
AFDELING INFORMATICA

stichting

mathematisch

centrum

L.G.L.T. MEERTENS & J.C. van VLIET
REPAIRING THE STATE SWITCHER SKELETON
OF ALGOL 68 PROGRAMS

Prepub I i cation

~
MC

IW 15/74 FEBRUARY

2e boerhaavestraat 49 amsterdam

il8UOTHEE.K MA ;HE'1M T'3CH c.lN rnvf\11

AMSTE.RDAM

PJunted a;t :the Mathema.:tlc.al CeYWte, 49, 2e Boe.Jt.haave.o.tltaa:t, A.m6:l:.e.Jt.dam.

The Mathema.:tlc..al Ce.YWte, 6ou.nded .the 11-.th 06 Febtw.aJty 1946, -lo a. non­
p1t..06U hu,.tUU,t,lon a.1.m,i_ng at .the plt..omo:ti.on 06 pWLe ma..thema.:tlc.6 a.nd ,,i,;a
a.ppUc..a.:tlovu,. I.t -lo .6pon601t..ed by .the Ne.thelli.a.nd6 Gove.Jt.nmen.t .th!t..ou.gh .the
Ne.thelli.a.nd.6 01t..ga.ruza.:tlon 601t.. .the A.dva.nc.ement o 6 PWLe Re.o eaJtc..h (Z. W. 0) ,
by :the Mu.ruupalUy 06 A.m-0.te.Jt.dam, by .the UruveMUy 06 Am.6.te.Jt.dam, by
:the F1t..ee UruveMUy at Am.6.te.Jt.dam, a.nd by .i.ndu..6:tlue.o.

ACM - Computing Reviews - category: 4.12, 4.22

· 68 *) Repairing the State Switcher Skeleton of ALGOL Programs

by

L.G.L,T. Meertens and J.C. van Vliet

Summary

This paper deals with one of the concrete aspects of the syntax of ALGOL 68,
viz., the parenthesis structure. Upon encountering an error in a piece of

source text, good resynchronization of a parser is only then possible if it

is known beforehand which opening parentheses are, and which are not, accom­

panied by a matching closing parenthesis (and vice versa). This holds espe­

cially for "state switchers", i.e., parentheses enclosing sequences of sym­

bols that lack syntactical structure (the inside of comments, pragmats and

string-denotations), which have one same representation for opening and

closing parenthesis. A practical algorithm for repairing incorrect state

switcher skeletons is given. This algorithm determines an "admissible inter­

pretation" of maximum likelihood, using dynamic programming.

*) This paper is an extended version of the first part of [1]; moreover, the

revision of ALGOL 68 has been taken into account.

This paper is not for review; it is meant for publication in a journal.

Contents

O. Preface

1. Introduction

2. The treatment of state switchers

2.1. Admissible incorrect transitions

2.2. Admissible interpretations

2.3. Comparing admissible interpretations

2.4. Determination of error values

2.4.1. Error values for conment-symbols

2.4.2. Error values for quote-symbols

2.4.3. Numerical results

2,5, The algorithm

2.5.1. Application of the dynamic programming principle

2.5.2. I-admissibility

2.5,3. The Companion Theorem

2.5.4. Ensuring admissibility

2.5.5. Implementation

2.6 • .An example

References

Figures

3

5

6

7

8

12

13

14

16

16

18

21

22

25

27

30

33

34

,

0. Pr.eface

The degree in which compilers for languages like ALGOL 68 [2] are able

to recover from errors in the source text and to give meaningful error mes­

sages, i.e.,error messages which are interpretable for the human programmer,

varies considerably in practice. In the current effort undertaken at the

Mathematical Centre to construct a machine-independent ALGOL 68 compiler,

one of the design objectives is to reach a relatively high level of error-

•recoverability. This objective sprouts forth from the following two consi­

derations:

(i) It is expected that a major application area for our compiler will

be the processing of student programs, where the emphasis is on

the correction of syntactical errors. We hope to minimize the

number of runs required to make the program syntactically correct.

(ii) The generality of ALGOL 68, both on the abstract and the concrete

aspects of syntax, tends to give rise to error messages which are

difficult to interpret, unless this tendency is counteracted by a

conscious effort.

The present publication deals with one of the concrete aspects of the

syntax of ALGOL 68, viz., the parenthesis structure.

