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*) 
A NOTE ON NONRECURSIVE AND DETERMINISTIC LINDENMA.YER LANGUAGES 

Paul M.B. Vitanyi 

1. INTRODUCTION 

While it is known that there are recursively enumerable Linden

mayer languages which are not recursive, the usual proof of such a fact 

is relative to an infinite class of Turing machines or an infinite class 

of inputs on a single Turing machine. Here we consider the construction 

of a specific nonrecursive Lindenmayer language. Furthermore, we deter

mine completely the place in the Chomsky hierarchy of the families of 

the deterministic Lindenmayer languages and the deterministic Linden

mayer languages without erasing. 

2. L SYSTEMS AND TURING MACHINES 

Lindenmayer systems, L Systems for short, are a class of parallel 

rewriting systems without nonterminals introduced by Lindenmayer as a 

model for developmental growth in filamentous organisms [3]. The present 

note claims no relevance to these biological origins. An L System con

sists of an initial filament symbolized by a string of letters and the 

subsequent stages of development are obtained by rewriting all letters 

in a string simultaneously at each time step. When the rewriting of a 

letter depends on them left and n right letters, we talk about an 

(m,n)L System. More precisely, a deterministic (m,n)L System, D(m,n)L, 

is a 4 tuple G = <w, o, w, g > where W is a finite nonempty aZphahet, 

*) This paper is not for review; it is meant for publication in a journal. 
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W E 
w*\{A} is the a.xiom (A is the empty word), g ~Wis the environmen-

. . k 
tal letter and 6 is a total mapping from {g} 1 WJ{g} , i+j+k = m+n+l, 

o ~ i ~ m, o ~ks n, into w* (we consider 6 to rewrite the (m+l)th 

letter from its argument). 6 is extended to {g}~*{g}n by defining 

o(gm+n) = A and o(b 1 .•. bm+n+h) = o(bl, •• bm+n+l) ..• o(bh, •. bm+n+h), 

{ }m.·*{ }n w def1."ne oi inductively by h > O where b b E g w g • e ' I··· m+n+h 
O m n i m n m i-1 m n) n) 7 o (g vg) = v and 6 (g vg) = o(g o (g vg g for i > 0. The L ~an-

• ( G) = { "'i(gmwgn) I guage produced by G 1.s L u i ;:;: O}. 

It was shown by van Dalen [I], and is indeed a nice exercise, that 

for a suitable standard formulation of Turing machines, e.g. the quin

tuple version, for every Turing machine T with symbol set Sand state 

set Q we can effectively construct a D(l,l)L G =<W,o,w,g>, W = QUS, 

which simulates it in real time, i.e. the t th instantaneous description 

of Tis equal to ot(gwg) (see Minsky [4] for terminology and results on 

Turing machines). If we do away with the excess blank symbols on the ends 

of the T.M. tape by letting them derive the empty word\ in the case of 

the L System, we see that the canonical extensions of the D(l,I)L langu

ages are precisely the recursively enumerable languages, i.e. the lan

guages h 1(L(G) n ~*Q~*), ~.::_Sand h 1 is a homomorphism from ~*Q6* into 

~* defined by h 1(q) =\and h 1(s) = s for all q E Q and alls E 6, are 

exactly the recursively enumerable languages over~. We call a homomor

phism h \-limited on a set A if there exists an integer k;:;: 0 such that 

for all w EA, if w = xyz and h(y) =\then IYI ~ k. (For further details 

concerning operations on languages and closure under these operations see 

Ginsburg et. al. [2].) 

The recursive languages are closed under intersection with regular 



languages and \-limited homomorphism. Since ~*Qt* is regular and h 1 is 

\-limited on ~*Q~* there exist L(G)s which are not recursive. The usual 

proofs that there are recursively enumerable languages that are not re-

cursive rest on arguments relative to an infinite class of T.M.s or an 

infinite class of inputs on a single T.M. By application of a result due 
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to Rabin and Wang [5] we can exhibit a specific nonrecursive L language. 

Let T be a T.M. with S = {b,l,a} where bis the blank. Let the word at 

any moment tin the history of a T.M. be the string consisting of the 

contents of the minimum block on the tape at t that includes all the 

marked squares and the square scanned at the initial moment (the origin). 

