A

stichting
mathematisch
centrum MC

AFDELING INFORMATICA IW 10/73 OCTOBER

H.W. ROOS LINDGREEN
A FILE SYSTEM FOR MULT!-SEQUENTIAL FILES

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEKE MATHEMATISCH CENTRUM
AMSTERD AR

- Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amstenrdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and Aits
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.0.0),
by the Municipatity of Amsterdam, by the University of Amsterdam, by
the Free Univernsity at Amsterdam, and by indusinies.

ACM - Computing Reviews - category: 4.41

ABSTRACT

A user oriented description of a file system is given, and also an imple~
mentation of that system in the form of an ALGOL 60 program. It is a
dynamic system in the sense that there are no fixed upper bounds for the
number of files or the length of a file. A new type of file accesé, multi-
sequential access, is introduced, allowing the user to have sequential
access to a file at various entry points of that file simultaneousiy. All
files within the system presented are of this access type and therefore
termed multi-sequential files,

It is assumed that the system is embedded in an operating system having
dynamic storage allocation features. The specific requirements of the file
system with respect to that operating system are listed. Underlying con-

cepts of both implementation and design of the file system are given.

TABLE OF CONTENTS

0.
1.

PREFACE

INTRODUCTION

1.1. Some general remarks
1.2. History

1.3. Results

1.4. Report get-up
GENERAL

2.1. Technical information

2.2, General concepts of the implementation

2.3. General design considerations
POINTER ROUTINES

3.1, The routines

3.2, Implementation
3.3. Pointer resetting
ACCESS ROUTINES

4.1, The routines

4.2, Implementation
4.3. Designing the access actions
FILE OPENING

5.1. The routines

5.2. Implementation
FILE CLOSING

6.1. The routines

6.2, Implementation
6.3. Implicit closing
FILE NAMING

7.1. The routine

7.2, Implementation
INQUIRY ROUTINES

8.1. The routines

8.2, Implementation

8.3. Design considerations

O W NS W W e

D UL 1 L1 K L1 L1 Lt LBt &R WWWWWNNDN N e
O W W 0 O Ut Ut & = O YW W O O U & PN N = 00 ~N O

ii

TABLE OF CONTENTS (continued)

9. DYNAMIC STORAGE ALLOCATION MODULE 61
9.1, External description ' 6l
10. INTERFACE FILE SYSTEM / OPERATING SYSTEM ' . 64
10.1, Routines, constants and variables 64
10.2. Actions 68
10.3. Hidden interface . 69
11. TESTING THE SYSTEM : 71
12. THE PROGRAM 73
12.1. The program text | ‘ 74

REFERENCES 103

0. PREFACE

The present report contains a detailed description of a file system. This
detailed description consists of an integral program text and also of an
ample explanation of that text and of the underlying concepts.

In programming literature the term "file system" rather often occurs,

mostly in one of the three following significations [5,8,9,11]:

. an operating system heavily leaning upon the use of files. Files then
serve data‘transmission between users, between user and system, and
between vafious parts of the operating system itself. Such a system
preferably should be called a "file oriented system".

. one of the modules of an operating system. This module, the file module,
deals with all file actions. In this report the terms "file module" and
"file system" will be equivalent.

. an information retrieval system in which in general a lot of attention
is paid to the data structures within the files. Such a system prefera-

bly should be called a "filing system".

The file system presented here can be considered to be a system for dynam-
ic files. This term needs some clarification. A file often is considered
as being either static or dynamic depending upon the frequency of file
alterations. In this report, however, files are termed dynamic, because

they can grow and shrink in number and length.

The files are named multi-sequential after their method of access. Some

general types of access such as direct, random, word addressable, sequen—
tial, indexed sequential, etc. do not aptly apply to the method of access
practiced here. The term multi-sequential is introduced because the way of
accessing is of sequential nature and has some analogy with (the accepted
term) multi-access [9]: the user has a variable number of reference points

on his file and he accesses the file sequentially via those references,

Files may stay in the operating system permanently. Attention has been
paid to such matters as unique naming, scratch files, multi-read files,
private and public files, but not to matters such as creation date, reten~—

tion period, extra cycles, passwords or priorities,

&

Special attention is paid to the use of the system by ordinary programs
(opposed to system routines), which resulted, among other things, in
extensive error checking and the distinction between fatal and venial

errors.

No attention has been paid to special data structures within a file.

A file is a linear memory that is not structured. Each file is of some
species, the species dictating the type of the memory cells, that may be
different for different files. To give an impression of what is meant: we
can speak about 'real files","boolean files", etc. This allows efficient

storage in case all information to be stored in a file is of the same type.

1. INTRODUCTION
1.1. Some general remarks

A file is a macroscopic information unit. In general it is of no basic
importance in what way a file is represented, nor which media are used.
Therefore, a file can be considered a logical entity. When a file is
observed more in detail, a microscopic structure might be noticed. In
general a file consists of a number of blocks, each block consisting of a
number of records and each record consisting of a number of elements. The
files presented here consist of a number of elements and no other hierar-

chy is of importance of the user.

Files supply the following wants:

. Large operating systems need some means for internal data transmission.
Using files an operating system is able to standardize communication
between its modules.

. Communication between an interactive user and the system is done easily
and smoothly via files.

. Files form an excellent medium for permanent storage of data, programs,

etc,

When handling large amounts of information, files can be of prime assis-

tance.,

A {4iLe system is a collection of routines that

. enables the user to create, read, alter, store permanent and/or delete
files.

. forms a module of the operating system it is embedded in; a module that

is pretty well autonomous.

In view of the important role files (are able to) play in nearly all
system actions, a file system belongs to the basis, the kernel of any

advanced operating system.

1.2, History

The development of a time sharing system for the computer tandem con-
sisting of the Electrologica X8 and DEC PDP8-I led to the design of a file
system. This design contained the concepts of both sequential access files
and random access files. A proposal for the sequential access files was
given in [2]. This proposal was a starting point for the investigation
reported here. Although an accurate description of the file routines was
given in [2], it did not answer some questions of vital importance to some
actual implementation of the fileé, such as what to do in case of space
exhaustion, what is the maximal file length, etc. (quoted. from [2]: "This
proposal does not go into the matter of the principally finite length of

a file".). To these and other questions this report gives a full ‘answer.
While considering some of the aspects of the proposal just mentiomed, it
was decided to reconsider all of it, which resulted in a completely new
proposal, done by L.J.M. Geurts, L.G.L.Th. Meertens and the author [1].
One of the main improvements is the concept of the multi-~sequential file. -
All files in this proposal dispose of a method of access that facilitates
the user to manipulate his files in a way that gives him pseudo random

access.

The next question to be answered was if the proposal was implementable.

It was answered in the affirmative with the proviso that some sort of dy-
namic storage allocation scheme should be available. It was decided to
realize the file system within the existing operating system for the X8,
Milli [3]. The first step in this process was made by L.G.L.Th. Meertens
and the author. They developed and coded a dynamic storage allocation mod-
ule for the X8 [6]. The next step was to implement the file system itself,

which activity is given account of in this report,

1.3, Results

As mentioned before, an interesting by-product of the construction of the
file system was a dynamic storage allocation module. A very brief descrip-

tion of its external behaviour will be given in chapter 9.

&

The file system as it is realized consists of a number of ALGOL 60 proce-
dures that have a well determined interaction with routines that belong to
the operating system., Those routines have to do with memory reservation,
job scheduling, etc. and therefore lay beyond the scope of the file module
itself. The dynamic storage features for a good deal dictated the data
structures the files are administrated within. To test the file mﬁdule
without having it actually embedded in the operating system, vital system
routines and most of the dynamic storage allocation routines were éimulated
in ALGOL 60. Since all tests were performed with the ALGOL 60 version, no
measured figures can be given about rather important system characteris—
tics, such as the access time for one file element. In order to give a
fairly good estimate for the characteristic just mentioned, the routine
trans el was coded in assembler language. It was concluded that on the X8,
with disk drive(s) serving as mass storage and with the file system instal-
lation parameters, such as blocklength, set to some likely values, the
access time for file elements read sequentially would be about 1 milli-
second per element. This seems rather expensive for the X8 with a mean
instruction time of 5 microseconds. It is accounted for by the great number

of checks to be made at run time, due to the flexibility of the system.

A next step in the process of system development should be making the file
system operative within the Milli system. For that purpose the following
actions must be taken:

. incorporation of the dynamic storage module in Milli,

. extending Milli with routines for communication with disk drives.

. adapting the measures Milli takes upon program termination.

. coding the ALGOL 60 procedures of the file system into assembler code.
This is not really needed since Milli disposes of an ALGOL 60 library,
but it surely would make the system more efficient. Furthermore, in coded
form the operating system itself can use the file routines in a way far
more elegant and surveyable than in case they are in ALGOL 60.

The actions spoken of above were not taken after reaching the here pre-

sented state of affairs as one might have expected. They were not taken,

because a new computer was about to arrive, meant to replace the X8. Since

this new machine was to be equipped with a file system and since the days

&

of the old machine were numbered, it seemed a considerable waste of time

and effort to make the system operative.

1.4. Report get—up

In this report different type fonts are used. Chapter 12 merely consists
of the integral program text, which is given in lineprinter symbols,., Parts
of the program are reproduced elsewhere in this report and in sdme'places
programming language was used instead of English language if such seemed
to increase clearness. Wherever program text is used, it is represented in
italics, e.g. begin. At the introduction of a technical term, the new
notion is given in 4Lope-wiiting. File variables that have an equivalent
program variable with a different identifier are apostrophed, e.g. 'spec'
is a file variable that has as equivalent program variable (the location

addressed as) des ~ SPEC IN DES.

Because the implementation was done in ALGOL 60, file actions are taken
by calling the file system procedures. In the sequel it is preferred how-
ever to talk about "routines" that perform those actioms, rather than

"procedures", to emphasize the generality of the system presented.

The chapters 2 up to and including 8 all are structured in the same way,
as is shown by the table of contents. It may be of service to the reader
to know that this structuring is done according to the following schema

(which is inspired by that of [4])

2 3 4 5 6 7 8

general information

o1 technical information

.2 implementation

«3 design considerations

2. GENERAL

A §4le is a virtual memory, consisting of consecutive positions, numbered
in a natural way and defined from the §{fe beg.in, the first selectable

file position, up to and including the §4fe end, the last selectable
position. The natural numbers attached to the file positions can be con-
sidered to be the addresses of the locations of the virtual memory, It is
emphasized that the user of a file in general will be completely ignorant
about the physical resources called upon by the system to realize the file,
Despite this allowed, and in a sense encouraged, ignorance about the exact
where—abouts of his files, it might help the user in ménipulating his files
to have a vague notion about the implementation. Also it could have a fa-
vorable effect on the efficiency of file handling. In the present imple-
mentation the major part of a (large) file is on back store; a rather small
part will be in main store. Nearly all of the inevitable file administra-
tion is kept in main store. In this report both the terms back sfore and
disk are to be understood as a notion for some, so-called backing storage
or mass storage device, preferably easy to access. Where the term main
sfone or core is mentioned, some storage device easier to access than back

store is meant, preferably central memory.

The contents of a file position are called a $4ife element. All elements of
a file are of the same species, the f§4ife species, which may be different
for different files. It is the file species that dictates the size of a
file position, i.e. the number of bits it takes.,

The {{fe Length, i.e. the number of elements a file contains, is not a
fixed value. The file is allowed to grow or shrink at user's command,
though the existence of an upper bound is of perforce.

The §4fe claim, i.e. the maximal number of elements a file can contain is
not fixed either. If possible it will be enlarged automatically as soon as
the user needs more elements than available.

Addressing a file element can be done only in an indirect way, via a
pointer on that file. Such a pointer, a fife pointer, thus plays a role of
vital importance. The number of pointers on a file is not fixed, but left

to the user of the file. Because more than one pointer on the file is al-

&

lowed, the files are called multi~sequential. The value 0§ a pointer is the

position the pointer points at,

Once established a file can be preserved for some space of time, may be

for ever. A preserved file is called peamanent.

Any file carries a name, the f§4ife name, that serves two purposes:

. it allows identification of permanent files.

. it distinguishes between 4cratch §4Les, which carry the scratch name,
and own §4€es which carry a name different from the scratch name.

In the preseﬁt implementation the scrafch name is identical to the empty

name. The name of a permanent file cannot be the scratch name.

A file is called active if the user has access to it. If a file is not
active, Anactive, it is either an empty scratch file, only virtually exis-
ting, or a permanent file.

Active files can be classified according to the following criteria:

. a file is either an own file, i.e. a permanent file, or a scratch file.
. a file is either a work file or a read file. A file is called a work {§ile
if the user is allowed to change the file in whatever respect (the con-
tents, its length, its name, etc.). File and user are said to have the

work peamit, 1If a file cannot be changed at all by its user, the file is
called a read §ile. '
. a file is either an old file or a new file. An 0£d {4fe is an activated
permanent file., A new {{fe is a file freshly created, possibly carrying
a name different from the scratch name.
Activating a file is called f§4Le opening. Making a file inactive is called
§4iLe closing.
Considering the three classification criteria: new/old, work/read, own/
scratch, we are able to observe eight possible combinations of them. Only
five actually exist. They are listed below, accompanied by the file class

attached to them.

combination file class
new scratch work - new scrateh file
new own work new own gile
old scratch work okd scrateh 4ile
old own work old work file
old own read old head file

new scratch read
new own read "impossible"

old scratch read

The following digraph shows the connections and possible transitions
between active and passive files (the nodes of the graph) and the routines
involved (on the edges of the graph).

|
‘ I
permanent files active files |

old work]| new 1df jold scratch

eyo

|

|lpassive scratch|

passive own

| new own | new 1df 'Inew scratchly 6%°
[

l ' |
The user who created a permanent file is called the owner of the file.
Permanent files can be changed by no one but their owner. The moment a
permanent file is created, the file owner marks it as either public or
private. Private §iLes can be accessed only by their owners, whereas pubfic

§4Les can be read by anyone, i.e. public files are multi-read files.

2.1. Technical information

Active files are identified not by their names, but by a {4Le number, a

positive integer distributed to the user by the file system when the file

10

is opened. File numbers are always denoted here as f in plain text and as
f in program text. In the latter case "file f" means "file with file
numbef f", where f equals the contents of the variable f.

As is pointed out in chapter 3, much the same holds for the integers that
identify pointers, the pointer names, They are denoted here by p in plain
text and by p in program text. The beginpointer, endpointer and workpointer
are denoted by bp, ep and wp respectively., The value of pointer p is de-
noted by E and E denotes the value of the pointer the name of which is
contained in the program variable p; bp stands for the first position of

the file, etc.

Two types of errors can occur when using files:

. fatal emrons, They produce some error message and cause job termination.

. venlal errons. They do not produce an error message and the program is
continued after being supplied with some information about the error
detected. This passing of information always is done via the routine-
identifier. If this routine is of type boolean, true means no error
occurred and false means the only venial error poésibie was detected. If
the routine is of type integer, a positive result means all was correct
"and a negative result means some venial error occurred. More information
about the error will be contained in the value of the negative result.

Related with this approach is the fact that f, p and 5 always are positive

integers.

2.2, General concepts of the implementation

Any file, passive or active, is structured as a logically consecutive row
of blocks. Each bLock consists of a number of logically consecutive cells
and each cell consists of one or more elements, depending upon the file
species., In the present implementation a cell is realized in two consecu-
tive machine words. A file block resides in back store or in main store.
In both cases the cells contained in it are physically consecutive., All
blocks of a permanent file are in back store. Those of an active file are
either in main store or in back store, with an exception for read files:

the blocks of a read file all are in back store and incarnations of them

&

11
may be existent in main store.

2.2.1. Main store management

Besides the info-space needed by an active file to accommodate file blocks
in main store, administration space in main store is needed to keep all
vital information about the active file. Reservation of info~ and adminis~
tration space, i.e., reservation of all main store required by a file, is
not done statically, in a fixed region, nor in a run-time stack, but in
another region, termed the heap, in which garbage collection techniques
may be used for storage retrieval. (The term was borrowed from [10]).
Claiming from the heap rather than from some other source is more or less
demanded by the various dynamic file parameters such as length, number of
pointers and even number of files.

The heap is controlled by the dynamic storage allocation system, This
authority allows structured values on the heap, but they cannot be of
great complexity. Therefore the file administration had to be "layered" in
order to achieve the complexity needed. -

The skeleton of the file administration is given below, in two versions:

. a description in terms of ALGOL 68 [101].

. a pictural approach in which the skeleton is linked to the program.

It was decided to give this skeleton with the emphasis shown, because this
information seems of crucial importance to a proper understanding of large

parts of the program.

[1:01flex ref cad;

(ref des des,ref sad sad,ref pad pad,ref bad bad,
ref bic trans);

(int spec, bp, ep,nsegm,of fset,nbics,nptrs,nelpw,bpel,

mode fad
struet cad

struct des
nblocks,nelpb,nfree, last block,catpos, transcor,nfreebics,
bool new, scratch,work, segmad backad, string idf);

[1:0 flex] sadcell; '

(segmad segmad, [1:nbps] bool bitwrd);

[1:0 flex] padcell;

mode sad

struct sadecell

mode Egé

12

struct padcell = (ref ptr ptr,ref bic bic);

struct ptr = (int val,wrd,elt,block);

l (int block,int,ntrans,bool mod,info info);
[1:infol * nelpw] elt;

(ref bad next,ref bic bic);

mode. segmad = [1:nbpsl blockad;

struct bic

mode info

struct bad

mode blockad

¢ an actual-declarer specifying the mode of a file block

on back store cj

mode elt ¢ an actual-declarer specifying the mode of a file ele-

ment. This mode depends on the file species ¢;

Access to a file is obtained through an index for a multiple value of mode

fad. This index is called the file number. So:
mode file = intg

As said before, the actual form of the file administration depends on the
information structures allowed by the dynamic storage allocation system.

This system allows:

i

[1:0 flex] int;

[1:0 flex] ref str;

(ref lab lab,ref str str);
(pi, Lab, rho);

mode p

mode rho

stiuét lab

union 8tr

13

FAD
: | If an object is depicted with a
: : notched bottom, this object can
f » grow or shrink dynamically.
E : Otherwise, if the bottom is smooth,
va«awvvj the object is of fixed length. .
CAD
DES
rho [cadl |e¢ SAD
DESB ¢ —p| pi |desl
SADB & PAD »| pi | sadl SPEC
PADB -\\‘ ; : BP
BADB & rho|padl : I EP
TRANSB # ; | i | | NSEGM
! PR SEGMAD OFFSET
b | BITWRD BACKAD
: PTRB e——»| pi | ptrl i . | NEW
BAD | BICB e VAL ! ! | SCRATCH
|
; ——————— :<Jl | | | WD | I" | WORK
=== | ! | | ELT LNVWVJ NBICS
o __°m w BLOCK NPTRS
i
Lo NELPW
BPEL
- 1ab| ey BIC NBLOCKS
o | NELPB
_:tr\\\t pi |bicl i NFREE
BLOCK LAST BLOCK
MOD CATPOS
INT TRANSCOR
NTRANS NFREEBICS
INFO____ | IDF
|]
i |

14

The administration can be split up into the following parts:
. a general file administration (per job), gad.

. a éegment administration (per file), 4ad.

. a pointer administration (per file), pad.

. a block-in-core administration (per file), bad.

. a core descriptor (per file), des.
These parts will be discussed in some detail in the next sections.’

2.2.1.1. Fad

If a program uses the file system it will have a fad, otherwise it will
not. Each active file of the program has exactly 1 entry in fad, fad being
a table of references. This entry yields the reference to the rest, i.e.
nearly all, of the administration of the file. Entering fad is done via
the file number. As soon as the program tries to activate its first file,
fad is claimed, from the heap, and initialized. Activating a file means,
among other things, selecting a free entry in fad, i.e. picking a file

number; if no such entry is available fad is extended.

2.2.1.2. Sad

Before explaining the segment administration, the notion segment is intro-
duced. It is evident that the choice of how to perform the bookkeeping of
the back store is strongly related to the choice of how to do back store
distribution. Both choices are made, simultaneously, in the next section.

And it is there that the notion segment pops up.

2.2,1.,2,1. Segments and blocks

File blocks remain either in main store or in back store. In the latter
case their addresses, back addresses, in general are not consecutive. So
we need some administration to be able to get hold of the back address of
any particular block, any particular time, Four ways of performing this

administration are discussed below and one is selected.

A,

15

A very simple way to do the bookkeeping is to link all blocks in a

linear (singly- or multi-) linked list, e.g. each block indicates its
successor (or/and predecessor). Such a method will be inefficient if
some form of random access to the file is allowed. Since this is the

case in the file system discussed, method A is rejected.

The administration has the form of a table, having an entry for each
block and containing its physical address. For a large file with
relatively small blocks such a table will be of formidable proportion.
It will be so big, it has to be accommodated in a file - a file of
block addresses. This file needs block administration, and so on.
Indeed it is possible to realize this kind of administration, but in
the present implementation it is rejected because a simpler form could
be used.

N.B. The solution just ruled out, suits fine the implementation of so-
called "sparse files" - files containing large gaps, maybe 0 by default.
For sucﬁ files very little space, say 1 word, is needed to describe a
whole block as empty (non-existent, zero). At the cost of multi~stage-
addressing of the blocks sparse files thus can be stored in a very

compact way.

A combination of the methods A and B: a number of logically consecutive
blocks form a 4egment. The segment address is to be found in a table
and within the segment the blocks are linked in some way. This seems
o.k. but we can still do better by taking advantage of the specific

qualities of the application in the file system.

A practical variant of C: the segment address resides in a table. The
table contains the address of the first block of the segment. The loca-
tions of the other blocks within the segment are found easily, because
we choose all blocks in a segment to be physically consecutive. That is,
on back store. This way of administration is selected for the file
system. It can be described in short as "a form of indexed sequential

addressing".

If a block resides in main store its exact location is provided by a

linked list in core. This list cannot possibly grow beyond reasonable pro-

&

16

portions since it deals. with core blocks, and only relatively few blocks
are allowed in core simultaneously. Locations of core blocks are found

through a linear search in the list mentioned.

Whether a block is in core or on back store is told by one bit especially
reserved for each block. These bits form a bit table, that in the imple-
mentation is split up and distributed over the segment-address—table in a

convenient way.

2.2.1.3. Pad

The pointer administration consists of a table of padcells. Each pointer
is connected with a padcell, which can be selected from pad by the pointer
name., When an own pointer is created a free cell is selected from pad, i.e.
a pointer name is picked. If such a free cell is not available pad is
extended. Standard pointers have fixed entries in pad.

A padcell consists of two items: a reference to a bic and a reference to

a ptr. More information about the bic will be given in the next section.
The ptr consists of four plain variables:

'val' - the value of the pointer.

'block' -) . ,
typd! =) The 'elt'-th element in the 'wrd'-th word of the
telt! - ; '"block'~th block of the file is the element in the

'val'~th position of that file.

2.2.1.4. Bad

Bic stands for "space-for—-a-block-in-core". How a bic is structured and
made use of is explained later on., First the administration of bics is
dealt with.

Bad is a "normal", one-way-linked list, containing as information no more
than references to bics. Each time a cell has to be added to the list, a
next cell is claimed from - and each time a cell becomes obsolete, it is
returned to — the heap. Bad is a list of all biecs, a list that is consulted
whenever a bic has to be located that is not necessarily conmected with

some pointer. The routines free semifree, try bic release and ask for block

17

all essentially are based upon the existence of bad.

2.2.1.4.1.

On bics

A bic consists of space to contain a file block and of space to keep the

bic administration. This administration space takes four variables:

"block' -

"mod’ -

'int' -

'ntrans'-

the block number of the file block contained in the bic. If the
bic does not contain any block (yet) the bic is said to Se a
gree bic and its 'block' will be a negative value.

a boolean value, giving information about the block being modi=-
fied or not. If 'mod' > O then the block is modified by the
user: it is not, or no longer, a copy of a block on back store,
so, sooner or later the block must be transported to the back
store.,

a counter, indicating the number of pointers that are interested
in the block contained in the bic. The values of those pointers
all select an element of this block. If 'int' = 0 no pointer is
interested in the block and if at the same time 'mod' < 0 we call
the block passdive.

a counter, indicating the number of transports required for the
block and not yet completed. Usually 'ntrans' will be 0 or 1 but
under circumstances it can become more than 1. If "'ntrans' = 0

then the bic is said to be af nest.

Overall administration about the bics is partly conducted in the list bad,

and partly in some variables of the core descriptor des. These variables

are "nbics' and 'nfreebics'. Further descriptor variables involved are

'nptrs' and 'last block’'.

An active file always has at least as many bics as it has pointers, with

a lower bound of 1. This guarantees:

. once a pointer is established, moving this pointer along the file never

will cause fatal errors due to space exhaustion.

. in all situations at least one active pointer can be attached to the

file without causing such errors.

