
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 12/73

J.W. de BAKKER & L.G.L.Th. MEERTENS
ON THE COMPLETENESS OF THE INDUCTIVE
ASSERTION METHOD

Prepublication

~
MC

DECEMBER

2e boerhaavestra_at 49 amsterdam

\WoUOiHl:.EK
MATHEMATLSCH

AMSTERDAM

C6NTRUM

PILin:ted at :the Mathema.ti.c.ai. Cent:Jc.e, 49, 2e Boe/l.haa.vu.tJr.aa:t, Am6:te11.dam.

The Mathema.ti.c.ai. Ce,n;t:Jr,e, 6ounded :the 11-:th 06 FebJr.u.aJLy 1946, ,l6 a. non
pJr.o6U .ln6:ti..:tu,ti..on cum.lng at :the pll.omo.tion 06 pU/te mathema.ti.c.6 a.nd .l:t:6
a.pp.Uc.a:ti.oru,. I:t -l6 .6pon6oJr.ed. by :the Nex.heJLR.and.-6 GoveJr.nmen:t :thJr.ou.gh :the
Nex.heJLR.and.-6 01tga.n.lza.ti.on 6oJr. :the Adva.nc.emen:t 06 PWLe Ruea.Jr.c.h (Z.W.O),
by :the Mun.lc..lpa.U:ty 06 Am6:te11.dam, by :the Un.lveJU>Uy 06 Am-6:teJr.dam, by
:the FJr.ee Un.lveJU>Uy at Am-6:teJr.dam, a.nd by .lndrudJuu. ·

AMS (MOS) subject classification scheme (1970): 68A05
ACM - Computing Reviews - category: 5.24

On the completeness of the inductive assertion method*)

by

J.W. de Bakker and L.G.L.T. Meertens

ABSTRACT

Manna's theorem on (partial) correctness of programs essentially states

that in the statement of the Floyd inductive assertion method: "A flow

diagram is correct with respect to given initial and final assertions if

suitable intermediate assertions can be found", we may replace "if" by

"if and only if". In other words, the method is complete.

A precise formulation and proof for the flow chart case is given. The

theorem is then extended to programs with (parameterless) recursion; for

this the structure of the intermediate assertions has to be refined con

siderably. The result is used to provide a characterization of recursion

which is an alternative to the minimal fixed point characterization, and

to clarify the relationship between partial and total correctness.

Important tools are the relational representation of programs, and Scott's

induction.

*) This paper is not for review; it is meant for publication in a journal.

CONTENTS

t'. Introduction

2. Programs and relations

3. Relations and recursion

4. Recursion and inductive assertions

References

Figures

4

J3

23

41

43

1. INTRODUCTION

Our paper describes an investigation in the area of the foundations

of program proving. For the statement of the problem we are concerned

with, some history is needed.

In [7], Floyd proposed a technique for proving program correctness

which later became known as the inductive assertion method. Let us call

a program P aorreat with respect to assertions p,q if£ for all states

x,y, if x satisfies p, and xis mapped by Ponto y, then y satisfies q.

Floyd's technique can be phrased as: In order to prove the (global)

correctness of P with respect top and q, it is sufficient to .find suit

able intermediate assertions, and prove the (local) correctness of the

program fragments between the intermediate assertions. This method is

justified by an inductive argument on the number of times the loops in

the program are executed. In several papers by Manna (e.g. [12,13])

Floyd's method was rephrased in the language of (second order) predicate

calculus, and the following theorem stated: Pis correct (with respect

to given p and q) if and only if suitable intermediate assertions can be

found. This theorem may be viewed as a aompZeteness theorem on the induc

tive assertion method. However, the proofs in [12,13] were not worked

out, and, moreover, the theorem was restricted to programs in flow dia

gram form.

The present paper provides the generalization of the completeness

theorem for programs involving recursion, of ·which, as is well-known,

programs in flow diagram form may be considered to be a special case.

(The paper by Manna and Pnueli [15] does not give this generalization,

since - in the terminology of section 2 - it is concerned with inaZusion

correctness only, the completeness of which is a direct consequence of

the minimal fixed point characterization of recursion, see below.)

The construction of the inductive assertions in the case of full

recursion is rather more complex than in the flow chart case. In fact,

an infinite collection of intermediate assertions turns out to be neces

sary. Structure is brought into this infinity by means of a mechanism

which indexes the assertions witb. traaes ~eflecting the history of the

2

computation.

·The basic tools to state and prove our completeness theorem (given

in section 4) are developed in sections 2 and 3. In section 2 we intro

duce the relational approach to programming concepts, in particular of

sequencing, selection and while statements. The approach allows conven

ient statement of program correctness, and treatment of the following

constructions: Given program P and assertion p, we are interested in:

the strongest q such that Pis correct with respect to initial p and

final q (denoted by p 0 P) and: the weakest q such that Pis correct with

respect to initial q and final p (denoted by P+p). A·number of basic

properties of these operations are derived, and they are related to a

similar concept introduced by Dijkstra [5]. Section 2 also contains a

few remarks on other aspects of the relational approach.

Section 3 introduces (parameterless) recursive procedures. The by

now well-known results on their minimal fixed point characterization,

leading to Scott's induction rule as important proof rule (as first stat

ed in [19]) are derived again. However, we chose a different approach

from e.g. that of [3], by exploiting this time the relationship between

a context free grammar and a system of procedure declarations. In parti

cular, we apply the result on context free languages as minimal solu

tions of systems of equations (e.g. [8]) to the "languages" of elementary

actions defined by procedures. Scott's induction rule is illustrated by

a short proof of the main theorem of [5].

Section 4 brings the main result of the paper. The completeness

theorem for the flow diagram case is first proved by way of introduction;

after this, the formalism for its extension to programs with full recur

sion is developed. An important role is played by the notion of (left

and right-) aorrrpa:nions of a procedure call, constructs which specify the

computation preceding and following an inner call of a procedure within

a tree of incarnations of procedures. These companions give the necessary

grasp on the history (and future) of the procedure call, and are defined

using the indexing mechanism mentioned above. The companions, together

with the 11
0

11 and"+" operations of section 2, are the main tools in the

proof of the completeness theorem for which, furthermore, Scott's induc-

3

tion is essential.

The result is applied in two ways. First of all, an alternative to

the minimal fixed point characterization is immediately obtained from it.

Secondly, the relationship between the above given notion of correctness

(actually called partial correctness by Manna) and that of totaZ cor

rectness is studied. The completeness theorem is somewhat refined, which

then allows the proof of the validity of Manna's reduction of total

correctness proofs to proofs in terms of partial correctness.
As remarked at the beginning, the paper is specifically devoted to

foundational problems, and not so much to the application of the tech

niques of section 4 to practical program proving problems (though a few

hints on such applications are included at the end of the section).

As related work - besides the already mentioned papers - we should

note Engelfriet [6], who is also concerned with completeness results for

flow diagrams.

The soundness (not the completeness) of Floyd's method for programs

with recursion was already proved in [3].

The present paper is a modification and extension of the technical

report [4].

We acknowledge critical comments by M. F?kkinga and W.P. de Roever •

•

4

2. PROGRAMS AND RELATIONS

The starting point of the present section is the conception of a

program as specification of a mapping between states. Of course, _this view

has its limitations, since it abstracts from many properties of the com

putation performed in transforming the states. Therefore, in the next

section, in our treatment of recursion, we will have to say more about

the connection between the relational and the computational approach.

It is convenient to allow already at the start non-deterministic pro

grams, and to see the mapping P from initial state x ~o final state y as a

binary reZation, written as (x,y) € P, or, usually, as xPy. Thus, (non

deterministic) programs allow xPy and xPy', with y ~ y'.

A slight articulation of the notion of state may be useful. This is

done mainly for explanatory reasons, since almost nowhere in the sequel

this analysis of the state is really needed.

We view the state - in first approximation - as a mapping from

addresses - which, called by any other name (ALGOL 68) would work as

well - to vaZues. As an elementary example, consider the effect of an

assignment statement Xi:= f(X1,x2 , ••• ,Xn), where for f one may think of

any n-ary function (n~O). Suppose that the address (associated with, see

remark below) X. has value a., i=l,2, ••• ,n. Then we have, in a self-
1 1

explanatory notation:

X.:= f(X 1, ••• ,X)
1 n

Remark: A more refined analysis distinguishes the identifier X. and
1

the address associated with it, using e.g. environment techniques, or the

possess-relationship of ALGOL 68. Such refinement is not necessary for

our present aim.

Mostly, it will not even be necessary to look as closely on elemen

tary programs as we just did. It suffices to have "elementary actions"

A1, A2 ,1c··, each of which determines - in some way we do not care to

analyze further - a relation between states. The reader may always "fill

in" e.g. an assignment statement for such an elementary action, but the

structure of that statement will then play no part in our story.

From elementary actions we build up more complex programs with as

sociated relations. Before we go into this, we introduce some-notational

conventions about operations with relations. Let V be the domain of

states, and let R, RI' R2, ••• , be binary relations over V (i.e., subsets

of VxV). Then we define

a. Binary operations. Composition: RI;R2 = {(x,y)j3z[xRiz A zR2yJ}.

Union: RI u R
2

= {(x,y)jxR
1
y v xR

2
y}. Interseation:

RI n R2 = {(x,y)jxRiy A xR2y}.

b. Unary operation. Conversion: R = {(y,x)jxRy}

c. Nullary operations. The empty relation n =~(the empty subset of

VxV). The identity relation I= {(x,x)jx € V}. The universal relation

u = VxV.
00

d. The star-operation. R* = I u Ru R;R u ••• = V Ri.
i=O

5

These operations are used in associating relations with programs, or, al

so, in the formulation of assertions about the correctness of programs.

