from the heap

(cad,des and sad) and initialized ('nptrs' := 'nbics' :=

'nfreebics' := 0). If any of the claims is rejected, all

space that is claimed for this file is returned to the heap

and a jump to no is executed;

initialize descriptor new file (f,species); comment 'bp':= 'ep':= 'nsegm':=

'offset':= I / 'spec':= species/ 'new':= 'work':=

'scratch':= true / 'id£':= "" / 'last block':= 0 / 'nelpw',

'nelpb', 'bpel', 'nblocks' and 'nfree' are set to their

initial obvious values;

set up second part skeleton (f,EP,no); comment pointer administration is

claimed from the heap, as well as core space for one data

block. Pointer ep is activated. In case a claim from the

heap is rejected all space that is claimed for this file

is returned to the heap and a jump to no is executed;

segmad:= SYS claim segment (true); comment one file segment is claimed

from the scratch pool;

i[_ segmad < 0 then

begin comment no segment available from scratch pool;

delete core (fadb - f); comment return to the heap all space claimed

for this file;

goto nob

end;

store (sadb(f) - SEGMAD IN SAD,segmad);

for k:= 1 step 1 until NBPS do

mark block in core (f,k,[alse); comment the bit table over all file blocks

is initialized: no file block is in core;
initialize ptr (f,EP,1); comment the already active endpointer is initi-

alized: its value is set to I and the core block reserved

previously is now attached to the endpointer (so the inter

est count 'int' of the bic is set to I and file block I is

marked "in core");

it. true then new file 1 := f else

46

no: if_ true then new file 1:= ER CE else
nob: new file 1:= ER BE;

SYS ton

end new file 1;

5.2.3. Opening an old file

Opening an old file is done by the routine open old file. The remarks made

in 5.2.2. about opening a new file hold for opening an old file also. The

initialization however is a lot more complicated since the file catalogue

has to be consulted. Opening and closing the catfile is done in the space

· just claimed for the file to be created as described in 2.2.2.2.

5.2.3.1. integer procedure open old file (ident,work); value work;

boolean work;
comment ident = string or integer procedure yielding the file

name of the file wanted to be opened.

work= a boolean value deciding whether the file is to be

opened as work file(~) or as read file (false);

begin integer array idf [1:IDFL]; integer f,pos,backad,k;

make idf (idf,ident); comment the characters of the file name are

obtained from ident and reassembled, 3 characters per

word, in array idf;

SYS not;

f:= set up first part skeleton (false,no); comment see description at

new file I. The first actual parameter indicates an old

file is involved, so an ample amount of space is initially

claimed for the segment administration sad, in order that

the largest file possible can be opened;

set up second part skeleton (f,WP,no); comment see description at new

file 1. The workpointer is made active (instead of the

endpointer as in new file 1);

for k:= 1 step 1 until IDFL do

store (desb(f) - IDF IN DES - k + 1,idf[k]); comment the file name is

stored into the core descriptor des of file f;

get access to catfile; comment a P-operation [OJ with respect to the

catfile facility;

simpZe open fiZe (f,fetch(SYSVAR CATFIBACKAD), true); comment the catfile

is opened as own work file in such a way that no extra

main store is needed to be claimed from the heap;

47

pas:= pas in catfiZe (f,idf,work,fetch(SYSVAR USER)); comment the catalogue

is searched for the desired file. The position of its short

descriptor in the catfile is assigned to pas. If the

request for the file is not to be honoured for one reason

or another, pas will be assigned a negative value indi

cating that reason;

if.. pas < 0 then

begin comment the required opening failed;

deZete core (fadb - f); comment all space claimed for this file is

returned to the heap;

f:= pas

end el,se

begin comment the required opening is successful;

mark interest in catfil,e (f,pos,work); comment information about the

kind of use is made of the file is entered into the

catalogue;

backad:= baakad in aatfiZe (f,pos);

simpl,e cZose fil,e (f); comment the catfile is closed now;

reopen fil,e (f,baakad,work); comment the file wanted now is opened

as own file. If work then it is opened as work file, other

wise it is opened as read file. In both cases the work

pointer is active, with value bp. Initialization of the

file has taken place;

comment the space claimed for the segment administration

was sufficient to contain the administration of even the

largest file possible. This space now is reduced to the

proportions actually needed by the file f: ;

shrink sad (f)

end;

return acaess to catfiZe; aomment the V-operation [OJ for the catfile

48

facility;

it tr>ue then open old file:= f else

no: open old file:= ER CE;

SYS ton

end open old file;

6. FILE CLOSING

If a file is closed it will no longer occupy any core space. If the file

closed is a scratch file, all information contained in it will get out of

reach (of all users) permanently. In other words, the file is deleted. If

the file closed is an own file, the information gets out of reach·of the

user temporarily; the file will be saved in back store; the file state

changes from active to permanent. A permanent file can be (re)activated

by opening it as an old file.

Thus, closing a file means either destroying the file info - in case the

file name is the scratch name - or saving the file info otherwise.

If a file is closed as permanent file and this is done by the creator of

the file having a work permit, then the file can be destined public or

private, optional with the user.

When a program is terminated by the operating system some of its files

may still be active. The system shall take care of those files and close

them. In case a choice between private and public has to be made the

system closes a file as a private one.

49

Although explicit file closing is not demanded from the user it is advised

to do so (as soon as possible) since closing

• frees core storage

• frees back store space (if the file is a scratch file)

and thus possibly prevents the occurring of errors due to storage exhaus

tion. Furthermore it will in general make the user's program more compre

hensible.

If the file closed is an old read file, no problems arise in updating the

file catalogue; in the catalogue it is entered that for this particular

file a reader cancelled his subscription.

If the file closed is an own work file, i.e. an old work file or a new own

file, that file must be saved under file name and creator. The catalogue

contains this kind of information about all permanent files. A difficulty

crops up if the file name already occurs in the catalogue in a situation

that will cause ambiguities:

50

• some other permanent file of this user has the same name as the file

that is to be closed •

• the file is closed as public file and some other public file has the

same name as the file to be closed.

In both cases the file system changes the file name into one that is

unique and the file is closed as private file under the new name. These

actions are reported by the system:

• via normal system's report, e.g. a monitor-report-sheet; in other words,

the actions are protocolized •

• directly to the user who asked for file closing, via an output parameter

of the routine called.

The file is reopened as old work file under the new name in order to

enable the user:

• td get hold of the name the system invented so he will not loose his

grip on this file during this run of the program •

• to suggest another name for the file to the file system.

6.1. The routines

6.1.l. boolean procedure close file (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: l. If f is a scratch file the file is deleted.

2. If f is an old read file the file is returned to the system,

that is, subscription is cancelled.

3. If f is an old work file the file is closed as private file,

possibly after a renaming of the file by the system.

4. In case a renaming took place the value false, otherwise the

value true is delivered.

6.1.2. boolean procedure close file public (f); value f; integer f~

fatal errors: ER WF - f is not a file.

ER PC - f is not an own work file.

51

function: 1. The file f is closed as public file, possibly after a

renaming of the file by the system.

2. If a renaming took place the value false is delivered,

true otherwise.

6.2. Implementation

Both routines available to the user consist of a call of the routine

cZose, which will be treated extensively in the sequel.

6.2.1.1. booZean procedure cZose fiZe (f); cZose fiZe:= cZose (f,true);

6.2.1.2. booZean procedure cZose fiZe pubZic (f);

cZose fiZe pubZic:= cZose (f,faZse);

6.2.2. The routine cfose

booZean procedure cZose (f,priv); vaZue f,priv; integer f; boolean priv;

comment f - the file number of the file to be closed.

priv - true: if the file is an own work file it is closed as a

private file, otherwise it is obliterated or returned.

false: if the file is an own work file it is closed as

a public file, otherwise a fatal error message is

given;

begin integer des,catpos,k;

booZean work,new,scratch,ok;

integer array idf, o id idf [1: IDFL];

hard check on f(f); comment if f is not a file a fatal error message

followsj

des:= desb(f); work:= fetch (des - WORK IN DES)> O;

scratch:= fetch (des - SCRATCH IN DES)> O;

if. if. l priv then l work v scratch eZse faZse

then error (ER PC); comment if the file has to be closed as a public file,

then it has to be an own work file;

new:= fetch (des - NEW IN DES)> O;

52

simple close file (f); comment now all file blocks are safely stored on

back store;

SYS not; comment program termination is not allowed from now on since

vital administration will be inconsistent for some time;

if.. scratch then

begin delete all segments (f}; comment all segments of the scratch file

are returned to the scratch pool. The file becomes poin:teJL

leo~, i.e. all pointer administration is deleted;

comment f is a scratch file but in case it was an old file

when opened the file catalogue must be updated: ;

f:1 nelv then goto true

end else

begin if.. lvork then make adm block (f,false); comment for a new own work

file a long descriptor must be created and for an old work

file it must be updated;

comment the file becomes pointerless:

release second part skeleton (f)

end;

for k:= 1 step 1 until IDFL do

idf[k]:= fetch (des - IDF IN DES - k + 1); comment the file name is copied;

each: set up second part skeleton (f, WP, each); comment the pointer less file

gets equipped with one pointer: the workpointer wp, such

that wp = beginpointer. The dummy label each occurs because

in general an operation as sketched above might require

main store not available. In that case control would be

transferred to the process identified by the label. Not so,

however, in this case where the storage surely will be

available;

get access to aatfile; comment this can be considered a P-operation with

respect to the catfile;

simple open file (f,fetah(SYSVAR CATFIBACKAD), true); comment the catfile is

opened as own work file in such a way that no main store

is needed but the administration space off;

ok:= update aatfile (f,idf,des,priv,lvork,nelv,saratah); comment the routine

update aatfile really does all the work;

simple alose file (f}; aomment the catfile is closed now;

53

retUX'n aaaess to aatfile; aomment the V-operation for the catfile facility;

ii o k then true:

begin delete aore (fadb - f); aomment delete all core space occup~ed by f;

alose:= true

end else

begin for k:= 1 step 1 until IDFL do

old idf[k]:= fetah (des - IDF IN DES - k + 1);

SYS idf fanay (f,old idf,idf); aomment the operating system is

informed about the renaming of file f. It can take actions

for an accurate report of it. The old name is contained in

old idf, the new one in idf;

fork:= 1 step 1 until IDFL do

store (des - IDF IN DES - k + 1,idf[k]); aorronent the new name is

stored in the core descriptor des;

reopen file (f,fetah(des - BACKAD IN DES),true); aomment the file is

opened as own work file;

alose:= false

SYS ton

end alose;

aorronent program termination is allowed again: ;

6.2.3. Other aspects

When terminating a program, the operating system shall take the following

actions: aomment if the program used any files: ; iifadb ~ 0 the~

begin integer f; for f:= 1 step 1 until fmax do

ii aadb (f) ~ 0 then

begin ii, alose file (f) then alose file (f) end

end;

aomment aadb (f) ~ 0 iff f is an active file;

54

6.3. Implicit closing

It i$ not demanded from the user to close explicitly all the files he has

opened. Extorting explicit closing from the user cannot be done, so de

manding it, i.e. not doing it implicitly at program termination, would

cause the following undesirable situations:

• the user opens a public file as read file. If this file is not closed

before program termination, then the file will be listed as "subscripted"

for ever. So the file owner will no longer be able to alt~r this file •

• the user creates a scratch file, renames it as an own file and stuffs it

with valuable information. Due to some innocent progrannning error the

program is terminated and all information is lost.

55

7. FILE NAMING

File creation produces a scratch file, i.e. a file with the scratch name.

Closing a scratch file means exterminating it. The only way to preserve a

file for a longer period than the run it is created in, is to give that

file a name different from the scratch name. Thus the file becomes an old

file and closing the file will make it permanent. Since file closing pre

serves all own files, the only way to delete an own file is to give it the

scratch name before closing it.

Changing the name of a file is possible only if the file is a work file.

Changing the name from non-scratch to scratch causes a transfer of the

file space occupied by the file from the own pool to the scratch pool.

This transfer can always be done - it cannot prohibit the name alternation.

On the other hand, if the name is changed from scratch to non-scratch, the

occupied file space has to be transferred from the scratch pool to the own

pool, which might not always be possible, due to the file space distribu

tion key. (The transfers, mentioned above, should not bother the user for

their efficiency aspect: they are made not in physical but in administra

tive sense.)

7.1. The routine

boolean procedure new idf (f,idf); value f; integer f;

fatal errors: ER WF - f is not a file.

ER NW - f is not a work file.

function: I. As oZd file (idf yields a file name N).

2. The file name off is changed into N, except when f is a

scratch file and N is not the scratch name and the transfer from

the scratch pool to the own pool is considered impossible by the

system.

3. If the file afterwards carries its new name, the value true is

delivered, false otherwise.

56

7.2. Implementation

boolean procedia'e new idf (f,ident); value f; integer f;

begin integer array idf [1:IDFL]; boolean scratch; integer k,des,b;

make idf (idf,ident); comment the characters of the new file name are

obtained from ident and reassembled, 3 characters/word

in array idf;

hard check on f (f);

hard check on work permit (f);

SYS not; scratch:= true; des:= desb (f);

for k:= 1 step 1 until IDFL do

scratch:= scratch A idf[k]=SCRATCHIDF; comment scratch=the new name is the

scratch name;

:!:f.. fetah (des - SCRATCH IN DES) > 0 then

begin comment f is a scratch file;

!:.f.. lscratch then

begin comment the user asks to change the scratch file into an own file;

!:.f_ SYS no longer scratch (fetch(des - NSEGM IN DES))

then goto false; comment the transfer of 'nsegm' file segments from

the scratch pool to the own pool is not allowed. The file

name is not changed and the value false is delivered;

b:= SYS claim block; comment a block is claimed from the own pool.

It shall contain the long descriptor off;

:!:f.. b < 0 then

begin comment how sad, the alteration seemed to be in the bag, but

no block for the long descriptor is available;

SYS scratch now (fetch(des - NSEGM IN DES)); comment undo the

transfer from scratch pool to own pool;

goto false,

end;

store (des - SCRATCH IN DES,-7?7);

store (des - BACKAD IN DES, b)

end scratch to non-scratch

end f is scratch file else

begin j1_ scratch then

begin comment the file must be changed from own file to scratch file;

SYS scratch now (fetch(des - NSEGM IN DES)); comment transfer the

segments off from the own pool to the scratch pool;

store (des - SCRATCH IN DES,777); comment the block for the long

descriptor off is no longer needed

SYS delete block (fetch(des - BACKAD IN DES))

end non-scratch to scratch

end;

fork:= 1 step 1 until IDFL do

. . . ,

store (des - IDF IN DES - k + 1,idf[k]); comment the file now carries the

new name as specified by the user;

f:f.. true then new idf:= true else

false: new idf:= false;

SYS ton

end new idf;

57

58

8. INQUIRY ROUTINES

When manipulating files certain questions may arise to the user. Questions

concerning the size of the file claim, the value of active pointers, the

file species, the file name. These, and other questions are answered by

the seven inquiry routines given below.

8.1. The routines

8.1.1. integer procedure file species (f); value f; integer f;

venial error: (ER WF) - f is not a file.

function: the species off is delivered.

remark: the species of a file is coded in a non-negative integer.

If f is not a file a negative value is delivered.

8.1.2. integer procedure file claim (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: the maximal number of elements to be contained inf

is delivered.

8.1.3. boolean procedure work permit (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: if the file f is a work file the value true is delivered,

the value false otherwise.

8.1.4. integer procedure idf sym (k,f); value k,f; integer k,f;

fatal error: ER WF - f is not a file.

function: suppose the file name is represented by a suitable

string S. The value idf sym delivers will be that of

stringsymbol (k,S): the internal representation of

• the deletion-symbol if k < 0 or k ~ the length of S,

• the k-th symbol of S otherwise.

remark: in case a routine has a file number as one of its

parameters it is the first parameter; this holds for all

routines except for idf sym. The order of the parameters
'

is identical to that of st'Pingsymbol, a routine with a

function analogous td idf sym.

8.1.5. integer proced1.Cl'e value of bp {f); value f; integer f;

fatal error: ER WF - f is not a file.

function: the value of the beginpointer off is delivered,

whether the beginpointer is an active pointer or not.

8.1.6. integer proced1.Cl'e value of ep (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: the value of the endpointer off is delivered, whether

the endpointer is an active pointer or not.

8.1.7. integer proced1.Cl'e value of pt'P (f,p); value f,p; integer f,p;

fatal error: ER WF - f is not a file.

venial error: (ER WP) - pis not a pointer off.

function: the-value of pointer pis delivered.

remark: in case pis not a (n active) pointer off a negative

value is delivered.

8.2. Implementation

In all cases the implementation of these routines is as straightforward

and obvious as possible - mostly the main part of the routine consists

of the examination of one system variable-, so no more words will be

59

60

wasted upon it here.

8.3 •. Design considerations

The user should be able to avoid the occurrence of fatal errors in all

or nearly all possible situations. Therefore no vital information may be

hidden; all useful information must be attainable in some way. The inquiry

routines enable the user to obtain that informatiQn, even if he is "blind

folded", such as a general purpose routine, fully dependent on its param

eters. It was decided to combine several inquiry functions into one rou

tine, if such an approach seemed quite natural, rather than introducing the

umpty-umpth routine. This combining is done by means of the venial errors

in the routines file species and value of ptr.

The routine file claim has an additional function, maybe not obvious at

first sight, which has to do with file extension. It enables the user to

avoid a fatal error resulting from file space exhaustion.

9. DYNAMIC STORAGE ALLOCATION MODULE

The here presented file system requires storage handling that allows

garbage collecting techniques. The run-time stack is not an adequate part

of the storage for this kind of use, so another part of the memory, the

C.OU.YIX.e/l. -0tac.k., has to be called into existence. If we locate .. the bottom

of the stack in the low addresses and let it grow upwards, the bottom of

the counter stack is located in the high addresses and grows downwards.

61

The counter stack can be considered as hanging from.the ceiling. Once stack

and counter stack are established there will be no third part of storage

that can easily be placed at the disposal of an authority that needs some

other kind of dynamic storage. Therefore the counter stack in the present

system, the heap, is modelled in such a way that it allows far more than

needed by the file system; e.g. string operations in ALGOL 60 would be

quite easy to implement once the dynamic storage allocation (VSA) module

is present in the operating system.

The way the DSA module functions, internally, is hardly of any interest

to the file system. It is not important if and how the module does things

like garbage collection and compaction. The things the (progrannner

progrannning the) file system should know could be termed the face, the

outside of the module. This face, a description of the DSA module in

user's terms, is given below.

9. I. External description

A description is given of the heap, as implemented for the X8, so, for

one thing, word length from now on will be 27 bits.