18

To give an impression of bic-handling, a bird's-eye view of the most

important system routines dealing with bics is given below.

integer procedure claim bic (fyall; value f; integer f; label al;

function: Heap space is claimed for a bic of file f. If this space is not
available, control is transferred to al, otherwise the bic address is
delivered. The bic is initialized as free, unmodified, passive and
at rest. Its address is added to the list bad;:'nbics' and 'nfreebics’

both are increased by 1.

integer procedure claim free bic (f); value f; integer f;

function: This routine is called only if "nfreebics' is at least 1., The
list bad is scanned until a free bic is found, the address of this

bic is delivered and 'nfreebics' is decreased by 1.

procedure try bic release (f); value f; integer f;

function: All bics of file f are inspected by scanning the list bad. A bic
that is not, and never more can become, of any importance to the file
is returned to the heap, unless that bic is modified or not at rest.
If it is modified a transport is asked for, so the status of the bic
becomes not-at-rest. Bics not at rest are ignored and taken care of
the next time the routine is called. Returning bics to the heap is
stopped as soon as all bics are inspected, or in an earlier stage: it
is guaranteed that at least "the maximum of 'nptrs' and 1" bics will

stay connected with the file.

procedure decr int in bic (f,p); value f,p; integer f,p;

function: Pointer p of file f looses its interest in the bic it is con-
nected with, The bic address is taken from the table pad and replaced
by the reference nil. The 'int' of the bic is decreased by | and if
it becomes 0 the next steps are carried out:
if 'mod' > O then a transport to back store is asked for, otherwise
if p is the beginpointer or the endpointer the bic is discarded

through a call of try bic release.

19

procedure ask for block (f,p); value f,p; integer f,p;

function: The block connected with pointer p of file f is wanted in core.
The bic containing that block is to be linked to that pointer via
pad. If the block already is in core, the relevant bic is selected
from bad, otherwise a free bic is picked from it and the transport

from back store to bic is started,

2.2.1.5. Des

Des is a descriptor, the core descriptor of a file, It contains an overall
administration of it, consisting of some variables, global to the file.
The descriptor is of fixed length. Its variables, together with a short

description of each one of them are listed below.

'spec' - the file species. In the present implementation this is an inte-
ger value meaning the number of elements per word, with the ex~-
ception that O means 1 element per 2 words. So, relating the
value of the species to a type could be done as follows (supposing
the word to be an X8 word, i.e. a word of 27 bits):

0 - real 2 - card column
1 - integer 6 ~ plotsym
27 - boolean

3 = char

"bp' — the value of the beginpointer.

'ep' -~ the value of the endpointer.

'nsegm' - the number of segments assigned to the file,

'offset' = an auxiliary variable of block administration.

'backad' - the back address of the long descriptor of the file if the file

is not a scratch file. Otherwise the value is undefined.

"new' - a boolean variable telling whether the file is new or old.

'scratch' = a boolean variable telling whether the file is scratch or own.

'work' - a boolean variable telling whether the file is work or read.

"nbics' - the number of bics attached to the file. All these bics are kept

trail of in the list bad.

'nptrs' - the number of active pointers of the file.

&

20

"nelpw' - the number of elements per word. In this implementation this
v variable is a copy of 'spec'.
'bpel' - the number of bits per element. This is calculated diréctly from
| the number of bits per word and 'nelpw'. This calculation is done
only once, in order to increase the speed of thlie access routines.
"nblocks' - the number of blocks that contain information of this file.
"nelpb' - the number of elements per block, easily derived from the number
of words per block and "nelpw’'. -
"nfree' = the number of free positions of the file, i.e. the maximal number
of elements that can be written into the file without intermedi-
ate destructive read, unstack or file space extension.
'"last block' -~ the number of the block pointed at by the endpointer.
'catpos' — the position of the short descriptor of the file in the catfile,
if the file is an old read file, otherwise the value is unde-
fined.
"transcor' - an auxiliary variable of file space extension.
"nfreebics' — the number of free bics of the file,
'idf' - a consecutive number of integer variables, each of them containing
one or more characters. Together they form a representation of the
file name. In the present implementation each word contains three

characters.

2.2.2, Back store management

The back store is divided in a scratch pool and in an own pool, This
division is of an administrative kind and need not be a physical one. The
scrnateh pool consists of scratch segments only; the own pool consists of
own segments and of own blocks as well. These blocks are claimed one at a
time and do not serve to keep file elements, but they keep information

about the file, as will be pointed out in the next section.,

Permanent files are stored in back store. The file catalogue is to comprise
all information about those files, needed to enable the system activating
a specific own file. This information is not static of nature. It will vary

in length and in meaning as well. Because of this dynamic character the

&

21
file catalogue is accommodated in a file, the catalogue f§4ile.

2.2.2.1. The file catalogue

The catf§ile, short for catalogue file is the only file that can be called

a system's file. It diverges from a normal file in no more than a. tiny
detail: some of the information about the catfile is kept in main store,
instead of in the catfile.

Each own file is represented in the catfile by a shoat descriptorn, giving
details about the file name, owner, use and where to find additional infor-

mation (the back address of the long descriptor):

short descriptor:

file name]|use|owner|backad of long descriptor block

The variable 'use' tells something about the momentary use of the

file:

'use' < 0 - the file is used as work file.

'use' = 0 - the file is inactive.

'use' > 0 - the file is used as read file by 'use' uéers.

The Long desciiptor of a file is a block in back store, giving details

ep
'offset’'. Furthermore it contains the segment administration, in other

1 1)

about some file parameters, namely 'spec', 'bp’, , 'msegm' and

words, tells where file segments are to be found in back store. The differ-
ence between this administration and the one in main core (sad) is that

sad contains an additional bit table for the blocks.

The tiny difference between the catfile and an own file is that the catfile
is not represented in the catfile by a short descriptor. Its long descrip-

tor resides in a back block with a location well known to the system.,

The catfile capacity will always be sufficient; it is guaranteed that never
an error occurs due to catfile exhaustion. This can be guaranteed because

of the very small size of the short descriptor.

Since the long descriptor contains all segment addresses and is of the same

22

size as file blocks, a file cannot consist of more than (block length —AS)'
segments. This upper bound can very easy be raised if a long descriptor is
allowed to be continued in one or more extra blocks. However, this raising
seemed unnecessary in the present implementation because of the following
calculation. For reasons of X8-disk limitations, the block length is
decided to be 260 words. Therefore the long descriptor is able»t6 contain
the administration of 255 segments. A segment is to contain 10400 words in
this case, so the maximal file length that can be realized in the ﬁresent

implementation is 2652K words which seems a very reasonable upper bound.

2.2.2.2, Catfile core space

The minimal amount of core space needed by an active catfile equals, of
course, the minimal amount of core space needed by any active file,
Straightforward implementation of opening an own file therefore would re-
quire twice as much space as would be required once the opening were done.
Furthermore, straightforward implementation of closing an own file would
require extra space at the moment of closing. In the worst case this space
might be unavailable, so preserving the particular file would be out of the
question; a most inconvenient situation. The obvious solution, to reserve
space for the catfile permanently is rejected, because it takes up more
space than really necessary. The answer to the space problem lies in the
fact that the file being opened or closed is in fact inactive, part of the
time. The programming "trick" performed in both opening and closing allows
the catfile administration to be accommodated in the file space of the file

to be opened or closed (the file then being inactive).

2.2.2.3, Catfile routines

Some of the routines concerned with the catfile are mentioned and dis-

cussed below,

integer procedure look up (f,idf); value f; integer f; array idf;

f is the file number of the file that accommodates the catfile, so it

can be regarded as the file number of the catfile itself. The work—

&

23

pointer of the file is assumed to be active,

The catfile is scanned from the position indicated by the workpointer
till the end of the file. As soon as a short descriptor containing

the file name Zdf is detected the scanning is stopped and a catfile
position is delivered. This position indicates the rest of the infor-
mation (beyond the file name) comprised in the selected short descrip-
‘tor. If, on the other hand, the file name Zdf does not occur in the

catfile, then a negative value is delivered,

integer procedure pos in catfile (f;id&;work,user);’vqlue fswork,user;

integer f;user; boolean work; array idf;

Again f is the file number of the catfile, The workpointer on f is
assumed to be active, its value 1. By means of a call of Zook up some
file of name Zdf is traced (the first one to appear in the catfile).
If the user user appears to be the owner of this file then the file
wanted is found, otherwise the selected file is kept in mind and
search is continued by another call of Zook up, and so on. In the end
one of the following situations is achieved:

. no file of name 7Zdf is present in the catfile and the negative value

| ER UK is delivered.

. no file of name Zdf, owned by user, is present in the catfile, but
one or more files of name Zdf belonging to'other owners are there,
These files were kept in mind during the search. If none of these
files is a public file then the negative value ER NY is delivered.
Otherwise the public file of name Zdf is looked at more closely:
if work, i.e. the file is wanted as work file, then the negative
value ER NP is delivered, otherwise if the file is wanted as read
file it is possible that the public file is involved in some upda-
ting process performed by its owner. In that case the negative value
ER NN is delivered. The one possibility left - the file is a public
file, not used by someone else as work file, and is wanted as read
file - yields a positive value: the position in the catfile of the
rest of the selected short descriptor.

. a file of name Zdf, owned by user, is present in the catfile., If

24

work and the file is a public one being read by someone (or being
updated by the user himself) then the negative value ER NN is de-
livered. Otherwise this routine gives as result a positive value:
the position in the catfile of the rest of the information con-

tained in the selected short descriptor,

boolean procedure update catfile (f,idf,des, private,work, new, scratch) ;

value f,des,private,work,new,scratch; integer f,des;
boolean private,work,new, scratch; array idf;

Again f is the file number of the catfile., The parameter des gives
the address of the core descriptor of f. The file of the present user
with file name Zdf is about to be closed as (if private then private-
else public-) file, so the catfile has to be updated. Additional
information about the file is given in the self evident boolean param-
eters work, new and scratch.

In case the file is a scratch file or a read file the updating is
trivial and not discussed further at this place. If the file is an
old file, its position (of the short descriptor) in the catfile is
taken from the core descriptor and the short descriptor in the cat-
file is erased, i.e. replaced by a scratch descriptor. Both old and
new own files to be recorded in the catfile now find themselves in
exactly the same situation. First the catfile is scanned for other
files of the same name, to check upon possible ambiguities that would
arise from adding the new name to the catalogue. This is done through
a call of pos in catfile. If trouble occurs, appropriate measures are
taken, such as giving the file some other name. The ambiguity matter
settled, the new short descriptor is added to the catfile, replacing
the first scratch short descriptor to be found. If no such "gap" ex-
ists the catfile is enlarged through writing elements via -the end-
pointer instead of via the workpointer. The value true is delivered

if no new name had to be given to the file, the value false otherwise.

2.3, General design considerations

2.3.1. File length and file extension

&

25

It was considered desirable that, as soon as a user should reach his maxi-
mal file length, i.e. exhaust his file claim, the file be extended auto-
matically. This extension is easily described from the user's point of
view; it means the file claim is enlarged. Its implementation is not that
simple, because of the cyclic block administration that is chosen to com-
fort the sort of file usage that stacks and reads destructive altérnately.
Apart from this complication, dealt with by the routine extend file,
another matter had to be settled. Namely, how to inform the user in case
file extension cannot be managed because of file space exhaustion (on the
physical devices). To obtain the possibility of a veniai error - the fatal
one of course means no trouble at all - file extension is done in the fol-
lowing manner. In case write el meets the situation that after writing the
element the file is filled completely it tries to extend the file. If this
is impossible at the moment, no further actions are taken. The user can
observe that the file length equals the file claim and conclude that file
extension is not possible, so, without special measures (such as the dele-
tion of another file), the next call of write el for that file will cause
a fatal error.

In the present implementation the initial claim of a file is one segment.
File extension adds one segment to the claim each time it is successfully

tried.

26

3. POINTER ROUTINES

Two kinds of file pointers exist: standard pointers and own pointers. A
pointer is identified by its name, the pointer name, a (small) positive
integer value. Standard pointers have standard names - they are identified
by integers chosen once and for all, known to the system and all users.
Own pointers are created as a private enterprise of the user. Their names
are invented by the system at the moment of pointer creation and passed

on to the user.

A pointer is said to be active if a file access can be achieved via that
pointer. All own pointers are active during their entire existence, but

standard pointers may be inactive and still in existence.

Pointern activation, i.e. activating a standard pointer or creaﬁing an own
one, will seize a part of main storage for reasons of administiation.
If‘this amount of space is not available the pointer activation will not
get aﬁy further than the attempt. Whether a pointer can be éctivated or.
not depends on the actual core distribution. However, it is guaranteed that
any active file can have at least one active pointer.

If a pointer is defeted the occupied space in main storage will be re-
leased. If the pointer deleted is an own pointer then the pointer ceases

to exist, If it is a standard pointer it survives as an inactive pointer

that does not take up considerable amounts of core space.,

Three standard pointers exist:

. the beginpointer bp, always pointing at the first file position, the
filebegin. Its name, 1, is fixed in and obtainable from the systems
constant BP. The pointer will never be active in a spontaneous way:
if needed it must be activated explicitly by the user.

. the endpointer ep, always pointing at the post-last file position, the
(in fact non—-existing) ‘position "file end + 1", Its name, 2, is fixed in
and obtainable from the systems constant EP. The pointer will be active
directly after file creation or, of course, an explicit activation.

. the workpointer wp. Its name, 3, is fixed in and obtainable from the

systems constant WP. The pointer will be active and pointing at the

27

first file position, directly after opening an old file or, of course,

after explicit activation.

3.1. The routines

3.1.1. procedure standard ptr (f,p); value f,p; integer f:p;

fatal errors: ER WF - f is not a file.
ER ST - p is not a standard pointer,
ER RE - p is a standard pointer already active.

ER CE - core space exhausted,

function: The standard pointer p is activated. If p is the work-
pointer its value is set to that of the beginpointer. Otherwise
p has to be the beginpointer or the endpointer and already

possesses a value - which it keeps.

3.1.2. boolean procedure standard ptr 1 (f,p); value f,p; integer f,p;

fatal errors: ER WF - f is not a file.
ER ST - p is not a standard pointer,

ER RE - p is a standard pointer already active.
venial error: (ER CE) - core space exhausted.

function: As standard ptr.
If a venial error occurs then the value false is delivered,

true otherwise.

3.1.3. integer procedure new ptr (f,pos); value f,pos; integer f,pos;

fatal errors: ER WF - f is not a file.
ER PO - pos is not a position within file f:
pos < bp or pos 2 E;.

ER CE - core space exhausted.

function: a new, own pointer is created and activated. Its initial

value is set to pos, The pointer name, a positive integer value,

28

3.1.4.

is delivered.

remark: As a consequence of the test on the fatal error ER PO it

is not possible to create an own pointer on an empty file.

integer procedure new ptr 1 (f,posg); value f;posj integer f,pos;

fatal errors: ER WF -~ f is not a file.
ER PO - pos is not a position within file :

pos < G; or pos = EE.
venial error: (ER CE) — core space exhausted.

function: As new ptr.

If a venial error occurs a negative value is delivered.

remark: As new ptr.

3.1.5. procedure delete ptr (f,p); value f,p; integer f,p;

fatal errors: ER WF - f is not a file.
ER WP - p is not a pointer of file .,

function: If p is an active standard pointer on f then it is made
inactive and if p is an own pointer it is deleted. In both
cases the pointer no longer can serve as a means to access the

file. The core space seized by the pointer p is released.

3.1.6. procedure reset wp (f); value f; integer f;

fatal errors: ER WF - f is not a file.

ER WP - the workpointer of file f is not active.

function: The value of the active workpointer is set to that of

the beginpointer.

3.2, Implementation

The pointer routines are implemented in a way that does not need very

29

much explanation. They merely consist of the claiming and returning of

main store.

3.2.1.1. procedure standard ptr (f,p); value f,p; integer f,p;
if = standard ptr 1 (f,p) then error (ER CE);

3.2.1.2. integer procedure new ptr (f,poe); value f,pos; integer f,pos;

begin integer p; new ptr:= p:= new ptr 1 (f,pos);
if p < 0 then error (ER CE)

end;

3.2.2. boolean procedure standard ptr 1 (f,p); value f,p; integer f,p;

begin hard check on f (f);
if p# BP Ap # WP A p # EP then error (ER ST); comment p must de-
note a standard pointer;
if ptrb (f,p) # 0 then error (ER RE); comment standard pointer p has
to be inactive;
SYS not;
create ptr space (fyp,no); comment administration space for the
standard pointer p is claimed, such as ptr and bic.
If the space required is not available, control is
transferred to no;
initialize ptr (f,p,val of ptr(f,if p = WP then BP else p));
comment the ptr of the pointer p is initialized. If p de-

notes the endpointer, the pointer value will be set to the
post-last position of the file, otherwise it will be set to
the first position. Furthermore the file block connected
with p is assured to be in core;
if true then standard ptr 1:= true else
no: standard ptr 1:= false;
SYS ton A
end standard ptr 1;

30

3.2.3. integer procedure new ptr 1 (f,pos); value f,pos; integer f,pos;

begin integer p; hard check on f (f); hard check on pos (f,pos);

comment if pos < B;-or pos > ep then a fatal error is re-
ported;
SYS not;
p:= new ptr number (f,no); comment a padcell is claimed from pad.
If not available, pad is extended. If this extension is not
possible due to core space exhaustion, a transfer of control
to no is performed; -
create ptr space (f,p,no); comment see explanation in 3.2.2.;
initialize ptr (f,p,pos); comment the ptr of pointer p is initia-
lized. The value of the pointer is set to pos. The file block
that is connected with the pointer p is assured to be in core;
if true then new ptr 1:= p else
no: new ptr 1:= ER CE;
8YS ton
end new ptr 1;

3.2.4. procedure delete ptr (f,p); value f,p; integer f,p;

begin integer adp,adn; hard check on f and p (fop);
adn:= desb (f) — NPTRS IN DES;
adp:= padb (f) - (p~1) = PADCELL - PTRB IN PAD;
SYS not;

iner (adn,~1); comment decrease 'nptrs' by 1;

decr int in bic (f,p); comment see 2.2.1,4.1.;
if feteh (adn) > 0 then delete core (adp) else

begin comment core space required by one pointer is preserved, even

if all pointers of the file are deleted;
store ref (cadb(f) - TRANSB IN CAD, fetch ref(adp));
comment 'transb' serves as temporarily depository for the
reference to the preserved pointer space;

store ref (adp,0)

31

S5YS ton
end delete ptr;

3.2.5. procedure reset wp (f); value f; integer f;

begin hard check on f and p (f,WP);
SYS not;
decr int in bic (f,WP); comment see 2.2.1.4.1.;
initialize ptr (f,WP,val of ptr(f,BP)); comment the ptr of the work-
pointer is initialized. The value of the workpointer is
reset to the first position of the file. Furthermore the

block connected with that position is assured to be in core;
SYS ton

end reset wp;

3.3. Pointer resetting

A natural routine not present in the file system wouid héve been:
procedure set ptr (f,p) to position: (k);

function: set the value of pointer p of file f to position k.

This routine is oﬁitted because it would encourage the user to have random
access to a file quite easy and very inefficient., Discouraged users who
still need such an operation can always help themselves via a detour over
delete ptr and new ptr.

The routine reset wp is of the type set ptr. It is selected because it

performs the operation "rewind'", undoubtly indispensable.

32

4., ACCESS ROUTINES

Accessing a file, i.e. reading an element from it or writing an element
into it, is done via a pointer on that file. All access actions have a
side-effect on the value of the pointer that is involved. This value will
always be increased or decreased by 1 when reading or writing an element.
The three actions that will be discussed are named after their pointer
effect: wiite fomward, read forward and nead backward.

. Writing forward an element via pointer p can be done by calling the
routine write el. The element is written into position p of the file.
Writing forward via the endpointer is called stacking and causes file

growth.

. Reading forward via pointer p can be done by calling the routine
next el. The element in position p of the file is delivered.
Reading forward via the beginpointer is called teading destructively

and causes file diminution.

. Reading backward via pointer p can be done by calling the routine
prev el. The element in position p-1 of the file is delivered.
Reading backward via the endpointer is called unsfacking and causes

file diminution.

Repeatedly stacking without a countering unstacking or reading destruc—
tively causes continued file growth, so, one moment the file claim will
become insufficient. The system will take steps to prevent fatal errors
resulting from file overflow; the system tries to enlarge the file claim

in time.

4,1. The routines

4.1.1. procedure write el (f,p,el); value f.p,el; integer f,p; real el;

fatal errors: ER WF ~ f is not a file.
ER WP - p is not a pointer of file f.
ER NW - the file is not a workfile.

33

ER PL - p points below the beginpointer (E < bp)
ER PH - p 1s not the endpointer and p points

above the file end (p = ep & p # ep).
ER FE - the file is filled to capacity and can not

be enlarged, due to filespace-exhaustion.

function: 1, If the file is filled to capacity an attempt is made

to enlarge the filé claim., If this attempt is not succesful

a fatal errormessage is given.

2. If the size of el does not match the filesbecies of f, el
is made to measure by cutting the most significant bits of el.
3. the (possibly truncated) element el is written into the
file on position E.

4, The value of p is increased by 1.

5. If the file is filled completely, i.e. file claim = ep - bp,
then an attempt is made to enlarge the file claim. The result
of this attempt is not of immediate importance to the system.

(However, it can be to the user, see 2.3.2.)

remark: in case p is the beginpointer of the file, the file shrinks

at the front and the element just written is inaccessible

ever after.

4.1.2. real procedure next el (f,p); value f,p; integer f,p;

fatal errors: ER WF - f is not a file,

ER WP - p is not a pointer of file f.
ER PL - p points below the beginpointer (5 < bp).
ER PH - p points above the file end (E P E;).

function: 1. The element on position 5 of file f is delivered

(through the procedure identifier).

2. The value of pointer p is increased by 1.

4.1.3. real procedure prev el (f,p); value f,p; integer f,p;

Fs

34

fatal errors: ER WF - f is not a file,
ER WP - p is not a pointer of file f.
ER PL - p points below the second element (E < bp).
ER PH - p points above the endpointer (5 > ep).

function: 1. The value of pointer p is decreased by 1.
2. The element on position E of the file is delivered (through

the procedure identifier).

remark: pointer p always points to the element next to the

element to be delivered.

4,2, Implementation

The three routines run very much along the same lines so their bodies
are swept together and form the routine trans el, the kernel of the file

system.
4.2.1.1. procedure write el (f,p,el); trans el (f,p,1,el);

4.2.1.2. real procedure next el (f,p); next el:= trans el (f,p,2,0);

4.2.1.3. real procedure prev el (f,p); prev el:= trans el (f,p,3,0);

4.2,2. Trans el,

This routine performs all kinds of accesses to a file and in order to get
an impression of its degree of complexity it is programmed in a form of
about the lowest degree of complexity possible. Dummy labels serve to
regain readability. It was felt useful also with respect to clearness to
use bit manipulation procedures [7] for fumbling elements in and out of

the file cells., The routine does not need much functional elucidation. Each
time a file element is accessed, the pointer value involved is stepped up
or down, depending on the direction of the operation. This stepping the
pointer value influences element count, possibly word count or even block
humber count. In the latter case special care is taken to evoke the "next

block". This is done through a call of ask for block. As soon as the new

ra

W

35

block is referenced, its presence is assured through a call of assure
presence block. In case of a forward operation this is done at the moment
the next element is wanted (for read or write); in case of a backward
operation it is done immediately. Moving the beginpointer (in forward
direction) causes special actions such as a possible change of 'offset’
through a call of consider offset. This is done because the file shrinks
at the front. If the endpointer is moved in backward direction the file

shrinking is administrated via a call of one block down.

4,3. Designing the access actions

Sequential use of a file is extorted more or less from the user. He can
access a file in just one way, via a pointer, and the number of pointers
at his disposal will be relatively small (as opposed to the number of

file elements). Moreover it is not easy-and—free to change the value of

a pointer to an arbitrary position of the file. Now that haphazard accesses
to a file are ruled out, to emphasize the sequential nature of the files,
we focus on typical sequential operations to be offered to the user. They
must be intrinsically sequential, that is, couple an access with stepping
up or down the pointer involved. Furthermore efficiency should be guaran-
teed. Having in mind a file that can grow and shrink at both head and tail,
four actions at least must be available, all having a side—-effect on the
value of the pointer: it is increased or decreased by 1. The routines are
named after their effect on the pointer:

WF = write element in forward direction.

WB = write element in backward direction.
RF = read element in forward direction.
RB = read element in backward direction.

Implementation can be done in a number of ways, so, before proceeding three

desiderata are stated:

i. The actions must be clear to the user (almost at once, at first sight)
All of them should be easy to remember without the possibility of
serious confusion between some of them.

ii. The whole pack of operations should be consistent and work'together,

3

36

gear into each other, in a direct and obvious way.
iii. The actions should be easy and efficient to realize, to implement
'within the system, because here we have to do with the most elemen-

tary file actions.

If each action consists of: write (or read) an element and increase (or
decrease) the pointer, or the other way round, then surely i, and iii.
will be satisfied. So we concentrate upon ii.

In the sequel the following short-hand-notation will be used:

X : write an element s o : read an element s

+ : increase pointer . - ¢ decrease pointer .

An example: x+ stands for "write an element and afterwards increase the
value of the pointer involved by 1.