If, somewhere in a piece of source text which starts with an opening

parenthesis, an error occurs which causes the parser to be derailed, one

may hope to use the closing parenthesis to bring it back in its track.

Should, however, this closing parenthesis be missing (which might be the

cause of derailment in the first place), then this strategy is not particu­

larly helpful. It may appear that the solution would be to insert, as it

were, the matching closing parenthesis in the source text when a different

closing parenthesis is met, but then, if the source text contains an extra

closing parenthesis, we are even worse off. The conclusion is that a good.

resynchronization of the parser is only then possible if it is known before­

hand which opening parentheses are, and which are not, accompanied by a

matching closing parenthesis (and vice versa). This holds especially for

2

some parentheses, such as the quote-symbol, that have one same representa­

tion for opening and closing parenthesis. Therefore, it was decided to

tackle this point in a radical way: the design of the first scan has been

extended with the task to repair incorrect parenthesis skeletons.

1. Introduction

In the sequel, the term "parenthesis" will be used to denote a wider

class of symbols than is usual: we shall use this term to stand for the

following symbols, or rather, representations of symbols 1:

"braces": $, (,),begin, end,[,],

I , I : , ~, in, ~' out, ~,

if., then, elif, else, ti:.., for, from,

EJL, to, while, do, od, and

"state switchers": ", ¢, #,~'comment,[?£_, pragmat.

The role played by the state switchers is so special as to warrant a

separate treatment. Not only does one same symbol serve both as "opener"

and as "closer" of certain constructions (as is also the case with the

formatter-symbol), but, which is more important, the "item sequences" which

are embraced by these symbols (the inside of corrments, prag,:nats and string­

denotations)lack syntactical structure and may contain braces in an arbi­

trary fashion that otherwise would have to occur "nested11
• Therefore, it is

a hopeless task to treat the braces before it is known which parts of the

program are, and which are not, item sequences, and, consequently, which

braces have to be disregarded and which have to be taken into account.

Moreover, such an item sequence may not contain another similar construc­

tion. (E.g., a corrment may not contain another corrment, although it may,

possibly, contain the sequence of corrment-items #a#, whereas fonnat­

texts may contain other format-texts.)

Since it is, at this stage, neither possible nor necessary to make a
distinction between, e.g., an open-symbol and a brief-begin-symbol or
a style-i-sub-symbol, we shall use the paranotion open-symbol to stand
for any of those. Moreover, where no confusion can arise, "symbol" will
be used to indicate both symbols {in the sense of the ALGOL 68 report),
and representations of symbols, indiscriminately.

3

4

Errors in the state switcher skeleton are "repaired" by marking a num­

ber of state switchers such that, by doubling these state switchers, a cor­

rect skeleton is obtained. E.g., the state switcher skeleton

might be repaired by marking it thus:

A principle to which we have strictly adhered is: no correct program

will be "repaired". In fact, an even stronger version of this principle,

to be formulated later on, applies to our repairing algorithm.

5

2. The treatment of state switchers

.An ALGOL 68 program can be thought of as consisting of a sequence of

(possibly empty) segments, separated by state switchers. To each of these

segments a "state" may be assigned, which is either "N" (neutral) or EC,

where C stands for one of the state switchers. For a correct program, it is

possible to assign these states in such a way that the first and the last

segment are N and that at each state switcher C we have a correct transi­

tion, i.e., the state switches to EC if it was N and to N if it was Ee,
and otherwise the state is not affected. To give an example:

segments: #
,,

~
ao

~

states N N N

(Note that the segments which have EC as state are precisely those seg­

ments which are, or are contained in, an item sequence.) Obviously, if

such an assignment of states is not possible, the program is incorrect.

However, the transition of the state at some state switcher may be (local­

ly) correct.

It is necessary to refine our definition of a correct transition

slightly further. Although state switchers have one same representation for

openers and closers, it is possible in some cases to derive from the context

that a given state switcher, which then must be a quote-symbol, cannot be an

opener or a closer. E.g. , in the context of d = "monday "; it can be shown

that the first quote-symbol must be an opener and the second one a closer.

Now, for a state switcher which has been shown to be a non-opener, the

transition from the state N to the state E,, is not considered correct.

A similar restriction applies to state switchers which have been shown to

be non-closers.