Theorem 1. (Rabin and Wang). For any fixed (finite) word at the initial 

moment we can find a T.M. T such that the set of words Pin its subse-

quent history is not recursive. 

Proof. Take a nonrecursive set Ac {I}* enumerated by a one-one recur-

. f · f n from f(n) by f-l W · sive unction ; we can recover . e can now give a 

T.M. T which first erases the finitely many marks on the initial tape and 

returns to the origin, puts down the representation of O on the tape and 

calculates the value of f(O). Subsequently, T erases everything else ex

cept the representation of f(O), retrieves the representation of O from 

-1 f(O) by f , adds one to this representation and computes f(l), and so 

on. 

In particular we can do it in such a way that the symbol a is used, 

after the initial tape contents is erased, only to mark f(O), f(l), •••• ; 

it is erased before we evaluate f(n+l) from f(n). Moreover, the string 

consisting of a followed by the representation of f(n) always begins at 
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the origin. Let h2 be a homomorphism from {a}{ 1 }* into { 1 }* defined by 

h 2 (a) = A and h 2 (l) = l. Now h2 (P n {a}{ l }*) = A where h2 is /\-limited 

on {a}{J}* and {a}{l}* is regular. Since A is nonrecursive P must be non

recursive by the closure of the recursive languages under A-limited homo

morphism and intersection with regular sets □· 

3. SOME NONRECURSIVE L LANGUAGES 

Theorem 2. Let G be a D(l,l)L which simulates Tin the sense explained 

above. Then L(G) is not recursive. 

I>roof. Let h3 be a homomorphism on L(G) defined by h3 (s) =sand 

h 3 (q) = A for alls ES and all q E Q. Since L(G).:. s*qs*, h3 is A-limit

ed on L(G). Now h3 (L(G)) = P and since Pis not recursive L(G) is not 

recursive O. 

We use G to construct a nonrecursive D(O, l)L language. Let G = <w, cS,w,g> 

be the D(l, l)L above. Define a D(O, I)L G' = <W', o' ,w' ,g> as follows: 

W' = Wu{{}uWx(Wu{g}) where¢~ W; 

w' = ¢w; 

0 ' (ab) = (a,b) 

o' (ag) = (a, g) 

0 I (¢a) = ¢ 

0 I (¢g) = ¢ 

c'((a,b)(b,c)) = o (abc) 

o'(¢(a,b)) = ?o (gab) 

o'(¢(a,g)) = ¢cS (gag) 



o'((a,b)(b,g)) = o(abg) 

o'((a,g)g) = A, for all a,b,c E W. 

(The arguments for which o' is not defined will not occur in our opera

tion of G'). 

For all words v = a 1 ••• an E w* holds: 

012 (¢a 1 ••• ang) = o'(¢(a1,a2)(a2 ,a3) ••• (an,g)g) = 

= fo(ga 1a2)o(a 1a2a3) ••• o(an-Iang) = ¢o(gvg), n > I; 

o' 2(¢a 1g) = o'(¢(a1,g)g) = fo(ga 1g) = fo(gvg), n = I; 

012 (¢g) = o'(¢g) = fo{gg) = ¢, n = o. 

Therefore o' 2t(¢w) = fot(w) for all t. 

Define a homomorphism h4 from {¢}w* into w* by h4{¢) = A and 

h4 (a) = a for all a E W. Since h4 (L(G')n{¢}W*) = L(G), where h4 is 

A-limited on {¢}w* and L(G) is not recursive, L(G') cannot be recursive. 

Hence we have: 

Theorem 3. The D(O,l)L language L(G') is nonrecursive. 

Of course, P,L(G) and L(G') are recursively enumerable. 

4. DETERMINISTIC L LANGUAGES AND THE CHOMSKY HIERARCHY 

5 

From the working space theorem, Salomaa [6] (see also [I]), it fol

lows that the propagating D(m,n)Ls (o(.) r A for all . , gm+n) produce 

only context sensitive languages which illustrates the role of erasing 

productions in L Systems. That the containment of the families of D(m,n)L 

languages and propagating D(m,n)L (PD(m,n)L) languages in the recursive

ly enumerable and the context sensitive languages is proper follows from 

the next leimlla, 
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Lemma. There are (non trivial) regular languages over a one letter al

phabet which are not D(m,n)L languages. 