The notation serves both as external description and as way of implementa-
tion of an operation. So, in the example x+ is to be conceived as both the
description and implementation of the operation WF.
The four operations mentioned above now can be implemented in 16 different
ways by using all combinations of the given primitives. We are looking for
one that is in accordance with ii.

Let us choose the implementation x+ for WF and proceed from this choice.
A reasonable consequence of ii. can be described as follows:

"WF(a); WF(b); x:= RB; y:= RB" should yield the result "x=a, y=b"., In
other words, WF and RB should act as stacking and unstacking actions. This
leads to the choice of -o for RB. Now by ii.: ’

"x:= RB; y:= RB; yy:= RF; xx:= RF" should yield "xx=x, yy=y". This inevi-
tably suggests the choice of o+ for RF, By ii.:

"WB(a); WB(b); x:= RF; y:= RF" should yield "x=b, y=a" (reverse stack
mechanism). So we choose -x for WB. Summarizing the results we see that

the one acceptable set of operations starting with the choice x+ is:
WF = x+ R WB = =-x R RF = o+ R RB =-0 .
In case the initial choice were +x, the result would be, of course:

WF = +x WB = x- s RF = +o 5 RB = o= ,

37

We have now dealt with all 16 possibilities, leaving two acceptable ones.
These two implementations are equivalent (the mirror image of each other)

and the first one mentioned is adopted.

We have defined four elementary actions, all having side effects on the
pointer involved and we wish to add some operations that do not influence
the pointer, like:

W
R

[

write an element without changing the pointer value,

read an element without changing the pointer value.

Again we want the set of operations to be in agreement with i., ii. and
iii. In the end it appears that this is not possible, so, in the end the
two operations just mentioned are rejected.

We consider two evident ways to satisfy i.

A, The operation (e.g. R) has to do with the element most recently involved
with the pointer via which the operation is done. We do not worry about
difficulties of "initial kind". Assume the sequence "WF(a); WF(b)" to
have taken place via the pointer observed immediately before we start

our investigation:

actions . - results wanted (demanded by ii.)
RB RB b a
R R b b
RB R b b
R RB b ?

If we choosé R not to change the value of the pointer at all, then ?
has to be b and so "R; RB; R; RB" should yield b, b, b, a, Clearly ii,
is violated this way.

If we choose R to change the pointer value in convenient situations,
the implementation will not be simple at all, thus violating iii.
Taking into account the operation W and making combinations of all
operations allowed, thus increasing complexity, it soon becomes clear

that it is not possible to serve both ii. and iii.

38

B. The operation (e.g. R) has to do with the element pointed ét by the
pointer involved. The thus created set of actions gives the illusion of
being very symmetrical, but they act, on the contrary, highly asymmet-
rical, in a way that violates ii. This is shown in the next two exam—
ples, wheré we assume the sequences "WF(a); WF(b)" (in example 1) and
"WB(a); WB(b)" (in example 2) to have taken place immediately before

the actions considered.

actions results , actions results

(after WF) ' (after WB)

RB RB b a RF RF b a

R R - - R R b b

RB R b b RF R b a

R RB - R RF b b
(example 1) (example 2)

In the examples - stands for an element different from both a and
b.

Conclusion: the elementary actions on a sequential file acceptable in the

sense of i., ii. and iii. are:

WEF : x+ RF : o+
WB : -x RB : -o

A disadvantage of the pack of operations thus left is that they are still
somewhat asymmetrical in behaviour. This should be considered the price

to be paid for the two-sidedness of the operations.

In determining upon the set of operations to be submitted to the user,

it was decided to drop the operation WB. Reasons:

. implementation as a whole becomes a lot easier, mainly because a file
now cannot grow at its begin.

. this way the set of operations suggests an asymmetry that exists in fact,
instead of suggesting a symmetry that does not.

. the drawback that writing in backward direction is not possible should

&

39

not be considered a very serious one, since some thinking nor some
investigation among programming colleagues did actually give a particular
good application of this operation. (It is admitted that taking deci-

sions this way is taking the risk of throwing the baby out with the
bath).

Thus we arrived at a final choice that links up with the proposals made
in [2]. Those proposals now can be seen as special cases of the operations

mentioned above via some implicit standard pointers.

40

5. FILE OPENING

File opening is the activation of a passive file. If this passive file

is a scratch file the opening is termed {ife creation. If the passive file
is a permanent file the action is called opening an old file. In both
cases the file is made accessible to the user who, for a start, gets one

pointer at his disposal.

File creation always produces an empty scratch file starting at position
1. The species of this file has to be specified by the user at the moment
of creation and can not be altered afterwards. The user is (of course)

allowed to write into the new file.

Opening an old file activates a permanent file that carries the name
specified by the user. Not only the file name of the file wanted has to

be supplied, but also whether the file is wanted as a read file or as a
work file. Searching through the file catalogue for the desired file, the
files of the user are examined first. If one of his own files carries the
specified file name it is this file that is activated. In case none of his
own files has the right name, search is continued in the area of all public
files., This last part of the search can only be successful if the user

asked for a read file.

The multi-read aspect of the files gives rise to some statically unavoid-
able errors, such as "sorry, the file you want to write into is yours
alright, but you saved it as a public file and now someone else is reading
it = you'll have to wait till he is ready". All errors of this kind are
handled in such a way that the user can get aware of them without being

kicked off.
5.1. The routines

5.1.1. integer procedure new file (spec); value spec; integer spec;

fatal errors: ER WS - spec is not a file species.
ER CE - core space exhausted.

. ER BE - file space exhausted.

41

" function: 1. A brand new file is created carrying the scratch name
and with species spec. The file is empty, both beginpointer and
endpointer initialized as pointing to position 1. The file claim
gets its initial value depending upon the file species; it will
be the equivalent of an initial segment of back store. One point~
er, the endpointer, is activated, thus enabling the user to
write into the new file straight away.

2. A positive integer value is delivered, that serves as iden—

tification of this file while it is active, the file number.

5.1.2. integer procedure new file 1 (spec); value speé; integer spec;

fatal error: ER WS - spec is not a file species.

venial errors: (ER CE) - core space exhausted.

(ER BE) - file space exhausted.
function: as new file.

remark: if a venial error occurs a significant negative value is

delivered.

5.1.3. integer procedure old file (idf);

fatal errors: ER CE - core space exhausted.
ER UK - no file of file name 7Zdf exists.
ER NY - the file is a private file of another user.
ER NN - the file is temporarily unavailable because
it is a public file being updated by its

owner,

function: 1. The parameter Zdf must be either a string or an
integer-procedure-without—~parameters. In the latter case the
procedure is called repeatedly by the file system, which expecfs
internal representations of characters and assembles them to a
string; after thus producing a file name the procedure Zdf should

deliver a string endmarker, a deletion symbol. So the parameter

42

idf is or stands for a string, the file name N of the desired
file.

2. If the user owns a file called N, that file is activated,
otherwise it is a public file of name N. The file is activated
as old read file.

3. Appropriate values are assigned to beginpointer and endpointer
of the file (values as they were at the moment of closing the
file). The workpointer is initialized as pointing to position 55
of the file, and is activated so the user can start scanning the
file without further preparation.

4, A positive integer value, the file number, is delivered.

It serves as identification for this file while it is .active.

5.1.4. integer procedure old file 1 (idf);

venial errors: (ER CE)

core space exhausted.

(ER UK) ~ no file of filename Zdf exists.
(ER NY) ~ the file is a private file of another user.
(ER NN) - the file is temporarily unavailable because

it is a public file being updated by its

owner.

function: as old file.

remark: in case a venial error occurs a significant negative value

is delivered.

5.1.5. integer procedure old work file (idf);

&

fatal errors: ER CE

1

core space exhausted.

ER UK - no file of file name Zdf exists.

ER NY - the file is a private file of someone else.

ER NN - the file is a public file of the user but
it is temporarily unavailable as work file
because it is being read by another user.

ER NP - the file is a public file of someone else.

function: 1. As old file.

43

2, If the user owns a file of name N, that file will be
activated as old work file, with a file claim as at the moment
of closing the file.

3. As o0ld file.

4, As old file,

remark: If a public file is opened as workfile it automatically
looses its public state, which state can be regained at

the moment of closing the file (as public file).

5.1.6. integer procedure old work file 1 (Zdf);

venial errors: (ER CE) — core space exhausted.

(ER UK) - no file of file name idf exists.

(ER NY) - the file is a private file of someomne else,

(ER NN) - the file is a public file of the user, but
it is temporarily unavailable as work file
because it is being read by another user.

(ER NP) - the file is a public file of someone else.

function: As old work file.

remarks: As old work file.
In case a venial error occurs a significant negative value

is delivered.

5.2. Implementation

The routines concerned with file creation have new fZle I as common part.
The routines concerned with the activation of a permanent file all lean

most heavily upon the routine open old file.

5.2.1.1. integer procedure new file (species);

begin integer f; new file:= f:= new file 1 (species);
if f < 0 then error (f)

end;

44

5.2.1.2. integer procedure old file (idf); -
begin integer f; old file:= f:= open old file (<idf,false);
if f < 0 then error (f) \ ‘

.end;

5.2.1.3. integer procedure old file 1 (idf);
old file 1:= open old file (idf,false);

5.2.1.4. integer procedure old work file (Zdf);

begin intéger f; old work file:= f:= open old file (idf,true);
if f < 0 then error (f)

end;

5.2.1.5. integer procedure old work file 1 (idf);
old work file 1:= open old file (idf,true);

5.2.2. Opening a new file

The opening of a new file is done by the routine new fZle 1 and consists
of the claiming of file space and the initialization of it, The claiming
is done in portions, because the data structure of the core space needed
does not allow to claim all space at once, Moreover this way the opening
of a new file and the opening of an old file can share claiming routines.
Claiming core space is done carefully, that is, as soon it is detected

that some space required is not available, the space already claimed for

the file-in-the-making is returned to the heap.

5.2.2.1, integer procedure new file 1 (species); value species;

integer species;
comment species: the species of the file to be created;

begin integer k, f, segmad;

hard check on species (species); SYS not;

f:= set up first part skeleton (true,no); comment if during this run the
user has not yet opened a file, the general file administra-
tion space fad is claimed from the heap and initialized.

From the file administration fad a file number is obtained.

45

If no file number is available fad is extended, an action
that includes claiming space from the heap. Parts of the
administration needed for one file are claimed from the heap
(cad,des and sad) and initialized ('nptrs' := 'nbics' :=
'nfreebics' := 0). If any of the claims is rejected, all
space that is claimed for this file is returned to the heap
and a jump to no is executed;

initialize descriptor new file (f,species); comment 'bp':= 'ep':= 'nsegm':=
'offset':= 1 / '"spec':= species / 'new':= 'work':=
'scratch':= true / 'idf':= "" / 'last block':= 0 / 'nelpv’,
'nelpb’, 'bpel', 'nblocks' and 'nfree' are set to their
initial obvious values;

set up second part skeleton (f,EP,no); comment pointer administration is
claimed from the heap, as well as core space for one data
block. Pointer ep is activated. In case a claim from the
heap is rejected all space that is claimed for this file
is returned to the heap and a jump to nmo is executed;

segmad:= SYS claim segment (true); comment ome file segment is claimed

from the scratch pool;
if segmad < 0 then
begin comment no segment available from scratch pool;

delete core (fadb - f); comment return to the heap all space claimed
for this file;
goto nob
end;
store (sadb(f) — SEGMAD IN SAD, segmad);
for k:=1 step 1 until NBPS do
mark block in core (f,k,false); comment the bit table over all file blocks

is initialized: no file block is in core;
initialize ptr (f,EP,1); comment the already active endpointer is initi-

alized: its value is set to 1 and the core block reserved
previously is now attached to the endpointer (so the inter-
est count 'int' of the bic is set to 1 and file block 1 is
marked "in core');

if true then new file 1:= f else

&

46

no: if true then new file 1:= ER CE else
nob: - new file 1:= ER BE;

SYS ton
end new file 1;

5.2.3. Opening an old file

'Opening an old file is done by the routine open old file. The remarks made
in 5.2.2. about opening a new file hold for opening an old file aléo. The
initialization however is a lot more complicated since the file catalogue
has to be consulted. Opening and closing the catfile is done in the space

" just claimed for the file to be created as described in 2.2.2.2.

5.2.3.1. Znteger procedure open old file (ident,work); value work;

boolean work;
comment ident = string or integer procedure yielding the file
name of the file wanted to be opened.
work = a boolean value deciding whether the file is to be
opened as work file (true) or as read file (false);

begin integer array idf [1:IDFL]; integer f,pos,backad,k;

make idf (idf,ident); comment the characters of the file name are
obtained from Zdent and reassembled, 3 characters per
. word, in array <df;
SYS not;
f:= set up first part skeleton (false,no); comment see description at
new file 1. The first actual parameter'indicates aﬁ old
file is involved, so an ample amount of space is initially
claimed for the segment administration sad, in order that
the largest file possible can be opened:
set up second part skeleton (f,WP,no); comment see description at new
file 1. The workpointer is made active (instead of the
endpointer as in new file 1);
for k:= 1 step 1 until IDFL do
store (desb(f) - IDF IN DES — k + 1,7dflk]); comment the file name is

stored into the core descriptor des of file f;

get access to catfile; comment a P-operation [0] with respect to the

&

47

catfile facility;
simple open file (f,fetch(SYSVAR CATFIBACKAD),true); comment the catfile

is opened as own work file in such a way that no extra
main store is needed to be claimed from the heap;

pos:= pos in catfile (f,idf,work,fetch(SYSVAR USER)); comment the catalogue
is searched for the desired file. The position of its short
descriptor in the catfile is assigned to pos. If the
request for the file is not to be honoured for one-reason
or another, pos will be assigned a negative value indi-
cating that reason;

if pos < 0 then

begin comment the required opening failed;

delete core (fadb - f); comment all space claimed for this file is

returned to the heap;

f:= pos
end else

begin comment the required opening is successful;

mark interest in catfile (f,pos,work); comment information about the
kind of use is made of the file is entered into the
catalogue;

backad:= backad in catfile (f,pos);

sitmple close file (f); comment the catfile is closed nows;

reopen file (f,backad,work); comment the file wanted now is opened
as own file. If work then it is opened as work file, other-
wise it is opened as read file, In both cases the work-—
pointer is active, with value EE. Initialization of the
file has taken place;
comment the space claimed for the segment administration
was sufficient to contain the administration of even the
largest file possible. This space now is reduced to the
proportions actually needed by the file f : ;

shrink sad (f)
end;

return access to catfile; comment the V-operation [0] for the catfile

&

48

facility;
if true then open old file:= f else
no: open old file:= ER CE;
SYS ton
end open old file;

49

6, FILE CLOSING

If a file is closed it will no longer occupy any core space. If the file
closed is a scratch file, all information contained in it will get out of
reach (of all users) permanently. In other words, the file is deleted. if
the file closed is an own file, the information gets out of reach of the
user temporarily; the file will be saved in back store; the file state
changes from active to permanent. A permanent file can be (re)activated
by opening it as an old file. ’
Thus, closing a file means either destroying the file info - in case the
file name is the scratch name = or saving the file info otherwise.

If a file is closed as permanent file and this is dome by the creator of
the file having a work permit, then the file can be destined public or

private, optional with the user.

When a program is terminated by the operating system some of its files

may still be active. The system shall take care of those files and close
them. In case a choice between private and public has to be made the
system closes a file as a private one,

Although explicit file closing is not demanded from the user it is advised
to do so (as soon as possible) since closing

. frees core storage

. frees back store space (if the file is a scratch file)

and thus possibly prevents the occurring of errors due to storage exhaus-
tion. Furthermore it will in general make the user's program more compre—

hensible,

If the file closed is an old read file, no problems arise in updating the
file catalogue; in the catalogue it is entered that for this particular
file a reader cancelled his subscriptionm. ‘

If the file closed is an own work file, i.e. an old work file or a new own
file, that file must be saved under file name and creator. The catalogue
contains this kind of information about all permanent files. A difficulty
crops up if the file name already occurs in the catalogue in a situation

that will cause ambiguities:

50

some other permanent file of this user has the same name as the file

that is to be closed.

the file is closed as public file and some other public file has the

same name as the file to be closed.

In both cases the file system changes the file name into one that is
unique and the file is closed as private file under the new name. These

actions are reported by the system:

. via normal system's report, e.g. a monitor-report-sheet; in other words,

the actions are protocolized.

. directly to the user who asked for file closing, via an output parameter

of the routine called.

The file is reopened as old work file under the new name in order to

‘enable the user:

. to get hold of the name the system invented so he will not loose his
grip on this file during this run of the program.

. to suggest another name for the file to the file system.

6.1. The routines

6.1.1. boolean procedure close file (f); value f; integer f;
fatal error: ER WF - f is not a file.

function: 1. If f is a scratch file the file is deleted.
2. If f is an old read file the file is returned to the system,
that is, subscription is cancelled.
3. If f is an old work file the file is closed as private file,
possibly after a renaming of the file by the system.
4. In case a renaming took place the value false, otherwise the

value true is delivered.

6.1.2. boolean procedure close file public (f); value fs integer f3

fatal errors: ER WF - f is not a file.

ER PC - f is not an own work file.

51

function: 1., The file f is closed as public file, possibly after a
renaming of the file by the system.
2. If a renaming took place the value false is delivered,

true otherwise.

6.2. Implementation

Both routines available to the user consist of a call of the routine

close, which will be treated extensively in the sequel.

6.2.1.1. boolean procedure close file (f); close file:= close (f,true);

6.2.1.2. boolean procedure close file public (f);
close file public:= close (f,false);

6.2.2. The routine close

boolean procedure close (f,priv); value f,priv; integer f; boolean priv;

comment f - the file number of the file to be closed.
priv - true: if the file is an own work file it is closed as a
private file, otherwise it is obliterated or returned.
false: if the file is an own work file it is closed as
a public file, otherwise a fatal error message is
given;

begin integer des,catpos,k;

boolean work,new, scratch,ok;
integer array idf,old idf U[1:IDFL];

hard check on f(f); comment if f is not a file a fatal error message
follows;

des:= desb(f); work:= feteh (des = WORK IN DES) > 0;

sceratch:= fetch (des - SCRATCH IN DES) > 0;

if if 1 priv then 1 work v scratch else false

then error (ER PC); comment if the file has to be closed as a public file,
then it has to be an own work file;

new:= fetch (des — NEW IN DES) > 0;

FS

52

simple close file (f); comment now all file blocks are safely stored on
back store;
SYS not; comment program termination is not allowed from now on since
vital administration will be inconsistent for some time;

if scratch then .

begin delete all segments (f); comment all segments of the scratch file

' are returned to the scratch pool. The file becomes pointer-
Less, i.e. all pointer administration is deleted; .
comment f is a scratch file but in case it was an old file
when opened the file catalogue must be updated:

if new then goto true

end else

begin if work then make adm block (f,false); comment for a new own work

file a long descriptor must be created and for an old work
file it must be updated;
comment the file becomes pointerless: ;
release second part skeleton (f)
end;
for k:= 1 step 1 until IDFL do
idf[k]:= feteh (des = IDF IN DES — k + 1); comment the file name is copied;

ecch: set up second part skeleton (f,WP,ecch); comment the pointerless file

gets equipped with one pointer: the workpointer wp, such
that wp = EEETE;EI;EZ;. The dummy label ecch occurs because
in general an operation as sketched above might require |
main store not available. In that case control would be
transferred to the process identified by the label. Not so,
however, in this case where the storage surely will be
available;

get access to catfile; comment this can be considered a P-operation with

respect to the catfile;
simple open file (f,fetch(SYSVAR CATFIBACKAD), true); comment the catfile is

opened as own work file in such a way that no main store

is needed but the administration space of f3

ok:= update catfile (f,idf,des,priv,work,new,scrateh); comment the routine

&

53

update catfile really does all the work;
gimple close file (f); comment the catfile is closed now;
return access to catfile; comment the V-operation for the catfile facility;
if ok then true: '
begin delete core (fadb - f); comment delete all core space occupied by f;
close:= true
end else
begin for k:= 1 step 1 until IDFL do
old 2dflkl:= fetch (des — IDF IN DES — k + 1);
SYS idf fanecy (f,old idf,idf); comment the operating system is

informed about the renaming of file f. It can take actions
for an accurate report of it. The old name is contained in
old Zdf, the new one in 7df;

for k:= 1 step 1 until IDFL do

store (des — IDF IN DES - k + 1,7dflk]); comment the new name is

stored in the core descriptor des;
reopen file (f,fetch(des -~ BACKAD IN DES),true); comment the file is

opened as own work file;

close:= false

end; comment program termination is allowed again: ;
SYS ton
end close;

6.2.3. Other aspects

When terminating a program, the operating system shall take the following
actions: comment if the program used any files: ; zf fadb = 0 then
begin integer f; for f:= 1 step 1 until fmax do

if cadb (f) = 0 then)

begin if =< close file (f) then close file (f) end

end;
comment cadb (f) =2 0 iff f is an active file;

54

6.3. Implicit closing

It is not demanded from the user to close explicitly all the files he has
opened.’Extorting explicit closing frém the user cannot be done; so de-
manding it, i.e. not doing it implicitly at program termination, would
cause the following undesirable situations: '

. the user opens a public file as read file. If this file is not closed
before program termination, then the file will be listed as "subscripted"
for ever. So the file owner will no longer be able to alter this file.

. the user creates a scratch file, renames it as an own file and stuffs it
with valuable information. Due to some innocent programming error the

program is terminated and all information is lost.

55

7. FILE NAMING

File creation produces a scratch file, i.e. a file with the scratch name.
Closing a scratch file means exterminating it. The only way to preserve a
file for a longer period than the run it is created in, is to give that
file a name different from the scratch name. Thus the file becomes an old
file and closing the file will make it permanent. Since file closing pre-
serves all own files, the only way to delete an own file is to give it the

scratch name before closing it.

Changing the name of a file is possible only if the file is a work file.
Changing the name from non-scratch to scratch causes a transfer of the
file space occupied by the file from the own pool to the scratch pool.

This transfer can always be done ~ it cannot prohibit the name alternation.
On the other hand, if the name is changed from scratch to non-scratch, the
occupied file space has to be transferred from the scratch pool to the own
pool, which might not always be possible, due to the file space distribu-
tion key. (The transfers, mentioned above, should not bother the user for
their efficiency aspect: they are made not in physical but in administra-

tive sense.)

7.1, The routine

boolean procedure new idf (f,idf); value f; integer f;

fatal errors: ER WF - f is not a file.
ER NW - f is not a work file,

function: 1. As old file (Zdf yields a file name N).
2. The file name of f is changed into N, except when f is a
scratch file and N is not the scratch name and the transfer from
the scratch pool to the own pool is considered impossible by the
system, ‘
3. If the file afterwards carries its new name, the value true is

delivered, false otherwise.

56

7.2. Implementation

boolean procedure new idf (f,ident); value f; integer f;

begin integer array tdf [1:IDFL1; boolean scratch; integer k,des,b;

make idf (idf,ident); comment the characters of the new file name are
obtained from Zdent and reassembled, 3 characterskword
in array idf;

hard check on f (£);

hard check on work permit (f);

SYS not; scratch:= true; des:= desb (f);

for k:= 1 step 1 until IDFL do .

seratch:= scrateh A Ldflk1=SCRATCHIDF; comment scratch=the new name is the

scratch name§
Ef‘fetch (des — SCRATCH IN DES) > 0 then
begin comment f is a scratch file;
if Tscratch then
begin comment the user asks to changé the scratch file into an own file;
if S8YS no longer scratch (fetch(des -~ NSEGM IN DES))

then goto false; comment the transfer of 'nsegm' file segments from

the scratch pool to the own pool is not allowed. The file
name is not changed and the value false is delivered;
:= SYS elaim block; comment a block is claimed from the own pool.
It shall contain the long descriptor of f;
if b < 0 then

begin comment how sad, the alteration seemed to be in the bag, but

no block for the long descriptor is available;
SYS scratch now (fetch(des — NSEGM IN DES)); comment undo the
transfer from scratch poolAto own pool;
goto false |
end;
store (des - SCRATCH IN DES,~-777);
store (des — BACKAD IN DES,b)
end scratch to non-scratch
end f is scratch file else

beginlgf serateh then

begin comment the file must be changed from own file to scratch file;
SYS scrateh now (fetch(des — NSEGM IN DES)); comment transfer the
‘ segments of f from the own pool to the scratch pool;
store (des — SCRATCH IN DES,777); comment the block for the long
descriptor of f is no longer needed : ;
SYS delete block (fetch(des — BACKAD IN DES))
end non-scratch to scratch
end;
for k:= 1 step 1 until IDFL do
store (des — IDF IN DES - k + 1,7df[k]); comment the file now carries the

new name as specified by the user;
if true then new idf:= true else
false: new idf:= false;
SYS ton .

end new idf;

57

58

8. INQUIRY ROUTINES

When manipulating files certain questions may arise to the user. Questions
concerning the size of the file claim, the value of active pointers, the
file species, the file name. These, and other questions are answered by

the seven inquiry routines given below.