The programming concepts we treat in this section are: sequencing

(denoted by the "go-on" symbol";"), selection (if

simple iteration ("while" iteration).

then else) and

The first concept is immediately taken care of: Let SI,s2 be two

programs with associated relations R1,R2 • Then with s
1
;s2 we associate

the relation R1;R2•

For selection we need some special measures. Consider the conditional

statement if p then SI else s 2 , where pis some boolean expression (usu

ally called a prediaate in the sequel). Let the relations P+ and p_ be

defined by: P+ = {(x,x)jp(x) is true}, p_ = {(x,x)jp(x) is false}. It

is not difficult to verify that the relation p+;R1 u p_;R2 satisfies the

usual meaning of the conditional, i.e., x(p+;RI u p_;R2)y iff p(x) and

xR
1
y or ., p (x) and xR

2
y.

Observe that for the relations P+ and p_ we have: P+ n p_ = n,
P+ up_,::. I, and P+ up_= I iff pis a total predicate (pis defined for

aU,states x). The present notation may take a moment to get used to. As

6

an exercise, the reader might try to derive e.g. properties of condition

als such as if p then (if p then s1 else s2) ~ s3 = if p then s1 else

s
3

, by proving the equality of the associated relations. (Hint: Use

p ;p = p n p = n, and p;p = p, for each pc I.)
+ - + - -

The next concept we deal with is iteration, for the moment only in

the form of the while statement while p do S, with the usual semantics:

Iterate S as long asp is true (including the case "do nothing" .(I!), if

pis false to begin with). As corresponding relation we have (assuming,

again, that R corresponds to S, this assumption becoming tacit from now

on): (p ;R)*;p, also abbreviated asp* R.
+ -

Remark: Please observe that nothing is alleged to be proved here.

The treatment is intuitive; a rigorous one follows in the next section -

provided the reader is willing to agree that the while loop is a special

case of recursion.

The exercises here are: Try to prove, by manipulating with relations:

1) p * R = p+;R;p*R u p_ • 2) p*(p*R) = p * R. 3) Let R * pelf R;p*R

(representing the repeat statement repeat S until .,p). Prove that

R * (p 1vp2) = (R * p 1) * p2•

As the next step one might expect the introduction of the goto state

ment, either directly, or in the form of a flow diagram specification of

the flow of control. Intuitively satisfactory treatment of these is not

so easy. Since they are a special case of programs with systems of recur

sive procedures anyway (more about this in section 4), we do not deal

with these separately, but wait till after the introduction of recursion

in section 3.

We now continue our relational treatment of programs with the dis

cussion of a number of ways of looking at equivalence and correctness,

and their relational representation.

Equivalence is easy: Two programs P1 and P
2

are equivaZent if£ their

associated relations are equal.

The currently most used statement of correctness is the following:

A program Pis aorreat with respect to the (initial and final) predi

cates p and q if£

7

VX,Y [p(x) A xPy + q(y)] (2.])

i.e., iff for all initial states satisfying p, if P transforms x into y

(note that this implies termination of the computation from x toy), then

for the final state y, q(y) holds.

This is the formulation which leads to the induetive assertion meth

od, as proposed by Floyd and further developed by Manna and Hoare. Rela

tionally, we write for (2.J):

p;P .=. P;q (2.2)

or, more precisely, p+;P .=. P;4+• The+ index will be dropped, however,

when we expect no confusion to arise; also, instead of p_ we usually

will write p.

We illustrate the form which the inductive assertion method takes by

discussion of a simple example; viz. the proof of

(2.3)

We refer to fig. I *).

According to the Floyd technique (which, in essence, was already
l

proposed by Turing in [20]; we owe this reference to R.L. London), we

try to find an intermediate assertions for which we can prove that

{
s·r·:: :·P·s , , - , ,

s;r .=. r;q

(2.4)

i.e., in order to prove the gZobaZ fact (2.3), we prove, for suitable s,

the ZoaaZ facts (2.4), and then infer (2.3).

The soundness of this technique was shown by Floyd by an argument by

induction on the number of times the loop is executed. Manna provided the

other half by a theorem which - for this special case - amounts to:

p;r*P .=. r*P;q if and onZy if there exists s such that (2.4) holds. This

*) The figures are collected at the end of the paper.

8

is Manna's partial correctness theorem [12,13] in its simplest form. In

order.to explain his treatment of totaZ correctness, its formulation has

to be refined; we shall return to this at the end of section 4. As remark

ed in the introduction, the need for a more complete proof of Manna's

theorem, together with the desire to generalize it to full recursion, has

been the main motivation of the present paper (the other one being the

investigation of the relationship between partial and total correctness).

Hoare (almost) writes {p} P{q} for (2.1) [10]. Using this notation,

he introduces various axioms. E.g., his while statement axiom essentially

states again that from (2.4), (2.3) may be inferred. The situation is some

what different for Hoare's assignment axiom which has the form of something

like {p(f(X)} X:=f(X) {p(X)}, i.e. if p(X) is true of the state after per

forming the assignment, then p(f(X)) (the result of substituting f(X) for

X in p(X)) was necessarily true before its execution. This can be explain-
X X ed by looking again at(••• a •••) X:= f(X) (••• f(a) •••) and noting that

p(X) +-+- p(f(a)) after, and p(f (X)) ++ p(f (a)) before the assignment. The

reader who is of the opinion that this merits fuller treatment has .our

sympathy, but that is not the task we have set ourselves in the present

paper. We mention this axiom mainly because it has the form of P;q.::. p;P:

if q is true after execution of P, then necessarily p had to be true be

fore P. This brings us to a somewhat more systematic treatment of the vari

ants of (2.1), and the way in which the program and one condition together

determine (something about) the other condition.

Before we proceed with this, we want to make two remarks.

Firstly, note that both p;P,::. P;q and P;q,::. p;P are, as many more

correctness statements, all special forms of a P,::. Q inclusion (e.g., for

the first take xQy ++ [p(x) + q(y)J) so that, if one insists, one may

view all correctness as simply the inclusion.of the relation associated

with the program in some other relation.

The second remark is about tePmination (cf. Milner [18]). When we

take this in the sense of: P terminates for initial state x iff there

exists y such that xPy, we have no problems: We write Vx3y[xPy], or,

equivalently, I,::. P;P, and try to prove this for the case at hand. How

ever, sometimes we want to be sure that aZZ paths terminate: let P be a ,,

9

program which terminates, for all input, in this strong sense. Let Q be

the nowhere terminating program (L: goto L, say). Let their corresponding

relations be Rand Q. Then, though Ru Q = R, we object to the conclusion

that Pu Q = P ("u" taken as programming construct denoting non-determin

istic choice), since the left-hand side may, by choosing the second alter

native, end up in an unending computation, whereas the right-hand side

always terminates. A mechanism for dealing with these problems in terms

of the notion of well-founded relations, has been proposed and exploited
--

by Hitchcock and Park [9]; we will not pursue these problems further here.

Now back to correctness. We consider once more the formula (2.1)

Vx,y [p(x) A xPy + q(y)]

and observe that it can be written in two other, equivalent, forms:

Vy [3x [p(x) A xPy] + q(y)J, and Vx [p(x) + Vy [xPy + q(y)JJ. This leads

us to the introduction of two operations, denoted by 11
0

11 and"+" res

pectively:

DEFINITION 2. 1

(poP)(x) ++ 3y[p(y) A yPx]

(P+p) (x) ++ Vy[xPy + p (y)]

Remark: This definition includes the "extreme" cases p = Q and

p = I, standing for the identically false and true predicate, respective

ly. ;From these definitions we immediately infer the following lemma:

LEMMA 2.1

1. p;P.:.. P; (poP)

(P+q);P.:.. P;q

2. For all p,q, if p;P.:.. P;q, then p 0 P.:.. q, and p.:.. P+q.

3. poP = n {qjp;P c P;q}

P+q = u {plp;P.:.. P;q}

PROOF. Parts I and 2 follow from the definitions, part 3 from parts

1 and 2. D

10

We will also have occasion to use the operations p 0 P and P➔q, for

which we have p 0P = n {qlp;P .::_ P;q} = n {qjP;p .::_ q;P}, and

P➔q = u {plP;p c q;P}. (Observe that we used here that Pc Q ++ P .=. Q,
....__, '-' V

P1;P2 = P2;P1, and p = p for p.::. I.)

The basic properties of the 11011 and 11➔11 operations are collected

in lemma's 2.2 and 2.3.

LEMMA 2.2

1. Qop = PoQ = Q

2. P;IoP = P

3. poq = p;q = p n q

4. po(P
1
;P

2
) = (poP

1
)oP

2
5. po(P

1
uP

2
) = (poP

1
)u(poP

2
)

6. If Pl.::. P2 then p0 P1 .::_ p 0 P2
7. If pcq, then poP .=. qoP

8. (puq)oP = (poP)u(qoP)

9. If Pis a function, then (pnq)oP = (poP)n(qoP)

PROOF. The proofs are immediate from the definitions. We prove only

parts 2 and 4:

2. Vx,y [xP; IoPy ++ xPy A (I 0 P)(y) ++ xPy A,3z[I(z) A zPy] ++

++ xPy A 3z[zPy] ++ xPy]

4. Vx [(p 0 (P
1

;P
2
))(x) ++ 3y[p(y) A y P

1
;P

2
x] ++

++ 3Y,z[p(y) A yP
1
z A zP

2
xJ ++

++ 3z[3y[p(y) A y P
1
z] A zP

2
xJ ++

++ 3z[(p 0 P
1
)(z) A zP

2
xJ ++ ((poP.l)oP

2
)(x)]. D

For 1➔11 we have similar properties, some of which are mentioned in

LEMMA 2.3

l • P ➔ I = I, I ➔ p = p

2. I c (p 1 ➔ p2) iff p1 .::. P2
3. (P ➔ n);P = n

4. (P
1

;P2) ➔ p = (P 1 ➔ (P2 ➔ p))

5. (P
1

~u P
2

) ➔ p = (P 1 ➔ p) n (P2 ➔ p)

PROOF. Immediate. □

11

When we compare p 0 P = n {q IP ;p .:_ q;P}, and P -+ p = u {q I q;P ,:_ P;p},

the question arises as to when these constructs coincide. The answer is

given in terms of the notions of fu:nationaZity and totaZity of P: Pis a

function if£ P;P .:_ I, or, equivalently, Vx,y,z[xPy A xPz-+ y=zJ. Pis

total if£ I.:_ P;P or, equivalently, Vx3y[xPyJ. We then have:

LEMMA 2.4

1. If P is a function, then pop £ P-+p.

2. If, for all p, poP .:_ P-+p, then P is a function.
V

3. If P is total, then P-+p .:_ poP.
v

P is 4. If, for all p, P-+p ,:_ poP, then total.