The heap consists of objects, each objec.t being a consecutive row of words.

An object can be considered an information unit; in general the inter

pretation of the information conceiled in an object is entirely at the

responsibility of the user, e.g. the file system, and not of the DSA

module. To help the user in recognizing the object's meaning, he is allowed

to attach a type to each object. How this is done follows from the descrip

tion of the representation of an object in the heap as one word. Such a

62

representation is called a ~.tlulc.:t.

d26 d25 ••• d19 d18 d17 ••• d0
a struct:

0 "type" 0 "ref"

The choice of "type" is left to the user, the file system uses "type"= O

for file structs.

If "ref" .e O it points to the first word of the object in the heap. This

word is called the genu-6 Wo~d. It gives information about the object as

can be seen below. If "ref"= 0 it is a nil-reference; it does not refer to

any object.

Three

~ho

. p,L

genera of objects exist:

- an array of structs, i.e.

- an array of plain values,

is a struct.

all elements of the object are structs.

i.e. none of the elements of the object

fumbda - two words, one being the genus word that contains a reference

to an object, the other being a struct. So an object of genus

lambda contains two references; it is called a list cell.

The layout of the genus words is:

d26 d25 ••• d19 dl8 d17 ••• d0

rho 1 refcnt 1 length

pi 1 refcnt 0 length

lambda 0 refcnt 1 ref

The ~e6e1tenc.e c.ou.n,t "refcnt" gives the number of references made to this

object. If the number of references exceeds 125 it is fixed at 126,

meaning 126 or more. The number is coded as the inverse of the binary

representation of the reference count.

The length of the object is coded in "length" as the inverse of the binary

representation of the object length minus 1 (= length of data field).

All objects in the heap are positioned upside down, that is, if mis the

address of the genus word of object M, the second word of Mis to be

found at address m-1, and so on.

The routines that have to do with the DSA module are presented in section

10.

63

64

10. INTERFACE FILE SYSTEM/ OPERATING SYSTEM

The lnteJLoaee between the file system and the (rest of the) operating

system can be defined as follows: suppose the operating system is a fully

self-supporting piece of software; suppose furthermore the file system

consists of a bundle of routines, forming a module to be added to the

operating system. The interface then consists of:

• all routines, variables and constants needed by the file system and not

contained in it. The file system assumes these tools to be present

in the operating system; if they are not, the operating system has to

be extended •

• actions the file system (cannot' possibly take by itself and) expects to

be taken by the operating system under certain circumstances. This

easily leads to modifications of the operating system. Since these

actions may involve the call of one or more routines of the file system

these routines in fact should be considered as part of the interface.

Besides the interface thus defined, another, weaker form of connection

exists which might be called the fudden lnteJL6aee. This hidden interface

has to do with actions taken by the file system which might have been taken

by the operating system in a plain and more efficient way. Such actions,

in fact, have been implemented in the present file system. It seems a

matter of taste at what side of the dividing-line they should be situated.

If the implementation is seen as a general approach, one can argue, they

belong to the file system; otherwise, if the implementation is done for a

particular operating system, they belong to that operating system. Other

grounds for the decisions made will be put forward at the detailed discus

sion of the hidden interface.

IO.I. Routines, constants and variables

10.1.1. Routines concerning main store

10.1.1.1. The simple main store routines

proaedur>e store (ad,w); stores w at address ad.

procedure sstore(ad,reaZ); double-length store: stores reaZ at addresses

ad and ad+l.

integer procedure fetch (ad); delivers contents of address ad.

reaZ procedure ffetch (ad); double-length fetch: delivers the contents of

addresses ad and ad+l.

procedure in<JX> (ad,i); adds i to the contents of address ad.

10.1.1.2. Dynamic storage allocation routines

integer procedure SYS claim (Zh); claims heap space of length Zh and

delivers the first address of the space claimed. If space

not available a negative value is delivered.

procedure SYS sh:l'ink (ad,Zh); the length of the object starting in

location ad is reduced to the new length Zh.

65

integer procedure SYS extend (ad,extra); the length of the object starting

in location ad is increased by extra. Possibly the increase

changed the position of the object in the heap, so the

(new) starting address of the object is delivered.

If the space extension is a failure, due to core space

exhaustion, a negative value is delivered.

procedure SYS delete (ad); the space occupied by the object starting in

location ad is returned to the heap. Appropriate measures

are taken in case the object deleted referenced other

objects.

procedure store ref (ad,ref); stores ref in the reference part of the

contents of address ad.

integer procedure fetch ref (ad); delivers the reference part of the

contents of address ad.

procedure SYS de<JX> refant {ad); decreases the reference count of the

object starting at ad by 1.

procedure SYS incr refcnt (ad); increases the reference count of the

object starting at ad by 1.

integer procedure SYS Zength (ad); delivers the length of the object

starting at ad.

66

integer procedure SYS gemJl'd (gen,lh,rc); delivers the genus word of an

object of genus gen, length lh and reference count re.

10.1.2. Routines concerning back store

integer procedure SYS claim block; delivers the back address of a block

from the own pool. If not available a negative value is

delivered.

procedure SYS delete block (bad); returns the block at the back address

bad to the own pool.

integer procedure SYS claim segment (scratch); delivers the back address

of a segment from the (if scratch then scratch else own)

pool, if available, a negative value otherwise.

procedure SYS delete segment (sad,scratch); returns the segment at the

back address sad to'the (if scratch~ scratch else

own.) pool.

procedure SYS scratch now (n}; n own segments are scratch from now.

boolean procedure SYS no lo'Ylfjer scratch {n); n scratch segments are own

from now on, if allowed, and the value true is delivered.

If not allowed (because there are too many own segments

already) the value false is delivered.

integer proaedure SYS compute backad (sad,b); delivers the back address

of the b-th block of the segment at the back address sad.

procedure SYS to disk (m,l,b,c); transports l consecutive locations of

core storage, starting at m, to the disk sector with

back address b. If and when transport is done the contents

of core location care increased by 1.

procedure SYS from disk (m,l,b,c); transports the disk sector with back

address b to l consecutive core locations starting

at m. If and when the transport is completed the contents

of the core location a are increased by 1.

10.1.3. Routines concerning the supervisor

The routines in this section have to do with a very special part of the

operating system dealing with interrupt handling, swapping and typical

monitoring functions.

67

procedure error {e); the fatal error e occurred and control is transferred

to the monitor.

procedure SYS not; a critical section is entered, no program termination

is allowed. It is supposed that this wish is honoured by

a mechanism using a counting device, rather than a boolean

flag.

procedure SYS ton; a critical section is left. This is the reverse

operation of SYS not.

procedure SYS el; an elementary action has to be taken, no interrupt is

allowed. A mechanism like that of SYS not should handle it.

procedure SYS le; an elementary action is completed. This is the reverse

operation of SYS el.

procedure SYS swap; the program can be swapped out immediately; (and

swapped in any time, though it is understood that) the

swap reason is: this program needs the catfile facility,

which facility is occupied by someone else.

10.1.4. Miscellaneous routines

boolean procedure SYS is string (p); if pis a string the value true is

delivered, false otherwise.

boolean procedure SYS is int proc (p); if pis an integer procedure without

parameters the value~ is delivered, false otherwise.

procedure SYS fancy idf (idf); changes the contents of the integer array

idf [1:IDFL]. This array contains the representation of

a file name that is changed into another one in some neat

way (for instance: repetitive calls of this routine should

yield as many different file names as possible, within

reasonable bounds).

10.1.5. Constants

The operating system has knowledge of the constants BP, EP and WP so it
•

68

can inform the user of the system if needed.

All fatal errors have a unique integer identifying them and it may be of

interest to the operating system to know these error numbers, in order

to produce some intelligible message instead of a cryptic error code in

case a fatal error occurs.

10.1.6. Variables

Four variables with fixed locations within the operating system must be

mentioned:

SYSVAR catfibackad - the back address of the long descriptor of the

catalogue file.

SYSV AR catfinacc a boolean variable telling whether the catalogue file

is temporarily inaccessable or not.

SYSVAR user - the code(name) of the user. This is a -0wa.p va.Ju.a.ble, i.e.

a variable that has to be swapped in and out with the

program. For all programs a certain swap variable is in the

same location.

SYSVAR fiZehandZe - the reference to all file space (in the heap) of the

active program. This variable is a swap variable.

10.2. Actions.

The file system can ask for transport of information from main store to

back store or vice versa. Any request for such a transport has, besides

the parameters describing the transport wanted, an additional parameter:

the ~epoltt. addlr..u-0. The operating system is expected to carry out transport

and, if it is finished and done, to report the completion by adding 1 to

the contents of the report address.

Whenever a file routine needs to consult or update the catalogue file, the

ca:t.6,U.e 6aw.,i,;ty is wanted by that routine. If some other authority

occupies the facility at that moment, the routine asking for it explicitly

allows to be swapped out by the operating system. If the operating system

decides to swap out on this ground (catfile facility occupied) it is due

69

to swap in at some time or another, preferably as soon as, but not before,

the facility is free for this user.

Some of the heapspace occupied by the file system possibly is not directly

needed by it. That is, it can function properly, though maybe less effi

cient,without that space. In case some authority badly needs spac~, none

available, the garbage collection routine of the dynamic storage alloca

tion system can demand the release of the space mentioned. This can be

done by a call of the routine free semifree.

If for some reason a program is terminated, the operating system is

obliged to close all files still active for the program. This closing can

be done by an appropriate number of calls of the routine aZose.

10.3. Hidden interface

The catfile facility is claimed by the routine get aaaess to aatfiZe and

the facility is released by the routine return aaaess to aatfiZe. The

latter routine, in fact to be considered as a V-operation, is implemented

in a very simple way; the former routine, actually a P-operation, is

realized through calls of SYS eZ, SYS Ze and SYS swap. The implementation

chosen could easily be replaced by another one, e.g. real P- and V-opera

tions. It is done the way it is because of simplicity, test runs in a

simulated environment in mind.

Since the file system is presented as a lot of ALGOL 60 procedures and

not, say, code routines, no use is made of routines that are supposed to

be driven by interrupts. So, parts of the system that fundamentally rely

upon interrupt sensitive actions, such as the transport routines, have

been implemented in a rather clumsy way. In a machine code version of the

system these parts surely should be modified.

A role of very special importance is played by the routine initialize fiZe

system. It is called upon the moment a user for the first time during the

program activates a file. This role is sketched in the next lines, though

the routine as presented in the sequel does not act that way at all, since

such action is very much operating system dependent. Adding the file system ,,

70

in ALGOL 60 form to an operating system that has an ALGOL 60 library at

its disposal, can be done by modifying the operating system a bit, and

extending the library with the file system procedures.

The operating system is supposed not to rely on the file system in this

approach, so it has no direct ways to access file routines. Under certain

circumstances, however, the operating system is assumed, not to say

obliged, to call file routines: close .at program termination, free semifree

if heap space trouble occurs. Luckily these routines are in core in case

the operating system needs them, but their explicit locations in main

store may be unknown to the system. The system possibly can get hold of

them by examining some library tables at a convenient moment. If not, the

core positions that are of importance can be handed over to the system by

the routine initialize file system, in passing also informing the system

about the fact that the program considered uses files. The routine initia

lize file system itself can get hold of the relevant core addresses either

directly - in a code version - or by some trick allowed by the system.

71

II. TESTING THE SYSTEM

The file system was tested without having it added to some operating system.

Therefore nearly all parts of the interface belonging to the operating

system are simulated in an ALGOL 60 environment:

• The heap is situated in an integer array, mem, big enough to do some

testing. This way a crash between a growing stack and a sagging.heap is

easily averted. The simple main store routines are done with by simple

accesses of mem, all of them provided with software checks on the bounds

of mem.

The routines of the dynamic storage allocation system asked for a more

sophisticated approach. They are simulated fairly good, but for an in

efficient (and somewhat incorrect) behaviour of SYS extend and an imple

mentation of SYS aZaim that does no garbage collection nor compaction.

Since nearly all data structures involved in the heap are of the same

sort in cases that matter (of sort hie), the latter defect of SYS .aZaim

will not bother too much - the ALGOL 60 version is perfectly well capable

of re-using returned heapspace. Besides their functional meaning in

testing the system, the simulation of the heap routines may serve to

brighten the insight into some parts of the dynamic storage allocation

system •

• The info transports from and to disk are replaced by drum accesses. All

transports taken up are waited for until they are completed (no inter

rupt business).

The claiming of segments and blocks is done from different parts of

drum storage •

• Fatal errors are reported by printing their number, accompanied with a

"coredump" (the contents of the array mem are printed). All other super

visor routines are supplied in the most simple way - as empty routines •

• In case an actual parameter is allowed to be either a string or a param

eterless procedure delivering an integer value, the latter possibility is

prohibited in the testing phase. The routine SYS fancy idf is supplied in

72

a rather silly form, though it is good enough to perform test runs.

Testing the system gives rise to many situations in which it is convenient

to the performer to know exactly the contents of the heap. These contents

can be made visible by a call of dump. The procedure dump is added for

reasons of testing only. This auxiliary procedure dumps the heap contents

over the lineprinter in a structured lay-out, closely resembling the

actual structures on the heap. So the performer can easily read the heap

at any particular moment he wants to.

Whenever an old file is opened or an own file is closed, it is assumed by

the system that a file catalogue exists. Therefore, initializing the system

(for test reasons) means, among other things, the founding of a library

and a matching catalogue. This is done by the procedure found aatalogue.

It creates an empty file that serves as catalogue file - the library all

tests start with is empty.

Some system parameters have to be chosen, such as word length, block

length, segment length, et cetera. These parameters are assigned a value

only once and can be characterized as assembly parameters. Their values

are aptly chosen in the test phase, so, that they

• allow nearly all realistic situations that are interesting to .occur in

relatively small test samples •

• do not demand the use of enormous amounts of heap space, so for one

thing the dumps are kept surveyable.

73

12. THE PROGRAM

The ALGOL 60 program presented in the next section consists of all file

routines, embedded in a rather small test envelope. The main program shows

some aspects of the use of the file procedures discussed in the previous

chapters. It mainly serves to give some illustration to the reader, rather

than to test the system, which was done to some extent with a lot of small

testing samples not presented here.

In order to facilitate a transscription, if any, of the system from ALGOL

60 to some convenient assembler code, the program is of a very simple

structure. For instance, complicated statements are avoided and procedures

are not nested.

The source code of the program was on cards, so the actual text differs

from that on the previous pages with respect to the representation

language. Instead of underlining word delimiters they are apostrophed and

only capital letters occur. Furthermore certain abbreviations are used,

such as 'INT' for 'INTEGER', etc. (see [3]).

Values of boolean nature are represented in the heap by integers. A posi

tive value always means~ and a negative one always means false. In

fact, all values that serve this purpose are chosen to be 777 and -777

respectively.

A lot of constants appear in the system; constants of type "assembly

literal". ALGOL 60 does not provide the possibility of using these

literals, so the following peculiar solution is chosen: all such constants

are delivered by integer procedures (of course this is very "expensive",

but surely admissible in an experimentary model of this type). Why proce

dures and not variables? Variables must be declared and initialized sepa

rately, which seemed inconvenient to the programmer of the system. Proce

dures do not have this inconveniency.

A procedure the name of which starts with h,a:r,d oheok causes a fatal error

if the checking is unsatisfactory.

74

In some parts of the program it was needed to do some bit manipulation.

Of course this could have been done in ALGOL 60 by combinations of integer

division, multiplication, etc. but it was decided to use the bit manip

ulation procedures offered by the system's library [7J.

12.l. The program text

The integral ALGOL 60 text of the system is reproduced on the next·pages.

1
2 1 B·EG IN' 'COll"MEN'I' • A FI LE SYSTEM FOR MULTI .. $!';QUENT I AL FI L!S ,
3 H,W,ROOS LINDGRE!Nj
4
5
6 •COMMENT' THE TEST ENVELOPE ****•*•••••••••••••••••••••••••••••••••••l
7
8 •INT• T18,T19,T26,MEM ENU,FREEPTR,NBBPREE,NBB,N~SfNE!,NBS,
9 BBOFFSET,BSOFFSET;

10 T18:: 2••18l T191: 2•T18; T261= 1•2•t26J
11 MEM END:= 30001 NBBl: iOl NBSI: 1001
12
13 •BEGIN• 'B00L' 'ARRAY' BBFREE[11NB81,BSFREEt11N~S]I
14 1 tNT 1 'ARRAY' MEM!OlMEM ENO!J
15
16
17 •COMMENT' USER ROUTINES *•*•••••••••·••••••••••••••••••••••••••••••••••• I
18
19
20 'INT• •PROC 1 NEW FILE(SPECIES); •VAL' SPECIES; 'INT' SPEC:l!Sj
21 •BEGIN• 'INT• Fi NEW FILE!= Fl: NEW FILE 1(SPECIES;;
22 'IF' FCO 'THEN! ERROR(F)
23 'END' J
24
25 ett,,T• •PROC 1 NEW FILE 1(SPECIES)J •VAL' SPECIESJ •INT• SP!C:IESJ
26 •BEGIN• 'INT' F,K,SEGMAOl HARD CHECK ON SPECIES(SPECIESiJ
27 SVS NOTJ
28 F:: SET UP FIRST PART SKELETON(1 TRV! 1 ,NO)J
29 INITIALIZE DESCRIPTOR NEW FILE(F,SPECIES)J
30 SET UP SECOND PART SKELETON(F 1 EP,NO)l
31 SEGMADI: SYS CLAI~ SEGMENT(ITRUE 1)J
32 •tF• SEGMAD < 0 !THEN'
33 'BEGIN' DELETE CORE(FADB - f)I 1 GOT0 1 NOB 1 ENl'.)I;
34 STORE(SADB(F) ~ SEGMAO IN SAO,SEGMAO)I
35 1 FOR• I<&: 1 1 STEP• 1· 1 UNTIL 1 NBPS 1 D0 1

36 MARK BLOCK IN CORE(F,K,•FALSE')I
37 INITIALIZE PTR(f,EP,1)1
36 'IF• •TRUE• 1 THEN• NE'II F'ILE 11• F' 1 ELSE 1

39 NO: 1 1F 1 •TRUE• ITHEN 1 NEW FILE 1111 ER CE 1 ELSP. 1

40 NOB: NEW FILE 11= ER BE;
41 SYS TON
42 1 END' J
.. 3
44 1 INT 1 1 PROC 1 OLD FILE(JOF>l
45 1 BEGIN• ' I NT' F; 0LO FI LE I: Fl: OPEN OLD F 11,,E (I l"F, IF ALSE I) I
46 'IF' F<O 1 THENI ERROR(F)
47 1 END'J
48
49 'INT• 9 PROC 1 OLD FILE iCIDFll
50 OLD FILE 1:: OPEN OLO Fll.E(IDF, 1 F'ALSE 1)l