The task of the algorithm for correcting the state-switcher skeleton

can be formulated approximately as follows: assign states to each of the

segments in such a way that the number of incorrect transitions is kept, in

6

some sense, as low as possible. Before we are able to give a more accurate

formulation, it is necessary to indicate what incorrect transitions and

what interpretations, i.e., assignments of states to all of the segments,

are admissible.

2.1. Admissible incorrect transitions

The elementary repairing actions consist of the marking of one state

switcher, indicating that it should be disregarded in order to obtain a

correct state-switcher skeleton. This implies that the state should not

switch at such a state switcher. Therefore, for an incorrect transition to

be admissible in such cases, it is necessary that the state does not change.

Now, consider the following example with an obviously incorrect skeleton:

,,
" "

There exist three ways to repair this skeleton, each giving an interpreta-

tion with one incorrect transition.

" " "* ;

N r.,, N N

" "* " ;

N r.,, r.,, N

"* fl fl

N N r.,, N

Not each of these interpretations is equally desirable, for the fol­

lowing reason: The effect of assigning the state N to a segment is that it

will be subject to syntactical analysis. If the corresp~nding segment in

the "intended program" was N, this is obviously all right, but if it was

7

(part of) an item sequence, this will probably give rise to some extrane­

ous error messages. On the other hand, if a state other than N is assigned

to a segment which in the intended program was N, the syntactical analysis

of this segment will be omitted, with the possible result that some syntac­

tical errors which otherwise would have been detected, will pass unnoticed,

thus necessitating an extra run to detect these errors. In our philosophy

this latter eventuality is considered far more undesirable than to require

the programmer to ignore some error messages. Consequently, both the first

and the last interpretation in our example are preferable to the middle

one, where the states of both the left and the right segment in the incor­

rect transition are not N, and which, therefore, will not be admitted.

Another type of incorrect, but admissible, transition is found in those

transitions which require a non-opener or a non-closer to be interpreted as

an opener or closer, respectively.

The following criterion is obtained: an incorrect transition is admis­

sible if and only if either

(i) the state of both segments concerned is N, or

(ii) the state switcher is a non-opener and the state switches from

N to E,,, or

(iii) the state switcher is a non-closer and the state switches from E
11

to N.

2.2. Admissible interpretations

An interpretation I is "locally admissible" if:

(i) all transitions of I are either correct, or admissible incorrect

transitions, and

(ii) I assigns the state N to the first and the last segment.

An interpretation I is admissible if:

(i) it is locally admissible, and

(ii) there does not exist another locally admissible interpretation J,

all of whose transitions are either correct, or are the same as the

corresponding transition of I.

8

E.g., although the following interpretation is locally admissible,

~~~~ ' 

N N N N 

it is not admissible, because of the existence of the following two 

(admissible) interpretations: 

, and 

N N N 

N N N 

Clearly, there always exists at least one admissible interpretation. This 

can be shown, using the following argument: 

(i) There exists at least one locally admissible interpretation, viz., 

the one which assigns the state N to each segment. 

(ii) Some locally admissible interpretation not being admissible implies 

the existence of another locally admissible interpretation with a 

smaller number of incorrect transitions. Since this number can, 

obviously, not be less than zero,·by reduatio ad absurdum our claim 

follows. 

If the state-switcher skeleton was correct to begin with, there is only one 

admissible interpretation, that in which each transition is correct. 

2.3. Comparing admissible interpretations 

In the general case, there will be more than one admissible interpre­

tation for a given sequence of segments. The problem is, therefore, to give 

a criterion according to which one of these interpretations can be chosen 

as, hopefully, the best, A simple criterion would be to count the number of 



incorrect transitions. We have chosen, however, for a more sophisticated 

criterion, mainly because all too often the same number of errors will be 

found for different interpretations. For example, for the state switcher 

skeleton 

~~~~ ¢ ~~~~ ¢ ~~~~ ¢ ~~~~ # ~~~~ ¢ ~~~~ # ~~~~ ¢ ~~~~ 

there are five admissible interpretations, each of which contains two errors:

(1) * * ¢ ¢ ¢ # ¢ # ¢ ~~~~ ,

N E¢ N Ef E¢ N N N

(2) * * ¢ ¢ ¢ # ¢ # ¢ ~~~~ '

N E¢ N N E# E # N N

(3) * :it

¢ ¢ ¢ # ¢ # ¢ ~~~~ '

N N E¢ N N E¢ E¢ N

(4) * * ¢ ¢ ¢ # ¢ # ¢ ~~~~ ,

N E? N N N E¢ E¢ N

(5) :it * ¢ ¢ ¢ # ¢ # ¢
N N E? N E # E# N N

Rather than having all incorrect transitions weigh equally heavily, differ­

ent "error values" have been assigned to the various types of incorrect

transitions, based upon estimates of the likelihood of these transitions.