8.1. The routines

8.1.1, integer procedure file species (f); value f; integer f;

venial error: (ER WF) - f is not a file.,
function: the species of f is delivered.

remark: the species of a file is coded in a non-negative integer.

If f is not a file a negative value is delivered.

8.1.2. integer procedure file claim (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: the maximal number of elements to be contained in f

is delivered.

8.1.3. boolean procedure work permit (f); value f; integer f3

fatal error: ER WF - f is not a file.

function: if the file f is a work file the value true is delivered,

the value false otherwise.

8.1.4. integer procedure idf sym (k,f); value k,f} integer Kk, f;

fatal error: ER WF - f is not a file,

function: suppose the file name is represented by a suitable
string S. The value Zdf sym delivers will be that of

stringsymbol (k,S): the internal representation of

8.1.5.

8.].6.

8.].7.

59

. the deletion-symbol if X < 0 or Xk 2 the length of S,
. the k-th symbol of S otherwise.

remark: in case a routine has a file number as one of its
parameters it is the first parameter; this holds for all
routines except for Zdf sym. The order of the parameters
is identical to that of stringsymbol, a routine with a

function analogous to Zdf sym.

integer procedure value of bp (f); value f; integer f;

fatal error: ER WF - f is not a file,

function: the value of the beginpointer of f is delivered,

whether the beginpointer is an active pointer or not.

integer procedure value of ep (f); value f; integer f;

fatal error: ER WF - f is not a file.

function: the value of the endpointer of f is delivered, whether

the endpointer is an active pointer or not.

integer procedure value of ptr (f,p); value f,p; integer f,p;

fatal error: ER WF - f is not a file,
venial error: (ER WP) - p is not a pointer of f.
function: the value of pointer p is delivered.

remark: in case p is not a (n active) pointer of f a negative

value is delivered,

8.2. Implementation

In all cases the implementation of these routines is as straightforward

and obvious as possible = mostly the main part of the routine consists

of the examination of one system variable —, so no more words will be

&

60

wasted upon it here,
8.3. Design considerations

The user should be able to avoid fhe occurrence of fatal errors in all

or nearly all possible situations. Therefore no vital information may be
hidden; all useful information must be attainable in some way. The inquiry
routines enable the user to obtain that information, even if he is '"blind-
folded", such as a general purpose routine, fully dependent on its param—
eters. It was decided to combine several inquiry functions into one rou-
tine, if such an approach seemed quite natural, rather than introducing the
umpty-umpth routine. This combining is done by means of the venial errors
in the routines file species and value of ptr.

The routine fZle claim has an additional function, maybe not obvious at
first sight, which has to do with file extension. It enables the user to

avoid a fatal error resulting from file space exhaustion.

61

9. DYNAMIC STORAGE ALLOCATION MODULE

The here presented file system requires storage handling that allows
garbage collecting techniques. The run-time stack is not an adequate part
of the storage for this kind of use, so another part of the memory, the
countern stack, has to be called into existence. If we locate the bottom
of the stack in the low addresses and let it grow upwards, the bottom of
the counter stack is located in the high addresses and grows downwards.
The counter stack can be considered as hanging from the ceiling. Once stack
and counter stack are established there will be no third part of storage
that can easily be placed at the disposal of an authofity that needs some
other kind of dynamic storage. Therefore the counter stack in the present
system, the heap, is modelled in such a way that it allows far more than
needed by the file system; e.g. string operations in ALGOL 60 would be
quite easy to implement once the dynamic storage allocation (DSA) module

is present in the operating system.

The way the DSA module functions, internally, is hardly of any interest
to the file system. It is not important if and how the module does things
like garbage collection and compaction. The things the (programmer
programming the) file system should know could be termed the face, the
outside of the modu}e. Ihis face, a description of the DSA module in

user's terms, is given below,

9.1. External description

A description is given of the heap, as implemented for the X8, so, for

one thing, word length from now on will be 27 bits,

The heap consists of objects, each obfect being a comsecutive row of words.
An object can be considered an information unit; in general the inter-
pretation of the informatipn conceiled in an object is entirely at the
responsibility of the user, e.g. the file system, and not of the DSA
module. To help the user in recognizing the object's meaning, he is allowed
to attach a fype to each object. How this is done follows from the descrip-

tion of the representation of an object in the heap as one word., Such a

F 2

62

representation is called a stwuct,

di7...d0

"ref 1}

d26 | d25...d19 d18
0 "type" 0

a struct:

The choice of "type" is left to the user, the file system uses "type" = 0

for file structs.

If "ref" # 0 it points to the first word of the object in the heap. This

word is called the genus word. It gives information about the object as

can be seen below. If "ref" = 0 it is a nil-reference; it does not refer to

any object.

Three genera of objects exist:

. #ho = an array of structs, i.e. all elements of the object are structs.

. p4 = an array of plain values, i.e. none of the elements of the object

1s a struct.

. Lambda - two words, one being the genus word that contains a reference

to an object, the other being a struct. So an object of genus

lambda contains two references; 1t is called a list cell.

The layout of the genus words is:

d26 | d425...d19 | 418 | d17...d0
rho 1 refent 1 length
pi 1 refent 0 length
lambda 0 refent 1 ref

The reference count "refcnt" gives the number of references made to this
object. If the number of references exceeds 125 it is fixed at 126,
meaning 126 or more. The number is coded as the inverse of the binary
representation of the reference count.

The length of the object is coded in "length" as the inverse of the binary
representation of the object length minus 1 (= length of data field).

All objects in the heap are positioned upside down, that is, if m is the

&

63

address of the genus word of object M, the second word of M is to be

found at address m—1, and so on.

The routines that have to do with the DSA module are presented in section

10.

64

10. INTERFACE FILE SYSTEM / OPERATING SYSTEM

The {ntergace between the file system and the (rest of the) operating
system can be defined as follows: suppose the operating system is a fully
éelf—supporting piece of software; suppose furthermore ;he file system
consists of a bundle of routines, forming a module to be added to the
operating system. The interface then consists of:
. all routines, variables and constants needed by the file system and not
contained in it. The file system assumes these tools to be present
in the operating system; if they are not, the operating system has to
be extended.)
. actions the file system (cannot possibly take by itself and) expects to
be taken by the operating system under certain circumstances. This
easily leads to modifications of the operating system. Since these

actions may involve the call of one or more routines of the file system

these routines in fact should be considered as part of the interface,

Besides the interface thus defined, another, weaker form of connection
exists which might be called the hidden .interface. This hidden interface
has to do with actions taken by the file system which might have been taken
by the operating system in a plain and more efficient way. Such actions,
in fact, have been implemented in the present file system, It seems a
matter of taste at what side of the dividing-line they should be situated.
If the implementation is seen as a general approach, one can argue, ﬁhey
belong to the file system; otherwise, if the implementation is done for a
particular operating system, they belong to that operating system. Other
grounds for the decisions made will be put forward at the detailed discus-

sion of the hidden interface.

10.1. Routines, constants and variables
10.1.1. Routines concerning main store
10.1.1.1. The simple main store routines

procedure store (ad,w); stores w at address ad.

&

65

procedure sstore(ad,real); double-length store: stores real at addresses
' ad and ad+l1.

integer procedure fetch (ad); delivers contents of address ad.

real procedure ffetch (ad); double-~length fetch: delivers the contents of
' addresses ad and ad+l1.

procedure incr (ad,i); adds © to the contents of address ad.
10.1.1.2. Dynamic storage allocation routines

integer procedure SYS claim (lh); claims héap space of length % and

delivers the first address of the space claimed. If space
not available a negative value is delivered.

procedure SYS shrink (ad,lh); the length of the object starting in
location ad is reduced to the new length Zh.

integer procedure SYS extend (ad,extra); the length of the object starting

in location ad is increased by extra. Possibly the increase
changed the position of the object in the heap, so the
(new) starting address of the object is delivered.
If the space extension is a failure, due to core space
exhaustion, a negative value is delivered.

procedure SYS delete (ad); the space occupied by the object starting in
location ad is returned to the heap. Appropriate measures
are taken in case the object deleted referenced other

objects.

procedure store ref (ad,ref); stores ref in the reference part of the
contents of address ad.

integer procedure fetch ref (ad); delivers the reference part of the

contents of address ad.

procedure SYS decr refent (ad); decreases the reference count of the
object starting at ad by 1. |

procedure SYS iner refent (ad); increases the reference count of the
object starting at ad by 1.

integer procedure SYS length (ad); delivers the length of the object

starting at ad.

66

integer procedure SYS gemird (gen,lh,rc); delivers the genus word of an

object of genus gen, length l4 and reference count rec.

10.1.2. Routines concerning back store

integer procedure SYS claim block; delivers the back address of a block

from the own pool. If not available a negative value is
delivered. _ o

procedure SYS delete block (bad); returns the block at the back address
bad to the own pool. '

integer procedure SYS claim segment (scratch); delivers the back address

of a segment from the (if scratch then scratch else own)
pool, if available, a negative value otherwise.
procedure SYS delete segment (sad,scratch); returns the segment at the
back address sad to the (if scratch them scratch else
own) pool.
procedure SYS scratch now (n); n own segments are scratch from now.

boolean procedure SYS no longer scrateh (n); m scratch segments are own

from now on, if allowed, and the value true is delivered.
If not allowed (because there are too many own segments

already) the value false is delivered.

integer procedure SYS compute backad (sad,b); delivers the back address

of the b-th block of the segment at the back address sad.

procedure SYS to disk (m,1,b,c); transports 1 consecutive locations of
core storage, starting at m, to the disk sector with
back address b, If and when transport is done the contents
of core location ¢ are increased by 1.

procedure SYS from disk (m,1,b,c); transports the disk sector with back
address b to L consecutive core locations starting
at m, If and when the transport is completed the contents

of the core location ¢ are increased by 1.
10.1.3. Routines concerning the supervisor

The routines in this section have to do with a very special part of the

&

67

operating system dealing with interrupt handling, swapping and typical

monitoring functions.

Qrocedure error {e); the fatal error e occurred and control is tramsferred
to the monitor.

Erocedure SYS not; a critical section is entered, no program termination
is allowed. It is supposed that this wish is honoured by
a mechanism using a counting device, rather thanm a boolean
flag.

procedure SYS ton; a critical section is left. This is the reverse
operation of SYS not.

procedure SYS el; an elementary action has to be taken, no.interrupt is
allowed. A mechanism like that of SYS not should handle it.

procedure SYS le; an elementary action is completed. This is the reverse
operation of SYS el.

procedure SYS swap; the program can be swapped out immediately; (and ’
swapped in any time, though it is understood that) the
swap reason is: this program needs the catfile facility,

which facility is occupied by someone else.

10.1.4. Miscellaneous routines

boolean procedure SYS is string (p); if p is a string the value true is

delivered, false otherwise.
boolean procedure SYS is int proc (p); if p is an integer procedure without

parameters the value true is delivered, false otherwise.

procedure SYS fancy idf (idf); changes the contents of the integer array
idf [1:IDFL]. This array contains the representation of
a file name that is changed into another'one in some neat
way (for instance: repetitive calls of this routine should

yield as many different file names as possible, within

reasonable bounds).

10.1.5. Constants

The operating system has knowledge of the constants BP, EP and WP so it

68

can inform the user of the system if needed.

All fatal errors have a unique integer identifying them and it may be of
interest to the operating system to know these error numbers, in order
to produce some intelligible message instead of a cryptic error code in

case a fatal error occurs.,

10.1.6. Variables

Four variables with fixed locations within the operating system must be

mentioned:)

SYSVAR catfibackad - the back address of the long desériptor of the

catalogue file.

SYSVAR catfinace — a boolean variable telling whether the catalogue file

is temporarily inaccessable or not.

SYSVAR user - the code(name) of the user. This is a swap variable, i.e.
a variable that has to be swapped in and out with the
program. For all programs a certain swap variable is in the

same location.

SYSVAR filehandle — the reference to all file space (in the heap) of the

active program., This variable is a swap variable.

10.2. Actions

The file system can ask for transport of information from main store to
back store or vice versa. Any request for such a transport has, besides
the parameters describing the transport wanted, an additional parameter:
the nepornt address. The operating system is expected to carry out transport
and, if it is finished and done, to report the completion by adding 1 to

the contents of the réport address.

Whenever a file routine needs to consult or update the catalogue file, the
catfile gacility is wanted by that routine. If some other authority

occupies the facility at that moment, the routine asking for it explicitly
allows to be swapped out by the operating system. If the operating system

decides to swap out on this ground (catfile facility occupied) it is due

&

69

to swap in at some time or another, preferably as soon as, but not before,
the facility is free for this user.

Some of the heapspace occupied by the file system possibly is not directly
needed by it., That is, it can function properly, though maybe less effi-
cient, without that space. In case some authority badly needs space, none
available, the garbage collection routine of the dynamic storage alloca-
tion system can demand the release of the space mentioned. This can be

done by a call of the routine free semifree.

If for some reason a program is terminated, the operatihg system is
obliged to close all files still active for the program. This closing can

be done by an appropriate number of calls of the routine close.

10.3. Hidden interface

The catfile facility is claimed by the routine get access to catfile and
the facility is released by the routine return access to catfile. The
latter routine, in fact to be considered as a V-operation, is implemented
in a very simple way; the former routine, actually a P-operation, is
realized through calls of SYS el, SYS le and SYS swap. The implementation
chosen could easily be replaced by another one, e.g. real P- and V-opera-
tions. It is done the way it is because of simplicity, test rums in a

simulated environment in mind.

Since the file system is presented as a lot of ALGOL 60 procedures and
not, say, code routines, no use is made of routines that are supposed to
be driven by interrupts. So, parts of the system that fundamentally rely
upon interrupt semsitive actions, such as the transport routines, have
been implemented in a rather clumsy way. In a machine code version of the

system these parts surely should be modified.

A role of very special importance is played by the routine Znitialize file
system., 1t is called upon the moment a user for the first time during the
program activates a file. This role is sketched in the next lines, though
the routine as presented in the sequel does not act that way at all, since

such action is very much operating system dependent. Adding the file system

&

70

in ALGOL 60 form to an operating system that has an ALGOL 60 library at
its disposal, can be done by modifying the operating system a bit, and
extending the library with the file system procedures.

The operating system is supposed not to rely on the file system in this
approach, so it has no direct ways to access file routines. Under certain
circumstances, however, the operating system is assumed, not to say
obliged, to call file routines: close at program termination, free semifree
if heap space trouble occurs. Luckily these routines are in core iﬁ case
the operating system needs them, but their explicit locations in main
store may be unknown to the system, The system possibly can get hold of
them by examining some library tables at a convenient moment. If not, the
core positions that are of importance can be handed over to the system by
the routine iZnitialize file system, in passing also informing the system
about the fact that the program considered uses files. The routine initia-
lize file system itself can get hold of the relevant core addresses either

directly - in a code version - or by some trick allowed by the system.

71

11. TESTING THE SYSTEM

The file system was tested without having it added to some operating system.
Therefore nearly all parts of the interface belonging to the operating

system are simulated in an ALGOL 60 environment:

. The heap is situated in an integer array, mem, big enough to do some
testing. This way a crash between a growing stack and a sagging. heap is
easily averted. The simple main store routines are done with by simple
accesses of mem, all of them provided with software checks on the bounds
of mem,

The routines of the dynamic storage allocation system asked for a more
sophisticated approach. They are simulated fairly good, but for an in-
efficient (and somewhat incorrect) behaviour of SYS extend and an imple-
mentation of SYS claim that does no garbage collection nor compaction.
Since nearly all data structures involved in the heap are of the same
sort in cases that matter (of sort bic), the latter defect of SYS claim
will not bother too much - the ALGOL 60 version is perfectly well capable
of re-using returned heapspace. Besides their functional meaning in
testing the system, the simulation of the heap routines may serve to
brighten the insight into some parts of the dynamic storage allocation

system,

. The info transports from and to disk are replaced by drum accesses. All
transports taken up are waited for until they are completed (no inter-
rupt business).

The claiming of segments and blocks is done from different parts of

drum storage.

. Fatal errors are reported by printing their number, accompanied with a
"coredump" (the contents of the array mem are printed). All other super-

visor routines are supplied in the most simple way - as empty routines.

« In case an actual parameter is allowed to be either a string or a param-
eterless procedure delivering an integer value, the latter possibility is

prohibited in the testing phase. The routine SYS fancy <df is supplied in

&

72

a rather silly form, though it is good enough to perform test runs.

Testing the system gives rise to many situations in which it is convenient
to the performer to know exactly the contents of the heap. These contents
can be made visible by a call of dump. The procedure dump is added for
reasons of testing only. This auxiliary procedure dumps the heap contents
over the lineprinter in a structured lay-out, closely resembling the
actual structures on the heap. So the performer can easily read thé heap

at any particular moment he wants to.

Whenever an old file is opened or an own file is closed, it is assumed by

the system that a file catalogue exists., Therefore, initializing the system

(for test reasons) means, among other things, the founding of a library

and a matching catalogue. This is done by the procedure found catalogue.

It creates an empty file that serves as catalogue file —~ the library all

tests start with is empty. ‘

Some system parameters have to be chosen, such as word length, block

length, segment length, et cetera. These parameters are assigned a value

only once and can be characterized as assembly parameters. Their values

are aptly chosen in the test phase, so, that they

. allow nearly all realistic situations that are interesting to occur in
relatively small test samples.

. do not demand the use of enormous amounts of heap space, so for one

thing the dumps are kept surveyable.

73

12, THE PROGRAM

The ALGOL 60 program presented in the next section consists of all file
routines, embedded in a rather small test envelope. The main program shows
some aspects of the use of the file procedures discussed in the previous
chapters. It mainly serves to give some illustration to fhe reader, rather
than to test the system, which was done to some extent with a lot of small

testing samples not presented here,

In order to facilitate a transscription, if any, of the system from ALGOL
60 to some convenient assembler code, the program is of a very simple
structure. For instance, complicated statements are avoided and procedures

are not nested.

The source code of the program was on cards, so the actual text differs
from that on the previous pages with respect to the representation
language. Instead of underlining word delimiters they are apostrophed and
only capital letters occur. Furthermore certain abbreviations are used,
such as 'INT' for 'INTEGER', etc. (see [3]).

Values of boolean nature are represented in the heap by integers. A posi-
tive value always means true and a negative one always means false. In
fact, all values that serve this purpose are chosen to be 777 and ~777

respectively.,

A lot of constants appear in the system; constants of type "assembly
literal". ALGOL 60 does not provide the possibility of using these
literals, so the following peculiar solution is chosen: all such constants
are delivered by integer procedures (of course this is very "expensive",
but surely admissible in an experimentary model of this type). Why proce-
dures and not variables? Variables must be declared and initialized sepa-
rately, which seemed inconvenient to the programmer of the system. Proce-

dures do not have this inconveniency.

A procedure the name of which starts with hard check causes a fatal error

if the checking is unsatisfactory.

£

74

In some parts of the program it was needed to do some bit manipulation,
Of course this could have been done in ALGOL 60 by combinations of integer

division, multiplication, etc. but it was decided to use the bit manip-

ulation procedures offered by the system's library [7].

12,1, The program text

The integral ALGOL 60 text of the system is reproduced on the next pages.

WVONOPRD WN

S e
DUN O

B
O PO

NN
[AR R]

NN
Ui

NN N
VRN

[Z 2R]
AN O

AL AL K R R]
QOCOVBNOND

o B
N

43

75

"BEGIN' 'COMMENT® A FILE SYSTEM FOR MULT|«SEQUENTIAL FILES ,
H,W, ROOS LINDGREEN]

YCOMMENT' THE TEST ENVELOPE s#astuiinsd sttt raibunstsitoontsspnoianenes)

*INT' T18,T19,T26,MEM END,FREEPTR,NBBPREE ,NBB,NRSFREE ,NBS,
BBOFFSET,BSOFFSET;

T18:= 2#818; T19:= 2x4T18; T263= iw24826}

MEM END:= 30003 nNBB:= 40; NBSi=z 100}

*BEGINY *'BOOL*' 'ARRAY!' BBFREE[18NBB),BSFREE[1iINRS])}
VINT® YARRAY' MEMIO:MEM END}}

YCOMMENT® USER ROUTINES #u#8a8udttsdtptt st intnstetdlbastobonitorntanesnn)

s INTY sPROC' NEVW FILE(SPECIES); *'VAL' SPECIES; TINT? SPEcI!Si
"BEGIN® " |NT' Fj; NEW FILEt= Fiz NEW FILE 1(SPECIESY;

YIFY FeQ TTHEN! ERROR(F) :
1END Y 3

»INT® *PROCY NEW FILE 3(SPECIES)) 'VAL' SPECIES) 'INT' SPECI|ES}
"BEGINY ' |NT*' F,K,SEGMAD; HARD CHECK ON SPECIES(SPECIES)}
SYS NOT}
Fi= SET UP FIRST PART SKELETON('TRUE',NO)}
INITIALIZE DESCRIPTOR NEW FILE(F,SPECIES)]}
SET UP SECOND PART SKELETON(F,EP,NO);
SEGMADIz SYS CLAIM SEGMENT(!TRUE')}
S{F? SEGMAD < [?'THEN'
'BEGIN' DELETE CORE(FADB = F)} 'GOTQ' NOB 'ENDY;
STORE(SADB(F) = SEGMAD IN SAD,SEGMAD)}
"FOR® Ki= 41 YSTEP! 4 TUNTIL' NBPS 'pO?
MARK BLOCK IN CORE(F,K,tFALSE')}
IN|TIALIZE PTR(F,EP,1)}
*1F1 *TRUE' STHEN' NEW FILE 1!s F 'ELSE?
NO: 'JF' PTRUE'! ITHEN' NEW FILE 133 ER CE ‘ELSE!
NOB: NEW FILE 13= ER BE;
SYS TON
TEND®

TINT? *PROC' OLD FILE(IDF)Y;

TBEGIN® *INT? Fj; OLD FILES= Fiz OPEN OLD FILE(IDF,YFALSE?)}
*IF? F<() "THEN' ERROR(F) ‘

PEND’}

" INTY *PROC! OLD FILE 1(IDF);
OLD FILE 1:= OPEN OLD FILECIDF, "FALSE');

tINT? *PROC! OLD WORK FILE(IDF)}

TBEGIN® fINT® F3 OLD WORK FILE:® Fi13 OPEN OLD FILE(IDF, "PRUE?)}
TIP? F<) "THEN' ERROR(F)

YEND?

76

57 *INTY 'PROCY OLD WORK FILE 1(I1DF)Y}

58 . OLD WORK FILE 1ii= OPEN OLD FILE(IDF,'TRUE");

59 '

60 YREAL' 'YPROC' NEXT EL(F,P); *Valt! F,Pj} PINT' F,Pj
64 NEXT EL:= TRANS EL(F,P,2,0)

62 c .

63 'REAL® *PROC' PREV EL(F,P); 'VaL' F,Pj} VINT!' F,R}
64 PREV EL3= TRANS EL(F,P,3,0)}

65

66 *PROCY WRITE EL(F,P,EL); *VAL! F,P,EL) 'INT' F,P; SREAL' EL}
67 TRANS EL(F,P,1.EL)}

68
69 *PROCY STANDARD PTR(F,P); 'VAL' F,P}) 'INT!' P,P;
70 P1F? ~STANDARD PTR 1(F,P) 'THEN! ERROR(ER CE)}
71

72 'BOOL' 'PROC' STANDARD PTR 1(F,P)} 'VAL! F,P; 'INT! F,P;
73 " *BEGIN®' HARD CHECK ON F(F); ‘

74 YIF? P 'NE' BP A P INE' WP A P 'NE' EP 'THEN' ERROR(ER §7)]

75 YIF? PTRB(F,P) 'NE®' 0 'THEN' ERROR(ER RE)}

76 SYS NOT}H ‘

77 CREATE PTR SPACE(F,P,NO)} . -

78 IN)TIALIZE PTRCF,P,val OF PTR(F,11F1 P = WP 'PHEN' BR 1ELSE) P))j
79 IF? STRUE' *THEN' STANDARD PTR 4i= 'TRUE! 'ELSE!

86 NO: STANDARD PTR 1:= 'FALSE'}

81 SYS TON

82 SEND '

83

84 *INT? *PROC®' NEW PTR(F,POS); 'VAL' F,RPOS; ?'INT' F,P0S}
85 YBEGIN?® *|NT' Pj; NEW PTR:a P:=z NEW PTR 1(F,POB)}

86 *IF® P<Q 'THEN®' ERROR(ER CE) :
87 PEND?
886

89 *INTY PROC' NEW PTR 1(F,POS); 'VAL' P,POS; 'INT' P,pOS;
90 YBEGIN' FINT! Pg

91 HARD CHECK ON F(F)J HARD CHECK ON PQOS(F,POB)}

92 SYS NOT} .

93 Pis NEW PTR NUMBER(F,NO)} CREATE PTR SRACE(F,P,NO);
94 INITIALIZE PTR(F,P,P0S8)) '"IFf 'TRYUE? TTHEN!

95 HEW PTR 13= P 'ELSE!

96 NO: NEW PTR 1t!= ER CE}

97 SYS TON

98 TEND®

99

100 *PROCY DELETE PTR(P,P)3 'VAL' F,PJ 'INT! F,P}
104 'BEGINT *|INT' ADP,ADN}

102 HARD CHECK ON F AND P(F,P);

103 ADN§= DESB(F) « NPTRS IN DES;

i04 ADPi= PADB(F)Y = (P=1)#PADCELL « PTYRB IN PADj

10% SYS NOT;

106 INCR(ADN,»1)s DECR INT IN BIC(F,P}} .

167 PIF? FETCH(ADNY>0 *THEN' DELETE CORE(ADP) 'ELSE"
108 YBEGIN® STORE REFP(CADB(F) -~ TRANSB |IN CAD,FETEH REF(ADR))}
109 STORE REF(ADP,0)

110 PEND Y 3

111 SYS TON

112 TEND? 3

143

114 PINT® ePROCY VALUE OF PTR(F,P); 'VAL® F,Pj) TINT! F, P}
1158 SBEGINY MHARD CHECK ON F(F)3}
116 VALUE OF PTRIs 1{F' P OK(F,P) 'THEN?