51
52 'INT• 1 PROC 1 OLD WORK FILE(IDF)I
53 'BEGIN 1 'INT• Fl OLD WORK FILE:= Fl• OPEN OL.O Fll.E(IOF,'TRUEl)J
54 '11" 1 F<O 1 THEN1 ERROR(F)
55 •END• J
56

75

76

57 1 1NT• •PROC' OLD WORK FILE l(IDf")J
58 OLD WORK FILE 1:: OPEN OLD FiLE(IOF,tTRUE')l
59
60 •REAi.' 1 PROC' NEXT EL(F,P)l 'VAL.I F',PJ I INTI F',PJ
61 NEXT EL:= TRANS EL(F,P,2,0)1
62
63 1 REAL. 1 •PROC 1 PREV EL(F,P); 'VAL' F,PJ IINT' F',PJ
64 PREV ELI= TRANS EL(F,P,3,0)l
65
66 1 PR0Ct WRITE EL(F,P,EL)l •VAL 1 F,P,ELJ IINTI F,P; IREAL. 1 ELI
67 TRANS ELCF,P,1;El.)J
68
69 •PROC 1 STANDARD P'l'RCF,P)l 'VAL.• F,PI 11NT 1 f',Pl
70 'IF' ~STANDARD PTR 1(F~P) •THEN' EAROR(ER CE)J
71
72 •eoot,• 1 PROC 1 STANDARD PTR 1(F,P)J IVAL' F,Pl • INTI 1",Pl
73 , •BEGIN' 1-tARD CHECK ON F (F) l
74 'IF• P •NE' BP" P INE' WP" P 1 NE' EP 1 THEN 1 ERRO"(ER ST)j
75 'IF' PTRB(F,P) 'NE' 0 •THEN' ERROR(ER RE)J
76 SYS NOTJ
77 CREATE PTR SPACE(F,P,NO)J
78 INITIALIZE PTR(F,P,VAL or PTR(F, 1 1Fl p = WP l'l'Hl::N' BP 1£1.S!I p;,,
79 'IF• •TRUE' •THEN' STANDARD PTR 11= 1 TRUE 1 1 El.SEI
80 NO: STANDARD PTR t:: 'FALSE'J
81 SYS TON
82 1 END' J
83
84 'INT' 1 PROC 1 NEW PTR(F,POS)l 'VAL.I f',POSI 'INT' P,POSJ
85 •BEGIN• 'INT• Pi NEW PTR:: P:: NEW PTR 1(F,POS)J
86 9 1F' P<O 1 THEN• ERROR(ER CE)
87 •EIIID' J
86
89 'INT• •PROC 1 NEW PTR 1(f,POS)J 1 VAL.' P',POSl 1 1N"l' 1 1',POS;
90 •BEGIN' I INTI PJ
91 HARD CHECK ON F(P)J HARD CHECK ON POS(P,POS)J
92 SYS NOTJ
93 P:p NEW PTR NUMBER(F',NO)J CREATE PTR SPACE(F',P,NO)J
94 INITIALIZE PTR(F',P,POS)J 1 1F 1 tTRUEt 'THEN'
95 NEW PTR 11= P •ELSE'
96 NO: NEW PTR 11= ER CE!
91 SYS TON
98 'END' J
99

100 •PROC' D!l,.E'l'E P'fR(P',P)J 1 VAL 1 F,flJ IIN'l'I f',PJ
101 1 BEGIN 1 'INT' ADP,AONJ
102 HARD CHECK ON F AND P(P',ft);
103 ADNI: DESB(F') • NPTRS IN DES;
104 ADPI• PADB(F') • (P~1)*PADCELL. • PTRB IN PADJ
105 SYS NOT;
106 INCR(ADN,,.1)J DECR IN'!' IN BIC(F,P)I
107 1 1F'' FETCH(ADN)>O ''fHENI DELETE CORE(AOP; 1 ELBE 1

108 •BEGIN' S"l'ORE REF'(CADB(I') • TRANSB IN CAD,F'E'l'CH ~EP(AOP),J
109 STORE REP'(ADP,O)
110 9 EtJO';
1H SYS TON
112 'ENI)' J
113
114 'INT• •PROCI VAL.UE OF' PTR(f',P)J 1 VAL 1 F,PJ 'IN"l'I F~·P1
115 •SEGIN' HARD CHECK ON F'(F)J
116 VA~UE OF' PTRI ■ IIF'' P OK(F,P) 1 THEN1

117 VAi. OF PTR(F,P) 'ELSE' "777
118 -•END•;
119
120 'INT' 1 PROC 1 VAL.UE OF BP(F)J 1 VAL' l'J 1 1NT' fJ
121 •BEGIN' HARO CHECK ON F(F)l
122 VALUE OF BPla VAL OF PTR(F,BP)
123 1 END 1 1
124
125 'INT' 1 PROC' VA\.UE OF EP(F)l 'VAL' F'f 1 1NT' fJ
126 'BEGIN' HARD CHECK ON F(F)l
127 VAI.UE OF EPla VAL OF PTR(F,EP)
128 'END' J
129
130 1 PROC 1 RESET WP(F)J 'VAi-' F'l I INTI Fl
131 'BEGIN' HARD CHECK ON F AND P(F,WP)I
132 SVS NOTJ
133 DECR INT IN BIC(F,WP)J
134 INITIAl.llE PTR(F,WP,VAL Of PTR(F,BP;)J
135 SVS TON
136 •END'J
137
138 'INT• 1 PROCf 1'11.E CLAIM(F)J 'VAL' l"J IJNT 1 Fl
139 1 8EGIN' 'INT' DESJ
140 HARD CHECK ON F(F)J DES1a DESB(F)J
141 FII.E Cl.AIM!• (FETCH(OES w NBLOCKS IN DES)• 1)•
142 FETCH(DES" NELPB IN DES) • 1
143 1 END' J
144
14!5 1 INT• 1 PROC 1 Fll,.E SPECIESCF)l •VAL' FJ 'INTI Fl
146 FILE SPECIESIP ltF 1 F OK(F) •TMENI l'ETCH(OESBCF') • SPEC IN OES)
147 IELSE 1 fl777l
148
149 •BOOL,• 1 PROC 1 WORI< PERMIT(F')l •VAL' F'J flNT 1 Fl
150 •BEGIN' HARD CHECK ON F(F)l
151 WORK PERMIT!• FETCH(OESB(F) "WORK IN DES)> n
152 •END' J
153
154 1 1NT 1 1 PROC' IDF SVM(l<,F)J 'VAL' K,FJ 'INT 1 l<,FJ
155 •BEGIN' HARD CHECK ON F(F)J
156 ,,,.,KC O "'K IGE' IOF'L * 3 1 '1'H!N 1 IDrS'VMl111 DEL SSL •u.SE;t
157 1 BEGtN 1 'INT 9 N,SJ
158 NI: I< 1 / 1 31 SI= f'ETCH(OESB(F') "' 101" IN DES• Jll)J
159 NI• I<• N * 31
160 IDF' SVMI• 'IF' N • 0 ITHEN 1 S 1 / 1 262144 1 El.SEf
16l 'lfl'I N•1 1THEN 1 8ITSTRING(17,9,S) 'ELSE• !ITITRINGCl;o;sj
162 •END'
163 'END' J
164
16!5 1 19001,,1 1 PROC 1 NEW IDf'(F,IOENT): •VAL' FJ 1 1NT 1 fl'J
166 'BEGIN' •INTI 'ARRAVI IDl"i1: IDFLlJ 1B00L. 1 SCRATCHi 111,jTt IC,CES,BJ
167 MA~E IDF(IDF', IDENT)J ~ARD CHECK ON f(l")I
168 HARD CHECK ON WORK PERMIT(F)l
169 SYS NOTJ SCRATCHf: ITRUE 1 l DESI• OESB(f)l
170 'FOR' Kl= 1 1 5TEP 1 1 'UNTIL.I lof"L. 1 00•
171 SCRATCHI• SCRATCM A IDl'fKl III SCRATCHIDfl
172 1 1f't FETCH(OES • SCRATCH IN DES)> 0 ITHEN 1

173 •BEGIN' 1 11"' "SCRATCH 1 THENI
174 'BEGIN' '11" 1 AS'VS NO LONGER SCRATCH(FETCH(DES • NSEGM IN ors;,
17!!1 tTH[NI IGOT0 9 l"AI.SEJ e:: SVS CLAIM BLOCKi •Ill" BCO l'l'HINI
176 •BEGIN' SVS SCRATCH NOW(FETCHCOES - NSEG~ IN OES)jJ

77

78

177 'GOTO I F Al.SE
178 •ENDIJ
179 STORE(OES • SCRATCH IN DES, fl777)1
180 STORE(DES a BACKAD IN DES,B)
181 'END'
182 •END• 1 EL.SEt
183 1 BEGIN 1 1 1F 1 SCRATC~ 'THENI
184 1 BEGIN 1 svs SCRATCH NOW(FETCHCOEs • NSEGM IN OEs,;,
185 STORE(DES M SCRATCH IN DES, •771)1
186 SYS DEL.ETE BL.OCK(FETCH(DES w BACKAO IN DES;)
187 9 EN0 9

188 •ENDt;
189 tf'ORt KP• 1 1 S'!'EP• 1 !UNTIL.I IOF'l. !DOI
190 STORE(DES • ID~ IN DES ■ K • 1, IOP[K3)1
191 VIF'I •TRUE• •THEN• NEW IOF':111 •TRUE• •EL.SE!
192 FALSEB NEW IDFlm lf'ALSEIJ
193 SYS TON
194 tEND'J
195
196 •BOOL,t •PROC' Cl.6SE F'IL.E(F)J IVALI Pl 1 1NT' f'J
197 CLOSE FIL.Elm CL.0SECF,ITRUE 1)J
198
199 ,eooi.• IPROC 1 Cl,,OSE FILE PUBLlc(F)J 'VAL• FJ , INT' ,;
200 CLOSE PILE PUBL.ICSm CLOSE(F, 1 FAL.SE 1)J
20i
202
203 'COMMENT' OPEN/CL.0SE ROUTINES *****************••*•**••••••••••••••••••J
204
205
206 'fNT• fPROC' OPEN OLD P'ILE(IDENT,\t/ORl<)J 1 VAL 1 WOFU(I •eoo1.• WORl<I
207 1 BEGIN' f1N'1' 1 1 ARRAYI IDF't1:IDF'Lll
208 lfN'l't F,POS,BACKAD,KI
209 MAKE IDF'(IDF',IDENT)I
210 SYS NO'l'J
211 F'f~ SET UP F'IRS'I' PART SKELETON(IF'ALSEl,NO)J
212 SE? UP SECOND PART SKEL.ETON(F',WP,NOiJ
213 ffOR• l<tz 1 1 S'l'EP1 1 'UN'l'ILI IOF'I. 'DOI
214 STORE(DUS(P', • IOF' IN DES ., K + 1, IDl'fK])l
215 GET ACCESS TO CATFILEI
216 SIMPLE OPEN F'IL.E(F,F'EfCH(SVSVAR CATFIBACKAO)~ITRUEl)J
211 POSfu POS IN CATF'ILE(F',IDF',WORK,F'ETCH(SVSVAR USEA)jJ
218 'IF'' POS < 0 lfHEN 1

219 9 SEGIN 1 DEL.E'l'E CORE(P'AOB.., f")J F'l!II PCS 1 !N0 1 •El.SE'
220 •BEGIN' MARK INTEREST IN CATF'ILE(F',PO&,WORK)J
221 SACKAD:a SAC1<AO IN CA'l'F'IL.E(F,posi,
222 SIMPLE CLOSE F'ILE(F')J
223 REOPEN P'!Lf(F,SACKAD,WORK)J
224 SHRINK SAD(F;
225 •END•;
226 RETURN ACCESS '1'0 CA'l'F'ILEJ
221 'IF'f 1 '1'RUE 1 1 't'HEN 1 OIIIEN OLD f"ILEt111 P' 'EL.SE!'
228 NOi OPEN OLD FILE!~ ER CEJ
229 SYS TON
230 I END I J
23!
232 •PROCt SIMPLE OPEN F'ILE(P,BACKAD,WORKjJ
233 I VAL I f', EIACl<AD, WORK J I I NT I F, l'IACICAD j I l!IOOL' \l/ORIC I
234 •1!11!:GIN' IIN'fl e1c,oe:s,c.n,1<.AD1'1'J
235 SICBD PETCH ~EF(SADSfF) ~ 1)1 DESI• DE&s<r>,
236 SIC ,~oM BACl<Cr,s1c;aACKAOjJ

237 DEMAND REST(BIC)J
238 •IFt BACKAD tNEI FETC~(SVSVAR CATFIBACKAD) •THEN!
239 STORE(DEsB(F) • BACKAD IN DEs,BACKAO)J
240 CATI= BIC • INFO IN BIC • 11
241 INITIALIZE DESCRIPTOR OLD FILE(F,CA'!',WORK);
242 tFORt K1: FETCH(OES" NSEGM IN DES) -1 tSTEPI ,.1 'UNTIL! 0 100•
243 •BEGIN• ADI• SADB(F) "SADCELL • K ~ SEGMAD IN SAD;
244 STORE(AD,FE'l'CH(CAT • SEGMAO IN CA'!'• K;);
245 •F'OR• Tl= NBITWRDS .,1 •STEP' .. 1 1 UNTIL 1 0 1 001

246 STORE(AO.SEGMAO IN SAO• BITWRO IN SAD" T,ALLNINC)
247 •END•;
248 INITIALIZE PTR(F,WP,11
249 • END I J
250
251 'INT• •PROc 1 SET UP FIRST PART SKELETON(NEW,ALARM)i
252 1 VAL I NEW I I B00L I NEW I I LABEL I ALARM J
253 1 BEGIN' 1 1NTI Fj
254 F:w NEW F'ILENUMBERCALARM;l
255 CLAIM CORE(RHO;CADL,FADB • F,RELIJ
256 CLAIM CORE(Pl,DESL,CADB(F) • DESB IN CAO,REL;I
257 CLAIM C0RE(P1, 1 IF 1 NEW ITHEN 1 NEXS•SADCELL 'ELSEI SADL;
258 CADB(P) • SAOB IN CAD,REL)J
259 STORE(OESB(F) • NPTRS IN DES,O)l
260 STORE(OESB(F') • NBICS IN DES,O)J
261 STORE(OESB(F') ~ NFRE!BICS I.N DES,O)j
262 'IF' 1 TRUE 1 1 '1'HEN 1 SET UP FIRST PAR'!' SKELETONl11 f' lfl,,S!I
263 RELi 'BEGIN' DELETE CORE(FADB ~ F)J 1 GOT0 1 ALARM 'ENO'
264 •END 1 J
265
266 1 PROC 9 SET UP SECOND PART SKELETONCF,P,ALARM)J
267 9 VAL 1 P,Pj IINTI F',PJ 'LABEL.I ALARMJ
268 •BEGIN' CLAIM CORE(RHO,PAOL,CADB(F') ~ PAOB IN CAO;RELiJ
269 CLAIM BIC(F,REL)S CLAIM CORE(Pl,PTRL,CAOB(F) "TlllANSB IN CAC,REL)I
270 CREATE PTR SPACE(F,P,REL)l
271 'IP' •PALSEI l'f'HEN'
272 ~EL: tBEGIN 1 DELETE CORE(FAOB • P')I 1 GOTOI ALARM 'ENO'
273 • END I I
274
275 IPROCI INITIALIZE DESCRIPTOR NEW PILE(F,SPECIES)J tVALI ,, s,EclESJ
276 •INT' F,SPECIESJ
277 1 8EGIN 1 'INT' DES,Kl DESI• OESe(F)I
278 STORE(OES ~ SPEC IN OES,SPECIES)I
279 STORE(DES • BP IN OES,1)1
280 STORE(DES • EP IN OES,1)1
281 STORE(DES" NSEGM IN DES,1)1
282 STORE(DES ff OP'FSET IN DES,1)1
283 STORE(DES • NEW IN OES,+777)1
284 STORE(OES • SCRATCH IN OES,+777)1
285 STORE(DES • WORK IN OES,+777)1
286 'FOR• Kl• IDF'\." 1 •STEP' .. 1 1 UNTILI 0 '00 1

287 STORE(OES • IDP IN DES w K,ScRATCMIOF)J
288 INITIALIZE REST OF OESCRIPTOR(F)
289 1 END 1 J
290
291 •PROc:• INITIALIZE DESCRIPTOR OLD f'ILE(F',cAT,WORIC)J 'VAL' ,;cu;wo11110
292 , I N'I' 1 P', CAT J • BOOL I WORK l
293 •SEGIN' 'INT' DEsJ DESI• OESB(F')I
294 STORE(DES ~ SPEC IN OES,FETCH(CAT n SPEC IN CAT))J
295 STORE(OES • BP IN OES,PETCH(CAT q BP IN CAT))J
296 STORE(DES • EP IN OES,PETCH(CAT ~ EP IN CAT))I