5. (Conclusion) p is a total function if£ Vp [P-+p = poPJ.

PROOF. We show only part 2. Its assumption is equivalent to:

Vp [Vx,y[xPy A p(y) + Vz[xPz + p(z)JJJ. Let Yo be some element in the

range of P, and let p(y) ++ y = Yo• Then we see that the assumption

amounts to: If xPy and y = Yo and xPz, tµen z = yO; hence, Pis indeed

a function. D

It is perhaps of some interest to compare our operations with a

notion used by Dijkstra [SJ, from which we quote: "We consider the sem

antics of a program P fully determined when we can derive for any post

condition p to be satisfied by the final state, the weakest precondition

that for this purpose should be satisfied by the initial state. We re

gard this· weakest precondition as a function of the post-condition p and

denote it by fp (p)."

This suggests to us that what is meant here is that fp(p) = P-+p =

= u {qlq;P c P;p}. The use of fp(p) in the cited paper furthermore seems

to imply that satisfaction of fp(p) guarantees termination, i.e., that

f (p) should be taken as fp(p) = (I 0 P) n (P-+p), or, equivalently,
p ..,

fp (p) = (p 0 P) n (P-+p). Dijkstra also impo.ses the restriction that P is

a function, in which case fp(p) reduces to poP (cf. lemma 2.4). With

these restrictions, the axioms postulated in [SJ become provable, and

are in fact parts I, 4, 7, 8 and 9 of lemma 2.2. If we omit the require

ment that we deal with functions only, properties 1, 7 and 9 remain valid,

but properties 4 and 8 have to be modified as follows:
'

12

4'. fp •p (p) ::_ fp (fp (p))
]' 2 1 2 ·

(with equality only if P
1

is a function)

8'. fp(puq) ~ fp(p) u fp(q)

(with equality only if Pis a function)

A further remark on fp(p) will follow at the end of section 3.

Since we are working in a relational framework, a relational version

of the 11011 and"+" operations may be of interest. For 11
0

11 this can be

given directly, but for 11+11 we have to use complementation of relations
- df

with respect to I: For p .=. I, p =I\ p.

LEMMA 2.5

1. poP = U;p;P n I

(Remember that U is the universal relation.)

2. P+p = poP

PROOF. Left to the reader. D

As final lennna we need

LEMMA 2.6

PROOF. ~is obvious. As to ., : Choose some fixed x0 , and assume x
0

R
1
y.

Choose, furthermore, p0(x) +-+ x = x
0

and q
0

(y) +-+ x
0
R2y. Then

p0;R
2

,::. R
2

;q0 holds; hence, p
0

;R1 ~ R1 ;q0
follows, i.e.,

x = x0 Ax R
1
y + x0R

2
y. Thus, the assumption x

0
R

1
y leads to x

0
R

2
y.

Since x
0

was arbitrary, the proof is completed. D

COROLLARY 2.6. If, for all p and q, R
1

is correct with respect top and

q iff R
2

is correct with respect top and q, then R
1

= R
2

• (Compare this

with: If, for all Q, R
1

is correct with respect to Q (R
1

.=. Q) iff R
2

is

correct with respect to Q, then R
1

= R
2
.)

PROOF. Direct from lennna 2.6. D

As an exercise to conclude this section we offer to the reader who
t df is insufficiently challenged by our elementary lennna's: Let R =

= (I 0 R) * R, i.e., perform Ras long as it is defined (e.g., if R is the
, t

descendent relation in a tree, R connects the root with all leaves.).
Prove that Rtttt = Rtt.

13

3. RELATIONS AND RECURSION

The relational approach to program semantics is now extended to pro

grams involving recursion.

Our treatment of this is not essentially different from ~.g. that of

[3], and may be skipped by the reader who knows already about procedures

as minimal fixed points and Scott's induction, and who wants to proceed

innnediately with the main results of our paper in the next section. How

ever, a number of points are stressed differently, e.g., the systematic

distinction between language and interpretation is kept in the background

here. Moreover, the main result - procedures as minimal fixed points with

corresponding induction rule - is now obtained by exploiting the corres

pondence between systems of recursive procedures and context free gram

mars (cf. also [1]). This has the advantage - besides the obvious one of

clarification of the correspondence - that we can rely on a well-known re

sult in formal language theory, stating that context free languages are min

imal solutions of systems of equations, and, moreover, that these solutions

are obt~ined by successive approximations (see e.g. Ginsburg [8]; this re

sult may be seen as an instance of Kleene's first recursion theorem [II]).

In a program with recursion we have a system of (mutually recursive)

procedure declarations, together with what may be called the "main"

statement of the program, which, normally, contains calls of the declared

procedures. Both this statement and the statements of the procedure bodies

are supposed to have the structure as introduced in the previous section.

That is, they are made up from elementary actions, to which now the pro

cedure symbols are added, by means of composition and union (the last

construct modelling conditionals).

More formally, a (recursive) program T consists of a set of declara

tionsV = {P 1 ., s1, P2 ., s2 , ••• , Pn., Sn},and a statement S; i.e., T = (V,S).

Here "4=1' stands for "is recursively defined by 11 (in ALGOL 60 we would

write procedure P.; S., i= I, 2, ••• ,n). Observe that V is a set since the
1 1

order in which the declarations are given will turn out to be immaterial.

Often, we want to emphasize that the S., i=l, ••• ,n, or S, may con-
1

tain occurrences of the Pi' i=l, ••• ,n, and we write Si= Si(P 1,P2 , ••• ,Pn),

14

S = S(P
1

,P2 , ••• ,Pn). This notation is also used in the customary way for

indicating substitution: The result of simultaneously substituting, in S,
(j) ·-1 2 . d , d b for each P. the statement S , J-, , .•• ,n, is enote y

J

S(S(I) ,s<2) , ••• ,s<n)).

Before we proceed with a more detailed formulation of the structure

of the s., one comment may be in order. The reader will have noted that
1

our procedures are parametePZess. Admittedly, this is a restriction which

leaves out of consideration some interesting (and difficult) problems.

However, we are of the opinion that a satisfactory treatment of the

various ways of parameter passing cannot be given without the introduc

tion of (the equivalent of) the ALGOL 68 notions of identity declaration

and proceduring, an idea which is not pursued in the present paper. In

defense of the restriction, I can only remark that first of all there

is a correspondence (given below) between parameterless procedures and

the monadic recursive function schemes of e.g. [1], and, secondly, that

it will appear - hopefully - that even parameterless procedures lead to

some interesting considerations which, moreover, are needed anyhow in
;

order to fully understand procedures with parameters. So far for the

apology.

Now we continue with a precise definition of the class of recursive

programs.

We start with the class A= {A1,A2 , •••• } of elementary actions,

B = {p,p 1,p, ••• ,q, ••• ,r, ••• } of booleans, and C = {I,Q} of constants.

(Remember that I denotes the identity (dummy) statement and Q the empty

statement.) Let R =Au Bu C, and P (the class of procedure symbols)=

= {P 1,P2, ••• }. Then the class of statements over Rand P, denoted by

S(R,P), is defined by

I. R u P .=. S (R, P)

2. If s
1
,s

2
E S(R,P) then (S 1;s2) a~d (S

1
us2) E S(R,P).

Examples of programs are:

I. ({P"'" ((p; (A;P)) u p)}, P)

2. ({P 1 "'" ((p;P2) up), P2 "'" ((p;(A;P2)) u (p;P 1))}, P1).

Anticipating the analysis given below, the reader may already observe

that f~r the P of the first example we have that P = p * A, and for the

15

P
1

of the second example: P1 = p * (p*A). Moreover, as corresponding mon

adic function schemes we have:

I. f(x) <= if p(x) then f(a(x)) else x

2. f
1

(x) <= if p(x) then f 2 (x) else x

f 2(x) <= if p(x) then f 2 (a(x)) else f 1(x)

Clearly, our definition of the class of programs causes some parentheses

trouble. However, our formal treatment does need their introduction, in

order that we can later prove that we may drop them unambiguously.

Our task is now to find the relations corresponding to procedures,

just as we did this before for the constructs of sequenci~g, selection

and simple iteration. As before, we assume known how the elementary

actions are executed, and now have to analyze how a program, for given

initial state x = x
O

, determines a sequence of elementary actions ap

plied successively to intermediate states x., eventually leading to the
i

final state x = y. In this analysis, the
n

plays a useful role:

novion of computation point

DEFINITION 3.1. A computation point is a triple (St,x,Sr)' where St is

a sequence of zero or more elementary actions (the empty sequence being

identified with the identity I), xis some state, and S is some state-r
ment in S(R,P).

Intuitively, a computation point (St,x,Sr) denotes, at each moment

of the computation, that

I. Si is the sequence of elementary actions already performed.

2. xis the current state.