Moreover, to some extent the symbols of which the segments consist are taken

into account and compared with the state assigned to the segment, the idea

9

10

being that, e.g., begin is more likely to occur in a neutral segment, than
2 in other segments.

In order to obtain estimates of the likelihood, the following, admit­

tedly oversimplified, model has been used: There exists a universe of in­

tended programs, having certain statistical properties (such as the mean

length of a neutral segment). A source text is obtained in two steps.

First, an intended program is drawn from the universe. Second, this program

is subjected to a perturbation process, consisting of omission of marks or

of replacement by other marks, at random. 3 Given the a priori distribution

of intended programs and the statistical properties of the perturbation

process, Bayesian analysis [3] makes it possible, _for a given source text, to

derive the a posteriori probability that the source text was obtained from

a certain intended program.

To illustrate the line of thought, a simple example, taken from natural

language, may be useful. Take the following sentence:

s 1: A ZoZd mehaZ was awarmed.

Obviously, this is meaningless. We may assume something meaningful was in­

tended, but that printing errors have garbled the message. What now was the

intended message? There are several possible candidates. Suppose that,

after having eliminated some of them, such as:

A bold metal was alarmed. ,

2 The introduction of this type of argument might open the door for the
clearly undesirable situation where a correct but very unlikely piece
of program is "repaired" into a more likely one. This is precluded, how­
ever, by our definition of "admissible interpretation". The obvious ad­
vantage is the possibility to resynchronize when, for example, one co:mrrent­
symbol has disappeared in a piece of program richly supplied with corrnnents.

3 "Marks" are the atomic elements from which representations are built
up, for example, the characters of a given character set.
The case of insertion of marks is not considered here, since the re­
sulting symptoms can be ascribed to the (much more likely) replacement.
E.g., the intended program corresponding to the source text (1¢) could
have been (1), but could equally well have been (10), (11), etc.
Likewise, the case of interchanging marks is not taken into consideration.
Such errOTs rarely influence the parenthesis skeleton; also, they give
rise to symptoms, if any, that can be explained in terms of replacement.

on the ground of their being ungrammatical or meaningless, we are left with

two candidates:

s2 : A ao Zd meat was Wa:Pmed. , and

s3: A goZd medal was C{);)arded.

Now suppose that we know the a priori probability, presumably based on the

context, that the intended message was s2 or, alternatively, s3. We shall

denote these by P(s2) and P(s3), respectively. If we also know the proba­

bilities P(s1ls2) and P(s1ls3) that, due to printing errors, s2 and s3, res­

pectively, will be turned into s1, we can compute the a posteriori probabil­

ities that s2 or s3 were intended, given the fact that we have received s1,

by the formulae:

P(s1 s2) P(s2) = __,,_..,.___,..--~--..,.........,..,_......,.._,...
P(s1 s2) P(s2) + P(s1 s3) P(s3 , and

p s ls 1 _ P(s1 s3) P(s3)
(3) - P(s1 s2) P(s2 + P(s1 s3 P s3

P(s1js2) and P(s1 js3) can be determined by taking the product of the con­

ditional probabilities for the individual printing errors (which are con­

sidered independent). So

P(s1ls2) = P(a ➔ Z) P(+ h) P(+ a), and

P(s1 js3) = P(g ➔ Z) P(d ➔ h) P(d ➔ m).

The latter probabilities may be estimated by collecting statistical data on

printing errors. Observe that, typically, the formulae for P(s2ls1) and

P(s3ls1) have their denominators in common, so that, in order to compare

them, it suffices to compare their numerators. ,,

11

12

In our situation, we have no a priori ground to consider one intended

program more likely than another one. '!:'herefo_r.e, we will assume a uniform

distribution of the intended progra.ms
4

• For the above example, this would

imply P(s2) = P(s3). Again, as our goal is comparison only, we obtain a

simplification: it now suffices to compare the product of the conditional

probabilities for the individual phenomena observed. Rather than multi­

plying probabilities and comparing products, we shall add error values,

i.e., (scaled) logarithms of the probabilities and then compare the sum.