79

80

297 STORE(DES • NSEGM IN DES,FETcH(CAT ~ NSEGM IN CAT)j;
298 STORE(DES • OFFSET IN DES,FETCM(CAT R OFFSET IN CAT));
299 STORE(DES • NEW IN DES,~777):
300 STORE(DES ~ SCRATCH IN DES,~777)1
301 STORE(DES - WORK IN DES,' !Fl WORK •1HEN1 •777 •E~SEt .;77)j
302 INITIALIZE REST OF DESCRIPTOR(F)
303 •END 1 l
304
305 •PROC 1 INITIALIZE P!ES'I' OF DESCRIPTOR(p)J •VAL' f'J IINT• ,1
306 1 BEG!N 1 'IN'l'' DESI DESI= DESB(F)I
30? STORE(DES • NELPW IN DES, NELPW TO SPEC(F!TcH(DES. SPEC IN OES)));
308 STORE(DES ~ BPEL IN OES, BPEL TO SPEC(FETCH(D!S • SPEC IN OfS);)J
309 STORE(DES ~ NBL0CKS IN DES,NePsoFETcH(DES a NSEGM IN Des;,i
310 STORE(DES" NELPB IN oES~NWPB*FETCH(oES - NELPW IN OES)jJ
311 STORE(DES ~ LAST BLOCK IN DES,BLOC~ TO POS(F,f'ETCH(DES 8 E, IN DES)
312 •1))1
313 STORE(OES ~ NFREE IN DES,(FETCM(DES w NBLOCKS IN DESj • 1) 6·
314 FETCH(DES • NELP!!I IN DES) • 1 w FETCH(DES p EP IN 0£8)
315 + FETCH(OES P BP IN DES))
316 •END'I
317
318 IPROC 1 REOPEN FILE(F,BACKAD,WORK)J 1 VALI F,BACKAD,WORKJ
319 'INTI F,BACKAO; 1eoo1. 1 WORKJ
320 1 BEGIN 1 DECR IN'I' IN BJC(F,WP)J SIMPLE OPEN PILEfF,8ACKAD;woR~j
321 1END 1 J
322
323 1 B00!., 1 9 PROC 1 CLOSE(P,PRIV); 'VAL' f',PRIVJ 'INTI Fl •BQ0!.,1 PAIVJ
324 •BEGIN' 'INT' DES 1 CATPOS,KJ
325 '6001.1 WORK,NEW,SCRATCH,OKJ
326 'IN'I'' 1 ARRAV 1 IDF',OLD IDFf111DFl,.lJ
327 HARD CHECK ON F(P)J OES1:i DESB(f')I WORK:z: FETCH(DES• WOR~ IN O!S)>OJ
328 SCRATCH!= FETCH(OES • SCRATCH IN OES)>OJ
329 'IP• 9 11" 1 ,-,pRfV 'THEN' ... WORK" SC:RA'l'CH 'ELSE' •FALSE'
330 1 THEN 1 ERROR(ER PC);
331 NEW!: FETCH(DES • NEW IN DES)>OJ
332 SIMPLE CLOSE FILE(F)I
333 SYS NOTJ
334 1 1FI SCRATCH 'THEN'
335 'BEGIN' DELETE ALL SEGMENTS(F)1 1 1F' NEW 1 '1'HEN 1 IGIO'!'OI '!'RUE
336 9 END 1 'ELSE'
337 9 BEGIN 1 1 JF'I WORK 1 THEN1 MAKE ADM BL0CK(F 1

1 FALSEl)j
336 RELEASE SECOND PART SKELETON(F)
339 , END,;
340 9 FOR 1 Klz: 1 1 STEP 1 1 'UNTIL' IOF"I., 'D0'
341 IOF(K]l11: FETCH(DES "' IDF IN oES,. K + 1):
342 ECCHI SET UP SECOND PART SKELETON(f",WP,~CCH)J
343 GET ACCESS TO CATFILEI
344 SIMPLE OPEN FILE(F,FE'l'CH(SVSVAR CATFIBACKAD):•TRUEl)f
345 OKia UPDATE CATFILE(F,IDF,DES,PRIV,WORK,NEW,SCRA'l'CH)I
346 SIMPLE CLOSE FILE(P)J
347 RETURN ACCESS TO CATFII.El
346 IIFI OK 9 THEN 1

349 TRYEI 'BEGIN' DELETE cORE(FADB"' F)J Cl.OSEI= 1 'f'RUIE' 1£Nl)t •!~IE'
350 'BEGIN' 1 POR 1 Kl• 1 tSiEP 1 1 1 UNTIL,f ltlFL 1001
351 OLD IDftKJP: P'ETC:H(DES,. IDF IN D!S .. I(• 1)1
352 SVS IDF FANCV(F,01.t'J IDF,JOF)J
353 1 FOR 1 Ki= 1 •STEPI 1 1UNTIL 1 IOPL 1 00 1

354 S'l'ORE(DES " IDF IN DES• I<+ 1, IOF[KJ)I
355 REOPEN PILE(F,PETCH(DES • BACKAO IN DES),t'l'AUE')J
356 CLOSE!= 1 PALSE1

357 tENDt;
358 SYS TON
359 •END•J
360
361 •PROC• RELEASE SECOND PART SKELETON(P;J 'VAL.• FJ 1 INT• Fj
362 'BEGIN'
363 DELETE CORE(CADB(F) "PADS IN CAD)J
364 STORE(DESB(f) "NPTRS IN DES,0)
365 • END' J
366
367 1 PR0C' DELE'l'E AI.L SEGIAENTS(f)J 1 VAl. 1 fl IINT• P'J
368 'BEGIN' 'INT' SAD,1<,DESJ 1B001. 1 SCRATCH!
369 DES:: DESB(f)J SCRATCH:: FETCH(OES • SCRATCH IN OES) > Qj
370 SAD:: SADB(f)J
371 •FOR• KJ: SADCEI.L * (FETCH(DES • NSEGM JN DES)" 1)
372 1 STEP 1 "SAOCELL 1 UN'l'IL 1 0 •Oo•
373 SYS DELETE SEGMENT(FETCH(SAD ~ K • SEGMAD IN SAD;,
374 SCRATCH)!
375 RELEASE SECOND PART SKELETON(f)
376 •END'J
377
378 1 PR0C' SIMPLE Cl,.OSE FtLECFH 'VAL' FJ 'INT' fJ
379 •BEGIN' 'INT• Ao·;oES,BICl '800L 1 WRl'l'EJ
380 DES;: DESB(f)I WRITE!= FETCH(DES • SCRATCH IN OES)cOJ
381 REP: Aor= BAOB(F)J
382 LOCPS a,c:= FETCH REF(AD ~ 1)1
383 1 1ft WRITE !THEN•
384 •BEGIN' 1 1F• FETCH(BIC ~ MOD IN BIC) ~ 0 1 TM!N'
385 BIC TO BACK(F,BIC~AACKAD OF BLOCl<(F,PETCH(BIC • BLOC~ IN BIC)))
386 •ENO• 'ELSE 1 DEMAND REST(BIC)I
387 ADJ: FETCH REF(AD)l tlFt AD 1Nfl O ITHEN' •GOTO• LOCP
388 •EL.SE• •IF' WRITE 'Ti-!EIJt 1BEGIN 1 WRITE 1= tfAL.SE'J 1 GO'l'Ot IIIEP 1 !:ND'J
389 STORE(DES ~ LAST BLOCK IN DES,•1)J TRV SIC REL.EABE(F)
390 •ENO';
391
392

81

393 •COMMENT' CATALOGUE ROUTINES *********************•****••••••••••••••••J
394
395
396 •PROC 9 GET ACCESS TC CATF'ILEI
397 •BEGIN'
398 WAITS SYS ELJ 'IF• F'ETCH(SYSVAR CA'l'FINACC) > 0 1 THEN'
399 •BEGIN' SYS LEJ SYS SWAPJ 1 GOTOI WAIT 1 EN0 1 J
400 STORE(SVSVAR CATF!NACC,+777);
401 SYS LE
402 •END'J
403
404 1 PROC• RETURN ACCESS TO CATfll.EI S'l'0RE(SVSVAR CATF'INACC,a177ia
40,
406 1 PROC' POSl'l'ION(l",POS)i 1 VAl. 1 F'1FIOSJ IINT 1 f',POSI
401 L,OCPS 'IF' VAL 01' PTR(F,WP) 1i,,a:1 PC,S 1 '1'MEN'
408 •BEGIN' llf 1 VAL OF PTR(F,WP) > POS !TM£N 1

409 PREV EL.(F,WP) 1 ELSE 1 NEXT EL(F,WP)I
410 IGO'l'Of LOCP
4U 1 END' J
412
413 'INT' •PROCI SACl<AD IN CA'l'F'II.E(F,POS)J 'VAi.i P',POSi 'INTI P',111011
414 1 81!:GIN' POSITION(P',POS + 2)l
415 SACl<AD IN CATF'II.EI• NEXT EI.CF,WP)
416 1 END 1 J

82

417
418 'INT• 9 PROCI POS IN CATF!LE(F,!DF,WOR1<,USER);
419 1 VAL 1 F',WORK~USERl 'INT• F,USERI 1 800L 1 WORl<I 'ARRAY' IDl"'I
420 'BEGIN' 1 1NT 1 PoS,FPOS,RPOS,USE,RUSE,OWNERI
421 RPOS:: -777l
422 F'POS:: POSI: LOOK UP(F;IDF)J
423 EXAM I I IF I POS > 0 1 THEN I

424 1 BEG!N' USEI• NEXT EL(F,WP)J OWN!!Rla NEXT EL(P,WP)J
425 'IF'' USER= ABS(OWNER) 'THEN'
426 'BEGIN' 1 ffl (1 1ft USER INE• OWN!:!R 1 THEN 1 (Ifft WONI(l'l'H!N' USE
427 1 NEI O 1 ELSE 1 US!!<O) 'ELSE 1 IFALSE 1) t'l'HfNI POSI• E:R NNI
428 •GOTO' EXIT
429 1 END' 'EL.SE'
430 'BEGIN' RPOS1= 'IF' OWNER<O •THEN! Pos 'EL.SE• ■ POSJ
431 SKIP REST OF CATOESCRCF'); POSI= LOOI(UP(F,IOl")J 'GOTO! E)CAM
432 1 ENO'
433
434
43!5
436
437
438
439
440

•ENO,;
POSSi: I IF'

'I Fl
I IF''
'IF'

EXITS POS IN
1 END I J

FPOS < 0 •THEN' ER UI< lf!L.SE 1

RPOS c: 0 •THEN 1 ER NV I Et.SE I

WORK •THEN' ER NP •Et.SE 1

RUSE C: 0 ITHEN' ER NN 1Et.5E 1 RPOSI
CATFILE:11 POS

441 1 8001.,f 1 PROC 1 UPDATE CATFILE(F', I01",0ES,PRtV,WORl<,Nf!W,SC:RATCHjJ
442 1 VAL' F' 1 0ES,PRIV,WORK,NEW,SCRA'l'CHj 'ARRAY• IOPI
443 'INT 1 F,DESi IBOOLI PRIV,WORK 1 NEW,SCRATCHJ
444 •BEGIN• I INTI POS,K,USE; 1 B00L 1 Ol<J
445 OK I 111 'TRUE•;
446 'IF't SCRATCH 'THEN' •BEGIN' POSI• F'ETCH(DES., CA'l'POS 1111 OE&jj
441 •GOT0 1 UPO IDP' 1 EN0 1 I
448 'IF'' ... woRK 1 '1"HEN 9 1 BEGIN 1 P0S1111 l'E'l'Cr4CDES - CATFIOS IN oe:s;,
449 1 GOT0 1 UPO USE 1 END 1 J
450 'IF'~ NEW 1 THEN 1

451 •BEGIN' POSITION(F,FETCH(OES • CATPOS IN DES)• IDPL);
452 'FOR 1 Kl: 1 1 STEP 1 1 ILJNTIL 1 IDPL. 1 00'
453 WRITE EL(F,WP,SCRATCHIDF)J R!!SET WP(F)
454 1 ENOt;
455 'l'AV: POSS: POS IN CATFILE(F, IDF,PRIV,FETC~i(SVSVAR USER)SJ
456 'IFI PCS> 0 1 THEN 1

457 'BEGIN' OKl111 lf'ALSE'I SYS FANCV IOF(IOF)I 'G0'1'0 1 TRY 1 11:NOtj
4!58 1 BEGIN' 'INT• 1 ARRAV 1 SCRIOP[lllDPLll
459 'FOR' K;: IDFL 1 STEP' .. 1 1 UN'!'IL 1 1 'D0 1

460 SCRIDFfl<ll• SCRATCH !OF; RESET WP(F);
461 POS:: POS IN CATFILE(F,SCRIOF, 1 '1'RUE',O)
462 'END' l
463 •tF'I POS < 0 ITHEN 1

464 •BEGIN' POSJ11 VAL OF' PTR(F,Ep) + IDP'LJ
465 DELETE PTR(F~WP)I STANDARD PTR 1(P,EP)l
466 1 FORt Kl= 1 1 STEP1 1 •UNTIL' DESCRIPTORL '00 1 WRITE 11:LCl';E,,O)J
467 DELETE PTR(P~EP)J STANDARD PTR 1(~,WP)l
468 MAKE ADM BLOCK(P, 1 'l'RUE 1)
469 1 ENO t;
470 UPD IDF': POSITION(F,POS., IDF'L.)J
471 •FOR• Kl= 1 1STEPt 1 !UNTIL' IOPL 1 00 1

472 WRITE El,.(F',WP, IDF'[l<))I NEXT ELCP',WP)l
473 WRITE EL(F',WP,Cllf''.., PRIV,. 'NORI< 1 '1'HEN 1 .. 1 1 EI.S! 1 1)
474 * FETCH(SVSVAR USER));
475 WRITE EL(F~WP,FETCH(OES ~ BACKAO IN DES))J
476 UPD USE: POSITION(F',POS + 1); use:111 PREV EL(F,w~;,

477 WRITE EL(F,IYP,1IF• ~ 'NORK •T~E1111 USE., 1 •ELSI!•
478 1 IF• -, :JK •THEN• .777 •El.SE! 0)1
479 UPDATE CATFILE:: CK
48:J •END' J
481
482 'INT' •P~OC 1 LOOK UP(F,IDFll 'VAL' f"I 'INT' F'; 'ARRAV! 11"9'1
483 'BEGIN' 1 INT' Kl 1 800L 1 OKJ
484 SEARCH ONI I IF 1 VAL OF PTR(F,WP) 'GE' VAL 0\1" PTR(F,EP) 'THfNI
485 LOOK UPI: -777 'ELSE'
486 1 6EG!N' OK:: •TRUE 1 1
48? 'FOR' Kl= 1 •STEP' 1 IIJNTIL' lr'll'L. 1 00•
483 OK:= OK A IDF[K] : "EXT EL.(F,WP)J
489 'IF'-. OK 'THEN•
490 'BEGIN' NEXT EL(f,'IIP)J NEXT EL(F,WP)I
491 SKIP REST OF CATOESCR(F)l
492 'GOTO' SEARCH ON
493 1 END' l
494 ~OOK UPI= VAL OF PTA(F,WP)
495 •END•
496 •END• J
497
498 •PROC 1 SKIP REST OF CATDESCA(F)J IVALI Fl 1 INT 1 Fl
499 NEXT EL(F,WP)I
500
501 •PROC 1 MAKE IDF(!DF,IDENT)J 1ARRAV 1 IOFJ
502 'BEGIN' 'INTI svrt.,K,P,C, !NT; 1 eoo1,. 1 STRINGJ
503 STRINGI: SVS IS STRING(IDENT)J
504 'IF' -.STRING"' ~svs IS !NT PRCC(IOENT) •THEN' -e:RROR(fR W'l'>i
505 K:= P:= cs= INTI= OJ
506 RESB~I SVMI: 'IF' STRl~G 1 THEN 1 STRINGS6L(K,ID!NT;
507 'ELSE 1 PROCSBL(IOENT)l
508 'IFI sv~: SPACESBL v SVM: TAsSeL. w
509 SYM: NLCRS8L tTt-'El'< 1 1 GOT0 1 RfSBl,.l
510 'IF' SVM < 0 v sv~ > 35 'THEN' SVMI• DELSBLJ
511 TREATI INTI= INT* 51P + SYMJ Ctn C • 11
512 •!Ft C: 3 l'fHEN 1

513 •BEGIN' P:n P + 11 IDF!P]:: INTI INTll:i Cla O 'END'J
514 'IF' P INE' IDFL •THEIi;'
515 •GOT0 1 llf"' SVM a DELSBL 1 THENt TR!AT 'ELSE• qES8L
516 'END I J
511
518 •PROCt MAKE ADIII BLOCK(f",CATF)l 1 VAL 1 P,CATFJ tl"!T 1 F; 18001.,1 CA'f'FJ
519 •BEGIN• IINT 1 DES,e1C,CAT,l<I
520 DESI= ~ESB(F); e1c1= FETCH REF(BADB(F) • 1)1

1,21 CATI= BIC - INFO IN BIC + 11
522 STORE(CAT • SPEC IN CAT,PETCH(OES • SPEC IN D!s);J
523 STORE(CAT • BP IN CAT,FETCH(DES • BP IN DES))J
524 STORE(CAT • EP IN CAT,FETCH(DEs • Ep IN DEs,;,
,25 STORE(CAT • NSEGM IN CAl,f"ETCHtO!S a NSEGM IN DEl)jJ
,26 STORE(CAT • of"f"SET IN CAT,FETC~(OES "Of"FSET IN OEs);J
52'1 9 f'OR 1 1<1111 FETCH(OES .. NSEGM IN D!s, •1 'STEP' •1 'UNTIL.I O •co•
528 STORE(CAT • SEGMAO IN CAT~ K,FETCH(SAOB(P) •
529 SADCELL *I<• SEGMAO IN SAO))J
530 BIC ,.o BACK(F,BIC,FErCH(tlFI CATF 'THEN• svsVAR CATf"IBACKAO
531 1 ELSEt DES~ BACl<AO IN DES))J DEMAND REST(~IC)
532 1 ENO• J
533
534 1 PROC:I MARK INTEREST IN CATFILE<F,POS,WORK;I 1 VAL' F,Pos;wcRICI
535 1 INT 1 F,POSJ 1 8001,. 1 WOAKl
536 1 8EGIN' I INTI USEJ

83

84

537 POSITIONCF,PoS + 1); USE:= PREV ELfP,WP)l
538 WRITE ELCF,WP, 1 1F' WORK 1 THEN 1 •777 1 ELSE 1 USE+ 151
539 STORE(DESB(F) • CATPOS IN DE~1POS)
540 1 END I l
541
542
543 1 COMMENT 1 POINTER ROUTINES ********•****••••••***••••••*•••••••••••••••l
544
545
546 1 PROC 1 INITIALIZE PTR(P,p,POS)J •VAL' F,P,POSJ 'JNT' F,P;Posi
547 'BEGIN' 1 INT 1 PTRJ PTRt= PTRB(F',P)I
548 STORE(PTR • VAL IN PTR;POS)J
549 STORE(PTR - WRD IN PTR,WRD IN 31.0CK(F,POS))J
550 STORE(PTR • ELT IN PTR,ELT IN WRO(F,POS);I
551 STORE(PTR • BLOCK IN PTR,BLOCK TO POS(F,P05);1
552 ASK FOR BI.OCK(F,P)J
553 ASSURE PRESENCE BLOCK(F,P)
554 •ENO•;
55!5
556 •INT• 1 PROC 1 NEW PTR NUll'BER(F,AI.ARM)I 1 VAL 1 Fl 1 1NT 1 F'I 'LABEi.' AI.ARMJ
557 •BEGIN' •1NTI MAX,PJ
558 MAXJ: P~AX(f')J
559 1 FOR• Pl: F'F'P •STEP' 1 !UNTIL' MAX 100 1