3. S is the remainder of the program which still awaits execution. r
Using this notion, the definition of a computation prescribed by a pro-

gram T = (V,S), when applied to initial state x, follows rather naturally:

Begin with initial computation point (I,x,S), (Si= I: nothing has yet

been executed), define the allowed transitions between the computation

points in accordance with the intended meaning of the various program

constructs, and then end up with some final (S',y,I), with S' some se

quence of elementary actions, y the final state, and S = I indicating r
that nothing remains to be done.

16

So we need to define the allowed transitions between computation

points:

DEFINITION 3.2. Let V be a set of declarations. A computation step is a

V-aZZowed transition between two computation points (S1 ,x,Sr) and

(S',x',S') iff one of the conditions la,lb,2a, ••• ,2e, is satisfied.
t r

la. Sr= (R;s;), for some R € R, and, moreover, xRx', and SI= s1 ;R hold.

(Observe that this implies that RI n, and that, if R = p ~ B, then

xpx', or, equivalently, x = x' and p(x) hold.)

lb. Sr= R, for some R € R, s; = I, and, moreover, xRx' and St= s1 ;R

hold.

2a.

2b.

2c.

2d.

S = ((S
1
;s 2);S 3), S' = (S

1
;(S 2 ;s 3)), r r, r, r, r r, r, r,

s1 = st, x' = x.

s = (S
1

us 2), S' = s
1

or S' = s 2 , r r, r, r r, r r,
SI= s!, x' = x.

S' = ((S I u S 2);S 3), S' = ((S 1;s 3) u (S 2 ;s 3)), r r, r, r, r r, r, r, r,
S' = S, x' = x. t t
S = (P;S 1), S' = S;S I' where P..S € V, r r, r r,
s~ = st, x' = x.

(Observe that the replacement of the procedure identifier P by its

body Sis the usual copy rule of procedure semantics.)

2e. S = P, S' = S, where p.,.s € V, r r
S' = S x' = x. t t'

Example (not bothering for the moment about parentheses):

A sequence of V-allowed computation steps, where Vis {P .. p;A;P up}, is

(I,x
O

,P), (I,x
O

,p;A;P up), (I,x
O

,p;A;P), (p,x
1
,A;P), (p;A,x2 ,P),

(p;A,x2 ,p;A;P up), (p;A,x2,p;A;P), (p;A;p,x
3

,A;P), (p;A;p;A,x
4

,P),

(p;A;p;A,x4 ,p;A;P up), (p;A;p;A,x4 ,p), (p;A;p;A;p,x5 ,I)

where

I. p(xO) and p(x2) are true, p(x
4

) is false;

2. xO = x1, x1Ax2 , x2 = x3, x
3
Ax

4
, and x4 = x

5
hold;

3. we have omitted - as we will do in the sequel - the identity action

in a sequence of elementary actions.

The definition of the relation to be associated with program T = (V,S)

should give no problem:

DEFINITION 3.3. Let T = (V,S) be a program. Then (x,y) ET iff there

exists a sequence of elementary actions S', and a sequence of V-allowed

computation steps from (I,x,S) to (S',y,I).

From now on, we assume the set V of declarations fixed, unless

otherwise stated, and we write xSy instead of x(V,S)y. Also, we under

stand s 1 ,::. s2 or s 1 = s2 with reference to this V.
From definition 3.3, a number of properties follow rather directly,

reason why we omit their proofs.

LEMMA 3. I

I. ((S
1
;s2);S

3
) = (S 1;(S2;s

3
)) (= s 1;s2;s3, from now on)

2. SI u s2 = s2 u SI

3. ((s 1us2) ;S3)_ = ((S 1 ;s3) u (S2;s3)) (this will, by convention, be

written as s 1;s
3

u s2;s3)

4. Similar for left-distributivity of";" over "u".

5. If P<=S EV, then P = S. (This is the fixed point property of proce

dures.)

6. x s 1;s2 y (according to definition 3.3) iff 3z[xs 1z A zS2yJ

x s 1us2 y (according to definition 3.3) iff xs 1y v xs2y

(i.e., definition 3.3 is a consistent extension of the definitions of
11
;" and "u" of section 2).

(· ·) f s(l) s<2) ·-1 2 h 7. Monotonicity I . c • , 1- , , ••• ,n, t en
(I) (I)]. (2)]. (2)

s (SI , ••• , s) C s (SI , ••• , s) •
n - · n

8. If (s
1

,x,Sr), (SI,x',s;) is a V-allowed computation step, then

S ·S => S'·S' t' r - t' r·
9. S =U{s'I 3x,y such that (I,x,S), ••• ,(S',y,I) is a sequence of

V-allowed computation steps}

These facts being - as we hope - satisfactorily established by the

reader, we now continue with the refinement of the analysis, leading up

to the minimaZity of the fixed points.

We start with the following two observations:

I. The four-tuple (P,R,V,S) reminds one of a context free grammar, with

P: non terminals, R: terminals, V: productions rules, and S: start

17

18

symbol.

2. The way in which the V-allowed computation steps are defined - in par

ticular the procedure-call step 2d,e - reminds one of the production

steps in the derivation of a context free language.

To this we add the following by way of further introduction: Consider the

procedure P defined (on the natural numbers) by: P <= if x=O then x:=O
00

else (x:=x-1 ;P;x:=x+l). Our assertion that P = V ((x:=x-,l)n; x:=O;
n=O

(x:=x+l)n) will - after some thought - not be surprising, nor the similar-

ity of this expression with the "language"

{(x:=x-l)n;x:=O;(x:=x+l)nl n ~ O}. We now make these informal observations

more precise.

Let T be a mapping from statements Sin S(R,P) to subsets of the

language (Au Bu P)* - i.e., the set of all finite (possible empty) se

quences of symbols in A,B or P -, defined as follows (identifying single

ton sets with their elements):

,(A)= A, T(p) = p, ,(P) = P

,(S 1;s2) = ,(S 1)T(S2) (juxtaposition denoting the usual "product" of

sets of words).

,(SI u s2) = ,(S1) u ,(S2),

,(Q) = ~ (the empty set of words),

,(I)= E (the empty word).

For V = {P. <= S.}~ 1, we define ,(V) = {P. ➔ S! I i=I,2, ••• ,n and
i ii= i i

S! E ,(S.)}. Then for the program (V,S) we have as corresponding grammar
i i

(,(P), ,(Au B), ,(V), ,(S)). Note that there is a slight generalization

involved, in that ,(S) is, in general, not just an element of ,(P) (the

set of non-terminals), but a subset of (,(Pu Au B))*.

Example: For the program ({P <= p;A;P up}, Pu A) we have as corre

sponding grannnar: ({P}, {p,p,A}, {P ➔ pAP, P ➔ p}, {P,A}).

The next definition introduces the language associated with a pro

gram.

DEFINITION 3.4. Let T = (V,S) be a program. Let ,(T) =

= (,(P), ,(Au B), ,(V), ,(S)) be the (generalized) context free grammar

associ&ted with T. Then

* L('r(T)) = {S"ls" E (,(A u B)) and 3S' E ,(S)

* such that S' • (T) S "}

* where ,(t) is defined in the usual way as derivation with respect to the

grammar • (T) •

Example: For T = ({P <= p;A;P up}, P), we have

L(.(T)) = {(pA)ipli ~ O}.

19

So far everything was rather straightforward. The next step also

seems clear: One might at first expect that the set of all elementary ac

tions determined by a program on the base of definition 3.3, coincides

with the language of definition 3.4. There is a slight complication, how

ever. Example: T = ({P <=p;A1 u p;A2}, p;P). ThenL(,(T)) = (ppA
1

,ppA2),

·but there is nox,y such that (I,x,p;P), ••• ,(p;p;A2,y,I) is an allowed se

quence of computation steps.

This is easily taken care of, however, by noting that those sequences

of L(,(T)) which do not occur as possible computations are necessarily

equivalent with n. Using the notation ,-1
(L) for ,(s¼ S (this yields

one relation, not a set of relations!) we have as

LEMMA 3.2. T = ,-l(L(,(T))).

PROOF. Direct from the definitions. D

Continuing with the last example, L(,(T)) = {ppA1, ppA2}. Hence,
-1 -, (L(,(T))) = p;p;A1 u p;p;A2 = p;p;A1 u Q = p;p;A1 = T.

We have now reached the point where we can apply the result of e.g.

[8], stating that context free languages are minimal solutions of a sys

tem of equations, which solutions are obtainable by means of successive

approximations, starting from the empty set.

Let V = {P. <= S.}:1 I' let S = S(P 1, ••• ,P) be an element of S(R,P),
i ii= n

and let T = (V,S). By the definition of T,,(S) = ,(S)(P 1, ••• ,Pn) (i.e.,

,(S) is a set of words, each of which may contain occurrences of

20

<Xl [. J
Then, by [8], L(r(T)) = V r(S) J • Hence by lemma 3.2,

. j=O

-1 -1 v00

[jJ T = T (L(r(T)) = T (r(S)).
j=O

Now let s<o) <!,f r.i. s(j+I) q_f, S(S(j) , ••• ,s(j)).
• I n

Then it is not difficult to verify that S(j)= r- 1(r(S)[jJ), and, moreover,

0 s(j) = 0 T- 1(r(S)[j]) = T- 1<0 r(S)[j]) = T.
j=O j=O · j=O

-I oo [j] oo (j)
Thus, we have T = (V,S) = T <V r(S)) =VS •

j=O j=O

Once more omitting reference to V this yields

THEOREM 3.1 (The union theorem for programs with recursive procedures).

n
COROLLARY 3.1. Let V = {P. <== S.}. I' and let Q. satisfy

i ii= i

S (Q O) c Q, i=l,2, •••• n. Then P. c Q .• i 1'···,n - i · i - i

PROOF. We use that P. = S. (lemma 3.1.5), and that S. = (} S~j). Then
i i i • O i J=

using induction on j, for each i=l,2, ••• ,n,

s~o) = r.i c Q.
i - i

(j+I) (j) (j)) () s. = S.(SI , .•• ,s cs. Q1,···,Q c Q.
i i n -i n-i

Thus,

(by monotonicity (lemma 3.1.7) and the induction hypothesis).
<Xl • V s~J) c Q., whence P. c Q., i=l, ••• ,n, follows. 0

• O i - i i- i
J=

COROLLARY 3.2. (Minimal fixed point property). Let V be as before. Then

(P 1, ... ,Pn) =f\{(Q 1, ••• ,~)j S/Q1, ••• ,~) = Qi' i=l, ••• ,n}.