117
118
119
120
121
122
123
124
125
126
127
128
i2¢9
130
131
132
133
134
135
i36
137
i38
139
140
144
142
143
144
148
146
147
i48
149
150
154
152
153
154
i5%
156
157
158
159
160
164
162
163
164
165
166
i67
i68
169
170
174
i72
i73
174
178
176

77

VAL OF PTR(F,P) 'ELSE!' w777

9END

*INT® *PROCY VALUE OF BP(F); *VAL' F} TINT' F}
'*BEGIN' HARD CHECK ON F(F)}

VALUE OF BPl= VAL OF PTR(F,BpP)
'END’I

'*INT!* *PROC!' VALUE OF EP(F)3 YVAL' F} 'INT' F}
'"BEGINY HARD CHECK ON F(F)3;

VALUE OF EPl® VAL OF PTR(F,EP)
"ENDY 3

'PROCY RESET WP{F)} 'VAL' F; 'INT! F}
'BEGIN' HARD CHECK ON F AND P(F,WP)I
SYS NOT})
DECR INT IN Ble{F,WP)}
INITIALIZE PTR({F,WP,VAL OF PTR(F,BP})}
SYS TON
YEND'}

PINT? *PROCY FILE CLAIM(F)Y} 'ValL' F§ TINT' F3
'BEGIN' ' |NT' DES}
HARD CHECK ON F(F)) DESt= DESB(F)} _
FILE CLAIMSB (FETCH(DES = NBLOCKS IN DES) = 1)a
FETCH(DES = NELPB IN DES) = 1
*END '}

*INT? *PROC' FILE SPECIES(F); 'VAL' F3 ' INTY F3
FILE SPECIESIE V(F' F OK(F) 'TWHEN' PETCH(DESBI(F) = SPEEC |N DES)
TPLSE? =777

*BOOL° *PROC' WORK PERMIT(F); 'VAL'Y Fj3 T INT! F3
*BEGIN' HARD CHECK ON F(F);

WORK PERMITi® FETCH(DESB(F) = WORK IN DES) » 8
!ENDI;

*INT? *PROCY |DF SYM(K,F)j 'VAL' K,F}3 *INT' K,F}
IBEGIN' HARD CHECK ON F(F)}
*IFY K ¢« 0 v K 91GE' IDFL # 3 "THEN' |DFSYMiz DEL S8L 'ELSE?
YBEGIN? TINT? N,S)
N3z K t/t 3} S§= FETCH(DESB(F) » |DF IN DES =« N)}
Nisa8 K « N & 3}
IDF SYMI=s *)p? N = 0 STHENY 8 '/t 262144 YELSE? .
1{PI Nmi STHEN! BITSTRING(17,9,8) 'ELSE® B|TETRING(8,0,8)
SEND? .
TEND '} B

*BOOL? *PROC' NEW IDF(F, IDENT); tVALY Fj 'INT® Py
'BEGIN? PINT? 'aRRAY! IDFEL1: IDFLI) 1BOOLY' SCRATEH) 'INT! K,BES,B}
MAKE IDF(|DF, |DENTY} HARD CHECK ON F(F);
HARD CHECK ON WORK PERM|T(F});
SYS NOY} SCRATeHi= 'TRUE'; DEStIE DESA(F)S
PFORY Kiz 1 'STEP' 4 'UNTIL! iIpFL ‘poO!
SCRATCHi=® SCRATCHK ~ [DPIK] = SCRATCHIDF;
*IF? FETCH(DES = SCRATCH IN DES) >» 0 !THEN?
YBEGINY ${F7' o SCRATCH 'THEN!
'BEGIN' "IF? n8YS NO LONGER SCRATCH(FETCH(DES = NSEGM IN DES})
TTHEN? 1GOTO? FALSES Bi= SvS§ CLAIM BLOCKS 'IF' pel ?THENY
SBEGIN' Sv¥S SCRATCH NOW(FETCH(DES =~ NGEGM IN BES))}

78

177
178
179
i80
is81
ig2
183
i84
188
186
i87
188
i89
i90
i91
ie2
193
i94
198
196
197
198
199
200
204
202
203
204
208
206
207
208
209
210
214
212
213
214
218
216
217
218
219
220
224
222
223
224
225
226
227
228
229
230
234
232
233
234
235
236

"GOTO! FALSE
PEND '}
STORE(DES = BCRATCH IN DES, «77%7)}
STORE(DES =« BACKAD |N DEs,8)
TEND?
*ENDY fELSE?
'BEGINY '|F' SCRATCH "THEN!
'BEGIN' SYS SCRATCH NOW(FETCH(DES = NSEGM IN DES));
STORE(DES = SCRATCH IN DES, #777))
8YS DELETE BLOCK(FEYCH(DES = BACKAD IN DES))
PEND?
tEND ¢ :
"FORY Kgm 4 YSTEP?' 1 VUNTIL! IBFL *pO!?
STORE(DES = IDF IN DES = K « 1,IDPEKI)}
9IFY YTRUE’ 'THEN® NEY [DF:= fTRUE' tELSE?
FALSEf NEW IDFims 'FALSE"}
SYS TON
TENDY

*BOOL Y FPROC' CLOSE FILE(F)} TVAL' FP§ 'INT' Fy
CLOSE FiLEsm CLOSE(F, 'TRUE'}}

1BOOL ¢ "PROC’ CLOSE FILE PUBLIC(F)) 'VAL' F} VINT' Fj
CLOSE PILE PUBLICtm CLOSE(F,'FALSE')}

SCOMMENT? OPEN/CLOSE ROUTINES #4208 ad0asd ittt ttbuttntansditndeeaionsens)

TINT? *PROC! OPEN OLD PILECIDENT,WORK)S 'VAL' WORK} 'BOOL! WORK}
TBEGINY TINT? PARRAY! I1DF{1:1DFL)}
SINT? F,PO0S,BACKAD,K}
MAKE IDF(IDF, IDENT)}
SYS NOT}
F$s SET UP FIRST PART SKELETON('FALSE?!,NO);
SET UP SECOND PART SKELETON{(F,WP,NO}}
IFORY Kiz 4 'STERY 4 'UNTIL! IpFL 'pO!
STORE(DESB(FY = IDF IN DES = K & 1, |DF[{K])}
GET ACCESS TO CATFILE} ‘
SIMPLE OPEN F|LE(F,FETCH(SYSVAR CATFIBACKAD), 'TRUEY)}
POSim POS [N CATFILE(F, |DF,WORK,FETeH({BYSVAR USER))}
P{PY POS 4 0 ITHEN!
'BEGIN' DELETE CORE(FADB » F)j Fim POS 'END! 'ELSE!?
1BEGIN' MARK |NTEREST |N CATFILE(F,PO0S,WORK)}
BACKADs® BACKAD N CAPFILE(F,POS))
8 IMPLE CLOSE PILE(F)}
REOPEN P |LE{F,BACKAD,WORK)}
BHRINK SAD(F]
IEND T §
RETURN ACCESBS TO CATFILE}
1P ITRUB? 'PHEN' OPEN OLD FIiLEl= P 1ELSE"
NOS OPEN OLD PILEis ER CEj
SYS TON
TEND

IPROCY S|MPLE OPEN FILE(P,BACKAD,WORK)) }
IVALY P,BACKAD,WORK]) 'INT' P,BACKADS 'BOOL' WORK}
IBEGINY PINTY BIC,DES,CAT,K,AD; T}
BlCim PETCH REP({BADB(F) = 1); DESI® DEBB(P);
BIC FROM BACK(F,BIC,BACKAD)]

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
258
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
278
276
277
278
279
280
281
282
283
284
288
286
287
288
289
290
291
292
293
294
295
296

DEMAND REST(BIC))
. VIF1 BACKAD 'NEV FEFYCH(gYSVAR CATFIBACKAD) 'THEN!
STORE(DESB(F) « BACKAD [N DEsg,BACKAD

CAT§= BiC

INFO IN BIC #» 1}

)

IN|TIAL|ZE DESERIPTOR OLD FILE(F,CAY,WORK});
*FORY Kyz FETCH(DES = NSEGM |N DES) «1 'STEP' o1 'yNTILI 0 150"

*BEGIN? AD(= SADB(F) « SADCELL # K « SEGMAD

STORE (AD ,FETCH(CAT = SEGMAD IN CAT = KJ)})3
*FOR' Ti= NB|TWRDS =1 'STEP! =1 VUNTIL' 0 'DO!
STORE(AD+SEGMAD IN SAD = BITWRD IN SAD = T,ALLNINC)

YEND?Y

INITIALIZE PTR(F,wWP,1)

YEND?

*INT® 'PROC!

SET UP FIRST PART SKELETON(NEW,aLARM)i

TVALY NEW}S '800LY NEW) 'LABEL' ALARM}
"BEGIN' TINT! Fj A
Fia NEW FILENUMBER(ALARM);
cLAIM CORE(RHO:CADL.FADB -~ F,REL)Y})
CcLAIM CORE(PI,DESL,CADB(F) = DESB IN CAD,REL)}
CLAIM CORE(PI,"|F' NEW tTHEN' NEXS#SADCELL 'ELSE! SADL

CaADB{F) = SapB IN CAD,REL

STORE(DESB(F) = NPTRS IN DES,0)!
STORE(DESB(F) » NBICS IN DES,0)}
STORE(DESB(F)Y « NFREEBICS IN DES,0)j
YIEY 1TRUE’
RELS 'BEGIN!'

1END?}

*THEN?' SET UP FIRST PART SKELETONIm P

DELETE CORE(FADB » F))

]

'60TO!' ALARM

*PROCT SET UP SECOND PART SKELETON(F,P,ALARM))
'VALSY F,Pj TINTY F,P} TLABEL' ALARM]) .
*BEGINY CLAIM CORE(RWO,PADL,CADB(F) = PADB IN CAD,REL}]
CLAIM BIC(F,REL)) CLAIM CORE(P|,PTRL,CADB(F) = TRANSB IN CAD,REL)}
CREATE PTR SPACE(F,P,REL)}
PIFY VPALSE! TREN?
REL: ¢BEGIN!'

TEND '}

DELETE CORE(FADB = F))

"GOTOY ALARM

IN SAD;

tELSE?
YEND!

YEND?

IPROCY IN|TiALIZE DESCRIPYOR NEW FILE{F,SPECIES)} tVAL! P, SPECIES]}

TINTY

F

'BEGIN® ' INT!

STORE(DES
STORE(DES
STORE(DES
STORE(DES
STORE(DES
STORE(DES
STORE(DES
STORE(DES
TFORY Kim
STORE(DES

TEND'}

§ ¥ 3 % 8 ¢

+SPECIESS

DES,K; DESs= DESB(F)}
SPEC |N DES,SPECIES)S
BP IN DES,1)}

EP IN DES,;41)3

NSEGM IN DES, 1))
OFFSET IN DES,1}3

NEW IN DES,+777);
SCRATCH IN DES,#777))
WORK (N DES,%777)}
DFL = 4 I8TERP' =1 'UNTIL

0 'por

IDPF IN DES » K,SCRATCHIDF))
INITI1ALIZE REST OF DESCRIPTOR(FR)

1PROC? |N|TIALIZE DESCRIPTOR OLD FIiLE(F,CAT,WORK))

7 INT?

F

"BEGIN? #|NT!)
STORE(DES ~ SPEC |N DES,FETCH(CAT = SPEC IN CAT)):
STORE(DES =~ BP |N DES,FETCH(CAT = Bp
STORE(DES ~ EP IN DES,FETCH(CAT = Ep

s CAT) 'ROOLY WORK;
DEg} DESi® DESB(F)}

IN CAT)))
IN CAT))}

VALY F,CAT,WORK}

79

80

297
298
299
300
301
302
303
304
308
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
324
322
323
324
325
326
327
328
329
330
334
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
548
349
350
351
352
353
354
355
356

STORE(DES NSEGM IN DES,FETCH{CAT » NSEGM [N CAT)j;

STORE(DES OFFSET IN DES,FETCH(CAT = OFFSET IN €AT));
STORE(DES = NEW IN DES,s777);
STORE(DES » SCRAYCH N DES,=777)} .
STORE(DES = WORK (N DES,'|F1 WORK 'THEN' 4777 tELSE' =777}
IN{TIAL|IZE REST OF DESCRIPTOR{F)

TEND

]

*PROC' [N|TJALIZE REST OF DESCRIPTOR(P)) "VAL' F3 ' INT! F}
*BEGIN?' "|NT' DES} DESi= DESB(F)}
STORE(DES = NELPW |N DES, NELPW TO SPEC(FETCH(DES - SPEC IN DES)));
STORE(DES = BPEL IN DES, BPEL TO SPEC(FETCH(DES = SPEC |N DES)));
STORE(DES = NBLOCKS IN DES,NBPS#FETCH(DES = NSEGM IN DES))}
STORE(DES» NELPB |N DES,NWPB#FETCH(DES = NELPW IN DES))}
STORE(DES = LAST BLOCK |N DES,BLOCK TO POS(F,PETCH(DES = EP |N DES)
=1))3
STORE(DES =~ NFREE IN DES,(FETCH(DES = NBLOCKS [N DES) = {
FEYCH(DES » NELPB [N DES) w 4 m FETCH(DES = EP IN PES
+ FETCH(DES = BP IN DES))

) &
}

TEND' §

1PROC! REOPEN FILE(F,BACKAD,WORK)} 'VAL' F,BACKAD,WORK]}

TINT! F,BACKAD; !BOOL' WORK} . ,
YBEG|N' DECR INT |N BIC(F,WP)) SIMPLE OPEN FILE(F,BACKAD, WORK])
TEND T}

1B00L* "PROC' CLOSE(F,PRIV); tVAL! F,PRiVs VINTt F} 'BOOL! PRV}
*BEG|N® *INT' DES,CATPOS,K}
"BOOL T WORK,NEW,SCRATCH, 0K}
PINT' 'ARRAY? |DF,OLD (DF{L1IDFL1}
HARD CHECK ON F({F); DESia DESB(F})}) WORK:!= FETCH(DPES~ WOARK (N DES)>(};
SCRATCHg= FETCH(DES « SCRATCH IN DES)>»0%
PIFY *jF? =PRIV !THEN' ~WORK v SCRATCH 'ELBE' *'FALSE!
*THEN®' ERROR(ER PC);
NEWiz FETCH(DES = NEW |N DES)>8}
SIMPLE CLOSE FILE(F)]
SYS NOT}
?]F? SCRATCH ITHEN?
"BEGIN® DELETE ALL SEGMENTS(F)J'"IF' NEW 'THEN' 'GO0TOV TRUE
*END? YELSEY ‘
YBEGINT' *|F? WORK *THEN? MAKE ADM BLOCK(F,'FALBE!)|
RELEASE SECOND PART SKELETON(F)
SEND';
TFORY Kie 1 'STEP' {1 'UNTIL! IpFL 'pO?
IDFIK]te FETCH(DES » IDF IN DES. » K + 133
ECCHE SET UP SECOND PART SKELETON(F,WP,ECCH)};
GET ACCESS TO CATFILES .
SIMPLE OPEN FILE{F,FETCH(SYSVAR CATFIBACKAD), s TRUE)}
OKis UPDATE CATF|LE(F,|DF,DES;PRIV,WORK,NBW,SECRATCH)}
SIMPLE CLOSE FILE(F)}
RETURN ACCESS 70 CATFILES
TIFY OK *THEN! _
FRUES 'BEGINT' DELETE CORE(FADB = F)J CLQSEls '¥RUE' 'ENPt 1ELSE"
TBEGIN?' YFORY Kjm 4 'STEP! 1 TYNTIL! |DFL 'DO?
OLD IDFiKIte FETCH(DES = |DF N DES m K & 1}}
SYS |DF FANCv¥(F,0oLP IDF,IDF)}
"FORY Kj= 1 +STEP? 1 JUNTIL' |DFL DO
STORE(DES » [DF IN DES « K # 1,IDP{K})}
REOPEN FILE(F,FETCH(DES « BACKAD IN DES),'TRUE')}
CLOSEl= 'FALSE?

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
404
402
403
404
405
406
407
408
409
410
414
412
413
414
415
416

81

tEND 3
SYS TON
FEND Y}

'"PROC! RELEASE SECOND PART SKELETON(FY3 tvAL? F} Y|{NT? Fy
"BEGIN?

DELETE CORE(CADB(F) ~ PADB IN CAD)}J

STORE(DESB(F) = NPTRS N DES,0)
YEND'}

*PROC' DELETE AlLL SEGMENTS(F)3 'VAL' Fj3 1INT' F}
*BEGIN® Y|NT?' SAD,K,DES} ?!BOOL!' SCRATCH}
DES:i= DESB(F)} SCRATCH:z FETCH(DES w SCRATCH IN DES) > 0}
SAD:= SADB(F)}
YFOR* K3z SADCELL # (FETCH(DES = NSEGM IN DgS) « 1)
*STEP'! w=SADCELL 'UNTIL' 0 'DoO? ’
SYS DELETE SEGMENT(FETCH(SAD = g =~ SEGMAD N 8SAD)Y,
SCRATCH)}
RELEASE SECOND PART SKELETON(F)
TEND' 3

PROC? S|IMPLE CLOSE FILE(F)} 'VAL' Fj 'INT F3
*BEGIN® *|NT® AD,DES,BIC; '"BOOL' WRITE}
DES3= DESB(F); WRITEl=z FETCH(DES « SCRATCH IN DES)<20}
REP: Apiz BADB(F))
LOCPt BiC:s FETCH REF(AD = 1);
*IF? WRITE 1THEN?
YBEGIN' fIFY' FETCH(BIC » MOD IN BIC) 2 0 *'THEN?
BIC TO BACK(F,BiC,BACKAD OF BLOCK(F,FETCH(BIC » BLOCK IN BIC)))
*END?Y YELSEY DEMAND REST(BIC)}
ADg=s FETCH REF(ADY; 'IFt1 AD 'NE' (0 ITHEN' 1GOTO' LOCH
'ELSE? ?|F* WRITE *'THEN? 'BEGIN' WRITE = 'FALSE?} 'GOTO! REP 'ENDY}
STORE(DES ~ LAST BLOCK IN DES,=1)] TRY BIC RELEABE(F)
TEND Y}

SCOMMENT? CATALOGUE ROUTINES #4fatuttsttattortatininbeebtetotetebebososon}

*PROCY GET ACCESS TC CATFILE;

IBEGINTY

WAITS SYS EL§ '"|F?! FETCH(SYSVAR CATFINACC) > 0 *'THEN?
TBEGIN® SYS LE; SYS SWAP) 'GOTO! WAIT 'END'}
STORE(SYSVAR CATF(NACC,+777);
SYS LE

TEND Y §

1PROCY RETURN ACCESS TO CATFILES STORE(SYSVAR CATF|NACC,w777i}

TPROCY POSITION(F,POS)} TvAL' F,RO08) §INTY F,p0DSY}
LOCPS T|F' VAL OF PTR(F,WwP) INE? POS 'THEN?
1BEGIN?Y 1|F' VAL OF PTR(F,WP) > POS 1THEN'

PREV EL(F,WP) 'ELSE' NEXT EL(F,WP))

16OTO! LOCP
TEND? S

"INT® ¢PROC' BACKAD IN CATFILE(F,PO8)) 'Val! F,POS) "INT! P,RPO8}
'BEGIN® POSITION(F,PO08 + 2);

BACKAD N CATF(LE!a NEXT EL(F,WP)
TEND? }

82

4417

418 *© "iINT?' fPROC! POS IN CATFILE(F, |DF,WORK,USER);

419 '*WAL' F,WORK,USER} 'INT' F,USER} 'BOOL' WORK; 'ARRAY' IDF}
420 '"BEGIN? T INT?! POS,FPOS,RPOS,USE,RUSE,OWNER}

424 RPOS:z =777;

422 FPOSt= POSI= LOOK UP(F,|DF)}

423 EXAMt 'IF' POS > 0 *THEN!?

424 'BEG|N® USEl= NEXT EL(F,WP)) OWNERtm NEXT EL(F,WR)}

425 '{FY USER = ABS(OWNER) 'THEN?

426 TBEGINY YIF! ('IFY USER INE!' OWNER 1THEN' { '|F' WORK 'THEN' USE
427 'NE? 0 'ELSE' USE<(O) 'ELSE! 'TFALSE') 'THEN' POSis BR NN}
428 "GOTO! EXIT

429 YEND' 'ELSE!

430 '*BEGIN' RPOSt= 'iF! OWNER<O !'THEN! POS 'ELSBE' =POS}

431 SKIP REST OF CATDESCR(F); POSI=z LOOK UR(F, DF)} 'GOTO! EXAM
432 *END? :

433 SEND? 3

434 POSt= '|F?! FPOS ¢ 0 'THEN' ER UK 'E[SE!

435 "|F? RPOS ¢ 0 'THEN' ER NY 'ELSE!

436 '"{F1 WORK *THEN' ER NP VE| SE!

437 'IF? RUSE « 0 'THEN' ER NN 'BLSE' RPOS}

438 EXITy POS IN CATFILE:= POS
439 TEND g

440

441 'B00L " 'PROCY' UPDATE CaTFILE(F,IDF,DES,PRIV,WORK,NEW,SCRATEH) }
442 'VAL' F,DES,PRIV,WORK,NEW,SCRATCH} 'ARRAY' I1DF]

443 *YNT' F,DES; YBOOL' PRIV,WORK,NEW,SCRATCH]

444 'BEGIN® 'INT! POS,K,USE} 'BoOL' 0K}

445 OKje *TRUE';

446 P{F? SCRATCH '"THEN' 'BEGIN' POSiz FETCH(DES » CATPOS IN DES8)]
447 1GOTOY PD IDF TEND Y}

448 1{F$ =WORK 'THEN' 'BEGIN' POSim FEPCH(DES = CATROS |N DESY)
449 1GoTo! UPD USE ‘END!}

450 TIFY = NEW ?THEN?

4594 'BEGIN' POS|TION(F,FETCH(DES = CATPOS IN DES) » IDFL)}

452 'TFOR' K= 1 'STEP' 1 'UNTIL' IDFL 'DO

453 WRITE EL(F,WP,SCRATCH|DF)} RESET WP(F)

454 TEND?;

45% TRY: POSi= POS IN CATFILE(F,|DF,PRIV,FETCH{EYSVAR USER)})
456 YIF! POS > ('ThHEN!

457 'BEGIN' OKte TFALSE') SYS FANCY IDF({IDF)3 'GOTOY TRY 'END']
458 "BEGINT *INT! *ARRAY' SCRIDFILI1IDFLYS

459 'FOR' Ki= |DFL 'STEP' =1 'UNTIL! 4 'DO?

460 SCRIDFIK)3m SCRATCH IDF; RESET WP(F);

461 POSt= POS IN CATF|LE(F,SCRIDF,'TRUET,N)

462 *END Y

463 ¢IFt POS < 0 PTHEN"

464 "BEGIN' POSi® VA OF PTR(F,EP) % I(DFL)

465 DELETE PTR(F,WP)5 STANDARD PTR L1(P,EP); .
466 *FOR? Ki= 4 'STEP' 4 'UNTIL' DESCRIPTORL 'D0O' WRITE EL{F,EP,0)3
467 DELETE PTR(F,EP)) STANDARD PTR 4(F,WP):

468 MAKE ADM BLOCK(F,"TRUE")

469 TEND

470 UPD |DF: POSITION(F,P0S = |DFL))

471 *FOR? K¢= 1 'STEPY 1 TUNTIL?' |DFL 'DO?