560 'IP' PTRB(F 1 P) : 0 •TI-IEN' 'GOTO• l"OUNDJ
561 EXTEND PAD(F',ALAR~)I P:: MAX+ 11
562 POUND! NEW PTR NUMSER1: P
563 1 ENO' l
564
565 1 PROC• CREATE PTR SPACl!'.(F',P,AI.ARM)I 'VAL' F',P; ltNT 1 F,Pi ILABl!:I.' AI.ARMJ
566 •BEGIN'
567 CLAIM CORECPl,PTRL,PADB(F') • (P•1)•PA0CELI." PTRB IN PAD,ALARM)J
568 1 1F 1 FETCH(DESe(F) - NPTRS IN DES) :i. 0 •THEN' CL.AIM BIC(l',No; •ELSE•
569 'BEGIN' STORE REF'(PAOB(F) - (P•1l•PAOCELL" P•RB IN PAO,
570 FETCH REF(CAOB(F) - TRANS5 IN CAD))J
571 STORE REF(CADB(F) • TRANSB IN CA0,0)
572 •ENO•;
573 INCR(OESB(F) .. NPTRS IN OES,1)J 1 1ft IF"AL.SE• 'TH!!N•
574 NO; •BEGIN' DEL.ETE CORE(PADB(F) • (P • 1) • PAOCELI. • PTAB IN PAD)J
575 1 GOTOI ALAR,
576 •ENO•
577 'ENO 1 ;

578
579 •JNT 9 IPRCCI VAi. OF BP(F)J 1 VAL. 1 Pl 1 1NT 1 FJ
580 VAL OF BPI• FETC~(OESB(F) • BP IN OES)I
581
582 'INT 1 9 PROCI VAL OP' f.P(F')J 'VAL. 1 Fl '1NT 1 FJ
583 VAi. OF EPI• FETCH(OESB(F) • EP IN OES)J
584
58!!1 'INT• •PROC! VAL OF PTR(F,P); •VAL' F,PI 1 1"1T• 1',P!
586 VAL OF PTRI•
58'7 'IF' P III BP 1 THEN' VAL. OF BP(F) 1 !:LSE 1

588 1 11'' P: EP 1 THEN 1 VAi. OF EP(P') 1 Ei.U: 1

589 FETCH(PTRB(F,P) - VAL IN PTR)J
590
591 •INTI IPROCI 131.0CI< OF P'fR(F,P)J tVAL 1 F,PJ 'INTI F·;pj
592 BLOCK OF PTRt• FETCH(PTR6(F,P) • Bl.CCI< IN PTR)J
!593
!594
59, •COMMENT' ROUTINES FOR BLOCKS IN CORE **•••••••••••**••••••••••••••••••J
596

597
598 •PROC 1 ASK f'OR BLOCK(F,P)J 1 VAL 1 F,PJ I INT' F,PJ
599 1 6EGll<P 1 1NT 1 BLOCK,AD,81Cl
600 ECCHI BLOCK!= BLOCK OF PTR(F,P)J
601 1 11" 1 BLOCK IN CORE(F,BLOCK) 1 THEN 1

602 •BEGJN' AD1= BADB(r)J
603 LOCPt BIC:: FETC~ REF(AD ~ 1)1
604 1 1FI FETCH(BIC .. BLOCK IN ale) 'NE' BLOCK ''l'HEN'
605 1 BEGIN 1 ADI: l"ETCM REF(AO)J 1 GOT0 1 L.oCP 1 END•
606 •ENDt 1 ELSE 1

607 •BEGIN' 1 IFI FE'T'C~(OESB(F') • NFRE:EBICS IN DESI : 0 1 THEN•
608 CLAIM BIC(F,ECC~)l e1c1= CLAIM PREE BIC(F)J
609 MARK BLOCK IN CORE(f,BLOCl<, 1 TRUE')J
610 STORE(BIC • BLOCK IN 81C,BL0CKlJ
611 1 1FI BLOCK 1 1,..Et LAST BLOCK(F) •THEN'
612 BIC FROM BACK(F,BIC,BACKAO OF BLOCK(F,Bl.OCK))
613 •ENOt;
614 !NCR IN'f IN BIC(BIC)I
615 STORE REF(PADB(F) "(P ~ 1) * PAOCEL.L • BICB IN PAO,BIC)
616 •END'J
617
618 1 PROC 1 ONE BLOCK DOWN(F,BIC); •VAL.' F,BICJ 'INTI F·;BICI
619 'BEGIN' INCR(DESe(F) .. LAST BLOCK IN cES, .. 1,,
620 STORE(BIC .. MOO IN BIC, •777)
621 •END'J
622
623 •PROCt BIC TO BACK(F,BIC,BACK);
624 BICTRANS(F,BIC,BACl<,tTRUE 1)1
625
626 •PROC• BIC FROM BACK(F,BIC,BACK)J
621 BICTRANS(F 1 BIC,BACK,tFALSE 1 ll
628
629 1 PROC' BICTRANS(F,BIC,AACK,WRITE)l IVAL 1 F',BIC,RAC~,WRIT!I
630 'BOOL I WR I TE J I I NT I F' ,P!I C, BACK l
631 •BEGIN'
632 STORE(BIC • MOD IN BIC,.777)1
633 svs ELJ INCR(BtC .. NTRANS IN e1c,1,i svs LI::;
634 •IF• WRITE 1 THEN'
635 SVS TO DISK(BIC ~ "ICL, INFOL,BACK,BIC • NTRANS IN. BIC) 1£1,,Sft
636 SVS FRO~ DISK(BIC • ~ICL,INFOL,BACK,BIC • NTRANS IN BIC)
631 9 END 1 J
638
639 •PROC 9 FREE SEMIFREEJ
640 •BEGIN• 'INT• F,oES,N,LAD,AD,BIC,NADI 1 BOOLI TRANSi
641 TRANS: ■ 1 '1'RUE 1 1
642 •FOR• Fl= F' 1 \'/HILE' TRANS 1 00 1

643 1 BEGIN 1 TRANSi: 1 FALSE 1 1 1 FOR 1 Fin 1 ISTEP' 1 1 UNTIL' l"MAX 11)0 1

644 1 BEGIN 1 DESI ■ OESB(F)J N: ■ FETC~(OES • NPTRS IN OES)j
645 N: ■ FETCH(DES .. N81CS IN DES) ., (I IF'' N:0 'TMEN 1 1 1!1,,11!1 N)J
646 •1F1 N>O 1 Ti,,tEN 1

641 •BEGIN' LAOla CAnB(F) R eADB IN CAOJ ADI= FE'l'CH REF(l,,A~)I
648 NEXTI BICp: F'ETCI-I REF(A0•1)J 1 11' 1 FETCH(BIC • IN'I' IN BIC)•O l'l'HEN 1

649 1 BEGIN 1 1 IF• FETCl-4(BIC .. MOD IN BIC)ll>O 1 THEN•
650 1 BEGIN 1 TRANSi= 'TRUE 1 1 BIC TO BACK(F,BIC,BACKAO OF 81,,0C~(
651 F,F'ETCl-l(BIC" BLOCK IN BIC)))
652 •EN0 1 •ELSE' 'IF 1 F'ETCl-l(RIC .. NTRANS IN 81C)>0 l'f'Hl!NI
653 TRANS I: 'TRUE' I ELSE t

654 •BEGIN• NAO! ■ FETCH REF(AO)J STORE REF(AD,O)J
655 SYS DELETE(AD)I STORE REF(LAO,NAO)J
656 INCR(OES • NBICS IN OES, ■ 1)1 N: ■ N~1:

85

86

657 'IFI N>O •TrEN' AD:: I.AD
658 •END•
659 1 END 1 J
660 LADI= AD1 ADI: FETCH REF(A'-')1 'IF• AU '"IE 1 0 1 THEN• tGo,-01 NEXT
661 •END'
662 •ENO•
663 •ENO•
664 1 EN0 1 J
665
666 1 PR0Ct TRV BIC REL.EASE(F')J 'VAL' FJ 'INT• FJ
667 1 BEGIN• 'INT• OES,N,PB,L.B,BIC,B,LAO,AD,NAOJ
668 DESI= DESBCFIJ
669 N:= FETCH(DES • NBICS IN DES) • FETCH(OES - NPTRS IN OES)J
670 'If'' N>O 1 THEN•
671 'BEGIN' FBt: BLOCK TO POS(F,FETCH(OES • BP IN DES)j;
672 ~B:: FETCH(OES • LAST BLOCK IN 0ES)J
673 I.AO:: CADB(F) • BAOB IN CADI AOla FETCH REF'(LAD)J
674 NEXTS ale:= FETcH REF(AD • 1)J 1 1P 1 PETcH(BIC .. INT IN SIC) ■ 0
675 ,,-HENI
676 'BEGIN' Bl= FETCH(BIC ~ BLOCK IN BIC)J
677 'If' 1 1F 1 •IP 1 e•O !THEN• tf'AL.SE 1 1 ELSE 1 B<CP'B" B>L.1!1 fTHENI
678 FETCH(BIC .. NT~ANS IN ale) = O 'EL.5!!! 1 'P'AL.SE• ITMEN'
679 'BEGIN' 1 1F 1 N:s1,. FETCli(DES,. NPTRS IN DES)= 0 1 THEN1
680 'BEGIN' JNCR(DES .. NFREEBICS IN DES,1)1
681 STORE(BIC ~ BLOCK IN eic,~7?7)
682 •END• • Et.SE 1

683 'BEGIN' NAO:c FETC~ REF(AO)J STORE REP'(AD,O)J
684 SVS DEL.ETE(AO)l STORE REF(LAD,NAD)J
685 INCR(DES - NSICS IN oEs,-1,, NI= N. !i
686 1 1F 1 N>O 1 T~EN' AD:c LAD
687 'END•
688 •END•
689 'ENO I J
690 ~Ao:= ADJ ADI= FETcr REF(AO)J 1 1FI AO 'NE' ti 1 '1'H1!:NI ltiO'l'OI NEXT
691 9 EN0 1

692 •END 1 J
693
694 •tNT• 9 PROC 1 BLOCK OP' AIC(BIC); •VAL. 1 BICJ 1 1NT 1 BICJ
695 ~I.OCI< OF B1C:: FETCH(BIC • BLOCK IN e1c,i
696
697 •PROC: 1 ASSURE PRESENCE eL,OCK(F',P)J 'VAL.I P',PI 1 1NTt F,PI
69& DEMAND REST(~1ce(P',P))J
699
100 1 PR0C:' Ol!MAND REST(elC)J tVALI BICI 'INT• BICJ
'701 YIAITS 1 1P l"ETCH(Btc • NTRANS IN BIC) 'NEI n •TMEN' 1 150'1'01 WAl'TJ
702
703 •tNT 1 •PROC 1 CL.AIM SIC(f,Al.)J tVAl. 1 P'J I INTI l"I 'I.ABEi.i AL.i
104 'BEGIN• IINTI BICI
705 EXTEND BAD(P',AL)I
706 BICS• CL.AIM CORE(Pl,BICL,BAOB(P') • 1,NO)l
707 INCR(OESS(F) • NBICS IN DES,1)1
708 INCR(OESB(P') • NFREE81CS IN OES,1)1
709 INITIALIZE BIC(BIC)J
710 •IF• •TRUE 1 1 THEN• CL.Al~ e1c:• SIC tELSE'
711 NO: 'BEGIN' BICI• 8ADB(F)J
712 STORE(CADB(F) • 8AOB IN cAo,FETCH REF(~IC))J STO~E REP'CBIC,0)8
713 SYS DELETE(BIC)J 1 GOTC 1 AL
714 1 EN0'
715 •EN0 1 J
716

87

717 'INT' 1 PROC 1 CLAIM FREE BIC(F); 'VAl.. 1 FJ •INT• l'J
718 •BEGIN• 'IN'!'' AD~BIC;
719 ADI= BADA(f)J
720 REP: BICJ:1 FETCH REF(AO. 1)1 I IF 1 FETCH(BIC - Bt.OCK IN e,c; ,. 0 1 TH!N'
721 •BEGIN' AD:= FETCt- REl"(AD); •GoTOI REP •ENDIJ
722 INCR(DESB(F) ~ Nl'REEelcs IN DES,•1)1
723 CLAIM FREE BIC1: BIC
724 1 END'J
725
726 'PROC I INITIALIZE BI C (8 IC) l I VAL I BI CI I I NT I BI CJ
727 'BEGIN' STORE(BIC • MOD IN BIC, ~777);
728 STORE(BIC • INT IN BIC,O)l
729 STORE(BIC - NTRANS IN BIC, 0)1
730 STORE(BIC - BLOCK IN e1c, -777)
731 1 END 1 J
732
733 1 PROCI INCR INT IN BIC(BIC)l 1VAl.,1 BICJ I IN'l' 1 BICI
734 •BEGIN' INCR(BIC • INT IN BIC,1)J
735 SYS INCR REFCNT(BIC)
736 •END'J
737
738 •PROc• DECR INT IN eic(F,P); 'VAL.' F',PI '1N'l' 1 F,Pl
739 1 BEGIN' 1 INT 1 AD;INT,BIC,BJ
740 BICI= BICS(f',P)J ADI• BIC - 1NT IN BICl
741 INTI: FETCH(AD) • 11 STORE(AD, INT); SVS D!CR REF'C:NT(ISIC)i
742 STORE REF(.PADB(F) •(P•1l*PADCEL1.. • BICB IN PAO,Q)J
743 I I Ft INT:0 ITHENI
744 •BEGIN' 1 1F• PETCl-'(BIC • f/100 IN BIC) > 0
745 •THEN• BIC TO BACK(F,e1c,BACKAO Of' BL.OCK(F',BLOCK OF' PTR(P,,)j)
746 •ELSE' 1 1F 1 P=BP 1 THEN• TRY sic RELEASE(F') •EI..SEI
747 •!Fl P:EP 1 THENI
748 'BEGIN• Bl= BLCCK CF PTR(F,P)I 1 !Fl B>PETCH(O!SB(F) • LAST
749 BLOCK IN DES) 1 THEN1 1 8EGIN 1 MARK BLOCK IN C0RE(F',B 1 1F'AL,SE');
750 TRY BIC IIIELEASE(F) •END 1

751 1 EN0 1

752 •ENO•
75:S •END' J
754
755 •INT• •PROC' BACKAD OF' BLOCK(F',BLOCK)J 'VAL' F,l§LOCl<J 1 1111Tf f',ISL.OCKI
756 BACKAO OF BL.OCKI• SVS CO~PUTE BACKAD(
757 F'ETCH(SAOB(F') • REDUCED BNUMB(F',Bl..0CK)1NBPS*SADCELL
758 .SE:GMAD IN SAD), REMAINOER(BLCCK • 1,NBPS))J
759
760 •INT• •PROCI REDUCED BNUMB(F,B)I 1 VAL 1 f",Bl 'INT• fl',BI
761 •BEGIN' !INTI OES,RB,RRBJ DES:: OESB(F')J
762 RBI• B n F'ETC~(DES • CFF'SET IN OESIJ
763 RRBI: RB• FETCH(DES • NBL.OCKS IN DES);
764 REDUCED BNUMBI: 'IF'' RRB 1 GE• 0 1 THEN 1 RRB •ELSE! RB
765 •ENO'J
766
767 1 PROC 1 CONSIDER OF'FSET(F',B)l IVAL' 1',81 1 INT• F,BJ
768 'BEGIN' 'INT' OESI DESIIII: OESB(F)l
769 'IF'' REDUCED BNUMe(F',e) a O •TMEN'
770 INCR(DES • OFFSET IN OES,F'ETC~(OES • NBLOCKS IN DES)i
771 1 END 1 J
772
773 •PROCI MARK BI..OCK IN CORE(F,B, Ir-; CORE)J 1 VAL 1 F,B, IN COIIU
'774 'INT 1 F,BJ 1 BOOL 1 IN COREi
775 •BEGIN' 1 1NT 1 Ao·;w,
776 e:• REDUCED BNUMB(F',B)J

88

777 w:= B 1 NBPWJ
778 ADI: SADB(F) • SADCELL * (81NSPS) ~ BITWRO IN SAO w WJ
779 B:e B - W•NBPWJ
780 STORE(AO,SET(IIF• IN CORE •T'"iENt O tELSE 1 1,B,B,l'ETCH(AO))j
181 •END• J
782
78:S 1 8001,.f 1 PROC' BLOCK IN CORE(F,a)J 'VAL' F,B1 'INT' F,BJ
784 'BEGIN' 'INT' WJ
785 a:e REDUCED ~NUMB(F,e);
786 w:e B 1 NBPWJ
787 BLOCK IN COREi: BIT(B - W•NBPW, FETCH(SADB(F) ~ SAOCELL •
788 (B!N~PS) • BITWRO IN SAD~ Wl) a 0
789 •ENO• J
'190
791
792 1 COMMENT 1 ROUTINES FOR STORAGE AoMINISTRATION **•••••••••••••••••••••••J
793
194
795 'INT' 1 PROC 1 CLAlr,'I CORE(GEN,L,REFOES,ALARM)J 1 VAL 1 GEN,Li ILA!l!L 1 ALARM;
196 1 1NT 1 GEN,L,REFDESJ
797 'BEGIN' I I NT I Ao, K J
798 ADJa SVS CLAIM(! IF' GEN= LAB •T~ENt 2 'ELSE' L + 1)1
799 I IP'I AD < 0 1 THEN 1 1 GCT0 1 ALARMJ
800 STORE(AO,SVS GENWRD(GEN,L,1))J
801 STORE REF(REFDES,AO)I
802 1 1F 1 GEN:LAB 1 THEN 1 STORE(AD • 1,0) 1 ELSE 1

803 •IF' GEN• RHO ITHEN'
804 •FOR• Kl= 1 1 STEP 1 1 1 UNTIL 1 L 1 00 1

805 STORE(AD • K,0)1
806 CLAIM COREln AO
807 1 EN0'J
808
809 1 PROC• DELETE CORE(AD)J 'VAL' ADJ 'IN'1' 1 ADI
810 'BEGIN' SYS DELETE(FETC~ REF(AD))I
811 STORE REF(A0,0)
812 'END' J
813
814 'INT• tPROC' NEW FILENUl'IBERCNO)J 1 L.ABEL 1 NOi
815 'BEGIN I t I NT I F AO, FI
816 F'ADI• FADl3J 1 1F 1 FAD 11 0 •THEN•
817 1 BEGIN 1 INITIALIZE FILESYSTEl'IJ FAD1: FADBI
818 'IF'' F'AO 11 0 1 THEN1 1 GOT0 1 NO
819 •END'J
820 lf'OR• Fl: 1 1 STEPt 1 'UNTIL' F'MAX 'DO'
821 'IF' CAoB(P') 111 0 'THEN' 'GOTO' F'OUNol F:= FMA>C + 11
822 EXTEND FAD(NO)J
823 F'OUNDI NEW F1LENUMeER111 F
824 •END'J
825
826 •PROCI EXTEND PAO(F,ALARM)l 1 VAL' FJ !INT• f'; 1 1.,ABEL• ALARMI
821 EXTEND ADM(PADS(fl'),NEXP * PAOCEL.L,CADB(F') • PA~B IN CAD,ALARM)J
828
829 1 PR0C 1 EXTEND FAD(ALARM)l 1 LABEL 1 ALARMJ
830 EXTEND AOM(F'AOB,NEXF,SVSVAR F'ILEHANOLE,ALAqM)I
831
832 IPROCI EXTEND SAD(fl',ALARM)J 1 VAL' Fl IIN'l' 1 fl'l 'LABEL' ALARMJ
833 EXTEND ADM(SAOB(F;,NEXS * SADCELL,CADB(F) • SADB IN CAD;ALARM)J
834
835 1 PR0C 1 EXTEND A0M(8ASE,EXTRA,REFOES,ALARM)I 1 VAL 1 BASE,EXTRAI
836 'INT• 8ASE,EX'l'RA,R!FOESJ 1 LA!3EL 1 ALARMI