PROOF. By lemma 3.1.5 and corollary 3.1, the P. are fixedpoints of the s.
i i

which are included in all fixed points; hence, they are minimal fixed

points. 0

The next corollary is an easy consequence of corollary 3.2, and deals ,.
with correctness in terms of inclusion (P .=. Q); it is stated for compari-

son with similar results to be given in section 4, for correctness in

terms of assertions (p;P .=. P;q):

COROLLARY 3.3. Let V = {P. <= S.}~ I 1 1 1=
I. (Correctness in terms of inclusion)

Vj=I, ••• ,n,Q.[P. c Q. iff 3Q'1, ••• ,Q'[S.(Q 1', ••• ,o') c Q!, i=I, ••• ,n,
J J-J n1 --n-1

and Q ! c Q . J J •
J - J

2. (Characterizing recursion in terms of inclusion correctness)
VR1, ••• ,Rn

[VJ·=1, ••• ,n,Q.[R. c Q.
J J - J

iff

Vj=I, ••• ,n [R. = P.]].
J J

PROOF. Part I follows from corollary 3.2, and part 2 from part I. D

The next main application of the union theorem is in the proof of

Scott's induction rule, which plays an important part in section 4 (and

elsewhere in proofs about recursion, see e.g. [2,3,14,16]).

THEOREM 3.2 (Scott's induction rule).
n

Let V ={Pi<= Si}i=I' Let SJ/,= S!l,(P 1, ••• ,Pn) and Sr= Sr(P 1, ••• ,Pn) be

two statements satisfying the two conditions:

1. s!I, (n, ... ,n) c s (n, ... ,n).
- r

2. If s!l,(x1, ••• ,x) cs (x1, ••• ,x), then
n - r n

SJ/, (S 1 (X1, ••• ,Xn), ••• ,Sn (X1, ••• ,Xn)) .=,
S (Sl(Xl, ••• ,x), ••• ,s (X1,···,x)); r n n n

Then we have that SJ/,= S!l,(P1, ••• ,P) c S (P 1, ••• ,P) = S.
n - r n r

PROOF. Let, as before, for s E S(R,P), s<o) = n, s(j+l) =

= S(S(j) S(j)) By condition 1, we see that S(l) c S(l) Then, using I , ••• , n · JI, - r ·
condition 2 (with n for X.), we infer that

1

s!l,(s 1(n, ..• ,n), ... ,s (n, ... ,n)) cs (s 1(n, ... ,n), ... ,s (n, ... ,n)), i.e.,
(2) (2) n - r n C) C)

that SJ/, c S • Repeating this argument we obtain that s!l,J c SJ ,
- r - r

00 00

= V s<j) c V s<j) = s
j=O !I, - j=O r r

j=O,1,2, ••• , and the desired conclusion s
1 ,,

follows by the union theorem. D

21

22

Remark: The induction theorem is easily seen to go through for

sets qf inclusions instead of for just one inclusion s1 .=. Sr.

Example of applying the rule: In [5], Dijkstra notes the following

fact: Let V = {P <==S(P)}, and let q,.rbe arbitrary predicates. Let, as

before, fp(q) mean q O P (cf. section 2; we assume that the restriction

that the Pare functions is again imposed). Suppose the following condi

tion is satisfied: If q .=. fx(r) then q = fS(X)(r). Then we may conclude

(according to Dijkstra), that q n fp(I) .=. fp(r). He calls this the

"Fundamental Invariance Theorem for Recursive Procedures", and spends

some effort in proving this. In the form as given, it is wrong, however.

This is easily seen by taking r = n: The condition "If q = fX(n) then

q .=. fS(X)(n)", is then trivially satisfied, since it reduces to (lenuna

2.2.1) "if q .=. n then q = n". This would therefore imply that for arbi

trary q a~d P, q n fp(I) = n, which is obvioq~ly absurd. (Taking, e.g.,

q = I would yield that no procedure ever terminates.)

With the following amended version of the condition: If q n fX(I) c fX(r)

then q n fS(X)(I) = fS(X)(r), the theorem is an easy consequence of the

induction theorem:

I. q n fn(I) .=. fn(r) is clear from lenuna 2.2.

2. "If q n fx(I) .=. fx(r) then q n fS(X)(I) .=. fS(X)(r)" is precisely the
second condition of the induction theorem which we need to conclude

that q n fp(I) = fp(r).

Thus, we see that the (corrected) example is easily dealt with by means of

the induction theorem.

4. RECURSION AND INDUCTIVE ASSERTIONS

This section brings the generalization of Manna's treatment of par

tial (and total) correctness, and an application of the result providing

an alternative characterization of recursion, using a certain property

expressed in terms of inductive assertions instead of the minimal fixed

point property used in corollary 3.3.

The main tool of the section consists in the enrichment of the

inductive assertion method with an indexing of the assertions in such a

way that the index can be considered as a traae of the history of the

computation. Such rather complex structuring of the assertions turns out

to be necessary for the only if part of the theorem: p;P ,'.:_ P;q if and

onZy if suitable intermediate assertions can be found.

23

In order to bring out the difficulty, we consider once more formulae

(2.3) and (2.4). We saw that: if 3s[p .=. s, s;r;S .=. r;S;s, s;r .=. r;q] then
* -p;r*S .=. r*S;q, which is easily shown once it is seen that r*S = (r;S) ;r.

Conversely, the proof that: if p;r*S ,'.:_ r*S;q then

3s[p .=. s, s;r;S ,'.:_ r;S;s, s;r .=. r;q], follows by takings= p 0 (r;s)*,

and applying the properties of lemma 2.1:
1. p = p n I= pol.=. p0 (r;s)*, using the definition of I, lemma 2.2.3,

* the definition of the operation,

* * 2. (po(r;S));r;S ,'.:_ r;S.(p 0 (r;S))

* * (po(r;S))o(r;S) .=. p 0 (r;S)

* * po((r;S) ;r;S) .=. p 0 (r;S)

* * (r;S) ;r;S.:. (r;S)

and lemma 2.2.6, respectively.

or (lemma 2.1)

or (lemma 2.2.4)

or (lemma 2.2.6)

and the last inclusion
* - -3. (p 0 (r;S));r .=. r;q

follows from the definition of the* operation.

or (lemma 2.1)
* -(po(r;S))or.=. q or (lemma 2.2.4)
* -po ((r;S) ;r) ,::. q or (def. r*S)

po (r*S) .:. q or (lemma 2.1)

p;r*S.::. r*S;q

and the last inclusion follows by assumption.

In the more general case of flow diagrams, to be dealt with presently in

our rephrasing of Manna's theorem, the argument is stated in somewhat more

24

general terms, but not essentially different. However, for the generali

zation to full recursion, the above mentioned extension with indexed as

sertions is needed.

We now first give the details of Manna's approach [12,13]. Two versions

of Manna's theorem on partial correctness are given; first a weaker one,

and, at the end of this section, a stronger one which is needed for the

treatment of total correctness.

The weak version is first pictorially phrased as follows: A flow

diagram Pis partially correct with respect to the predicates p and q

if and only if the following condition is satisfied: There exists a

selection of points n.,i=l, ••• ,n-1, in the diagram, such that intermedi-
l.

ate assertions (p=p0) p 1,p2 , ••• ,pn-l'(pn=q) can be fotmd, attached to

the points n., for which we have that, for all i,j, 1 ~ i,j ~ n, each
l.

P .. (part of the program between n. and n.) is partially correct with
l.,J l. J

respect to pi and Pj' and, moreover, each part of the program is included

in at least one of the P ..•
l.,J

The formalism developed in sections 2 and 3 allows a less pictorial

statement, together with a complete proof, of this theorem. We give these

as preparation for the extension to programs involving full recursion, to

which the remainder of the section is devoted.

We use the well-known fact that each flow diagram can be represented

by an equivalent recursive program scheme such that the system of declar

ations (more precisely, the associated grannnar (section 3)) is regular

in form.

Example: Consider figure 2. This diagram may be represented by

({Pl<= Al;P2, p2 <=pl;A2;P3 u pl;A3;P4, p3 <= P2 u p2;A3;P4,

P4 <=p3;P3 u P3}, Pl).

Remark: Such translation is (first) mentioned e.g. in [17]. It is

not difficult to see that the result can be obtained by the following

process (only briefly sketched here):

1. Consider the flow diagram in a natural way as a finite automaton.

2. Construct the associated regular grannnar.

3. Translate the grannnar back into a program scheme, essentially by the

ope~ation T-l of section 3.

25

Using the representation of flow diagrams by regular schemes, we can

now give a precise statement of our first version of Manna's theorem:

THEOREM 4.1 (Completeness theorem with regular inductive assertions).

Let p,q be two predicates.
n-

Let V ={Pi., Ai,l;P 1 u Ai, 2;P2 u ••• u Ai,n;Pn u Ai,n+l}i=l be a regular
declaration scheme. The program (V,P 1) is partially correct with respect

to p,q if and only if there exist p1,p2 , ••• ,pn+I such that

Remarks

p C p
- I

P -
c q n+I

and p.;A .. c A .. ;p., i-1, ••• ,n, j=l, ••• ,n+I
1 1 ,J - 1 ,J J

I. The general form of the V can be specialized by taking some of the

A. . as I or n.
1,J

(4. 1)

2. The freedom in the choice for then., in P, in the flow diagram formu-
1

lation is found back in the freedom of constructing V by, if necessary,

considering subprograms of Pas elementary A ..•
1,J

PROOF.