472 WRITE EL(F,WP, IDFIK)Y} NEXT EL(F,WP)}

473 WRITE EL(F WP, {VIF? = PRIV A WQRK TTHEN' @1 'ELSE? 1)

474 # FETCH(SYSVAR USER));

475 WRITE EL(F,WP,FETCH(DES = BACKAD IN DES))}

476 UPD USE: POSITION(F,POS + 1); USEl® PREV EL(F,Wmj}

477
478
479
48)
481
482
483
484
485
486
487
483
489
490
491
492
493
494
495
496

498
499
500
504
592
503
504

505

506
507
508
509
510
511
512
513
514
515
816
517
8418
519
520
/821
522
523
524
528
826
527
528
529
830
B34
532
533
534
538
536

83

WRITE EL(F,WP,1{F1 - WORK 1THEN! USE « 1 'ELSE!
tIFY = OK VTHENY =777 1ELSEY 0y
UPDATE CATFI!LE:= CK
tEND Y}

*INT' $PRCC!' LOOK UP(F,IDF); 'VAL' P} *INT' F; YARRAY! PP}
"BEGINY JINT' K3 'ROOL' OK;
SEARCH ONI 'IF' VAL OF PTR(F,WP) 'GE' VAL OF PTR({F,EP) °'THENT
LOOK UPI= =777 'ELSE!
'*BEGIN' OKi= *TRUE?)
'FOR' Ki= 1 1STEP' 1 1UNTIL!' (APL 'CO?
OKs= OK ~ IDFIK] =2 NEXT EL(F,WP)}
TIFY = OK TTHEN?
"BEGIN' NEXT EL(F,wP)} NEXT EL(F,wWP});
SK!P REST OF CATDESCR(F);
*GOTO' SEARCH ON
*END Y
LOOK UPS= VAL OF PTR(F,wP)
YEND?
YEND®}

*PROCY SK|P REST OF CATDESCR(F)} 'VALY F} TINT' Fj
NEXT EL{F,WP)j

*PROCY MAKE IDF{|DF,iDENT)} 'ARRAY! IDF}
"BEGIN® FINTY SYM,K,P,C, INT; 'BOOL' STRING]
STRINGEI= SYS |S STRING(IDENT)}
P"IF?! =STRING & »SYS |S INT PRCC(IDENT) 'THEN' ERROR{ER WT)}
Kis Pys Ci= INTi=z 0;
RESBL.! SYMi= '|F! STRING 'THEN' STRINGSBL (K, |IDENT)
"ELSEY PROCSBL(IDENT);
PIFt SYM = SPACESBL v SYM = TABSBL w
SYM = NLCRSBL 'THEN! 'GOTO' RESBLS
PIF? SYM € 0 v SYM > 35 'THEN' SYMis DELSBL}
TREATS INTi= INT # 512 + SYM} Cia € & 13
tiFt C = 3 !TTHEN?
SBEGIN' Pizs P ¢ 413 IDFIP):=s INTY INTIm Cias 0 1END';
PIF? P 'NE' IDFL 'THEN?
TGOTO! 'iF' SYM = DELSBL 'THEN! TREAT 'ELSE' RESAL
TEND S

"PROCY MAKE ADM BLOCK(F,CATF); 'vaL' F,CATF) YINT' F; 1BOOL' CATF}
'BEGINY 1t INT? DES,BIC,CAT,K;

DESs$= NESB(F); BICis FETCH REF(BADB(F) « 1)

CATS= BIC = INFO (N B|C + 1}

STORE(CAT =~ SPEC |N CAT,FETCH(BES = SPEC IN DES)§;
STORE(CAT = BP IN CAT,FETCH(DES = BP IN DES)))
STORE(CAT = EP |N CAT,FETCH(DES = Ep N DES)Y)}
STORE(CAT = NSEGM IN CAT,FETCHI(DES w NSEGM N DES)}}
STORE(CAT = OFFSET (N CAT,FETCH(DES « QFFSET IN BES)§}

tFOR? Kg= FETCH(DPES = NSEGM IN DES) =41 '1STEP' w1 TUNTIL! 0 1BO*
STORE(CAT = SEGMAD IN CAT = K,FETCH(SADB(F) =»
SADCELL # K = SEGMAD (N saD))s
BIC TO BACK(F,BIC,FETCH('IFt CATF t3HEN' gygVAR CATF|BACKAD
'ELSEY DES = BACKAD IN DES))) DEMAND REgT(RIC) '
1END

tPROCY MARK INTEREST IN CATFILE(F,POS,WORK)) '"VAL' F,POS,WORK]
"INT! F,POS} 'BOOL' WORK;] :
IBEGIN' ! NT? USE}

84

537

538 .

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
550
560
561
562
563
564
565
566
567
568
569
576
571
572
573
574
575
576
577
578
579
880
581
532
583
584
5as
586
587
588
889
890
591
592
593
594
898
896

POSITION(F,POS *+ 1); USEi= PREV EL(F,WR)}
WRITE EL(F, WP, tIF' yYARK 'THEN' =777 *ELSE' USE + 113}
STORE(DESB(F)} » CATPAS IN DES,pQS)

tEND Y

fCOMMENT!' POINTER ROQUT |NES **a*****&&g»*u»*ﬁa;ua*iﬁﬁiuuiniﬁiioofﬁiicanc;

'PROCY IN|TIALIZE PTR(F,P,POS); 'VAL' F,P,POS} ' |NT' F,P POS}
'BEGIN' 'INT!' PTR} PTRi= PTRB(F,P)I

STORE(PTR = VAL IN PTR,POS)}

STORE(PTR = WRD IN PTR,WRD IN BLOCK(F,P0S))}

STORE(PTR = ELT IN PTR,ELT IN WRD(F,P08)})

STORE(PTR = BLOCK IN PTR,BLOCK TO POS{F,P08))}

ASK FOR BLOCK(F,P)}

ASSURE PRESENCE BLOCK(F,P)
"END?;

*INT? *PROCY NEW PTR NUNMBER(F,aLaRM}} "VAL' F3 ' NT' Fj 'LABEL' ALARM}
"BEGIN® tINTt MaX,P}
MAX3z PMAX(F)}
YFORY Piz FFP *STEP! 1 WUNTIL' MaX 100!
*IF?Y PTRB(F,P) = 0 "THEN' 'GOTO!' FOUND}
EXTEND PAD(F,ALARMY; Piz MAX + 1}
FOUND} NEW PTR NUMBERIZ P
tEND

'PROC? CREATE PTR SPACE(F,P,ALARM)1 'valL' F,P; t{NT' F,P} 1LABEL' ALARM}
*BEGIN?

CLAIM CORE(PI,PTRL,PADB(F) = (P=i1)uPADCELL = PTRB IN PAD,ALARM)}

"IF? FETCH(DESB(F) « NPTRS IN PDES) » 0 *THEN' CLAIM Bl&(P,NO) *ELSE"

BEGINY STORE REF(PADB(F) ~ (Pwl)4PADCELL = PTRB IN PAD,

FETCH REF(CADB(F) =~ TRANSB (N CAD))}
STORE REF{CADB(F) « TRANSB IN CAD,0)

TEND

INCR(DESB{F) = NPTRS IN DES,1)1 'IFt 'FALSEY (THEN?
NOS YBEGIN' DELETE CORE(PADB(F) = (P = 1) & PADCELL =~ PTRB IN PAD)}

TGOTO! ALARM
TEND Y
SEND Y ;

fINT? IPRCCY VAL OF BP(F)3 'VAL' FI 'INT!' F}y
VAL OF BPIs FETCH(DESB(F) = BP IN DES);

TINT? TPROCY VAL OF EP(F)3 'VAL' FI Y |INT' F}
VAL OF EPis FETCH(DESB(F) = EP IN DES);

TINT? YPROCY! VAL OF PTR(F,P); 'VaL' F,P) 'INTY P,B)
VAL OF BYRi=
TIFY P = RP YTHEN' VAL OF BP(F) 'E|8E!
1{Ft P = EP 'THEN' VAL OF EP(F) ‘g 8E?
FETCH(PTRB(F,P) » vaL IN PTR)

PINT? IPROCY BLOCK OF PTR(F,P); 'VAL' F,P}) 'INTY FyPj
8LOCK OF PTRiw FETCH(PTRB(F,P) = BLOCK IN PTR)}

1COMMENT® ROUTINES FOR BLOCKS IN CORE 2#4a040%20000004800000080000000000)

597
598
599
600
601
602
603
804
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
6314
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
654
652
653
654
653
656

85

'PROC' ASK FOR BLOCK({F,P)3 'VAL' F,P} 'INT' F,P)
'"BEG|N' '|NT! BLOCK,AD,BIC}
ECCHI BLOCKi= BLOCK OF PTR(F,P))
YIFY BLOCK |N CORE(F,BLOCK) !'THEN!?
*BEGN' AD1= BADB(F)}
LOCP: BiCt= FETCH REF(AD = 1)}
11FY FETCH(BI|C =~ BLOCK IN BlC) I'NE' BLOCK 'RHEN!'
'"BEGIN' ADiz FETCH REF(AD)} 'GOTO' LOCP 'END!
*END? 'ELSE!
'BEGIN®' '|FY FETCH(DESB(F) = NFREEBICS IN DESY) = 0 'THEN?
CLAIM BIC(F,ECCH); BiCiz CLAIM FREE BIC(F);
MARK BLOCK IN CORE(F,BLOCK, 'TRUE'))
STORE(BIC = BLOCK IN BIC,BLOCK)}
*IF' BLOCK 'LE' LAST BLOCK(Fj) "THEN?
BiC FROM BACK(F,BlC,BACKAD OF BLOCK(F,BLOCK))
TENDS 3
INCR INT N Ble(BIC))
STORE REF(PADB(F) w (P = 1) # PADCELL = BICB IN PAD,BI€)
YEND?} '

tPROC' ONE BLOCK DOWN(F,B!1C);5 'Val' F,Blgs 'INT! F,BIC}
IBEGINY INCR(DESB(F) = LAST BLOCK [N DES.=1)}

STORE(BIC = MOp IN BIC, =777)
YEND 3

'PROC? BIC TO BACK(F,BIC,BACK);
BICTRANS(F,BlC,BACK,tTRUE"')}

*PROCT BIC FROM BACK(F,BIC,BACK)}
BICTRANS(F,BIC,BACK,'FALSE");

PROC* BICTRANS(F,BIC,RBACK,WRITE); YVAL' F,BIC,BACK,WR|TE}
BOOL WRITES 'INT! F,BIC,BACK;
TBEGIN?
STORE(BIC = MOD IN BIC,»777)3
SYS ELS INCR{BIC =~ NTRANS IN BiC,1); SYs LE;
VIFY YRITE 'THEN!
SYS TO DISK(BIC = BICL, INFOL,BACK,B|C =~ NTRANS |N BIC) VELS8E?
SYS FROM DISK(BIC « BICL, INFOL,BACK,BIC « NTRANS |N Bi¢C)
TEND? 3

fPROC? FREE SEMIFREE]
'BEGIN® f{NT' F,DES,N,LAD,AD,BIC,NAD; 'BOOL' TRANS]
TRANS:3 1TRYE?'}
'FORY Fi=z F 'WHILE' TRANS 'DO!
'BEGIN' TRANSiz 'FALSE') 'FOR' Fi® 4 ISTEP' 1 'UNTIL' FMAX 'pO*
'*BEGIN' DESix DESB(F)3 N:m FETCH(DES = NRTRS |N DES)}
Niz FETCH(DES = NEB|CS IN DES) = ('iF!' NeO 'THEN® 1 'ELBE! N)}
$IFT N>Q PTHENT
'BEGIN' LAD{= CADB(F) ~ BADB IN CAD}J ADt= FEYTCH REP(LAB)}
NEXTS BICfiz FETCH REF(AD=1)3 '1F' FETCH(BIC = INT IN BIC)®D ?PHEN®
'BEGIN' 1P FETCH(BIC = MOD IN BIC)»0 'THEN?
TBEGIN' TRANSI= '"TRUE') BIC TO BACK(F,BIC,BACKAD OF BLOCK(
F,FETCH(BIC = BLOCK IN BIC)))
TENDY ELSE! '{F' FETCH(BIC = NTRANS IN BIC)»0 VPTHEN?Y
TRANSf= 'TRUE! 1ELSE?
'BEGIN' NADgm FETCH REF(AD)) STORE REF(AD,0))
SYS DELETE{AD)} STORE REF(LAD,NAD)}
INCR(DES = NBICS IN DES,s1)}) Nim N=i;

86

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
696
699
700
704
702
703
704
705
705
707
708
709
710
714
712
713
714
715
716

TIFY N30 'THEN' AD:E LAD

!END' .
YEND '}
LAD$= ADy ADiI=z FETCH REF(AD)Ss *tIF* AD 'NE' (0 *'THEN?' 1GOTO! NEXT

'END'
TEND?
tEND Y
'END

*PROCY TRY BIC RELEASE(F)s 'WAL' F3 Y INT! F}
TBEGINY *{NT' DES,N,FB,LB,BIC,BsLAD,AD,NADS
DESStas DESB(F)}
Nz FETCH(DES « NBICS IN DES) » FETCH(DES ~ NPTRS IN DES)}
YIFY N>Q 'THEN?
TBEGIN® FBi= BLOCK TO POS(F,FETCH{DES w BP IN DES));
LBs=s FETCH(DES -~ LAST BLOCK IN DES)) i
LLADi= CADB(F) « BADB IN CAD} ADI= FETCH REF{LAD);
NEXT? BIC:= FETecH REF(AD = 1); 'IF! FETCH(BIC = INT IN BIC) = 0
"THEN?
TBEGIN' Bz FETCH(BIC = BLOCK IN BIC);
PIFY YiFY' 11F' peQ 'THEN! 'FALSE' 'ELSE'BeFB v B>LB ! THEN?
FETCH(B!C = NTRANS N Bic) 8 0 PELSE' 'PALSE' YTHEN?
"BEGIN' "IF? Nal a FETCH(DES = NPTRS IN DES) = 0 'THEN?
'BEGIN' INCR(DES « NFREERBICS (N DES,1)S
STORE(RIC = BLOCK IN B{C,=777)
TEND' 'ELSE!
"BEGIN' NAD:= FETCH REF(AD)Y) STORE REF(AD,0)}
SYS DELETE(AD); STORE REF{LAD,NAD)}
{INCR(DES « NRICS IN DES,w»1)} Niz N = 1}
YIFY N30 *TrEN' AD:!=z LAD
'END'
CEND?
*END '}
LAD:= AD} AD1s FETer REF(AD)I 'IFt AD 'NE' N 'THEN? 1GOTA! NEXT
!END'
SEND? 3

TINT® 7PROC! BLOCK OF RIC(BIC); 'VAL' BIC) '"INT? BICY
BLOCK OF BiCi= FETCH(EIC « BLOCK IN B|C)}

fPROCY ASSURE PRESENCE BLOCK(F,P)} SVAL' F,P;3 'INT?! F,P}
DEMAND REST(BICE(F,PY)}

*PROC? DEMAND REST(RIC)YS 'VAL'! BIC) 'INT' BIC}
WAITS 'I1F" FETCH(BIC = NTRANS IN BIC) 'NEYT 0 *THEN' "GOTO! WAIT;

*INT? TPROCY CLAIM BIC(F,AL)S 'VAL' Fj PINT! F3 LABEL' ALl
TBEGINT 1INTY BiC)
CEXTEND BAD(P,AL)|
B8iCis CLAIM CORE(PI,BICL,BADB(F) » 1,NO);
INCR(DESB(F) = NBIcCS N DES,1)}
INCR(DESB(F) = NFREEBICS IN DES,1)}
INITIALIZE BIC(BICY}
TIFY TRUEY 'THEM' CLAIM BIC:S BIC 1ELSE!
NOS 'BEGIN' BiCi=s BADB(F)} ,)
STORE(CADB(F) « BADB (N CAD,FETCH REF(H81C))} STORE REF{BIC,0)}
SYS DELETE(BIC)) 'GOTC' AL
TENDY
1END ' §

717
718
719
720
721
722
723
724
725
726
727
728
729
730
734
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
754
752
753
754
758
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
774
772
773
774
775
776

87

PINT?! 'PROCY CLAIM FREP BIC(F); 'vaAL' Fj 'INTY Fj
'BEGINY '(INT' AD,BIC;
ADi= BADR(F):
REp: BICta FETCH REF(AD = 1)j fIFt FETCH(BIC = BLOCK IN BIC) » 0 'THEN'
'BEGIN' ADs= FETCH REF(AD); 'GATO! REP tEND
INCR(DESB(F) = NFREEBICs IN DEg,=1)}
CLAIM FREE BiCy= BIC
'END'}

*PROCY INITIALIZE BiC(BICY; 'VaAL' BICE VINT!' BiIgs
*BEGIN' STORE(BIC = MOD N BiC, =777):

STORE(B|C = INT IN BIC,0)3

STORE(BIC = NTRANS IN B8(C, 0)}

STORE(BIC = BLOCK IN BiCc, =777)
YEND'}

'YPROCY INCR INT IN BIC(BIC); 'VAL' BIC}) 'INT' BIC}
*BEGIN' INCR(BIC = |NT IN BIC,1)}%

SYS |NCR REFCNT(BIC)
YEND '}

'PROC? DECR INT IN BIC(F,P)} 'VAL' F,P; " {NF' F,pP;
'BEGIN? 7 INT' AD,INT,BIC,B}
BiCi= BICB(F,P)) ADIm BIC = [NT IN BIC; .
INTE=s FETCH(AD) » 1; STORE(AD, INT); SYS DECR REFCNT(BIC)}
STORE REF(PADB(F) =(P~1)#PADCELL = B(CB [N PAD,0);
t1Ft INT=0 'THEN?
'BEGIN' '|F?! FETCH(BIC » MOD IN BIC) > 0
TTHEN' BIC TO BACK(F,B|C,BACKAD OF BLOCK(F,BLOCK OF PTR(P,P)))
YELSE' 'IF' P=BP 'THEN! TRY BIC RELEASE(F) 1ELSE?
VIF! PsEP 'THEN!
tBEGIN' Bl= BLCCK CF PTR(F,P)§ '|F! B>FETCH(DESB(F) =« LASY
BLOCK IN DES) rTHENt 'BEGIN' MARK BLOCK IN CORE(F,B,'FALSE");
TRY BIC RELEASE(F) ‘END!
1END?*
TEND !
*END?}

TINTY *PROC' BACKAD OF BLOCK(F,BLOCK)}3 *vaLt' F,BLOCK; T'INT?! F,BLOCK}
BACKAD OF BLOCKI® SYS COMPUTE BACKAD(
FETCH(SADB(F) » REDUCED BNUMB(F,BLOCK)INBPS#SADCELL .
=SEGMAD 1IN SaD), REMAINDER(BLCCK = 1,N8PS));

*INT? *PROCY REDUCED BNUMB(F,B)} 'VALY F,B; ' |NT* F,B}
*BEGIN® |{NT! DES,RB,RRBj} DES:= DESB(F)}

RBle B » FETCH(DES = CFFSET IN DES))

RRBJ= RB =» FETCH(DES » NBLOCKS IN DES);

REDUCED BMUMBi=z '{Ft RRB 'GE' 0 'THEN' RRB 'ELSE! RB
YEND Y}

"PROCY CONSIDER OFFSET(F,B); ftVAL' F,B3 'INT' F,B}
*BEGIN' *|NT' DES} DESI® DESB(F)}

"|F' REDUCED BNUMB(F,B) = 0 'THEN?

INCR{DES = OFFSET IN DES,FETCM{DES =~ NBLOCKS IN DES)}
YEND'}

*PROC! MARK BLOCK IN CORE(F,B,IN CORE)}} *VaL' F,p, IN CORE}
PINTY F,B} 'BOOL' iIN CORE}
'BEGIN! tINT! ADV)
Bt REDUCED BNUMB(F,B))

88

777
778
779
780
784
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

. 799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
8238
829
830
834
832
833
834
835
836

Wiz B 1§ NBPY}

ADim SADB(F) = SADCELL # (BJINEPS) = BITWRD IN SAD - W;

Bizs B - WaNBPVW}

STORE(AD,SET('IF* (N CORE *'THEN' 0 1ELSE' 1,B,8,PETCH(AD))
YEND?Y}

'BOOL 'Y 'PROC' BLOCK IN CORE(F,8)3 'VAL' F,B} '"INT' F,BI}
1BEG|IN® ' [NT' W}
B3® REDUCED BNUMA(F,B);
Win B i NBPWI
BLOCK IN COREl= BIT(B - WaNBPW, FETCH(SADB(F) -~ BADGELL
(BINRPS) = BITWRD IN SAD =» W)Y = 0
TENDY}

YCOMMENT?' ROUTINES FOR STORAGE ADMINISTRATION #4400 saststatetneaitanonee)

INT 'PROC' CLAIM CORE(GEN,L,REFDES,ALARM)} 'YVAL!' GEN,L} 'LABEL' ALARM;
*INT' GEN,L,REFDES] .
"BEGIN' VINT' Ap,K;

AD3= SYS CLAIM(!|F' GEN = LAB 'THEN' 2 'ELSE' L & 1)}

*IF? AD < 0 'THEN' 'GCTO' ALARM}

STORE(AD,SYS GENWRD(GEN,L,1))3

STORE REF(REFDES,AD)}

VIF? GEN=|AB 'THEN' STORE(AD = 1,0) 'E|LSES

YIF? GEN = RHWO 1THEN®

*FOR? Kiez 1 'STERP' 4 FTUNTIL! L 'DO!

STORE(AD = K,0)}

CLAIM COREtm AD
TEND?;

TPROCY DELETE CORE(AD)s 'VAL' ADj 'IN¥' ADS
*BEGIN' SYS DELETE(FETCF REF(AD))}

STORE REF(AD,0)
'END*}

*INT? ?PPROCY NEW FLENUMBER(NO)J} TLABEL' NO}
TBEGINY 9 INT! FAD,F}
FADj= FADBS 'IF? FAD 2 0 "THENS
"BEGINY INITIALIZE FILESYSTEM) FADg= FADH}
"IFT FPAD = 0 'THEN'! 'GOTOt NO
TEND Y 3
'FORY Fie 4 'STEPY 1 YUNTIL' FMAX 'pO?
"iF? CApB(F) ® 0 *THEN® 'GOTO' FOUNDS Fiz= FMAX » 1}
EXTEND FAD(NO)}
FOUND§ NEW F|LENUMBER|z F
TEND S

‘PROCY EXTEND PAD(F, ALARMY} *vakt FJ VINT® Fj 'LABEL'Y ALARM)
EXTEND ADM(PADB(F),NEXP # PADCELL,CADB(F) = PADB IN CAD,ALARM);

1PROCY EXTEND FAD(ALARM); 'LABEL' ALARM}
EXTEND ADM(FADB,NEXF,SYSVAR FILEHANDLE,ALARM)}

TPROC! EXTEND SAD(F,ALARM)J 'VaL' F} 1INTY P} 'LABEL' ALARMJ
EXTEND ADM(SADB(F),NEXS # SADCELL,CADB(F) = SADB IN CAD,ALARM)}

tPROCY EXTEND ADM(BASE,EXTRA,REFDES,ALARM); 'VAL' BASE,EXTRA}
"INT' BASE,EXTRA,REFDES) 'LABEL' ALARM;

837
838
839
840
841
842
843
844
845
846
847
848
849
850
8514
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
878
876
877
878
879
880
884
882
883
884
88%
886
887
888
889
890
8914
892
893
894
895
896

89

"BEGIN' TINTY NEWB,K,L;
NEWB:= SYS EXTEND(BASE,EXTRA); 'IF!' NEwB<N »THENt 1GOTO! ALARM;
STORE REF(REFDES,NEWB); Li= s¥Ys LENGTH(NEWB);
tFOR! Ki= 1 *STEPt 4 'UNTILY EXTRA DO
STORE(NEWB w L+ K = 1,0)
1END '}

TPROCY EXTEND BAD(F,ALARM)Y3 'valt' Fj ©INTY F; 'LABEL' ALARM}
'BEGINY ' INT' AD,HANDLE,H}

HANDLEt® CADB(F) ~ BADB IN CaADj; mi= FETCH{HANDLE};

ADjz CLAIM CORE(|AB,2,HANDLE ,ALARM); :

STORE REF(AD,H)
YEND';

*PROCY SHRINK SAD(F)§ 'VaL' F} 'INT! F3
SYS SHRINK(SADB(F), (FETCH(DESB(F) = NSEGM I|N DES) +
("IF! FETCR(DESB(F) = WORK IN DES) > 0 'THEN' NgX8$
YELSE' 0)) # SADCELL)J

SCOMMENT® ROUTINE HANDLING 1 ELEMEMT OF A FliLg ﬁ&»o»é;n&tﬁnoiuonuoo&ucn5

'REAL ' 'PROC' TRANS EL(F,P,KINDsELY}'VAL' F,P,KIND,ELS}

*INT® F,P,KIND; 'REAL! EL}

*COMMENT® KIND = 14 WRITE EL,

21 NEXT EL,
, 3¢ PREV EL}
TBEGINY 'INTOFAD CAD,DES,PAD,PTR,R|C, ADP, PVAL,BPVAL,EPVAL.
NELPW,ELT,WRD,AD,ELM,BPEL,LOW, NFREE ADFREE, BLACK]}
TBOOL' EXTEND)
HARD CHECK ON F§ .
FAD§= FADBj *IF? FAD = 0 'THEN' ERROR(ER NF)}
IF? F ¢« 4 w F > SYS LENGTH(FAD) 'THEN' ERROR(ER WF)}
CADg= FETCH REF(FAD = F); 'IF! CAD = 0 'THEN' ERROR(ER wr)n
HARD CHECK ON P}
PADI=z FETCH REF(CAD » PADB IN CAD)3 : :
TIFY pel v P3SYS LENGTH(PAD)/PADCELL 'THEN' ERROR(ER WR)}
ADPis PAD » (P = 1) & PADCELLS
PTRis FETCH REF(ADP « PTRB IN PAD))
PIFY PTR & 0 'THEN' ERROR(ER WP)J
HARD CHECK ON WORK PERMIT (F NEEDED!
DESie FETCH REF(CAD « DESB IN CAD))
TIPS o F9 T{F? KINDDY 1THEN? (1IFY p TNEY EP tTHEN' PaBpP 1B SEY
PTRUE®Y 1ELSEY FTRUE! "THEN' FETCH(DES = WORK IN DES)<f
SELSE? (FALSE? §THEN? ERROR(ER Nw});