Proof. L = (aaa)*(auaa) is such a language. To prove this we make use of: 

Claim. If G = <W,o,w,g,> is a unary (i.e. #W=l) D(m,n)L which gener

ates an infinite language then there exist positive integers t 0 , p and x 

such that for all t ~ t 0 

(l) jot+l(gmwgn)! = p(jot(gmwgn)j-m-n) + x where !vi denotes the length 

of a word v. 

m 
X = . I 

i= 1 

lo(giam+n+l-i)I + I 
j=l 

I to m n I there exists a t 0 such that c5 (g wg) 

Case 1. p = O. lot(gmwgn)I ~ (m+n)y 

~ 2(m+n) + x + 1. 

for all t > 0 where 

y = max {io(v)I I JvJ = m+n+l}: contrary to the assumption. 

Case 2. p > O. Clearly, (I) holds. 

By observing that L = {al.Ii 1 0 mod 3} we see that for every positive in-

teger k such that k = 0 mod 3: k-1 k+l k+2 k 
a ,a ,a EL and a ~ L. Hence if 

L(G) =Lit follows that p = 1 in (I). But then the lengths of the sub

sequent words of L(G), ordered by increasing length, differ by a con

stant amount x-m-n and hence L(G) f L □. 

We are now in the position to determine completely the place in the 

Chomsky hierarchy of the families of the D(m,n)L and PD(m,n)L languages. 

By the family of strictly X languages we mean the languages which be

long to the difference of the type i (i.e. X) and type i+l languages 



1. E {0,1,2}. 

Theorem 4. 

(i) For all m,n ~ 0 the family of PD(m,n)L languages has nonempty in-

tersections with the regular, strictly context free and strictly 

context sensitive languages; it is strictly included in the family 

of context sensitive languages; there are regular, strictly con

text free and strictly context sensitive languages which are not 

PD(m,n)L languages. 

(ii) For all m,n ~ 0 m+n > 0 the family of D(m,n)L languages has non-

empty intersections with the regular, strictly context free, 

strictly context sensitive and strictly recursively enumerable 

languages; it is strictly included in the family of recursively 

enumerable languages; there are regular, strictly context free, 

strictly context sensitive and strictly recursively enumerable 

languages which are not D(m,n)L languages. 

(iii) The family of PD(m,n)L languages is strictly included in the 

family of D(m,n)L languages. 

Proof. (i) and (ii). Let G1,G2 and G3 be PD(O,O)Ls defined by 

c1 = <{a},{o(a)=a},a,g) 

c2 = ({a,b,c},{8(a)=a,8(b)=b,8(c)=acb},c,g) 

G3 = ({a},{o(a)=aa},a,g)-

7 

Now L(G 1) = {a} is regular; L(G2) = {ancbnln ~ O} is a well known strict-
n 

ly context free language; L(G3) = {a2 In~ O} is context sensitive by 

the working space theorem and not context free by the uvwxy lemma (see 

e.g. [6]). Together with the strictly recursively enumerable language 
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L(G') of theorem 3 this proves the above statements about nonempty inter-

sections. 

The language L of the lemma is regular but not a D(m,n)L language. 

LuL(G2) is strictly context free and it is easy to see that LuL(G2) is 

2t 
not a D(m,n)L language. L' = {a2 It~ O} is strictly context sensitive 

by the working space theorem and the uvwxy lemma and cannot be produced 

by a D(m,n)L in view of equation (1). A in theorem I is a strictly 

recursively enumerable language over a one letter alphabet and cannot 

be produced by a D(m,n)L in view of equation (l). This proves the state

ments above about languages which are not D(m,n)L languages and hence 

not PD(m,n)L languages. The statements about strict inclusion were pre

viously established. (iii) follows from (i) and (ii) and the definitions 

of PD(m,n)L- and D(m,n)L languages O. 
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