I.

2.

If-part. Assume (4.1). We shall prove that p.;P. c P.;p +I' 1 1 - 1 n
i=l, ••• ,n, by an application of Scott's induction rule.

p.; n c n;p I is clear. Next, we verify: If p.;X. c X.;p
1

, 1 - n+ 1 1 - 1 n+
i=I, ••• ,n, then

p.;(A. 1;x
1

u ••• u A. ;X u A. +l) c 1 1, 1,n n 1,n -
c (A.

1
;x1 u ••• u A. ;X u A.

1
);p 1,i=l, ••• ,n. - 1, 1,n n 1,n+ n+

This follows from: p.;A .. ;X. c A .. ;p.;X. c A •• ;X.;p +I' by (4.1)
1 1,J J - 1,J J J - 1,J J n

and the induction hypothesis, respectively. We conclude that, indeed,

pi;Pi .=. Pi;pn+l" Hence, by (4.1), p;P 1 .=, p1;P 1 .=, P1;pn+l .=. P1;q.

Only-if-part. Assume p;P 1 ::.,P
1
;q. Two constructions for the pj are

possible.

2. I. Let P I n+
df = I, and p.

J

q,,f • P. + q,J=l, ••• ,n+I. We verify (4.1): From
J

26

p;P 1 ~ P1;q we derive p ~ (P 1+q) = p 1• Also, Pn+l = Pn+l➔q = I➔q =q.

In order to show that p. ;A. . c A. . ;p., we have to verify
l. 1.,J - 1.,J J

(P.+q);A .. c A .. ;(P.+q), i.e.,
l. l.,J - 1.,J J

'v'x,y[Vz[xP.z ➔ q(z)] A xA. •• y ➔ Vt[yP.t ➔ q(t)]J.
l. l.,J J

Assume Yz[xP.z ➔ q(z)], xA. •• y and yP.t. Then xA. •• ;P.t, hence xP.t,
l. 1.,J J l.,J J l.

and q(t) follows, proving (4.1).

2.2. The second construction uses the "dual" system of procedures

{Q. <= Ql;Al . u ••• u Q ;A . u LL}:1+1
1 with 81 = I, A.= n, J

0 =2, ••• ,n+l.
J ,J n n,J J J= J

Example: Referring again to fig. 2, we have:

QI<= I, Q2 <= Ql;Al, Q3 <= Q2;pl;A2 u Q4;P3, Q4 <= Q2;pl;A3 u Q3;p2;A3'

Q5 <= Q3;p2 u Q4;P3•
Note that the P. denote computations from intermediate nodes in the

J
flow diagram to the final one, whereas the Q. denote computations

J
from the initial to intermediate nodes.

In general, we have for the Q's: Q.;P. c P
1

, and Q.;P. co
1

,
J J - J J - "'n+

j=I,2, ••• ,n+l. Taking j=n+l and j=I in the first and second inclu-

sion respectively, and using the definitions of Pn+l and Q
1

, we ob

tain that P1 = Qn+t• (The proofs of these statements are omitted,

since they are special cases of theorems given below.) We define

p. = p0 Q., j=l,2, ••• ,n+l. The reader will have no difficulty in
J J

verifying, analogously to construction l, that these p. indeed sat
J

isfy (4.1). We also observe that poQ, c P.+q,
J - J

j=I, ... ,n+l, which

again, will be proved later in a more general form. D

After thus having settled the flow diagram case (regular recursive

schemes), we now face the problem of extending the theorem to recursive

schemes in general.

Without lack of generality we assume that each declaration scheme

Vis of the form

{P. <= S. l u S. 2 u ••• S. M }:1_
1 l. 1., 1., 1., • l.-

l.
(4.2.1)

with M. some integer~ 1, and each S., j=l,. •• ,M., of the form
].r J . l.

27

S .. = A(i,j,O);P(i,j,l); •••
1,J

(4.2.2)

••• ;A(i,j,K .. -l);P(i,j,K ..);A(i,j,K ..)
1,J 1,J 1,J

with A(i,j,k) EA, P(i,j,k) E {P 1, ••• ,P }, and K .. some integer~ 0 (if
n 1,J · _

K .. =O, S .. is just A(i,j,O)). Specialized forms of the V are again ob-
1,J 1,J

tained by suitable restriction of certain of the A(i,j,k) to I or n. Ob-

serve that each occurrence of some P
0

in some S .. is uniquely identified
~ 1,J

by the triple (i,j,k) with P(i,j,k) = Pt.

A number of definitions and notations will be employed:

I. First we need a name for the set of index-triples with respect to

(as will from now on be tacitly assumed) the declarations Vas

given in (4.2.1), (4.2.2):

l = {(i,j,k)I I~ i ~ n,

2. Each P(i,j,k), for (i,j,k) El, is some element of {P 1, ••• ,Pn}. Hence

our definition of the function h: l ~· {1,2, ••• ,n} : h(i,j,k) = 1 iff

P(i,j,k) = P1•

3. Suppression of indices will be used below to improve the clarity of

the proofs. To begin with, we will use as short hand for the system
M.

1

V = {P. <=VS .. }~_ 1, with S .. as above, the notation
1 . 1 1,J 1- 1,J

J=

P <=A(O);P(l); .•• ;A(K-l);P(K);A(K) (4.3)

where both the i- and j-index have been suppressed.

An important role will be played in what follows by the idea of using

index-triple sequences as traae of the history of the computation. We de

fine the following subsets of 1* (the set of aZZ finite sequences of ele

ments of l, with£ denoting the empty sequence):

28

where the sets T., i=l, ••• ,n, satisfy the system of equations
l.

M. K ••
l. \ l.'J

{T. = {g} u V V (i,j,k) T }
1. j=l k=l h(i,j,k) i=l, ••• ,n

or, alternatively, each T. is the language produced by the grannnar
l.

G. = ({T1, ••• ,T }, L, P.,T.), with P. consisting of the rules T. + E,
l. n 1.1. l. l.

Ti+ (i,j,k)Th(i,j,k)' for (i,j,k) El·
Each T. consists of those sequences of I* which satisfy

l.

I. The first triple, if any, has i as its first index.

2. Successive triples (i,j,k), (i',j',k') are connected by the requirement

that i' = h(i,j,k).

Each element -r. ET. may be viewed as defining a path in the tree of in-1. l.

carnations of the procedures with P. as root, or, alternatively, -r. re-
l. l.

presents the stack of currently active procedures, each triple in -r. re-
l.

presenting one procedure call. This interpretation explains the require-

ment that i' = h(i,j,k), since i' is the index of that procedure that is

located in place (i,j,k) of the scheme.

Example: Let V be {P 1 ~A1;P 1;A2;P2;A3 u A4;P2 ;A
5

,P
2

<= A
6

;P 1;A
7

u

u A8}. Then l = {(1,1,1),(1,1,2),(1,2,1),(2,1,l)}; also, h(l,1,1) = I,

h(l,1,2) = 2, h(l,2,1) = 2, h(2,1,1) = 1. Possible -r ET are: E,(1,1,I),

(1,1,1)(1,1,2)(2,I,I) or (2,I,1)(1,2,1)(2,1,1), etc. The sequence

-r 1 = (1,1,1)(1,1,2)(2,I,1) represents the calling structure of fig. 3.

The index-triple sequences are exploited in the introduction of the

notion of aompanions of the procedures P.: They depend on the history of
l.

the computation, represented by the index sequence -r, and come in four

kinds: left-left: LA'i, left-right: LP,i, right-left: RA'i, and
-r -r . -r

right-right: Rp,i. Anticipating their precise definition, they are in
-r

tended to have the following meaning: Let, for some s ~ 0,

-r. = (i0,j 0 ,k
0

) ••• (i ,j ,k) ET . .=, T, and let i = h(i ,j ,k). As we
1.0 · s s s 1.0 s s s

saw above, -r. keeps track of a specific path through the tree of incar-
1.0

nations with P. as root, leading to the inner call of P .• Then the com-
1.0 l.

putation prescribed is precisely the computation initiated by

the outermost call of P. , upto, but not including, this inner call of
10

P. • Moreover,
1

p i).. i L' = L' ·P .• Furthermore '[. '[. , l. , Rp,i is the computation fol-
-r.

1 0 1.0 10

lowing after, but not including, the inner call of P., until completion
1 . 1 . .

of the outer call of P. is achieved, and R ' 1 = P.;Rp' 1
• Finally,

10 '[. 1 '[.
1 0 1.0

c P .• (Compare fig. 4 and the example following the next
10

These notions are now defined precisely, followed by the proofs of

their intended properties. Let V be of the form (4.3). We define two

(infinite, see below) systems of procedures, one with procedure symbols

{L)..'i,Lp'i}._ , and one with the symbols
-r -r 1-I, •.• ,n,-r€T

{RA'i,Rp'i}. • As abbreviation we use L)..,hk instead of
-r -r 1=1, ••• ,n,-reT -r,

LA(,~(~,kj),k), and similarly for the other symbols. (It should be noted
'[l.,J,

that -r(i,j,k) is the result of concatenating the index-triple sequence

-r with the index-triple (i,j,k), whereas h(i,j,k) is the result of ap

plying the function h to (i,j,k).)

DEFINITION 4.1 (Companions). For each i=l,2, ••• ,n, -r € T:

a. (Left-companions)

M.