2.4. Determination of error values

As the model on which our algorithm is based is a gross simplification,

no other significance should be attached to the error values obtained than

that of a heuristic guide, obtained by making educated guesses.

In the subsequent sections, the following will be used to stand for

(estimates of) probabilities and other para.meters:

N = size of the mark set,

L = size of the letter set,

<P_ = probability that a given mark 1S omitted in the perturbation

process,

<Po = probability that a given mark 1S replaced by some other

mark,

SE= the range over which the ~ength of segments with state E

may vary in practice, where E stands for some state switcher,

This is not wholly true, as we want to consider a program containing, e.g.,
the string ''begin" less likely than the program with that string replaced
by ''begin"• By means of a trick, however, we can save the uniform distri­
bution. This can be described in terms of our model by restricting the
universe of intended programs to programs that do not contain such strings,
and than having these strings appear in the perturbation process.

2.4.1. Error values for cormnent-s:ymbols

Where in the sequel C is used, this should be understood as standing

for any of the state switchers~,#,~, comment, E£_ or pragmat.

Consider two segments with states E1 and L
2

, separated by C:

In order that an interpretation which assigns r 1 and L
2

to these segments

be admissible, it is necessary that at C we have either a correct or an

admissible incorrect transition. So we must have one of the following

(classes of) transitions:

(i) E1 = N, E2 = LC.

(ii) L1 = LC' E2 = N.

(iii) L1 = E2 = E, where E i EC and E i N.

(iv) E1 = L2 = N.

13

It now remains to be seen how these cases can arise by subjecting an intended

program to the perturbation process. In transitions (i), (ii), and (iii) the in­

tended program was not affected, as the transition is correct there. Al-

though the probability of this phenomenon is slightly less than 1, as there

is a small, but finite, probability that some perturbation will occur, we

shall equate this probability to 1. In case (iv), an incorrect transition is

involved, and there is a multitude of possibly intended programs that could

result in this phenomenon. In order to restrict the analysis to local effects,

we shall assume that this incorrect transition is the only one in the in­

terpretation of the source text. The given source text could have resulted

from the replacement of some mark in the intended program by C, but in the

light of the much likelier possibility that the corresponding C was omitted

or mistyped, we shall disregard this possibility. So the class of possibly

intended programs comprises those programs that can be transformed into the

source text by deleting one occurrence of C, or replacing it by some other

14

mark (more specifically, by the corresponding mark in the source text).
$0 . .

For each of these, we have: P = $_ + N. The number of possibly intended

programs can be estimated roughly to be 2SC' one for each of the about SC

places to the left and to the right of C in the source text where the deleted

or replaced C could have stood.

To summarize:

P(i) = P(ii) = P(iii) = 1;
$0

P(iv) = 2Sc($_ + N).
The corresponding error values are obtained by taking the logarithm to

some base of these probabilities.

2.4.2. Error values for guote-s;flAbols

Previously, we have already mentioned the fact that it is sometimes

possible to see whether a given quote-symbol is an opener or a closer. As we

expect that in most cases string-denotations will consist of letters mainly,

only the information provided by these symbols is taken into account. String­

denotations may only be followed and/or preceded by letters when they occur

within format-texts. Note that at this stage it is not yet known

whether a given string-denotation does or does not occur in a format-

text: this can only be checked when the brace skeleton is known, which

in its turn has to await the treatment of the state switcher skeleton.

The set of letters which may occur in format-texts consists of: a, b, c,

d, e, f, g, i, k, Z, n, p, q, r, s, t, x,. y and z. In order to make the

probability of recognizing quote-symbols as openers or closers as great as

possible, we do not only consider one symbol, but a maximal sequence of

letters, i.e., a sequence of letters preceded and followed by a non-letter.