HARD CHECK ON PTR VALUE1 : -
PVALSIS FETCH(PTR « VAL N PTR) = {'(F! KIND = 3 'THEN' & YELSE' 0);
BPVAL (s FETCH(DES « BP |} DES)}

EPVAL:z FETCH(DES « EP IN DES))

1P PVAL < BPVAL fTHEN!' ERROR(ER PL)}

SIF1 t1Ft PYAL 1GE' EPVAL 'THEN' P INE+ EP +ELSEV 'FALSEY
¢THEN!' ERROR(ER PH)j

PRELIMINARY ACTIONS DONEY
SYS NOTy BICi® FETCH REF(ADP = BICB IN PAD)}
NELPyW:e FETCH(DES = NELPY [N DESY)
ELTse FETCH(PTR = ELT IN PTRY)
WRDiz FETCH(PTR = WRP [N PTR)}
EXTENDI® 'FALSE!} :

SCATTER ON KIND}

90

897
898
899
ep00
901
902
903
904
905
906
o207
%08
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
954
952
953
954
958
9%6

tIFY KIND = 3 *THEN?! 1GOTO' STEP PTRS
YIFY t|FY WRD = D 'THEN' ELT = (0 VELSE' 'FALSE' ¢THEN?
'*BEGIN' ASSURE PRESENCE BLOCK(F,P); 'iFt P = gP tTHENI
STORE(DES « LAST BLOCK IN DES,FETCH{PTR = BLOCK IN PTR})
1END Y .
READWRITE:
ADim BIC » INFO IN BIC =« WRD;
YIFY KIND = 1 'THEN! 'GOTO' WRITE E_LEMENT}
READ ELEMENT!
tIFY NELPW=0 'THEN' TRANS EL:= FFETCH(AD = 1) 'ELSE®
*BEGIN®' ELMi= FETCH(AD); 'IF' NELPY > 1 'THEN?
'*BEGIN' BPEL|= FETCH(DES -BPEL IN DEsg)}
LOWi= ELT » RPEL}
TRANS EL!= BITSTRING(LOW + BPEL = 41,LOW,ELM)
*END' *ELSE' TRANS ELiz ELM
YEND?;
tIF' P g BP v P & EP I1THEN?
YBEG|N* AD$= DES « NFREE IN DES}
STORE (AD,FETCH(AD) #» 1)
'END*; :
1GOTOY t|F' KIND = 2 'THEN' gTEP PTR 'ELSE' EMIT TRANS]
WRITE ELEMENT}
C'fFY P g EP YTHEN?®
YBEGIN® ADFREE(=s DES ~ NFREE IN DES};
NFREE 3= FETCH(ADFREE)} :
1)FY NFREE > 0 'THEN?
*BEGIN' STORE(ADFREE,NFREE « 1)}
EXTEND:® NFREE = 1
TEND' YELSE' 'BEGIN' EXTENDI=z = EXTEND FILE{F)} SYS TON}

VIF? w EXTEND 'THENt ¢GOYO' RETRY 'ELSE®' ERROR(ERPE)

!ENDO
SENDY YELSE! "jF' P g BP 'THENY
*BEGIN®' ADFREE!®m DES =~ NFREE IN DESS
STORE(ADFREE,FETCH{ADFREE) + 1)) 1GOTOQ"' STEP PTR
"END!;
PIFY NELPW=0 PTHEN' SSTORE(AD = 1,EL) 'ELSE!
*BEGIN® ELMi= TAIL OF(EL); *IF' NELPW > 1 vTHEN?
*BEGIN' BPEL}e FETCH(DES - BPEL IN DES)s
LOWj= ELT # BPEL} STORE(AD,SET(BITSTRING(RPEL = i,
0,ELM),LOVW ¢ BPEL » 1,LOW.FETCH({AD)))
TEND' "ELSE' STCRE(AD,ELM)
TEND?; STORE(BIC = MOD IN BIC,%777)}
STEP PTR!
1IF? KIND ¢ 3 *THEN® PVALI= PVAL # 13
STORE(PTR » VAL IN PTR,PVAL);
"IFY P 8 EP 'THEN' STCRE(DES = EP IN DES,PVAL) 'ELSE?
*|F P w BP YTMEN' STCRE(DES = BP IN DES,PVAL)Y;
STEP PTR ELTS
1iFY NELPW » 1 PTHEN?
IBEGIN' FPIF? KIND ¢ 3 tTHEN?
'BEGIN' ELT3® ELT = 43 fIF' ELT 1GEY 0 'THEN?
tBEGIN? STORE(PTR = ELT IN PTR,ELT)Y}
4GOTO? EXIT TRANS
1END! 1ELSE! STORE(PTR = ELT IN PTR,NELPW = 1)
"END? YELSE?
'BEGINY ELTi® ELT ¢ {3 'IF? ELT ¢ NELPY. *THEN?
1BEGIN' STORE(PTR « ELT IN PTR,ELT)}
16070t READWRITE
1END? YELSEY
IBEGIN® STORE(PTR » ELT IN PTR,0)}

957
958

959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

995"

996
997
998
999

1000

1004

1002

1003

1004

1005

1006

1007

1008

1009

1010

1013

1012

1013

1014

1015

10154

ELTi= 0
tEND !
TEND?

lENDO;

STEP PTR wrD:
t|Fr KIND < 3 tTHEN?
'BEG|N? WRDi= WRD + (' |F' NELPYW = 0

"IFv wRD < INFOL

tTHEN

VTHEN' 2 YELSE' 1j)

*BEGIN' STORE(PTR = wRD IN PTR, WRD)}j

TGOTOY EXIT

TRANS

*ENDY *ELSE' STORE(PTR = WRD IN PTR,()
*ENDY 'ELSE?
*BEGIN® WRDi= W

|F WRD $GE

YBEGIN' STORE(PTR = yRD

RD = (']
0 'THEN?®

*GOTO! READWRITE

YEND' 'ELSE!

Ft NELPW = 0

YTHEN' 2 *ELSE' 13}

IN PTR,WRD)}

"BEGIN' WRDi= INFOL » ('IF' NELPy 3.0 ITHEN® 2 JELSEY 1§}

STORE(PTR = WRD

*END?

TEND Y3

STEP PTR BLOCK1
AD$s PTR =» BLOCK
BLOCK:= FETCH(AD) + ('IF' KIND = 3 1THEN' =1 'ELSE' 1))
TIFY P = BP 'THE

*BEGIN?

MARK BLOCK
STORE(BIC =~ MOD

IN PTR}

NY

IN PTR,WRD)

CONS IDER OFFSET(F,BLOCK)
TENDY TELSEY 9 (F
ONE BLOCK DOWN(F,RIC);
DECR INT IN BIC(
ASK FOR BLOCK(F,P)}
$1FY KIND = 3 sTHEN?

RETRY.
'BEGIN' CADj= FETCH REF(FADB = F)3

DES:= FETCH RE
PAD:= FETCH RE
ADP:= PAD = (P
PTR:z FETCH RE
BiC:=s FETCH RE

v 1 |FY PzEP +THENY K

S

IN CORE(F,BLOCK=q,FALSE)
IN BIC,=777)3

ND=3 'ELSEY *FALSE' 1THEN!

F,P)s STORE(AD,BLOCK)}

F(CAD =
F(CAD «
= 1) #
F{ADP =
F{ADP =

DESB IN CAD)S
PADB IN CAD)Y}
PADCELL}

PTRB IN PAD)3
BICB IN PAD)Y;

ASSURE PRESENCE BLOCK(F,P);

'GOTO? READWR]

TENDY;

EX1T TRANS:
tIFY EXTEND 'THE
SYS TON

TEND Y 3

TE

Nt EXTEND FILE(F)}

91

1COMMENT!' ROUTINES FOR FILE EXTENSION #%a3484sads30080000000004000000008

"BEGIN' 'INT' SEGMAD,DFES;
VIPt FETCH(DESR(

NO¢

EXTEND FlLE=

1800L ! "PROC' EXTEND FILE(F); 'VaL' F3

F) = NSEGM IN DES) =
SYS LENGTH(SADB(F))/SADCELL 'THEN?
DESg= DESB(F)}
SEGMADIE SYS CLA|M SEGMENT(FETCH(DES = SCRATCH |N DE8)30})}
1|F1 SEGMAD < 0

YTHEN!
'FALSE?

'ELSEY

VINTY F3

EXTEND SAD(P,NO);

92

1017 YBEGIN®' *|NT* FB,LB,PINS,N,L,K,SAD,NSAD,NS,LAN;
1018 '*BOCL! FIRSTy

1019 EXTEND FILEl= *TRUE';

1020 FB:= BLOCK Tn POS(F,FETCH (DES =~ BP IN DES)Y);
1024 WB:z FETCH(DES ~ LAST BLOCK IN DES)}

1022 PINS:z REMAINDER(FB = 1,NBPS);

1023 FIRSTi= PINS < NBPS/2;

1024 Ng=z *IF1 FIRST sTHEN' PINS 'ELSE' NBPS =» PINS;
1025 Lis *iF1 FIRST *THEN' LB « N & 1 tELSE' FB}

1026 TRANSFER OF INFO BLOCKS;:

1027 INITIALIZE TRANSFER(F);

1028 TFOR! Ki=z 1 ¢STEP! 1 UNTIL' N 'DO!

1029 TRANSFER(F,L + K = 1, :
1036 SYS COMPUTE BACKAD(SEGMAD,'IFt FIRST *THEN' K. w 1
1031 TELSEY NBPS & K = N = 1))}

1032 AFTERMATH TRANSFER(F)}

1033 TRANSFER OF ADM}

1034 SAD:=z SADB(F); NSAD}=z= DES « NSEGM IN DES;

1035 NS3= FETCH(NSAD); STORE(NSAD,NS =+ 1);

1036 SHIFT SLICES TO RIGHT(SAD - 1,SADCELL,NS,

1037 (FB = FETCH(DES » OFFSET IN DES))§ NBPS);

1036 LADSz SAD = NS & SADCELL:

1039 tFORY Ktz SADCELL » 1 'STEP' =4 'UNTILY ¢ *DO?
1040 STORE(LAD w 1 = K.FETCH(SAD a 1 = K,)} ’

4041 STORE((*IFt FIRST 1THEN' LAD 'ELSE' SAD} - SEGMAD IN SAD,SEGMAD);
4042 STORE(DES = OFFSET IN DES,(FB=1)'/'NBPS&NBPS.1)}
1043 INCR(DES = NFREE IN DES,NBPSA#FETCH(DES = NELPB IN DES))}
1044 INCR{DES = NBLOCKS IN DES,NERS)} <
1045 Lis FETCH(DES « NBLOCKS IN DES) & FB - 11

1046 'FORY Ki= LB + 1 1STEP' 1 *UNTIL® L 'pO?

1047 MARK BLOCK IN CORE(F,K,'FALSE!)

1048 VEND?

41049 YEND

1050

1051 'PROCY INITIALIZE TRANSFER(F)j) 'VAL' F3 1INTY F}
1052 "BEGIN' "INT® BiC;

1053 BICis FETCH REF(BADB(F) = 1); . -

1054 *1FY FETCH(BIC = INT [N BIC) > 0 » FETCH(BIC = MOD IN BIC) » O

1055 *THEN® BIC TO BACK(F,BIC,BACKAD OF BLOCK(F,FETRCH{BIC=BLOCK IN B!IC)));
4056 DEMAND REST(BIC)}

1057 STORE REF(CADB(F) » TRANSB IN CAD,BIC)}

1058 SYS INCR REFCNT(BIC)}S

1059 STORE(DESB(F) » TRANSCOR IN pES, =777)

1060 TEND ' 3

1061

062 fPROG? AFTERMATH TRANSFER(F); *Val! Fj PINT?! F}
1063 'BEGIN? 1INT? B|C,BLOCK,BACK}

1064 8iCtms FETCH REF(CADB(F) = TRANSB IN CAD)}

1065 STORE REF(CADB(F) = TRANSB IN CAD,0):

1066 SYS DECR REFCNT(BIC))

4067 TIF? FETCH(RIC = [NT IN BiC) 2 ?THEN?

1068 BIC FROM BACK(F,BIC,BACKAD OF BLOCK(F,FETCH(BIC » BLOCK IN BI€)))}
1069 BACKS= FETCH(DESB(F) » TRANSCOR N DES)}

1070 PIFY BACK > 1 fTHEN' B|C TO BACK(F,BIC,BACK)}

41074 DEMAND REST(BIC)

1072 'END Y}

1073

1074 TPROCY TRANSFER(F,B,BACK)S "VAL' F,B,BACK; YINTY F,B,BACK]}
1079 'BEGIN® 'TINT! BiC,AD}
1076 $IFf = BLOCK IN CORE(F,B) 'THEN!

1077
1076
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1094
1092
1093
1094
1095
1096
1097
4098
1099
100
1104
1102
1403
1104
1105
1106
1107
1108
1109
11190
1114
1112
1113
1114
1115
1116
1117
1118
1119
1120
i121
1122
1123
1124
112%
1126
1127
1128
1429
41130
11341
1132
1133
4134
1135
1136

93

TBEGIN' BIC:= FETCH REF(CADB(F) = TRANSB IN CaAD);
BIC FROM BACK(F,BiC,BACKAD OF BLOCK(F,B))
tEND? *tELSE!
tBEGIN' AD:= BADB(F);
LOCP: BIiICi= FETCH REF(AD - 1)}
t1FY FETCH(BIC « BLCCK IN 8IC) INE!* B 'THEN!
TBEGIN? ADi= FETCH REF(AD)3 tGOTO!' LOCP 'END'}
"IFY BIC = FETCH REF(CADB(F) ~ TRANSB IN CADY $THEN?
'BEGIN' STORE(DESB(F) = TRANSCOR IN DES,
BACKAD CF BLOCK(F,B)); 'GOTO' POSTPONE
YEND?
tENDY
BIC TO BACK(F,BIC,BACK)
POSTPONE
TEND?}

*PROC? SH|FT SLICES TO RIGHT(UPAD,SLICEL,NSLICES,SHIFT)}
*VAL' UPAD,SLICEL,NSLICES,SHIFT} TINT! UPAD,SLICEL,NSLICES:SHIFT}
YIF® SHIFT > 0 ~ SHIFT < NSLICES !'THEN! .
*BEGIN' 'INT! N,K,L; Niz SGCD(NSLICES,SHIFT)}
Liw SLICEL # NSLICES} SHIFTi= SHIFT # S 1CEL}
TFORY Ki= 1 *'STEP' 1 'UNTIL!' N tDO!
ONE CYCLE TO RIGHT(UPAD = K + 1,UPAD,L,SLICEL,SHIFT)
*END '

TPROCY ONE CYCLE TO RIGHT(START,UP,L,SL,SHIFT)}
VALY START,UP,L,SL,SHIFTs *'INT' START,UP,L,SL,SHIFT)
YBEGIN' "|NT' LOW,D,K,HERE,PREV) '
LOWs=s UP = L + 1} D13 L =~ SHI|FT}
'FOR? K§= 1 'STEP' 1 'UNTIL! SL 'DO?
STORE(LOW = K,FETCH(START = K & 1))) HERE}® START;
LOOP! PREVI= HERE = Di '{F' PREV < LOW ?THENt' PREVis PREV ¢ L}
TIFY PREV 'NE'! START !THEN?
"BEGINT' TFORSY Kg= 0 'STEP' 1 'UNTIL' SL = 1 'DO?
STORE(HERE = K,FETCH({PREV = K)})}
HERE$= PREV] 'GOTO' LOOP
YENDY; :
YFORY Kg= 1 'STEP* 1 YUNTIL?' SL *'DO?
STORE(HERE = K #+ 1,FETCH(LOW = K))
fEND '}

"INT! *PROCY SGCD(A,B)1 'VAL' AsB} FINT! A,B;

LOCPS fIFY A > B (THEN' I1BEGIN' Al8 A = B3 7GOTO' LOCP SENDI VELSE!
tIF?" A & B 'THEN! 'BEGIN' Biz B = A} 'GOTO! LOCP YEND! 'ELSE?
§GCD:s A

TCOMMENTY MISCELLANEQUS ROUTINES #40aaraantteattstotandoneiidnsedandnes}

*INT? SPROCY WRD IN BLOCK(F,POS)3 'VAL' F,P0S) ' IN¥' F,PD8}
TBEGINY T |NT? NELJ NEL3= NELPW(F)I
WRD IN BLOCK!E REMAINDER('IF' NE|, 2 0 "THEN' POS®2
'ELSE? POS1/? NEL,NWPB)
TEND TS

1INT? ¢PROC! ELT IN WRD(F,POS); 'VaL' F,POS} 'INT' F,P0S]|
"BEGIN? *INT? NEL3 NELI= NELPW(F)}

ELT N WRD:® REMAINDER(POS, " 1F? NEL > 4 "THEN' NEL 'ELBE! POS)
TEND ' §

94

1137
1138
113¢
1140
1144
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1173
1172
1173
1174
1175
1176
1177
1178
1179
1186
1181
1182
1483
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

YINT® prROC!

BLOCK TO PCS(F,P0S)3 'VaL' F,POS; ' INT' F,P08}

BLOCK TO POSlz PCS '/' NELPa(F) + 13

*INTY 'PROC!

NELPB(F); *VAL' F; 'INT' Fj

YBEGIN?' "INT!Y NpLj NELiI= NELPW(F)}

NELPB:= (']
YEND '3

TINTY vPROC!?

F' NEL = 0 'THEN' ,5 TELSE' NEL) % NWPB

NELPWF); 'VaL' F; 'INT' F}

NELPWI= FETCH(DESB(F) « NELPW [N DES)}

PINT® 'PROC!

LAST BLOCK(F); t'vValL' Fj VINT? F3

LAST BLOCK:;= FETCH(DESB(F) =~ LAST BLOCK IN DES)}

*INT® 'PROC!
PROCSBL : =

PINT? *PROC?
*BEGIN?' STR|
tz K + 1

YEND? 3
*BOOL ! fPROC'
TINT® *PROC!

PINT® *PROC?
PMAX:= SYS

PINT? *PROCY
vINT? *PROC!
1 INT? SPRCCY

" INTY *PRCC?

INT 1PROC!

P INT? 'PROCY

T INT? "PROC’
¢ INT? ¢PROC!

1800, ¢ *PROC!
F OKig |

PROCSBL(PRCC)YS *'PROC! PR
PROC; oc

STRINGSBL(K,STR)} "INT' K3 !
STRING!
NGSBLI= STRINGSYMBOL(K,STR)} " STRS

NO FILESs NO FILEStz FADB = 0}
FMAX3 FMAXSI= SYS LENGTH(PADB)S

PMAX(F)3 *VAL' Fj 'INTY' F3
LENGTH(PADB(F))/PADCELL]

FADB} FADBi=z FETCH REF(SYSVAR FILE-ANDLE)}
CADB(F)3) CADBi= FETCH REF(FADB =~ F)}
PADR(F); PADBI= FETCH REF(CADB(F) = PADB IN CADj}}

PTRB(F,P)s PTRB:z FETCH REF(PA F {
PADCELL = PTRB IN PAD)} (PADBLEY = (P = 1) @

DESB(F)j DESBi= FETCH REP(CADB(F) = DESB IN €CAD)}

BICB(F,P)) BICB:=s FETEH REF(PAD {
H B(F ™
PADCELL = BICB IN PAD))) (P= i)

BADB(F)) BADBi=z FETCH REF(CADB(F) = BADB IN CAD}}
SaDA(F)) sabpi= FETCH REF(CADBL(F) » SADB IN CAD}}

F OK(F)s 'valLt Fj3 VINT? F)
Ff' NO FILES ITHEN'® 'FALSEY 'ELSE?

TIFY F € 1 v F » FMaAX "THEN? ¢ SE?
TELSE® CADB(F) *'NET 0} FaLSE

"800 ¢ "PROC’
P OKie |

P OK(F,P}} I1VAL! F,P) T | NT! FP,p}
F' P ¢ 1 v P > PMAX(F) 'THEN?' IFALSE?

TELSEY PTRB(F,P) 'NE' 03

*PROCT HARD CHEGCK ON F(F)j 'VAL' F| Y |NT? F)
TIF? = F OK(F) *THEN' ERROR(ER WF)}

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

95

'PROC!' HARD CHECK ON F AND P(F,P); tvaLt F,Pj YINTY F,P;
*BEGIN' HARD CHECK ON F(F})j;

VIFY o P OK(F,P) *THEN' ERROR{(ER WP}
tEND

"PROC' HARD CHECK ON POS(F,P0S)} 'VAL! F,P0OS; ' |NT! F,PO8}
YIF' POS < VAQ OF PTR(F,BP) ~
POS 'GE' VAL OF PTR(F,EP) 'THEN' ERROR(ER PO)ij

'PROC' HARD CHECK ON SPECIES(SPECIES)) fvaL! SPECIES} *INT! SPECIESS
'IFY SPECIES < .0 v SPECIES > 27 'THEN' ERROR(ER WS);

PROC HARD CHECK ON WORK PERM|T(F)} 1VAL' P3 'INT! F}
tIF* FETCH(DESB(F) » WORK N DES) < 0
'THEN!'! ERROR(ER NW)Y}

PINT® *PROC' BPEL TO SPEC(SPEC)S 'VAL! SPEC} 'INT' SPECS
BPEL TO SPECtI= 'IF!' SPEC = 0 'THEN' 54 'ELSEY 27 '/ SPEC]

VINT® *PROC!' NELPW TO SPEC{SPEC)S !'VAL' SPEC} 'lNT'.SPECi
NELPW TO SPEC!= SPEC;

TCOMMENT® CONSTANTS wastuassttsdassnttnttattt st Bunateinetientonueipnatns)

SINT?®* PROC' ER CEJ ER CEtR=1}
T INT® *PROC!' ER BE} ER BE{==2)
TINT® *PROC' ER NN} ER NN{5=33
PINT? 'PROC! ER UKS ER UKim=4}
PINT? *PROC! ER NYj ER NY{==5}
TINT? *PROC?' ER NP} ER NPiz2=6}
PINT? *PROC' ER WT}) ER WTiz=7}
*INT? *PROC! ER STJ ER STi==8}
?*INT? *PROCY ER REJ ER REI==9)
TINT* *PROCY ER NFj ER NFy3=10;
tINTY *PROC' ER WFJ ER WFiE=11:
PINT? *PROC! ER WP} ER WPIs=12;
FINT? SPROC! ER NWJ ER NWi==13}
' INT?' 'PROCY ER PLJ) ER PLIZ=14}
*INT? 'PROC’ ER PH} ER PHi==15;
S INT? *PROCY ER FEJ ER FEJ==16)
*INT? *PROCY ER POJ ER POiI=z=17;
*INT? YPROC' ER WS} ER WSi=z=18}
PINT? *PROC! ER PC} ER PCie=19}

YINT! YPROCY SYSVAR CATFIBACKAD) SYSVAR CATFIBACKAD:al)
"INT® 'PROC' SYSVAR CATFINACC) SYSVAR CATFINACCI=2]

' INTY 1PROC' SYSVAR USERS SYSVAR USERje3;

PINTY *PROCT SYSVAR FILEHANDLES SYSVAR FILEHANDLE!®4}

T INT? YPROC! DELSBL; DELSBL:=255}

" INT® *PROC' TABSBL; TABSBLI=118]
?INT?' *PROC' NLCRSBLS NLCRSBLI=z=119}
PINT? *PROC' SPACESRELS SPACESBLI=Z%3)

*INT? *PROC' SCRATCH IDF; SCRATCH IBPi® DELSBL+B428(DELSBL*5128DELSBL):
S INT? 'PROCT ALLNINC) ALLNINCI= w0}

*INT? 'PROC! RHOS§ RHOI=0;

96

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
i281
1282
1283
1284
1285
1285
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
13014
1302
1303
1304
1305
1306
1307
1308
1309
1310
1314
1312
1313
1314
1318
1316

YINT?
TINT?

I|NTO
TINT?
TINT?
C'NT!
"NT'
PINT?
Y INT?
VINT?
*INT?
vINT?
’!lNT'
O'NT!
INT?
*INTS
?INT?
v INT?
YINT?
PINT?
VINT?
*INT?
'lNT'

'lNT'
P INT?
v INT?
TINT®
T INT?
PINTS?