~0
j=l

, if K. .=Q
1.,J

, if K. .>Q
1,J

(4.4.1)

(4.4.2)

(4.4.3)

(4.4.4)

29

30

b. (Right-companions)

,k=l,2, ... ,K-1

if K .. =O
l.' J

if K •• >O
J.,J

(4.5. I)

(4.5.2)

(4.5.3)

(4.5.4)

Remark: The first appearance of infinite systems merits a comment:

It turns out to be a straightforward matter to generalize all considera

tions of section 3 to infinite systems, including in particular the

union and induction theorems. This is worked out in [4], but omitted here,

since no special difficulties are involved.

An example of some companions: Let V = {P <= A
1

;P;A
2

;P;A
3

u A
4
}. We

have for the left-companions (restricting the index structure to a simp

ler one, as is sufficient in this example):
* A A A A p p p A

For• e: {O,l} : Le:<= I, L-rO <= L-r;A1, L-rl <= L-r0 ;A2 , L-r <= L-rl;A3 u Lt;A4 •

Hence, e.g.,

L~ = Li;A3 u L~;A4 = (L~ 1;A3uL~;A4);A3 u I;A4 =

= L~ 1;A3 ;A~ u L6;~2 ;A4 ;A3 u A4=
= •.. u (101 ;A

3
u1

0
;A

4
);A2 ;A

4
;A

3
u A

4
=

A = ••• u u Lo;A
4

;A
2

;A
4

;A
3

u A
4

=
A

= ••• u u Le:;A1;A4;A2;A4;A3 u A4 =
= ••• u u A1;A4 ;A2;A4;A3 u A4•

This suggests that L~ = P, which will indeed follow as one of the by-pro

ducts of the first companion theorem:

THEOREM 4.2 (First companion theorem)

, i=l, ... ,n, -r E T

, i=l, ... ,n, t' € T

PROOF. We prove only part a, part b being symmetric. Besides the system

{LA,i Lp'i} we introduce - for the sake of the present proof only - the
'[' '[

31

-1 i -pi system {L' ,L'} (the - denoting an alphabetic variant, and not comple-
t' '[

mentation), defined by: For i=l, ••• ,n, t' € T.

L
-1 ,h -p h

k I <= L 'k;A(k),
t", + t',

A i
We shall prove that {L'

'[

k=l,2, ••• ,K-1

(4.6.1)

(4.6.2)

(4.6.3)

(4.6.4)

Part 1. c. By corollary 3.1 it is sufficient to show that the L satisfy

the defining inclusions of the L-system. For the LA this is immediate,

since (4.4.1) to (4.4.3) are identical (apart from the-) to (4.6.1) to

(4.6.3). For the LP the proof runs as follows. We have to show:

if K .. =O
l., J

if K .. >O
l.,J

(4.7)

If K .. =O, then by definition of V, A(O) = A(i,j,O) = S .. c P .• Hence,
l.,J l.,J - l.

L1 'i·A(o) c L1,i·P. = Lp,i by (4.6.4). If K .. >O then Lp,i (4.g. 4)
T ' - T ' l. t' ' l.,J ' t'

= L:'i;P. ~ L1 'i;A(O);P(l); ••• ;P(K);A(K) (4.g. 2) LA,h
1
;P(l); •••

L]_ - '(t'p

••• ;P(K);A(K) (4.g. 4) Lp,h
1
;A(l); ••• ;A(K) (4.g. 3) L;\,h

2
;P(2); ••• ;A(K) =

T, t',

= = Lp,Kh;A(K), whence (4.7) follows.
'[,

-Part 2. ~. We show that the L satisfy the defining inclusions for the L.

For the LA this is again direct from the definitions. For the LP we must

32

A •
show that L ,i.P.

T ' i
Lp,i

C ' for which we use Scott's induction rule on
T

A • •
the P.: It is sufficient to show: If {L ,i;X. c Lp'i}.

i T i - T i=1, ••• ,n, T € T'
A • •

then {L ,i;A(O);X(l); ••• ;X(K);A(K) .=_ Lp'i}._
1 T T i- , ••• ,n, T €

A i
follows from 4.4.4. If K>O, then L' ;A(O);X(l); ••• ;A(K)

T

T" If K=O, this
:\ h .

= L '
1
;X(l); ...

T,

••• ;A(K) c (hypothesis) LP,h
1
;A(l); ••• ;A(K) c ••• c Lp'i. This completes

- T, - - T
the proof of the first companion theorem. 0

COROLLARY 4.2. Lp,i = p., Rl,i = p .•
8 i 8 i

PROOF. Put T = 8 in theorem 4.2, and use Ll,i = RP ,i ·= I. □ 8 8

The next theorem combines the left- and right companions into one

construct. It is, for convenience, phrased for T = Tl € T
1

, but general

izes directly to indices j I 1.

THEOREM 4.3 (Second Companion theorem).

provided that if T
1

= e then i = l •

PROOF. Throughout the proof we require that if T
1

= e then i == 1. We

shall prove the, by theorem 4.2 equivalent, inclusions

i=l, ••• ,n, Tl€ Tl provided ••••

(4.8) is proved by (infinite) Scott induction by showing that: If

XA,h .i,h
T1,l' Tl'l

C

C

XA,h .l,h C

Tl,k+l' Tl,k+l pl'

C

k= 1 , 2 , ••• , K-1

(4.8)

33

then

, k= 1 , ••• ,K- I

We have:

a. I;R;'l .::_ (cor. 4.2) I;P
1

.::_ P
1

•

b. XA'\A(O);R"'hl c (4.5.4) X"'i;R;\,i c P
1

, by the first three hypotheses.
Tl Tl' - Tl Tl -

c,d follow similarly by the definitions and hypotheses. D

The companion constructs are the central tool in our statement and

proof of the generalized inductive assertion theorem. We use the following

system of inclusions, with respect to the V of (4.3), and using asser

tions indexed in the same way as the indexed procedure letters above:

K = 0

i h
p ;A(O) C A(O);p I

T - T,

K > 0

h i
q K;A(K) C A(K);q

T, - T

i i Call the system of these four inclusions 1(V,p ,q). Then we have:
T T

THEOREM 4.4 (Completeness theorem with generalized inductive assertions).

Let p,q be two predicates. Let V by as in (4.3). ~V,P
1
) is partially

correct with respect top and q iff there exist p1
, q1 such that

T T

34

and i i
1(V,p ,q)._ 1 T Tl Tl 1- , ••• ,n, Tl e: 1,

(4.9)

if Tl= e then·i = 1.

PROOF. Throughout the proof we require that if Tl=£ then i = 1.

1. If-part. i i Assume (4.9). We show that p ;P. c P.;q • Once this has
Tl 1 - 1 Tl

been established, the desired result follows from

p;P
1

c p 1
;P

1
c P

1
;q 1

c P
1
;q. By Scott's induction rule, it suffices

- € - £- .

i i i to prove: If p ;X. c X.;q , then p ;A(O);X(l); ••• ;X(K);A(K) c
Tl 1 - 1 Tl Tl -

c A(O);X(l); ••• ;X(K);A(K);q1 . Verification of this is direct from
- T 1 • •
the definitions and the assumed inclusions in 1(V,p1 ,q1

).
Tl Tl

2. Only-if-part. Assume p;P 1 ~.P1 ;~. We have, as in theorem 4.1, two

possible solutions for the p1 ,q1
:

TI T 1

i
First construction: PT

1

Second construction: pi
Tl

<kf

q.f

L>..,i po T ,
1

poLp,i
T ,

1

We prove only the first solution.

i=l, •.. ,n,

i=l, ... ,n,

a. p~ = poL;,l =pol= p; hence, p = p~

Tl e:

Tl e:

b. q~ = p0 L~,l = poP
1

; hence, q~ = poP
1

2:. q follows.

Tl

Tl

i i c. Proof of p ;A(O) c A(O);q (case K = 0). We have to show
. Tl - • Tl

poLA' 1 ;A(O) c A(O);poLP' 1
, which is direct from (4.4.4).

T 1 - T 1
i i d,e,f. The remaining cases follow from the definition of 1(V,p ,q),
T] T]

and (4.4.2), (4.4.3) and (4.4.4) respectively. D

COROLLARY 4.3.

1. If· P
1

is partially correct with respect to p,q, then

,-i 11.i pi pi · {poL' CR' +q, p 0 L' CR' +q}._
1"1 - 1"1 1"1 - 1"1 i-l, ••• ,n, 1"1 e: Tl

i i
2. For each system {p ,q }._1 1"1 Tl i- , ••• ,n, 1"1

i . i
T such that I(V,p ,q)

e: 1 Tl Tl

i
C q }
- 1" 1 i=l, ••• ,n, Tl e: T

1

PROOF.

35

1 L
A ,i • po and this
1" 1

11. i 11. i follows from L' ;R' c P1 (theorem 4.3) and the partial correctness
Tl 1"1 -

of P
1

with respect to p,q.

2. The technique of this proof is similar to that of the previous ones,

reason why we omit it. D

One might wonder whether the complex structure of the assertions

used in this proof is really needed. The following remarks show that this

is indeed the case. Consider as an example the procedure P declared by

P <=A1;P;A2;P;A3 u A
4

• Suppose first that all partial correctness proper

ties of P with respect top and q could be proved already using a format

with only two inductive assertions, as suggested by figure 5.

This would mean that the following formula

would be true with P taken for S.

p ;Al C Al ;p]
qo.A CA ·po
o' 2 2'

q ·A c A ·qO
0 , 3 3' 0

P ·A c A •q o' 4 - 4' o

(4. 10)

However, it can be shown that (4.10) is satisfied only by such S

for which S ~ (A1 u A4;A
3

;A2);A
4

;A
3
*holds.Thus, partial correctness

properties which distinguish P from such S cannot be proved on the base

of (4.10) (for an example see below).