~

837 •BEGIN• • INT 1 NEWB,K,Ll
838 NEWB:: SYS EX'T'ENO(BASE,EXTRA)l I IF 1 NEWB<') •T"'IEN• •GOTO! AL.A111M;
839 STORE REF(REFDES,NEWB)J L:= sVs LENGTH(NEWB)I
840 •FOR• Kt= 1 •STEP• 1 1 UNTIL1 EXTRA 1D0•
841 STORE(NEWB • L. + K - 1,0)
842 •END' I
843
844 •PROC• EXTEND BAD(F,ALARM)J 1 VAL 1 F'J 11NT 1 Pl 1 L.ABEL.• AL.ARMS
845 •BEGIN' 1 1NT' AD;HANDLE,HJ
846 HANDLE!: CAOB(p) - BADB IN CADJ HJ: FETCH(HANOLE;;
847 ADte CL.AIM CORE(L.AB,2,HANDLE ,AL.ARM)l
845 STORE REF(AO,H;
849 1 END' J
850
851 1 PROC' SHRINK SAD(F')J •VAL' Fl 1 1NT 1 Fl
852 SVS SHRINK(SAOB(F),(F'ETCH(DESB(F') • NSEGM IN DES)+
853 ('IF' 1 FETct-i<oe:Se(f) - WORK IN DES)> 0 •THEN' N£XS
854 'ELSE' 0)) • SADCELL)J
855
856

89

857 'COMMENT' ROUTINE HANDLING 1 ELEMENT OF A FILE ••••******************••J
858
859
860 •REAL.' 9 PROC 1 TRANS EL(F,P,KIND,EL)J 1 VAL• F',P,KIND~ELl
861 9 INT 1 F,P,KINOI •REALI ELJ
862 •COMMENT' KIND= 11 WRITE EL,
863 21 NEXT EL,
864 3; PREV ELI
86' •BEGIN' •1NTIF'AD,CAD,OES,PAD,pTR,BIC~ADp,pVAL,6PVAL.,EPVAL.~
866 NELPW,ELT,WRD,AD,ELM,8PEL,LOW,NFREE,AOFREE,BLOCKI
867 IBOOL' EXTENDJ
866 ~ARD CHECK ON Fl
869 FADI: P'ADBJ I IP'I FAO : 0 1 THEN 1 ERROR(CR ~F) I
870 •IF• P < 1 v F > SVS LENGTH(FAD) 1 THEN 1 ERROR(ER WF)J
871 CADI: FETCH REF'(PAD • F'll I IF 1 CAO: 0 •THEN' ERROR(ER Wl')i
872 HARD CHEC~ ON Pl
873 PADS• FETCH REP(CAD • PADS IN CAD)J
874 •IP' 1 P<1 v ~>SYS LENGTH(PAD)/PAOCELL 1 THEN 1 ERROR{ER WP)I
875 ADPI• PAO• (P • 1) * PADCEL,Ll
876 PTRI• P'ETCH REP(AOP • PTR8 IN PAD)I
877 'II"' PTR 111 0 1 T~EN 1 ERROR(ER WP)I
878 HARD CHECK ON WORK PERMIT IF NEEOEOI
879 DESS• FETCH REF(CAO • DESB IN CAO)l
880 'll"t •IF 1 1 IF' 1 l<IND>1 •THEN' (111"' P 'NE' EP 1 TH!N 1 P•IP t£1,.S!•
881 •TRUE') •!LSE' 1 TRUE 1 1 THEN• F'ETCH(OES .. \I/ORI< IN ou;cti
882 •e:1,,se:• 1 P'ALSE 1 ITnN• ERROR(ER N\tl)J
883 HARD CHECK ON PTR VALUEI
884 PVAL.U l"ETCH(PTR •VALIN PTR),. (1 11' 1 l(II\ID 11 3 ITHEN 1 1 1£1.1! 9 0)1
885 BPVAL:: FETCH(DES • BP IN OES)I
886 EPVAL.1: F'ETCM(OES • EP IN DES)J
887 tll"I PVAL < BPVAL •THEN• ERROR(ER PL)J
8813 •II"• tlf't PVAI. l(.f' 1 EPVAL 1 THEN 1 P tNl!t EP tEL.SEI tf'ALSEI
889 •THEN• ERROR(ER P~)l
890 PRELIMINARV ACTIONS DONE!
891 SVS NOTJ BIC1111 FETC~ REP(AOP • BICB IN PAO)J
892 NtLPwi• FETCH(OES. NELPW IN oe:s,,
893 ELT1111 FETCH(PTR • ELT IN PTR)l
894 WROI ■ FETCH(PTR • WRO IN PTR)l
89, EXTEN01111 1 FALSEIJ
896 SCATTER ON KINDi

90

897 t If" t KI ND : 3 • THEN t I GOTO• STEP PTR l
898 1 1f" 1 1 1f" 1 WRD: 0 •TMENt ELT: 0 •ELSE• 1 F'ALSE• tTHEN'
899 •BEGIN• ASSURE PRESENCE BLOCK(F',P)1 tJft P: EP tTHENt
900 STORE(OES • LAST eLOCK IN oES,fETCH(PTR. BLOCK IN PTRi)
901 •ENOt;
902 READWRITE:
903 ADI ■ BIC • INfo IN BIC • WRD;
904 •IP• KIND: 1 •THEN! 1 GOT0 1 WRITE ELEMENTJ
905 READ ELE~ENTI
906 •IF"! NELPW=O 1 THEN 1 TRANS EL:= FFETCH(AO • 1) •ELSE'
907 •BEGIN' ELMt• F'ETCH(AO); 1 1F" 1 NEI..PW > 1 'THEN•
908 •BEGIN• SPELi= fETCH(DEs .BPEL IN DEs)J
909 LOWt: ELT * ~PELJ
910 TRANS EL:= BITSTRING(LOW + BPEL • 1,LOW,ELM)
911 •END• 'ELSE• TRANS ELI= ELM
912 •END• I
913 tfft P II BP w P • EP 'THEN•
914 •BEGIN• ADI= DES• NF'REE IN DESI
915 STORE(AD,FETCH(AD) + 1)
916 •ENO•;
917 •GOTO' !IF'' KIND: 2 'THEN• sTEP PTR 'ELSE• E~IT TRANsi
918 WRITE ELE~ENTI
919 •IF'• P III EP 1 THEN 1

920 •BEGIN• AOFREEI ■ DES• NfREE IN DESJ
921 NFREE:: fETCH(AOfREE)J
922 'If' NfP.EE > 0 •THEN•
923 'BEGIN• STORE(ADFAEE,NfREE • 1)1
924 EXTEND:• NF"REE: 1
925 1 END 1 •ELSE' 'BEGIN' EXTENOI ■ ~ EXTEND F'ILE(F)I SYS TONJ
926 11ft ~ EXTEND 1THENt •GOTOI RETRY 'ELSE• ERROR(ERF'E)
927 1 ENDI
928 1 END• 'ELSE' 1 1F' 1 P s: BP 'THEN,
929 •BEGIN' ADF'REEI• DES~ NFREE IN DESI
930 STORE(AOFREE~F'ETCH(AOFREE) + 1)1 !GOTO' STE' PTR
931 •ENO•;
932 •IF'' NELPW:0 1 THEN 1 SSTORE(AO - 1,EL) 'ELSE•
933 •BEGIN' ELM:• TAIL OF(EL); •IF" 1 NELPW > 1 •T~EN'
934 'BEGIN• SPELi• fETCH(DES • BPEL IN OES)I
935 LOWJ: El,.T • BPELJ STORE(AD,SET(BITSTRING(~PEL P 1,
936 O,ELM),LOW + ePEL • 1,LOW,fETCH(AD)))
937 •END• •ELSE' STCRE(AD,ELM)
938 •END•J STORE(BIC - ~no IN BIC,+777)1
939 STEP PTRr
940 tlF't KIND<~ •THEN! PVALI: PVAL + 11
941 STORE(PTR • VAL IN PTR,PVAL);
942 tlF' 9 P ■ EP •THEN• STCRE(DES • EP IN OES,PVAL> 1 ELSE 1

943 •IF't P ■ BP •THEN• STCRE(DES • SP IN 0ES~PVAL)J
944 STEP PTR ELT!
945 •IF'• NEl,.PW > 1 •THEN•
946 'BEGIN' t IP' 1 I(I NO < 3 I THEN 1

947 1 BEG1fll' ELTp1 ELT., 11 1 1F 1 !LT tGEI O 1 TH!!!N'
948 tBEGIN 1 STORE(PTR • ELT IN PTR,ELT)J
949 AGOTOI EMIT TRANS
950 •EN0 1 1ELSEt STORE(PTR ~ ELT IN PTR,NELPW • 1)
951 1 EN0 1 •ELSE!
952 1 BEGIN 1 EL'fp11 ELT + U I IF 1 EI.Tc NELPW. tTI-IENI
953 •BEGIN• STORE(PTR - ELT IN PTR,ELT)J
954 •GOTOI REAOWRITE
95!!1 , END• 1 ELSE 1

956 t8EGIN 1 STORE(PTR • ELT IN PTR,O)J

957
958
959-
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

EL.Ti: n
•END•

•ENO•
•ENO•;

STEP PTR \I/RO:
1 If' 1 KI NO < 3 • THEN I

•BEGIN' WRO:: WRD + (• 1F• NELPW = 0 ITHEN• 2 •EL.SE' 1jJ
• If'• WRD < INFOL •ThEN•
'BEGIN' STORE(PTR .. wRD IN PTR, wRO)J

•GOTO' EXIT TRANS
•ENO• •ELSE• STORE(PTR - WRD IN P'l'R,O)

•ENO• •ELSE•
•BEGIN' WR01: WRO - (11F• NELP\11: 0 'THEN• 2 •EL.SE• 1)f

'IF' WRO IGE• n IT~ENI
1 BEGI~• STORE(PTR • wRO IN PTR,WRD)J

tGOTOI READWRITE
•END' •ELSE 1

'BEGIN• WRD:= INF'OL,. (•If'' NEL.Pw ::ifo ITHE"I• 2 •EL.Se:• 1i8
STORE(PTR. ~RD IN PTR,WRD) ~

1 END•
•END,;

STEP PTR BLOCK!
ADI: PTR ~ BLOCK IN PTRJ
BLOCK:= f'ETCH(AD) + (1 1F'' KIND: 3 tTI-IEN' ,.1 'ELSE• 1)j
' IF'' p = BP I THEN,_
•BEGIN• MARK BLOCK IN CORE(F,BLOCl<-1,'f'ALSEt)I

STORE(BJC • MOD IN e,c,-777)1
CONSIDER OFF'SET(F',RLOCK)

•ENO• •ELSE• •1F1 1 IF' 1 P:EP •THEN• KIN0::113 1 EL9Et •FAL.S!t t'!'H!Nt
ONE BLOCK DOWN(F,81C)l
OECR INT IN BIC(F',P)J STORE(AD,BLOCl<)J
ASK F'OR BL.OCK(F',P)J
tff't KIND: 3 •THEN•

RETRYI
•BEGIN' CAD!= f'ETCH REF(f'ADB • F)J

DES:: FETCH REF(CAO • DESB IN CAD);
PAO:: f'f.TCH REF(CAD ~ PADB IN CADlJ
ADP:= PAD• (P • 1) * PADCELLJ
PTR:: FETCH REF(AOP - PTRB IN PADiJ
BIC;: FETCH REF(AOP ~ BICB IN PAD)l
ASSURE PRESENCE BLOCKCF,P)l
1 GOT0 1 READWRITE

•ENO'l
EXIT TRANS:

'IF 1 EXTEND 1 THEN 1 EXTEND FILE(F)J
SYS iON

•EN0 1 J

•eoo1.1 IPROC' EXTEND FIL.E(F); 1 VAL. 1 F'J I INT' Fl
1 BEGIN 1 1 INT' SEGMAD,DESl

1 11" 1 FETCH(OE58(F') .. NSEGM IN OES) ;s

SVS LENGTH(SADB(F))/SADCELL 1 THENt EXTEND SAO(,,No);
DESI: DESBCF)J
sEGMADJ• SVS'CLAIM SEGMENT(FETCH(OEs • SCRATC~ IN OES)>OjJ
1 IP I SEGMAD .« O I THEN 1

NO: EXTEND F'ILE1: 'FALSE• 1 ELSE 1

91

92

1017 1 6EGIN• •INT• Fe,LB,PINS,N,L,K,SAD,NSAD,NS,LA~l
1018 1 600L' FIRSTJ
1019 EXTEND FILEI: •TRUE 1 ;

1020 Fe:: BLOCK To POS(F,FETCH (DES" eP IN DES));
1021 1..6;: FETCH(DES ~ LAST BLOCK IN OES)J
1022 PINS:: REMAINOER(FB ~ 1,N6PS);
1023 FIRST1: PINS< NBPS/2;
1024 Nt: 1 IF! FIRST •Tf-lEN• PINS 'ELSE• NBPS • PINS;
1025 Lia: •IFI FIRST •Tf-lEN• LB• N + 1 !ELSE• fBI
1026 TRANSFER OF INFO BLOCKS:
1027 INITIALIZE TRANSFER(F)J
1028 •F"OR• Kl= 1 •STEP' 1 !UNTIL' N 1001

1029 TRANSFER(F,L + K • 1,
1030 SVS COMPUTE BACKAD(SEGMAD,•IFI FIRST •THEN' K • 1
1031 •ELSE• NBPS + K ~ N ~ l))J
1032 AFTERMATH TRANSFER(F)J
1033 TRANSFER OF ADMI
1034 SAD:: SADB(f)J NSAOI: DES. NSEGM IN DESJ
1035 NSJ: FETCH(NSAO)J STORE(NSAD,NS • 1)J
1036 SHIFT SLICES To RIGf-lT(SAD. 1,SAOCELL,NS,
1037 (FB • FETCH(OES "OFFSET IN OES))l NSPS)J
1038 LAD:: SAD• NS* SADCELL;
1039 •FOR• Kl: SADCELL • 1 •STEP' .. 1 •UNTIL' U •oo•
1040 STORE(LAD • 1 • K,FETCH(SAD • 1 • K))J
1041 STORE((•lf 1 FIRST •THEN• LAD •ELSE• SAD). SEGMAD IN SAD;S!GMAD)J
1042 STORE(DES • OFFSET IN DES,(FB•1)'/ 1 NaPS•NePs.1;,
1043 INCR(DES • NFREE IN DES,NBPS•FETCH(OES ~ NELPB IN DES))J
1044 INCR(DES" NBLOCKS IN DES,NBPS)J
1045 Lie FETCH(DES • NSLOCKS IN DES)• FB • 11
1046 1 FOR 1 Kl= LB+ 1 ISTEP' 1 •UNTIL' L 1001
1047 MARK BLOCK IN CORE(F,K, 1 FALSEt)
1048 9 END 1

1049 •END' I
1050
1051 •PROCI INITIALIZE TRANSFER(F)J 1 VALI FJ 1 1NT• Fl
1052 , BEGIN' 1 1 N'T' • BI c;
1053 BICla FETCH REF(BADB(f) • 1);
1054 'IF' l'ETCH(BIC • INT IN BIC) > 0 A FETCH(81C ~ MOD IN IIC)) 0
1055 •THEN' SIC TO BACK(F,SIC,SACKAO OF BL0CK(P,FE?CH(BIC•BL0CK IN BIC)))J
1056 DEMAND REST(BIC)I
1057 STORE REF(CADB(F) ~ TRANSB I~ CAO,BIC)J
1058 SYS !NCR REFCNT(BIC)J
1059 STORE(OESB(F) "TRANSCOR IN oEs, •777)
1060 1 EN0' J
1061
1062 •PR0C 1 AFTERMATH 'l'RANSFER(F); •VAi.' F1 'INTI Fl
1063 1 BEGIN• 'INTI BJC,SLOCK,BACKJ
1064 BICI• FETCH REF(CADB(F) • TRANSS IN CAD)J
1065 STORE REF(CADB(F) q TRANSB IN CAo,o;,
1066 SYS OECR REFCNT(BIC)J
1067 •tFt FETCH(BIC,. INT IN BIC) > 0 9 THENt
1068 SIC FROM BACK(F,BIC,BACKAO OF 81.0CK(F,FETCH(BIC • BLOCK IN IIC)))J
1069 BACKS• FE'T'CH(OES8(F),. TRANSCOR IN OES)I
1070 ,,,, BACK> n •THEN' BIC TO eAcKCF,BIC,BACK)I
1071 DEMAND REST(BIC)
1072 •END 1 1
1073
1074 9 PROCI TRANSFER(F,8,BACK)J 1 VAL 1 F,B,SACKJ 1 1NT• F,B,BACICJ
1075 'BEGIN• 'INTI BIC,ADJ
1076 t I,,' ., BLOCK IN CORE (F, B) 1 THEN'

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
108'7
1086
1089
109G
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
111'7
1118
1119
1120
1121
1122
1123
1124
112,
1126
112'1
1128
1129
U.30
U.31
1132
1133
1134
1135
U.36

•BEGIN' BIC:: FETC~ REF(CADA(F) • TRANSB IN CAD);
BIC FROM BACK(F,BIC,BACKAD OF BLOCK(F,B))

•END• •ELSE!
•BEGIN• AD:: BADB(F)J
1.0CP: BIC1: FETCH REF(AD - 1)J

• IF• F'ETCH(BIC • BLOCK IN F31C) !NE• B •THEN•
'BEGIN• ADI: FETCH REF(AD)l !GOTO' I.OCP •END 1 J
'IF• BIC: FE'l'CH REF(CAOB(F),. TRANSB IN CADj !THEN•
'BEGIN' STORE(DESB(F) • TRANSCOR IN DES,