P INT
PINT?
PINT?
TINTS
TINT?

PINT?
TINT!

" INT?
VINT?

PINT?
TINT?
TINT?
']NT'
PINT?

TINT?
s INT?
fINT?
¢ INT?

PINT?
TINT

TINTS

VINTS
'|NT'

'PROC!
tPROC!

tPROC!
*PROC!
'PROC?
"PROC!
'PROC!
'PROC?
*PROC!
1PROC!
fPROC?
*PROC!
*PROC’
YPROC?
*PROC
1PROC!?
*PROC?
*PROC'
'PROC?
*PROC'
SPROC!
TPROC!

1PROC!

*PROC!
'PROC!
tPROC!
*PROC?
1PROC!
"PROC

"PROC!
"PROC?
"PROC!
1PROC!
YPROC!

1PROC!
1PROCH

1PROC!
*PROC!

1PROC!
1PROC!
PPROC!
tPROC !
1PROC!

1PROC!
*PROCY
tPROC!
1PROC!

1PROC!
1PROC!
*PROC!
1PROC!
1PROC!

Pij Pilsi=1}
LABs LABi=2;

SPEC N DES; SPEC (N DESj=1}

BP IN DES}) BP IN DESim2}

EP IN DES$ EP IN DES:u3} _

NSEGM |N DESJ NSEGM IN DESIR4;

OFFSET IN DES}) OFFSET IN DES:=51
BACKAD IN DES) BACKAD IN DES:=6)

NEW IN DES3 NEW IN DESI®7}

SCRATCH IN DES; SCRATEH N DES{=B}
WORK IN DES} WORK IN DESi=9)

NBICS IN DES3; NBICS IN DESta 101
NPTRS |N PES§) NPTRS [N DpSi=a1l}

NELPW IN DES; NELPW IN DESIs 12}

BPEL IN pES; BPEL IN DES3=13; _
NBLOCKS IN DES; NBLOCKS |N DES|m 14)
NELPB IN DES} NELPB IN DESIm15}

NFREE IN PES3 NFREE IN DESIE16)

LAST BLOCK IN DES; LASY BLOCK IN DES:imi?7}
CATPOS IN DES; CATPOS IN DESt=1H;
TRANSCOR |N DES3 TRANSCOR IN DES:=19}
NFREEBICS IN DES3 NFREEBICS (N DES!Is 20}
iDF IN DES} |DF IN DEStI® 213 i

SPEc IN CAT; SPEC IN CATi=1}

BP IN CATS B8P IN CATia2}

EP IN CATY EP IN CATiad}

NSEGM IN CAT) NSEGM IN CATImG:
OFFSET IN CAT3 OFFSET IN CAT:=8;
SEGMAD IN CAT; SEGMAD IN CAT:=z 6}

BLOCK (N BIC) BLOCK IN BiClIals
MOD IN BIC) MOD IN BICI=2S

INT IN BIC} INT IN BICin3}

NTRANS IN BICS NTRANS IN BliCis 4;
INFO IN B)C; INFO IN BiCie 53

PTRB |N PADj; PTRB IN PADy=i}
BiCB |N PAD; BiCB IN PAD[E2)

SEGMAD IN SADS SEGMAD IN SAp:i=is
BITWRD IN SADJ BITWRD IN SAD:=u2}

DESR IN CcAD; DESB IN CADjy=1}
SADB IN caD; SADB IN CADiE2}
PADB IN cAD; PADB IN €AD=23)
BADB IN CaAD; BADB IN €ADj=24)
TRANSB IN CAD}J} TRANBB IN CAD:=5}

VAL IN PTRS VAL IN PTRiBY)
WRD N PTR; WRD IN PTRiIm2}
ELT IN PTRJ ELT IN PTRI®3}]
BLOCK IN PTRj BLOCK IN PTRiud}

BP; BPiaiy

EP) EPIa2y

WP} WP:s=3}y

FFP; FFPimd;

PADCELL}S PADCELLI=BICB IN PAD?

97

1317 *INT® 'pROC! PADL) pADLI=10#pADCELL}

1318 tINT® 'PROC? NEXp} NEXPi=10;

1319

13290 YINT! tPROC! IDFL} IDFLiz4;

1321 *INT' 'PROC' DESL; DESLIZIDF IN DES # IDFL = 1}

1322

1323 "INT* 'PROC! NBPW) NBPW!=27;

1324 *{NT' *PROCY NBPS} NBPSI=zd} _
1325 TINT' fPROC! NBITWRDS) NBITWRDSIa{NBPS = 1)INBPY « 1}
1326 *INT? 1PROCY NWPB} NWPBIa20;

1327

13286 " INT' *PROC' NEXS; NEXSi=z 33

1329 PINT? *PROC' MAXS) MAXSI= 4#NEXS})

1330 YINT? 'PROCT SADCELLS SADCELLI=BITWRD IN SAD « NBITWRDS » 4}
1334 TINT? 'PROC! SADL} SADLI=MAXS#SADCELL]} .
1332

1333 YINT® 1PROCY CADL} CADL!=TRANSB IN CAD:;

1334 "INT? 'PROC? PTRL} PTRL$=BLOCK IN PTR}

1335 tINT® PPROC' [NFOLjJ INFOLIZ=NWPR}

1336 TINT! SPROC! BICL) BICLI=INFOL + INFO IN BIC = 1}
1337

1338 *INT® *PROC' NEXF3 NEXFi=10}

1339 .

1340 $INTY 'PROC! DESCRIPTORL; DESCRIPTORLY= |DFL + 33
1341

1342

1343 TCOMMENT® INTERFACE ROUTINES #atubtdauinsotinsstusplisistatototetanonacs
1344 .

1345 TINT?' *PROCY LENGTH(A)S LENGTHIE SYS LENGTH(A)!

1346

1347 *PROC?® ERROR(E)} VALY E; 'INT' E}

1348 TBEGIN® Y |NT' K3}

1349 NLCR: NLCR3 PRINTTEXT("ERRORN)}
1350 PRINT(E); DUMP(0); EX!IT

1351 1END '}

1352

1353 TPROCY DUMP(DY)J *VAL' D3 'INTY D}
1354 tBEGINY ¥ INT* MP,GEN,L,K;

1355 MPi=z MEMEND} NLCR;

1356 NLCR; PRINTTEXT(WDUMPHY | PRINT(D)) NLCR}

1357 SPACE(20)) PRINTTEXT("HANDLE =2t)§ PRINT(FETCH(SYSVAR FILEHANDLE))}
1358 NLCR; NLCR;

1359 TFOR® GENi= MEM[MP] fWHILE®' MP » FREEPTR 'DO?

1360 *BEGIN® NLCR3 ABSFIXT(5,0,MP)J PRINTTEXT(W: M)y

1361 Lis *IF? GEN>D tTHEN? 2 'ELSE! SY§ LENGTH(MP} & 1}

1362 LINES

1363 *FOR* Kj= 1 *STEP?! 41 FUNTIL' 10 'pO!

1364 "BEGIN® F|XT(B,0,MEM[MP])} MPla MP w 13

1365 L= L =13 ¢1F* =0 *THEN' Kis 10

1366 TEND '}

1367 NLCR3 *IF? L>0 *THEN' 'BEGIN' SPACE(10)] *'GO TO' LINE YEND!®
1365 YEND?

1369 TEND?

1370

1374 TPROCY SYS NOT3}
1372 *PROCY SYS TON}}
1373 "PROCY SYS ELj}S
1374 TPROC? SYS LE;!
1375 YPROCY SYS SWAP;}
1376

98

1377 'BOOL' 'PROC!' sYs 15 STRING(P); sYS IS STRINGi= *TRUE'}
1378 YBOOL' 'PROC!' SYS |s INT PROC(P)}) SYS IS INT PROC:m 'FALSE!}
1379

1380 *PROC!' SYS FANCY [DF(IDF)}) IDF[1lit= IDF[41]+1s

1381 tPROC? SYS IDF FANCY(F,CLD (DF,IDF)}}

1382

1383 'PROCY STORE(AD,W)}3 *vaL"' AD,W; 'INT' AD,W:

1384 'BEGIN' TEST AD{(AD,6); MEM[AD]:= W 1END'}

1385

PINTY tPROCY FETCH{AD)3 'vaAL® aDj 'INT' AD}

BEGIN TEST AD{AD,7)3 FETCH:= MEMPAD] 'END?)

*PROC! STORE REF(AD,REF); 'VAL' AD,REF1 'INT' AD,REF]
BEGIN® TEST AD(AD,B8); .
"IF' REF < 0 'OR' REP > 262143 'THEN' ERROR(2)
'ELSE' MEMIAD]t= SET(REF,17,0,MEM[AD!)
TEND? }

*INT? *PROC' FETCH REF(AD)} 'VAL' ADJ 'INT' AD}
YBEGIN' '|NT' W} TEST AD(AD,9): wim MgMlap)}

1397 YIFY W< 'THEN!' ERROR(3)

1398 YELSE' FETCH REFI= BITSTRING(17,n,w)
1399 'END?}

1400

1401 'PROC? SSTORE(AD,REAL)S 'VAL' AD,REALjS '{NT? AD}J 'REAL? REAL}
1402 '*BEGIN' TEST AD{AD,10)) MEM[AD]t= HWEAD OF(REAL)}

1403 MEMEIAD + 113s TAIL OF(REAL)
1404 PEND? S
1405

1405 'REALY PROC! FFETCH(AD); °*VAL' AD} ' |NTY AD;
1407 *BEGIN®* TEST AD(AD,11)}

1408 FFETCHIz COMPOSE(MEMIAD),MEM[AD « 11)}
1409 END'j
1410

1411 FPROC?Y INCR(AD, INC)Y; VALY AD, INC}) 'INT? AD,INC}
1412 *BEGIN?* TEST AD({aD,12)) MEMIADI!s MEMEAD) + [NC
1413 YEND'} ;
1414

1415 PPROCT TEST AD(AD,N); 'VAL" AD,Nt TINT' AD,Nj}
14146 PIFY AD < 0 v AD > MEMEND 'THEN' ERROR(N)}

1417 -

1418 *BOOL Y PROC?! SYS NO LONGER SCRATCH(AY:

1419 SYS NO LONGER SCRATCHIz 'TRUE!'Y

1420 :)

1421 *PROCY SYS SCRATCH NOW(A)}S

1422

1423 TPROCT SYS INCR REFCNT(AD)S *VAL' AD} PINT' aps
1424 STORE(AD, = (=FETCH(AD) + T19))3

1425

1426 *PROCY SYS DECR REFCNT(AD)YJ 'VAL? ADJ ' INT' aDS)
1427 TBEGING TINT! W} Wis «=FETCH(AD)} STORE(AD, =(W=T19})}

1428 PIFY BITSTRING(25,19,W)e1 ?THEN' SYS DELETE(AD)}

1429 *END S

1430)

1431 *INT? *PROC! SYS GENWRB(GEN,L,RCYJ TVAL! GEN,L,RC) "INT? GEN,L,RC}
1432 SYS GENWRDI® ~SET(RC,25,19,11F' GENsLAB "THEN' T36 'ELSE?

1433 L. & (1iFY GENSP| (TREN' T18 'ELSEY 033

1434

1438 TINT? *PROC?' SYS8 LENGTH(AD); 'VAL? ADg 'INT! ADj}
1436 SYS LENGTHI® BITBTRING(17,0,=FETCH(AD))

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1474
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
14885
1486
1487
1488

1489

1490
1494
1492
1493
1494
1495
1496

VINT® *PRCC' SYS EXTEND(AD,EXTRAY} 'VAL' AD,EXTRAJ} 'INT' AD,EXTRA}
TBEGIN® 'INT' BASE,CL,X; OLi= LENGTH(AD)}

BASE:= SYS CLA M(OL + EXTRA + 1))

YiFY BASE>QO 'THEN?

'"BEGIN' STORE(BASE,FETCH{AD)=EXTRA)}
STORE(AD,=SET(0,25,19,=FETCH(AD)))Y} .
'FOR' Kki=1 'STEP' 4 'UNT|L' 6L 'D0o' STORE(BASEwK,FETCH{ABwK)))
'*FOR' Ki=1 'STEP' 1 'UNTIL' EXTRA 'DO' STORE(BASErOLeK,0)

*END Y

SYS EXTENDI= BASE

YEND Y}

*PROC' SYS SHRINK(AD,L)S 'VAL' Ap,L}J §INT® AD,L)
*BEGIN' 'INT' W,0L} OLtz SYS LENGTH{AD)} 'IP' OL=L>1 ?'THEN!?
*BEGIN' wi= FETCH(AD)}
STORE(AD,»SET(L.,17,0,=w))}
STORE(AD = L = 1, »(T18 + 0L = L =« 1))
SEND
TEND*}

SINT? YPROC?! SYS CLAIMIL)S 'WAL' LI} " (INT® L}
'BEGIN' tINT' AD,GEN,LH; 'EOQL' P} Fis 'TRUE!;
AGAIN: AD:= MEMEND;
'FOR?' GENS= FETCH(AD) 'WHILE' AD>FREEPTR 'DO!
*BEGIN' LHts P |F? GENDD 'THEN' 2 PELSEY SYS LENGTH{AD)aY%)
TIFY 1 F? BITSTRING(25,19,=GEN) *NE? 0 $THENY tFALSE?
TELSE?Y LsLlH » LHel>4 ’
CTHENY 9BEGIN! *IFt LINE' K 1 THEN?
STORE(ADal ,=(T184LH=L=1))} 'GOTO!' FND 'END!
PELSE?Y ADS= AD = LM
SEND Y} .
T{F? FREEPTR » L +4 ¢ 5 "THEN!
SBEGIN' t{F1 F ITHEN?
'BEGIN' Fi= 'FALSE'; FREE SEMIFREE} 'GOT0' AGAIN 'ENBD
TELSE! AD!a3 wi
YEND? TELSE?
'BEGIN® ADis FREEPTR) FREEPTRI® FREEPTR = L T'END!}
PND! SYS CLAIMia AD
TEND Y

fPROC?Y SY§ DELETE(AD)3 f'VAL' AD! 'INTY 4Dj
"BEGIN? *INT' GEN}
GEMNg$=z FETCH(ADY) *IF? GEN > (0 THENY
'BEGIN' SYS DECR REFCNT(FETCH REF {ADwL))}
SYS DECR REFCNT(FEYCH REF(AD))
*END? YELSE?
PIF? BIT(18,GEN) = 1 TTHEN'
TBEGIN® *{NT?' [,NAD;
Ltz SYS LENGTH(AD)) 'FOR' NAD}® ADw| TSTEP' { TUNTIL! ADey ?DO?
YIF* FETCH REF(NAD) 'NE' 0 'THEN?
SYS DECR REFCNT(FETCH REF(nNAD))
1END Y ;
STORE(AD,=SET(N,25,19,=GEN))
'END';

tPROCY SYS TO DISK{COREAD,LH,BACKAD,CNT}) 'VAL' COREAD,LH,BACKAD,CNT;

*INT!' COREAD,LH,BACKAD,CNT};
tBEGIN® *NT' 'ARRAY' A[43LHY3 VTINTY K3 .
TFOR' Kzl 'STEP! 1 TUNTIL' Lk 'DO® AlKit® MEMICOREAD®K=11]}

99

100

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1516
1511
1512
1513
1514
1515
1516
1517
1518
1519
15290
1521
1522
1523
1524
1528
1526
1527
1528
1529
1530
1534
1532
1533
1534
1535
1536
1537
1838
1539
1540
1544
1542
1543
1544
154%
1546
1547
1548
1549
1550
1554
1552
1553
1554
155%
1554

TO DRUM(A,BACKADY: Ki= A[11}
SYS ELj MEM[CNT)y= MEN[ICNT) ~ 4} 8vS LE
TEND '

'PROC?' SYS FROM DISK(COREAD.LH,BACKAD,CNT)i
'VAL?! COREAD,LH,BACKAD,CNT; 'INT?! COREAD,LH,BACKAD,CNT]
tBEGINT '"INTY TARRAY?' A[1t1LHI3 PTINTY K3}
FROM DRUM(A,BACKAD);
'FOR? Ki= 1 *STEPY' 1 'TUNTIL' LKW 'DOI MEM{COREAD+K=ili=z A[K]}
SYS EL3 MEM[CNT]1= MEMICNT] - 1) S¥S LE
YEND '3

1INT? 'PROCY SYS COMPUTE BACKAD(SEGMAD,B (N &)1
*VAL' SEGMAD,B N 83 '|NT! SEGMAD, B IN B}
SYS COMPUTE BACKAD!=z SEGMAD + B IN S#|NPOL}

*INT? 'PROCY SYS CLAIM BLOCK;
*IF? NBBFREE=D ?THEN' SYS CLAIM BLOCKI® =1 'ELSE?
*BEGIN® 7|NT? K3} ’
TFOR' Kfz 1 *STEP! 1 FTUNTIL' NBBR iDO?
'"IF' BBFREE[K) *THEN?' 1GO TOt FNDj
FNDIBBFREEIK)f= 'FALSE'S NBBFREEIS NBBFREE = 13
SYS CLAIM RLOCK!= BBOFFSET + (Kel)®|NFOL
YEND ' ;

'PROCY SYS DELETE BLOCK(BAD); 'VAL' BADJ *INT' BAD|
YBEGIN' *[NT' B} '

Bi= (BAD = BBOFFSET)/INFOL + 1}

BBFREEEB)I= 'TRUE'; NBBFREE!= NBBFREE w %
TEND !}

*INT? "PROC? SYS CLAIM SEGMENT(SCRATCH)}
"VALY SCRATCH; 1BOOL' SCRATCH} f
"IF? NBSFREE=20 'THEN' SYS CLAIM SEGMENTi=wl 'ELSE!
'"BEGIN' YINTY K3 'FOR' Ki= 1 'STEP' 4 *UNTIL® NBS DO
"IF' BSFREE[K]) 'THEN' 1GO TO! FND}
FND:BSFREE[K)}= 'FALSE'} NBSFREE(® NBSFREE w 1}
SYS CLAIM SEGMENTI= BSOFFSET ¢ (Kwl)&NBPS#INFOL
TEND Y

TPROC? SYS DELETE SEGMENT(SAD,SCRATCH)}
VALY SAD,SCRATCH; ! |INT! SAD; 'BOOLY SCRATCHS
1BEGIN® *INTY S} Si= (SAD = BSOFFSET)/NBRS/INFOL ¢ 1j
NBSFREES= NBSFREE + 1) BSFREc(@]ts i1TRUE!
1END ¢ 3

tPROCY |NITIALIZE FILESYSTEM)

*BEGIN® *INT' FADJ '

FADI=z CLAIM CORE(RHO,NEXF,SYSVAR FILEHANDLE,NO)}
NO S ’ '
TENDY §

SCOMMENT? TEST ROUTINES #4404 4aRsusdenttuniattttottnatooniidatninnanas)

'PROCY INITEST}
YBEGINY ' INT' K}

TFOR! Ki= 4 'STEP! 1 TUNTIL' NBB 'DO' BBFREE(K)Is 'TRUE'|

tFOR® Kij= 1 $STEP! 1 TUNTIL' NBS tDO' BSFREE(K}:m 'TRUE?)

TFOR! Kfz 0 'STEP' 1 fUNTIL' MEMEND 'pO' MEMIK]:s 10000000 * K3

1557
1558
1559
1560
1564
1562
1563
1564
1565
1566
1567
1568
1569
1576
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1588
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1593
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

101

NBBFREE = NBB}
MBSFREE 1= NBg;
FREEPTR!= MEMEND;
BBOFFSETI= 03
BsoFFSETt= BBOFFSET + NBB# | NFOL)
MEM[SYSVAR F LEFANBLE}:t= O0;
MEM[SYSVAR USER]t= 696515;
MEMISYSVAR CATF | NACCl1= =777)
FOUND CATALOGUE
*END?;

*PROCY FOUND CATALOGUES

*BEGIN' 'INT' F,8}
Fi= NEW FILEt1)} .
STORE(SYSVAR CATFIBACKAD,SYS CLAIM BLOCK)S
MAKE ADM BLOCK(F,'TRUE')} DELETE CORE(FADB=~F)

1END';

*PROC? TEST(T)s *VAL® TJ VINT! Tj ,
TBEGINY PRINTTEXT("TESTH); FIXT(4,0,TYF NLCR 'END'}

TCOMMENT?®* TEST PROGRAM ####85asdtfs@ittinsiusitadttnpttonittsineanodes)

tBEGINY *INT' A,B,F,G,K,M,N,P,Q,LETTER P,PERIOD,DELETION,COLEN}
REAL'! SQRTN}
INITEST}
LETTER P:=z 25; PERIOD:= 38; DELETIONI® 255; COLONte 90j
Niz 1403 SORTNI= SQRT(N)}
Fi= NEW FILE(LYs G:s NEW FILE(1)S
IFOR?Y Ki= 2 TSTEP' 1 YUNTIL' N DO WRITE EL(F,EP,K)}
STANDARD PTR(F,BP)}
'FORY Pi= NEXT EL(F,BP) *fWHILE® P 'L E? SORTN 'DO?
'BEGIN' WRITE EL(G,EP,P)}
Mgz VALUE OF EP(F) =1}
'FOR' K3z VALUE OF BP(F) 'STEP! 1 'UNTIL® M DO
'BEGIN' Q3= NEXT EL(F,BP)}
TIFY Q Y/ P # P INE' Q *THEN! YRITE EL(F,EP,Q)
"END?
OEND!;
WRITE EL{(G,EP,P)}
M$= VALUE OF EP(F)aiy
*FORY Ki= VALUE OF BP(F) 'STEP?' { TUNTIL' M 'Do?
WRITE EL(G,EP,NEXT EL(F,BP))}
CLOSE FILE(F)}
NEW IDF(G,"PRIMES"); CLOSE FILE(G)}

Biz NEW FILE(27)}
At OLD FILE("PRIMESH);
P8 NEXT EL(A,WP);

1FOR? Kgz 1 "STEP' 1 FUNTIL! N 'DO?
'BEGIN' WRITE EL(B.EP,'IF' PzK 'THEN' 0 'ELSEY 1}3
Peg YIFT P INE!' K TTHEN' P TELSE?)
"IFY VALUE OF EP(A) > VALUE OF PTR(A.WP) *THEN' NEXT BL(A,¥WP)
TELSE? Nai
SEND ¥ 5
t= NEW PTR(®,VALUE OF BP(B));
FORY Ki= 0,K+{ 'WHILE?! K»0 'D0O¢
TBEGIN' @iz IDF SYM(K,A)}

102

1617 "IF* Q=DELET|ON 'THEN?
1618 *BEGIN' Kiz =777) Q3z COLON 'ENDYy

1619 PRSYM(Q)

1620 TENDY;

1621 NLCR;

1622 *FORY Kp= 1 'YSTEP' 1 UNTILY N 1DO?

1623 SBEGINTY *IFt K = Kr/170470 = 1 tTHEN' NLCR} :
1624 PRSyM{*{F? NEXT EL(B,P)=0 tTHEN' LETTER P 'ELSE' PERIOD)
1625 TEND !

1626 *END' TEST PROGRAM}

1627

1628

1629 TEND '}

1630

1631

1632 END OF TEST ENVELOPE?S
1633 'END?

PRIMES:

PP PR, PLRLLLPLR LB PR LR, PP,

PP P P P P PP PP P e, WP,

REFERENCES

103

[0l E.W. Dijkstra, "Cooperating sequential processes", in "Programming

L1l

L2]

[3]

L4]

£5]
L6l

L73

L8]

L9]

L10]

111

L.J.M. Geurts,

J. V.M. van der

D. Grune,

Languages' (ed. F. Genuys), Academic Press London,

New York (1968).

L.G.L.Th. Meertens and H.W. Roos Lindgreen, 'Files,
Voorstel in de vorm van een beschrijving voor ge-
bruikers,...'", mimeograph for internal documentation,

Mathematical Centre (1971).

Grinten, P,J,W. ten Hagen and F.E.J. Kruseman Aretz,
"Sequential access files voor de EL X8, deel 1:
Voorstel voor de atomaire routines", NR 7, Mathemati-

cal Centre (1969).

"Handleiding Milli-systeem voor de EL X8", IR 1.1.,
Mathematical Centre (1970).

C.H. Lindsey and S.G. van der Meulen, "Informal Introduction to

S.E. Madnick,

ALGOL 68", North-Holland Publishing Company (1971).

"Design strategies for file systems", MAC TR~-78 (1970)

L.G.L.Th. Meertens and H.W. Roos Lindgreen, "A dynamic storage al-

location scheme, coded for the EL X8", unpublished.

H.L. Oudshoorn, "Bitmanipulatie-procedures", LR 1.2., Mathematical

S. Rosen,

W.J. Waghorn,

Centre (1971).

"Programming systems and languages'", McGraw~Hill
Book Company (1967).

"Shared files", in "File organization", File 68 /
IAG Conference (1968).

A. van Wijngaarden (Editor), "Report on the Algorithmic Language

ALGOL 68", Numerische Mathematik, 14 (1969).

"Vocabulary for Information Processing", ANSI X3,12-
1970, American National Standards Institute, Inc.

(1970).