36

As the next step, one might attempt to use an infinity of asser

tions,' but with a simpler index structure than in the theorem. One might

try to use

Vp,q[If p;S .=, S;q then

3{p. ,q. }._o 1
l. l. l.- , •••

p C p
- 0

and

pi ;Al E. Al ;pi+l

qi+l;A2 E. A2;pi+l

qi+ I ;A3 E. A3 ;qi

p. ;A4 c A4;q.
l. - l. i=O,1, •••

Then, however, it can be shown that this is satisfied only by S for which

· S .=,r'l{xlx = A1;(X;A2)* ;X;A
3

u A
4

} holds, and, again, incompleteness fol

lows.

We now discuss an example of a property of P which is provable only

with the full index structure which, due to the simple structure of Pas

compared with the general case, simplifies to

then {p ;P c P;q } (4.11)
a - a O({O,t}*

ado, 1}*

Take for P, in a self-explanatory notation, the special case (P manipu

lates states consisting of pairs of integers (n,s)):

P <= [n>O;n:=n-l];P;[s:=s+l];P;[n:=n+l] u [n ~ OJ

Let p(n,s) be (n=nO,s=sO), abbreviated to <nO,sO>. We show that

n
<nO,O>;P .=. P;<nO,2 °-t>, by defining p

0
,q

0
as follows: Let, for bi E{O,l}:

n -i
0

b. •2 >
l.

n -m
0 b.·2 -1>

l.

Verification of (4.11) for these A.,p ,q is straightforward. Taking
1. a a .

a=£, i.e., m = O, we obtain the desired result.

37

The indexing strategy, though as powerful as one might expect, is

not a very convenient tool for actual proofs. This may be remedied as

follows (only a sketch is given): Consider once more e.g. formula (4.11).

This formula may be seen as a special case of statements of the form -

somewhat extending the boundaries of ou~ formalism:

If

p(x);A1 ~ A1;p(f(x))

q(f(x));A2 ~ A2;p(g(x))

q(g(x));A3 ~ A3;q(x)

p(x);A4 ~ A4;q(x)

then p(x);P.:, P;q(x)

where p(x) and q(x) are parametrized properties of the - suitably defined

state, and f and g transform the parameter (in the special case of

(4.11), one could take f(a) = aO, g(a) = al). It follows immediately

that this proof technique has the same power as the rigid formalism of

theorem 4.4 (which is the minimal one needs to obtain completeness).

E.g., in the example given above, we can define

p(x,y)(n,s) = <x,y>

q(x,y)(n,s) = <x,y+2X-1 >

f(x,y) = (x-1,y)

g(x,y) = (x-1,y+2x-l)

which is much more natural and allows a simpler verification.

We now continue with the application of theorem 4.4 to obtain an

alternative for the minimal fixed point characterization of recursive

procedures:

COROLLARY 4.4. Let V be as before, and let R1, ••• ,Rn be arbitrary state

ments. Then

38

if£

PROOF. Follows from theorem 4.4 and lemma 2.6. D

We conclude our paper with a discussion of the notion of totaZ

correctness and its relationship to partial correctness.

Pis totally correct with respect to q if£ Yx 3y[xPy A q(y)]. In or

der to explain the relationship with partial correctness, we once more

consider the simple while statement r*S. In the beginning of this section

we saw that r*S is partially correct with respect top and q if£ there

exists s such that p,::. s, s;r;S,::. r;S;s, and s;r,::. r;q, i.e.,

Yx,y [p(x) Ax r*S y + q(y)]

++ (4.12)

3s[Yx[p(x) + s(x)] A Yy,z[s(yi A r(y) A ySz + s(z)] A

A Yt[s(t) A r(t) + q(t)]]

We are interested in particular in the case that pis identically true.

Suppose we could prove, for such p, the following stronger version of

(4.12):

Yx [Yy[x r*S y + q(y)]

3s[s(x) A Yy,z[s(y) A r(y) A ySz ➔ s(z)] A

Yt[s(t) A r(t) + q(t)]]].

(4. 13)

39

From this we may conclude, by replacing q by--,q, and negating both sides:

+-+

--,3s[s(x) A Vy,z[s(y) A r(y) A ySz + s(z)J A

Vt[s(t) A r(t) +'q(t)]JJ.

Now observe that-,Vy[x r*S y +'q(y)] +-+ 3y[x r*S y A q(y)], i.e.,

r*S is totally correct in x with respect to q. Thus we see that if we

could prove (4.13) then, writing--,3sE(x,s,-,q) for its- right-hand side,

we could justify the inference of total correctness of r*S in x with

respect to q from the proof of-,3sE(x,s,..,q), i.e., from the negation of

partial correctness (in the refined sense) of r*S in x with respect to

(the identically true p and) •q. This inference seems to be the essence

of Manna's treatment of total correctness.

We therefore will prove an extension of the generalized inductive

assertion theorem, yielding the equivalent of (4.13) in the general

case:

THEOREM 4.5 (Total correctness)

PROOF.

+ q(t)]
and

i' i
I(V,p~ ,q~)i.=1 n ~ ET

·1 ·1 , ••• , ' ·1 1
if •

1
=Ethen i =

i i We give only the+ part. Choose some fixed x
O

, and let P, ,4,

be defined by 1 1

i df
{(xo,xo)} 0

LA ,i
P, =

1 ·1

i df
{ (xo,xo)} 0

Lp,i
4, =

1 ·1

(Note that { (x
O

,x
O
)} C I is indeed an assertion.)

40

We show that
I · I A I I. p£(x

O
) holds: pE(x

O
) = ({(x

O
,x

O
}} 0 LE')(xO) = ({(xO,xO)}ol)(xQ) =

= {(xO,xO}}(xO), and {(xO,xO}}(xO) is clearly satisfied.

2. Vt[q!(t) + q(t)], i.e., Vt[({(xO,xO}} 0 L:' 1)(t) + q(t)]~ or

Vt[3y{(xO,xO)}(y) A yP
1
t + q(t)], or Vt,y[y=xO A yP

1
t + q(t)], or

Vt[x0 P
1
t + q(t)], w~ich_holds by assumption.

3. The proof that 1(V,p1 ,q1
) holds is similar to that of theorem 4.4,

·1 ·1
and omitted. D

With this last theorem we hope to have clarified the precise status

of the notion of total correctness, thus achieving the last goal of our

paper.

REFERENCES

[l] Ashcroft, E.A., Z. Manna & A. Pnueli, Decidable properties of mona

dic functional schemas, J. ACM, 20 (1973) 489-499.

41

[2] De Balcker, J.W., Recursive Procedures, Mathematical Centre Tracts 24,

Mathematisch Centrum, Amsterdam, (1971).

[3] De Balcker, J.W. & W.P. de Roever, A calculus for recursive program

schemes, in Automata, Languages and Programming (M. Nivat,edJ,

p. 167-196, North-Holland, Amsterdam, (1973).

[4] De Balcker, J.W. & L.G.L. T. Meertens, Simple recursive program

schemes and inductive assertions, Report MR 142, Mathematisch

Centrum, Amsterdam, (1972).

[5] Dijkstra, E.W., A simple axiomatic basis for programming language

constructs, to appear.

[6] Engelfriet, J., Recursion induction and Floyd's method, memorandum

25, Twente Technical University, Enschede, (1971).

[7] Floyd, R.W., Assigning meanings to programs, in Proc. of a Symposium

in Applied Mathematics, Vol. 19 - Math. Aspects of Computer

Science (J.T. Schwartz, ed.), p. 19-32 (1967).

[8] Ginsburg, S., The Mathematical Theory.of Context Free Languages,

McGraw-Hill, New York, (1966).

[9] Hitchcock, P. & D.M.R. Park, Induction rules and proofs of termina

tion, in Automata, Languages and Programming (M. Nivat, ed.),

p. 225 - 251, North-Holland, Amsterdam, (1973).

[IO] Hoare, C.A.R., An axiomatic basis for computer programming, C. ACM,

Q (1969) 576-580.

[11] Kleene, S.C., Introduction to Metamathematics, North-Holland, Amster

dam, (1952).

[12] Manna, Z., The correctness of programs, J. CSS, 1_ (1969) 119-127.

[13] Manna, z., Mathematical theory of partial correctness, in Symposium

on Semantics of Algorithmic Languages (E. Engeler, ed.),

42

p. 252-269, Lecture Notes in Mathematics, Vol. 188, Springer,

Berlin (1971).

[14] Manna, z., s. Ness & J. Vuillemin, Inductive methods. for proving

properties of programs, C. ACM, _!2. (1973) 491-502.

[15] Manna, z. & A. Pnueli, Formalization of properties of functional

programs, J. ACM, .!Z. (1970) 555-569.

[16] Manna, Z. & J. Vuillemin, Fixpoint approach to the theory of compu

tation, C. ACM, .!2_ (1972) 528-536.

[17] McCarthy, J., Towards a mathematical science of computation, in

Proc. IFIP Congress 1962, p. 21-28, North-Holland, Amsterdam,

(1963).

[18] Milner, R., An approach to the semantics of parallel programs, to

appear.

[19] Scott, D. & J.W.de Balcker, A theory of programs, Notes of an IBM

Vienna Seminar, unpublished (1969).

[20] Turing, A.M., On checking a large routine, in Report of a Conference

on High-Speed Automatic Calculating Machines, p. 67-69, Uni

versity Mathematical Laboratory, Cambridge (1949).

p

s

p +

Figure 1. The inductive assertion method
for the while statement r * P

+

q

Figure 2. Example of a flow diagram represented by a set
of (regular) procedure declarations

43

44

(1,1,1)

At; Pt; A2; Pz; A3

/~/ (1,t,2)

(2,1,1)

Figure 3. A tree of incarnations of recursive procedures
with associated index-triple sequence

-- -------

P.
1.0

P. ---------1.

Figure 4. Left- and right companions of P.
in a tree with root P. 1.

1.0

Po

iE qo

A2

(Po

p

(

/

<

A4

(

/

,,P
/

Po

qo

Figure 5. An incomplete system of only two
intermediate inductive assertions

45

,,