BACKAD CF BLOCK(F,B))J IGOT0 1 POSTPONE
9 END 1

t END t;
BIC TO BACK(F,BlC,BACK)J

POSTPONE:
1 END 1 J

•PROCI SHIFT SLICES TO RIGHT(UPAD,SI.ICEL,NSLICES,SHIF'T)I
•VAi.' UPAp,SLICEL,NSLICES,SHIF'Tl 1 1NTI UPAO,SLICEL;Ns1.1cis;sH1rT;
'IF'' SHIFT> 0 A SHIFT< NSLICES 1 THEN 1

•BEGIN' !INTI N~K,L; NI: SGCO(NSl.tCES,S~1FT)J
L:: SLICEL * NSLICESJ SHIFT!: SHIFT* Sl.lCELI
tfORt Kl: 1 •STEP• 1 !UNTIi.i N 1D0'
ONE CYCLE TO R1GHT(UPAD - K + 1,UPAO,L,Sl.lCEL,SHIFT)

•END'I

1 PR0C' ONE CYCLE TO RIGHT(START,UP,1.,SL,SHIF'T)I
'VAL' START,UP,l.~SL,SHIFTJ 'INT' START,UP,L,SL~SHIFTi
'BEGIN' 'INT' LOW,D,K,HERE,PREVl

1.0WJ: UPP L + 11 Dis L ~ SHIFT;
lfQRI Kl= 1 •STEP• 1 'UNTIL! SL 1 00!
STORE(LOW • K,FETCH(START • K • 1))J HEREI ■ START;

1.00PI PREVI: HERE - DI 'IF'' PREV < I.OW 1 THE:N• FREV:: PR!V ♦ I.I
1 11"1 PREV 1 NE 1 START 'THEN•
1 6EGIN' IF'ORI 1(1: 0 1 5TEP 1 1 1 UNTIL 1 SI.., 1 'DOI

STORE(HERE • K,FETC~(PREV • K))J
HEREt: PREVJ 'GOT0 1 LOOP

'END 'J
•FOR• Kl= 1 •STEP• 1 1 UNTll. 1 St. 1 00,
STORE(HERE ~ K + 1,FETCH(l.OW • Kl)

1 1!:ND'J

'INT 1 1 PROC' SGCD(A,8)1 1 VAL 1 A,1'1 IINTI A~BI
t.OCPI 1 1F' A> B ITHEN 1 •BEGIN' Alli A,. BJ 1 G0T0 1 I.OCP •ENDt tELSE•

'IF' A< B ITHENI 'BEGIN' Bl: B,. AJ !GOTO• l.OCP 'ENO' 1£1.IEt
SGCO:::: Al

'INT 1 •PROCI WRD IN BLOCKCF,POS)J 1 VAL 1 F,POSJ 1 !N'1' 1 F,POII
1 SEGIN' IINT 1 NELi NELi= NEI.PW(F)I

WRO IN BLOCK 1111 RE~A I NOER (1 IF' 1 N!L. m O I THEN t IDOU2
•Et.SE' POSt/ 1 NEL,NWPB)

1 f:N0 1 1

'INT 1 •PROC 1 ELT IN WRO(F,POS)J 1 VAL. 1 F,POSJ 1 1NT 1 F',POSj
1 15EGIN' 1 INTI NEL.l NEl.1:i NELPW(F')J

EL.TIN WR0:111 REMAINOER(POS,t1F 1 Nfl. > 1 ''!'HEN' NEI. 1 P.:L.U:I POii)
I ENO' I

93

94

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1156
1159
1160
1161
1162
1163
1164
1165
1166
U.67
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
U.81
1182
1183
1184
1185
1186
1187
U88
U.89
U.90
1191
1192
1193
1194
1195
U.96

'INT' tpQ(lC 1 BLOCK TO PCS(F,POS)J 1 VAL' F,POSJ 'INT' F,POSI
8~0CK TO POS!: PCS 1 /' NELPB(F) + 11

'INT' 1 PROC 1 NELPB(F)l 'VAL' F; 1 1NT 1 F'J
'BEGIN' 'INTI NELi NEU: NELPW(F)J

NEL.Ps:: (1 1F 1 NEL.: 0 •THEN 1 ,5 !ELSE' NEL.) * NWPB
'END I J

•INT• •PROC 1 NELP\1/(F.); 'VAL' F; 1 INT 1 F'J
NELPWI: FETCH(DESB(F) ~ NELP\11 IN DES)J

'INT• 1 PROCI LAST BLOCK(F'll 1 VAL1 F'J 11NT 1 F'l
LAST BLOCK:: FETCH(OESS(F') - LAST BLOCK IN OES)I

1 1NT•· •PROC 1 PROcSBL(PRCC)I 1 PR0CI PROCJ
PROCSAL:: PROCl

1 fNT 1 1 PROC 1 STR1NGSBL(l<,STR)J 1 1NT 1 Kl 1 STRINC;t S,.RJ
1 BEGIN 1 STRINGSBLI: STRINGSYMBOL(K,STR)J

1<:: K + 1
1 END' J

1 B00L 1 1 PROC' NO F'ILESJ NO FILESt: F'AOB: OJ

'INT' •PROC' fMAXI FMAltl: SYS LENGTH(FADB)l

'INT• 1 PROC 1 PMAX(F'); •VAL' Fl 1 1NTI Fl
PMAX:: SYS LENGTH(PA08(F'))/PADCELLI

•INT• •PROC' CADB(F')J CADe:: FETCH REF(F'ADB" r,,
, I NT 1 • PRCC I PADFI(F') I PADB l= FETCH REF (CADB(F') ., PAOB IN C:AOj I

•INT' 1 PRCC 1 PTRB(F,P)I PTRB:s FETCH REF'(PADB(F) • (P • 1) *
PADcELL,. PTRB IN PAO)J

•INT• •PROC' OESB(F)I 0Ese1= FETCH REP'(CAOB(f')., DUB IN C:AOil

•tNT• •PROC: 1 BICR(F,P)J BIC:B:s FETCH REl'(PAO!i(F),. (P • {) •
PADCEL.L • BICB IN PAO)!

'INT 1 •PROC' BAOA(F)J BADBI= f'ETCH REF(CAOB(P) ., BADB IN CAO)J

•PH' •PROCI SADe(F)J SAOBI= F'ETcH REP'(CADB(F') .. hDB IN C:AO~I

•eooi..• •PROC 1 F Ol<(F)J 'VAL' Fl 1 1NT 1 FJ
I' Ol<Ss 1 1F 1 NO FILES ITl'1EN• 1 f'AI.SE 1 'EL.SI::!
'IF' F < 1., F > FP,,A)(1 THENI 'f'AL.SE 1

'ELSE' CADB(f') 1 NEI 01

115001. 1 9 PROC 1 P OIC(F,P>J !VALi F,PJ 'IN'l't f',PJ
P Ol(U 1 11' 1 P < 1"' P > PMAX(r, 1 '1'HEN• lf'ALSE 1

fELSE 1 PTRB(F,P) INEI O;

•PROCI HARD CHECK ON F(F')J 1 VAL 1 f'l 'INTI F'J
'IF' .. F Ol<(f') 1 T"4EN• ERROR(ER WF)J

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
123:5
1234
123'
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

'PROC• HARD CHECK ON F ANO P(F,P)J 'VAL' F,PJ 'INTI F,P'l
•BEGIN• HARD CHECK ON r(F)J

•IF•-. P OK(F,P) 'THF.:N• ERROR(ER WP)
•END• I

•PROC' HARO CHECK ON POS(F,POS)I 1 VALI F,POS; • INTI F,POSJ
'IF' POS < VAL OF PTR(F,BP) v

POS 1 GE' VAL OF PTR(F,EP) 1 THEN' ERROR(ER PO)i

1 PR0C' HARO CHECK ON SPECIES(SPECIES)J 'VALi SPECIESj 'IN'l'f SPECIESJ
'IF' SPECIES< 0 v SPECIES> 27 'THEN' ERROR(ER ws,1

1 PROC 1 HARO CHECK ON WORK PERM1T(F')J !VAL' Pl 'INTI FJ
1 1F 1 FETCH(OESB(F)., WORK tN OES) < 0
'THEN' ERROR(ER NW)J

1 INT' •PROC 1 BPEL TO SPEC(SPEC)l 1 VAL' SPECJ 'INT' SPECl
BPEL TO SPECI= 'IF 1 SPEC= 0 1 THEN 1 54 'ELSE• 27 1 / 1 SIIIECI

•INT• •PROCI NELP\11 TO SPEC(SPEC)I 1 VAL' SPEC; 'INTI SPECj
NELPW TO SPECl= SPEC;

95

'COMMENT' CONSTANTS ***••J

'I NT•
1 I NT'
'INT'
'I NT'
'I NT•
'I NT'
' I NT'
'I NT•
'I NT'
1 I NT•
•INT•
'I NT'
'I NT 1

'I NT•
'I NT'
I I NT•
'I NT•
•INT'
'INT'

•PROC 1 ER
•PROCI ER

CE l ER
8E I ER
NN I ER
UK I ER
NV I ER

•PROC'
•PROC 1

1 PROC 1

1 PROC 1

•PROC'
•PROCI
•PROC 1

•PROC 1

•PROC 1

1 PROC'
•PROC'
1 PROC 1

•PROC 1

•PROC 1

•PROC 1

tPROCI
IPROCI

ER
ER
tR
ER NPJ ER
ER WT l ER
ER STJ ER
ER REI ER
ER NFJ ER
ER WF'J ER
ER WP I ER
ER NW l ER
ER Pl.I ER
ER Pl'iJ ER
ER FEJ ER
ER POJ ER
ER WS I ER
ER PCJ ER

CEt=•1l
8E1=•2l
NNl=•3J
IJKl=•4l
NYl=•5l
NPt=•6J
WTt=•71
STl=•Bl
REt=•9l
NFt=•10l
WFt=•11l
WPt=•12J
NWl=•13l
PL.1=•141
PHt=-151
FEt=•16;
P01=•17l
ws1=-181
PCi=•19;

'INT 1 •PROCI SYSVAR CATF'IBACKADJ SVSVAR CATFtBACKAO:a11
'INT' •PROC 1 SVSVAR CATFINACCJ SVSVAR CATFINACCl=2i
'INT' •PROC' SVSVAR USERJ SVSVAR USERi:JJ
'INT' •PROC' SVSVAR FILEHANOLEJ SVSVAR FIL.E~ANDI.EIW4J

'INT' •PROC 1 DEL.SBLJ Ol!L.SBL:=2551
'INT' 9 PROC 1 TABSBL.l TABSBLl:1181
'INT' 1 PROC 1 NLCRSBLI NLCRSBLl=1191
'INT' 'PROC 1 SPAcESeL.l SPACE5BL.h93J

'INT' 1 PROc 1 SCRATCl'i IOPJ SCRATC~ IOPi: OELS~1.•,12•(DEI.Sll.•5i2•DEI.SBI.)!
'INT' 1 PROC 1 ALI.NINCJ ALL.NINCI= •01

'INT 1 •PROC' RHOJ Rl'iOl ■ Ol

96

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
130~
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

•JNT 1 •PROCI Pll Pi:=11
•JNT 1 •PROC' L.ABJ L.ABl:r2l

'INT• 1 PROC 1 SPEC IN DES; SPEC IN OES1•11
1 1NT 1 1 PROC 1 BP IN DESJ BP IN OES1•21
'INT• •PROC' EP JN DESI EP IN OES1•3J
'INT' 1 PROC 1 NSEGr,l IN DESI NSEGI' IN DESIP.4l
'INT' 'PROc 1 OFFSET IN DESI OFFSET IN DES:=51
1 JNT 1 •PROCI BACKAD IN OESJ BACKAO IN O!S::6J
'INT' •PROC 1 NEW IN DESI NEW IN OESPl?J
•INT' •PROCf SCRATCH IN DESJ SCRATCH IN OESl ■ 8J
'INT' •PROCI WORK IN OESJ WORK IN DESi:r9J
•JNT• •PROC' NBICS IN OESJ NBJCS JN OESl11 101
'INT' •PROC' NPTRS IN OESJ NPTRS IN oes11111,
'INT• •PROC' NEL.PW IN DESI NEL.PIY IN oes1i; 12,
1 1NT• •PROC' BPEL. IN DES; BPEL. IN OES1=13J
'INT' •PROC' NBl,.OCKS IN .oe:s; NaL.OCl<S IN DESI• 14j
•tNT' •PROC' NEL.PB IN OESJ NEL.PB IN DESla15J
'INT' 1 PROC 1 NFREE IN OESJ NFREE IN 0ESli=16J
1 1NT' 1 PROC' LAST BL.OCI< IN DES; L.AST BL.0CK IN OES1 ■ 17J
'INT' 1 PROC 1 CATPOS IN DESI CATPOS IN OESt:181
'INT 1 1 PROC 1 TRANSCOR IN DESI TRANSCOR IN DES:•191
'INT' 1 PROCI NFREEBICS IN DESI NFREEBICS IN DESI ■ 201
'JNT' ,9 PROCI IDF' l"l DESI IDF' IN DESI= 211

'INT 1 •PROC' SPEC IN CAT; SPEC IN CAT1•11
•tNT• •PROC' BP IN CATI BP IN CA'l'J ■ 21
'INT• •PROC 1 EP JN CATI EP IN CAT:a3J
'INT• 1 PROC 1 NSEGM IN CATI NSEGftl IN CATllll41
'INT• •PROC 1 OFFSET IN CATI OFFSET IN CAT::!;!;
'INT• 1 PROC 1 SEGMAO IN CAT; SEGIV•AO IN CAT:: bl

•INT• •PROC' 8L.OcK IN BICJ BL.OcK JIii BJCl=i1J
' I NT' 1 PROC' MOO IN BI CI f,'100 IN BI CI a2 J
•INT' • PROC I I NT IN 81 CI I NT IN e IC I •31
•INT• •PROCI NTRANS IN BICJ NTRANS IN BICI= 41
•INT• 9 PROC 1 INFO IN BiCl INFO IN BJCj: 51

•JNT 1 •PROC' PTRB IN PAOl PTRB IN PA0!•1J
•JNT' •PROC 1 BIC~ IN PAO; BICB IN PAOi•2l

9 JNT 1 9 PROC 1 SEGMAO IN SADI SEG~AO IN SAOl=11
'INT' •PROC' BITWRO IN SADI BITIYRO IN SA0:•21

1JNT 1 •PROCI oe:sa IN CAOJ OESB IN CAD1=11
1 INT• •PROC' SADB IN CADl SAOB IN CADi•21
1 INT 1 9 PROC 1 PADS IN CADl PADS IN C:ADl•3J
• INT• tPROCI SADB IN CADl BADS IN C:AOi•41
tJNT 9 •PROC' TRANSB IN CAOJ TRANSB IN CAD:a!:11

'JNT 1 1 PROC 1 VAL IN PTRJ VAL. IN PTRl•11
1 JNT 1 1 PROC' WRO IN PTRJ WRO IN PTlll•2J
•INT' •PROCI EL.TIN P'l'RI e:I.T IN PTlll1113J
' I NT I t PROC I BLOCK IN PTR J BLOCK IN P'l'R I 114 i

• I NT 1 1 PROC' BP l BP: •1 I
'INT' 1 PROC 1 !Pl EP:=21
t I NT I I PROC I WP J \t/P: :3 J
'INT• •PROC 1 F'FP1 rFP: ■ 4l
1 JNT 9 1 PROC 1 PAOCELLI PAOCEL.L.l:BICB IN PADI

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
133b
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
137'3
1374
1375
1376

I I NT' 'PROC 1 pADLJ pADL:=10*PADCELLJ
'I NT' •PROC' NEXpJ NEXPt:10;

I I NT' •PROC' IDFU IDFLl=4l
I I NT' •PROc' DESLJ OESLl=IDF IN oES • IOF'L .. 11

'I NT' 1 PROC 1 NBP\IIJ N6PWl:27l
'I NT' •PROCI NBPSJ N!3PSl:4J
1 INT' •PRoc• NBITVIRDSJ NBITVIROSl•(NBPS .. 1)J.NBP\!I • li
'INTI tPROCI NWPBJ NWPBl::i20l

'I NT' 1 PROC' NEXSJ NEXSI: 3 I
•INT' 1 PROC 1 MAXSI l'-IAXS I: 4*NEXSJ
'I NT' •PROC' SADCELLI SAOCELLl=BITWRO IN SAO ♦

• INT' tPROCI SADLI SADLl=MAXS•SAOC!L.Li

t I NT' 1 PROC 1 CADLI CADLl=TRANSB IN CAOl
I I NT' 1 PROC 1 PTRLI PTRLl=BLOCI< IN PTR1
1 INT' 1 PROC 1 INF'OLJ INF'OLl=NWPBJ
•INT' •PROC' BICLJ 81CLl=INF'OL + INf'O IN BIC ..
1 I NT' •PROC 1 NEXFl NEXF'l:101

t I NT' 1 PROCI OESCRIPTORL; OESCRIPTORLI= I DF'L ♦

•INT• •PROC' LENGTH(A)J LENGTH:: SVS L.ENGTH(A)l

1 PROC 1 ERROR(E)J IVALI El 1 1NT 1 El
•BEGIN• 1 1NT 1 Kl

NLCR; NLCRJ PR1NTTEXT("ERRORll)J
PRINT(E); DUMP(Q); EXIT

•END' J

1 PROC• OUMP(O)I •VAL' Di I INT 1 DJ
1 BEGIN 1 'INT' MP~GEN,L,l<l

MPI: MEMENDJ NL.CR;
NL.CR; PR!NTTEXT(IIOUll'P 11)1 PRINTtO)J NL.CR;

1\19 I 'T'WROS

11

3J

• 11

SPACE(20)1 PRINTTEXT(11 HANDLE :tt)I PRINT(F'ETCH(SVSVAR F'l~!HANO~E))I
NL.CR; NLCRI
•FORt GENI: ~EM[MP] 1 WHILE' MP> FREEPTR '00 1

•BEGIN' NLCRJ A8SFIXT(5,0,MP)I PRINTTEiT(tt: H)J

~I= 'IF' GEN>O 1 THEN 1 2 'EL.SE! SYS LENGTH(MPj • 11
LINE:

'F'OR' Kl= 1 •STEP' 1 •UNTIL' 10 1 001
'BEGIN' F'IX1'(8,0,MEM[MP])I MPI ■ MP• 11

U= L -11 1 11"' L.•0 !THEN' Kl• 10
'END' J
NL.CRJ 1 1F" L>O 1 THEN 1 1 8EGll'P SPACE(10)J •GO TO• LINE IENl)t

1 EN0 1

'END'S

1 PROC 1 svs NOT J J
1 PROC• svs TON I J
9 PROC 1 svs EL JI
1 PR0Ct SYS LE; I
'PROC• SYS SWAPlJ

97

98

1377 1 B001,.' 'PROC 1 sYs IS STRING(P); SYS IS STRING:= 'TRUE'J
1378 1 B001. 1 •PROC• SYS IS INT PROC(P)I SYS IS IN'!' PROC:a •FAI.SEIJ
1379
13.80 1 PROC 1 SVS FANCY IOF(IOF) J IDF'[1] J• IOF'[S.]+11
1381 •PROC' SYS IDF F'ANCY(f,CI..O IOF,IOF)JJ
1382
1383 1 PROCI STORE(AD,l!l)J 'VAl. 1 AO,W; 1 ll\lT 1 A0,\1/J
1384 •BEGIN' TEST AD(A0,61; ~EMtAD]:: W IENO'I
1385
1386 'INT• •PROC 1 F'ETcH(AD)J 'VAi.' ADI 1 1N'l' 1 ADI

7 •BEGIN• TEST AD(AD,7)1 FETC~:= MEMtADJ 'END 1 J

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

•PROC 1 STORE REF(AO,REF); 1 VAl.. 1 AD,REFJ •IN'l' 1 AO,Rl!!f"J
'BEGIN' TEST AD(AD,8)J

'IP' REF< 0 1 0R 1 REF> 262143 1 TM!N 1 ERROR(2)
'El.SE' MEM[A0)1: SET(REF,17,0,MEMfADl)

•END'S

'INT 1 •PROC 1 FETCH REFCAD)J 'VAi.' ADJ 1 1NT 1 AOI
•BEGIN 1 'INT' IJIJ TEST AO(A0,9); WI• MEMCAoJJ

'IF' W<Q ITHEN• ERROR(3)
'El-SE' FETCH REF!= BITSTRING(17,n,wj

'ENO' J

1 PROC• SSTORE(AD;REAl.)J 1 VAl. 1 AD,REAI.J 'INTI ADJ 1 REAI.I R!:ALi
•BEGIN• TEST AD(A0,10)J MEMtAO]l: HEAD OF(REAL)J

MEM[AD + 111• TAIi. OF(REAI.)
•ENO' I

•REAi.' •PROC 1 FP'ETCl-<(AO)l 'VAl. 1 ADI 'INTI ADI
•BEGIN' TEST AD(AD,11)1

FFETCHI: COMPOSE(~E~fAOJ,MEM[AD + 1])J
•ENO' J

•PROC• INCR(AD, INC); 'VAL.I AD, !NCJ I INTI AO, INCJ
•BEGIN• TEST AO(A0,12)1 MEM[AD]I ■ MEMiAOJ + INC
•END'J

•PROC 1 TEST AD(AD,N); •VAL.' AO,NI I IN'!' 1 AD,NI
•IF' AD< 0 v AO> MEMEND 1 THEN 1 ERROR(N)I

•BOOL,t •PROC• SVS NO l,.ONGER SCRATCM(A)l
SYS NO 1.0NGER SCRATCMI: 1 TRUE 1 1

1 PR0C' SYS SCRATCH NOW(A)Jl

•PROC:t SYS !NCR REF'CNT(AO)J 'VAL. 1 ADJ 1INT 1 ADI
STORE(AD,~C•FETCH(AOI + T19))J

•PROC• SYS DECR REF'CNT(AD)J 1 VAL. 1 A0J I INT' ADI
'BEGIN' 1 1NT 1 WJ WI: •F'ETCH(AO)J STORE(AO, •CW•f19))l

1 1F 1 BITSTR!IIIG(25,19,W) 8 1 1 '1'H!IIII SVS DEL.ETE(A0)
•END'J

'INT• •PROC' SVS GENWRO(GEN,L.,RC,S IVAI.' GE"l,L.,~CJ 1 !N'l't G!:N~l,,,RCI
SYS GENWROSs •SET(RC,25,19,111" 1 G!N ■ L.AB 1 '1'H[NI T36 'ELl!I

I,. ♦ (ttF" 1 GEN•PI •T~EN 1 T18 1 El,.SEI 0))1

•INT• •PROC 1 SVS L.!NGTH(AO)l IVAL. 1 AOJ 'INTI ADI
SYS 1.EIIIGTHI ■ StTSTRING(17,0,•F'ETCH(A0))1

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1471
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

'INT' •PRCC 1 SVS E><TEND(AO,EXTRA)l 'VAL' AD,EXTRAJ 1 1NT' AD,EXTRAJ
'BEGIN' 'INT' 13ASE,CL,l(l OL:: LENGTH(AD)J

sASE:= SYS CLAJ~(OL +EXTRA+ 1)1
'IF' BASE>O 1 THEN'
'BEGIN' STORE(BASE,FETCH(AD)-EXTRA)J

STCRE(AD,-sET(0,25,19,-FETCH(AO)))J
•FoR' Kl=1 1 STEP' 1 'UNTIL' 01. tDo• STORE(BASE ■ 1<,FETCH(A0•1<t>J
•FoR' Kl=1 1 S'!'EP' 1 'UNTIL' EXTRA •Do• SToR!(BASE .. OL•IC;o;

t END' ;
SYS EXTEND:: BASE

'END'J

'PROC' SYS SHRINK(Ao,L>I !VAL' Ao,l.J I INT' Ao,LJ
'BEGIN' 'INT' W,OLJ 01.11:1 SYS LEIIIGTH(Ao)I 'IP'' 0L-L•1 •THEN'

•BEGIN' WI= FETCH(AO)J
STORE(AD,•SET(L,17,0,•W))J
STORE(AD •LR 1, •(T18 + OL •I.• 1))

•END•
•END';

'INT• •PROC 1 SYS Cl,.AIM(L)J 1 VAL 1 I.I 'INT 1 1.J
1 BEGIN 1 1 1NT 1 AD,GEN,I.Hl 1 8001.1 P'I Fl ■ tTRUEIJ

AGAIN: Ao:: MEMENO;
'FOR• GEN:= FETCH(AO) 'WHILE' AO>P'REEPTR •00 1

•BEGIN' LHI: 1 1F' 1 GEN>O 1 THEN 1 2 1 EL.SE 1 SYS LENGTH(AD)•1J
'JF'f •1F• BITSTRING(25,19,.GENl 'NE' 0 ITHE"l• ff'ALSEt

•ELSE' L=LH v LH•l.>1
1 THEN1 •BEGIN! •IF• L•NE 1 L.H ITl'4EN 1

STORE(AD-L.,•CT18+L.H•L•1l)J 1 GOT0 1 F'NU 1 ENOI
'ELSE• ADI= AD• LM

1 END 'J
1 IF'1 FREEPTR • L +1 < 5 'THEN'
•BEGIN' •fFI F !Tl-EN'

'BEGIN' Fg: •FALSE'J FREE SEMIFREEJ 1 GO'!'o• AGAIN •!Nl)I
'ELSE• AD:11 •1

1 Etl0 1 'ELSE'
•BEGIN' ADI• f'REEPTRJ FREEPTRl• FRE!PTR • I. 1 !N01J

FNDI SYS CLAIMla AO
1 END 1 J

•PROC• SYS OELF.TE(AD)I IVAl. 1 ADJ 'INTI ADJ
'BEGIN' 'INT' GENJ

GE~IS: F'ETCH(AD)I 1 11'' GEN> 0 1 TM!Nt
1BEGIN 1 SVS DECR REFCNT(F'ETCH REF (AD•1))1

SYS DECR REFCNT(FETCH REl'(AD))
•END• 'ELSE 1

1 11' 1 BIT(18,GEN): 1 1 THEN'
I BEGIN. I I NT' L' NAO I

Lia: SVS L.EI\IGTH(AO) J •FOR• NAOI• AO•L. tS'f'EP 1 1 IUNTILI AD■1 ll)C,t
'11' 1 FETCH REP'(NAD) 1 NE 1 0 1 '1'1'4!N 1

SYS DECR REFCNT(F'ETCH REF(NAO))
•END•;
STORE(AP,•SET(0,25,19,.GEN))

'END' I

•PROC• SYS TO DISl<(COR!AO,l.H,BACKA0 1 CNT)I 1 VAL 1 COREAD,LM,BACKAO,CNTJ
1 INT• COREAD;l.H,BACl<AO,CNTJ

•BEGIN' 1 PJT 1 1 ARRAY 1 A[11LH]J 1 1NT 1 10
1 FOR 1 1(1:1 ISTEP 1 1 !UNTIL' L"" 1 00 1 Afl(JI ■ ME"'i[COR!AO+IC•1Ji

99

100

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
15H
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
152'3
1521!,
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
15515
155~

TO ORU~(A,BACKAD); K1: A[1]J
sys ELI MEM[CNT]1= ME~[CNT] • 1J SYS LE

•ENO';

•PROC• SVS FROM OISK(COREAO,LH,BACKAD,CNT)J
•VAL' COREA0,LH 1 BACKAD~CNT; • INT 1 COR[AD~LH,BACKAD,CNTi

•BEGIN• 'INT• 'ARRAY' A[11LH]J 1 1NTI Kl
FROM ORUM(A,BACKAD);
'FOR• Kl: 1 •STEP• 1 1 UNTIL' I.M 1 001 MEM[COREAO ♦ l<•1ll= AIKiJ
SYS ELI MEM[CNT]I: MEM[CNT] • 1J SYS LE

•END'J

•INT• •PROCI SVS COMPUTE BACKAO(SEGMAO,B IN S)J
'VAL' SEGMAo;e IN SJ IINT' Se:GMAD~ BIN SJ

SYS COMPUTE aACKAol= SEGMAo + 8 IN S•INPOL.l

• I NT I t PROC I SVS Cl.A IM BI.OC:K;
'IF' N~BFREE:0 IT~EN' SYS Cl.AIM BI.OCKI~ •1 'EL.SE'
'BEGIN' • I NT' KI

'FOR• Kl= 1 •STEP' 1 1UNTIL 1 NBB 100'
'IF' BBFREE[K] 1 THEN' 1 GO T0 1 F'NOj

FNo:eeFREE[Kll= 1 f"ALSE'I NBBFREEI= NeeFREE • 11
SYS CLAIM ~LOCK!= 8B0FFSET + (K•1)•1NFOL

1 ENO•;

•PR0C 1 SVS OEL.ETE BLOCK(BAD); •VAL. 1 BAOJ 1 1NT 1 "iADi
1 BEGIN' 1 IN'T' BJ

e:= (BAD• B90FFSET)/)NFOL. ♦ 1J
BBFREEfBll= •TRUE•: NBBFREEI: NB~FREE • 1

1 END 1 J

•INT 1 1 PROC 1 SVS CLAIM SEGMENT(SCRATCH)J
'VAL' SCRATCH; 'BOOL' SCRATCHJ
'IF 1 NBSFREE•O 'T~EN' SYS CL.AIM SEGMENTt=•i 'ELS! 1

'BEGIN' 'II-JT 1 l<J 1 FOR 1 1<:: 1 1 STEP 1 1 1 UN,,.IL' NBS 10() 1

'IF' BSFREE[K] 1 '1'HEN 1 1 GO TOI FNOJ
FND:BSFREE[l<JI• •FALSE!J NBSFREEaa NBSFREE • 1J

SYS CLAIM SEGMENT! ■ BSOFFSET ♦ (l<w1)•NBPS•INFOL
I ENO I l

•PROC' SYS DELETE SEGMENT(SAO,SCRATCH)I
1 VAL 1 SAD,SCRATCt,4J 'INTI SADJ •B001,.1 SCRA'l'Cl-41

•BEGIN' 'INT• SJ SI: (SAD• BSOFFS!'l')/NBPS/INFOL ♦ 1i
NBSFREEI: NBSFREE + 11 BSFREE[S]I• tTRU!'

'END I I

•PROCI INITIALIZE FILESVS'l'EMJ
I SEGI N• 'I NT• fl"AOJ

FADS: CLAIM CORECRHO,NEXF,SVSVAR FILEHANDLE,NO;J
NO:
I EN0 1 J

•PROC 1

•BEGIN'
1 FOR 1

'FOR'
1 fl'OR 1

JNITESTJ
I I NT' KJ
Kl: 1 •STEP'
Kl: 1 •STEP'
Kl= 0 •STEP'

1
1
1

!UNTIL' NSB 1001 BBFRE!fl<Jla 1 TRUl•i
•UNTIL' NSS 1001 asrRE![l<,:a ITAUE•i
1UN'l'IL 1 MEM!NO •001 ME~(K!la 10000000 • Kl

1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
16U.
1612
1613
1614
1615
1616

"IBF!F'REE l: NB Bl
IJBSF'REf.1: NBS l
F'REEPTR:: MEMENDJ
f3BoF'F'SETl= OJ
BsoF'F'5ET:= BBOFFSET + NBB•1NPOLI
MEM[SYSVAR F1LE~ANOLEJ:= 0;
MEM[SYSVAR usER]I= 6965151
MEM[SVSVAR CATFtNACC]1: -7771

F'OUND CATALOGUE
•END•;

•PROC 1 FOUND CATALOGUE!
'BEG I Ill' 1 I N'l'' F', 8 I

Fl= NEW F'ILE(l)J
STORE(SVSVAR CATFIBACKAO,SVS CLAIM BLOCK;J
MAKE AD~ BLOCK(F, 1 TRUE 1)J DELETE CORE(FAbB•F)

• EIIID I J

1 PR0C' TEST(T)J 'VAL' TJ IINT 1 TJ
'BEGIN• PRINTTEXT("TESTH)J F'IXT(4,n,T)J NLCR 1 EIIID'I

•BEGII\II 'INT' A,B,F'~G,K,M,N,P,Q,LETTER P,PERIOD,OELETION;coLcNj
'REAL I SQRTN I

INITESTJ
LETTER P:: 251 PERIOOI: 88; DELETION! ■ 2551 COLO~I• 90j
111:s 1401 SQRTN1: SQRT(N)I
F:: NEW F'ILE(ljJ G:: NEW F'ILE(1)1
•FOR• Kl= 2 •STEP• 1 1 UNTIL 1 N 1 00 1 WRITE EL(P,EP,K)I
STANDARD PTR(F~BP)J
•FOR• Pl= "IEXT EL(F,eP) 1 WHILE 1 p 'LE' SQRTN •oo•
•BEGIN' WRITE EL(G,EP,P)J

Mis VALUE OF EP(F') w1J
1 F'OR' Kl= VALUE OF BPCF) •STEP' 1 'IJNTIL, 1 M •DO'
'BEGIN' 01= NEXT EL(F,SP)l

•1F1 Q t/1 P * p fNE' Q •TI-IENI WRITE !L(F,EP;Qj
'END'

•ENO• ;
WRITE EL(G,EP,P)J
M:= VALUE OF EP(F)~11
•FOR• K:: VALUE OF BP(F) 1 STEP 1 1 'UNTIL' M 'll0 1

WRITE EL(G,EP,NEXT ELCF,BP))J
CLOSE FI LE (I') I
NEW tDF'(G,"PRIMES")J CLOSE F1L~(G)J

B::: NEW FILE(27)J
A:= OLD F!LE("PRl~!Stt);
P: ■ NEXT EL(A,WP);

•FOR' Kl= 1 •STEP• 1 'UNTIL' N 1 00 1

•BEGIN' WRITE EL(B,EP,'IF' P::K 1 THEN 1 0 'ELSE' 1iJ
P::: 'IF' P 'NE' I(ITHEtJI P 1 EL.51E'

101

1 1F 1 VALUE OF EP(A) > VALUE OF PTR(A,WP) '1HEN 1 ~£MT £L.(AeWP)
'ELSE 1 N+1

1 END 1 ;

P:: ~EW PTR(,,VALUE OF BP(B));
'FOR• K1: 0,K+i 'WHILE' K>O 1 001
'BEGIN' QI= IDF SYM(K,A)l

102

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
~627
1628
1629
1630
1631
1632
1633

PR I 14ES:

'IF' ~=DELETION 1 THENt
1 BEGI~• K:: •777J QI: COLON •ENO'J
PRSYM(Q)

• Et~D 'I
NLCR;
1 F'0Rt K1: 1 1 STEP• 1 •UNTIL• N tpOt
•BEGIN• •IFt K • K1 /•70•70: 1 •TMEN• NLCRJ

PRSyM(tlf't NEXT EL(B,P):0 tTHENI LETTER P •~LSE• PERIOD)
•ENO•

1 END 1 TEST PROGRAMJ

'END'J

ENO OF' TEST ENVELOPEl
'END'

• PP. P. s: ••• P • P ••• P. P ••• 0 , •••• P . o ••••• t' , . , P. P ..• P, ••• , P •.•• , P, P, • , • , P •• ,
P.P .•••• P ••• P.- •••.• !!",.,., •• P •... P.P .• ,P.P,. ,P, ••• , ... ,., .• P., ,P~,,. ,P,P,

REFERENCES

[OJ E.W. Dijkstra, "Cooperating sequential processes", in "Programming

Languages" (ed. F. Genuys), Academic Press London,

New York (1968).

103

[I] L.J.M. Geurts, L.G.L.Th. Meertens and H.W. Roos Lindgreen, "Files,

Voorstel in de vorm van een beschrijving voor ge

bruikers, ••• 11, mimeograph for internal documentation,

Mathematical Centre (1971).

[2] J.V.M. van der Grinten, P.J.W. ten Hagen and F.E.J. Kruseman Aretz,

"Sequential access files voor de EL X8, deel 1:

[3] D. Grune,

Voorstel voor de atomaire routines", NR 7, Mathemati

cal Centre (1969).

"Handleiding Milli-systeem voor de EL X8", LR 1.1.,

Mathematical Centre (1970).

[4] C.H. Lindsey and S.G. van der Meulen, "Informal Introduction to

ALGOL 68", North-Holland Publishing Company (1971).

[5] S.E. Madnick, ·11Design strategies for file systems", MAC TR-78 (1970)

[6] L.G.L.Th. Meertens and H.W. Roos Lindgreen, "A dynamic storage al

location scheme, coded for the EL X8", unpublished.

[7] H.L. Oudshoorn, "Bitmanipulatie-procedures", LR 1.2., Mathematical

Centre (I 97 I).

[8] s. Rosen, "Programming systems and languages", McGraw-Hill

Book Company (1967).

[9] W.J. Waghorn, "Shared files", in "File organizationll, File 68 /

IAG Conference (1968).

[10] A. van Wijngaarden (Editor), "Report on the Algorithmic Language

ALGOL 68 11
, Numerische Mathematik, 14 (1969).

[II] "Vocabulary for Information Processing", ANSI X3.I2-

1970, American National Standards Institute, Inc.

(1970).

'