Let 8 stand for the set of letters mentioned above, and o for the set of re­

maining letters, h, j, m, o, u, v and w. Then a 8-sequence is a, possibly

empty, maximal sequence of letters, each letter belonging to 8. A o~sequence

is a maximal sequence of letters, at least one of which is an element of

o. (So a sequence of letters is either al-sequence or a a-sequence,) To give

an example: asnaiZspace is a 8-sequence, whereas andromeda is not. (If a

space-symbol has some representation, e.g.,~, it should of course also be

included in o.) In the sequel, 6 will stand for a a-sequence, and A for a

8-sequence. In this way, we can distinguish four cases, depending on the

context of the quote-symbol: z;; fl 6, 6 fl z;;, z;; fl z;; and 6 fl 6.

The case A " 6

As in section 2.4.1., we must have one of the four (classes of)

transitions (i) to (iv) (where C stands for fl).

15

Transition (i) and (iii) involve no errors, so P(i) = P(iii) = 1.

Transition (ii) can arise by mutilation of an intended program where the
- fl T T context of the quote-symbol is 6 ti, The ti at the right must be an empty

sequence, except within format-texts, but for the sake of simplicity

we shall disregard the latter case. The change of 6 to 6 can occur by:

- replacing the mark after the quote-symbol by the letter from o
<l>o

(P = (N-L) N); .
omitting the mark after the quote-symbol (P = (N-L) qi_).

Taken together, P(ii) = (N-L)(qi_ + qi:).

Transition (iv) can be treated as in 2. 4. 1. ~ but now there are only

about Sfl places where the original quote-symbol could have stood since,

clearly, the quote-symbol at hand is an opener.

To summarize: P(i) = P{iii) = 1;

The case 6 fl b

qi·
P(ii) = (N-1) (qi_-,.:);

qio
P(iv) = Sfl (qi_ + N).

This case is the mirror image of the case A fl [',..

We obtain: P(ii) = P(iii) = 1;

cf>o
P(i) = (N-L) (qi_+ N);

qio
, P(iv) = Sfl (qi_ + N).

16

The case 'l "75.

This case is similar to the case treated in section 2.4.1., if we take

C to stand for "

We have:

The case b. " b.

P(i)

P(iv)

= P(ii) = P(iii) = 1;

<P 0
= 2S,, (<P- + N) .

This is only correct if transition (iii) is involved. For transition (ii),

the analysis of the case 7i "b. applies, as does that of the case /:J. "25: for

transition (i). In the remaining case of transition (iv), the intended pro­

gram must have been one where instead of the quote-symbol at hand some other
1 symbol stood (P = N<t> 0 N = cp 0).

Summarizing: P(i) = P(ii) =

P(iii) = 1;

2.4.3. Numerical results

Guesstimates for the various parameters in this section were obtained

independently from some colleagues and used to compute the various error

values (where the negative logarithm to some base was taken). The results

are listed in table 1. The error value fqr bold symbols in a non-neutral

segment was, after some experimentation, chosen equal to 5.

2.5. The algorithm

The task of the algorithm can be stated thus: find among all admissible

interpretations an optimal one, i.e., one with minimal total error value

for the segments and transitions involved. Obviously, it is impractical to

generate all admissible interpretations one by one, as their number will

grow exponentially with the number of state switchers in the source text,

By applying the principle of dynamic programming [4], however, it is pos­

sible to derive a practical algorithm.

Estimates:

Error values

C

comment

ti " !>.

!>. ,, l

6 " 6

!>. " !>.

,,

transition

i,ii,iii

J..V

i,iii

ii

J..V

J..

ii,iii

J..V

......
1.,1.1.,1.1.1.

J..V

i,ii

iii

J..V

i: N-+ LC

n: LC -+ N

Table 1. Error values.

64 64 h4

27 27 27

• 0001 .00163 .0003

.0002 .00163 .0020

20 50 100

20 17 10

0 0 0

11. 3 6.8 7.0

0 0 0

11.5 10.5 11.4

12.7 13.4 14.8

11.5 10.5 11. 4

0 0 0

12.7 13.4 14.8

·-- -------

0 0 0

11.3 10.8 13.0

11.5 10.5 11. 4

0 0 0

17.6 24.2 16.2

iii: LC'-+ LC' (C' :j: LC or N)

iv: N-+N

17

average

0

8

0

11

14

11

0

14

0

12

--~

11

~ 19
--- ------ ·-

18

2.5.1. Application of the dynamic programming principle

Let the segments of a source text be numbered from Oto n. Consider

two locally admissible interpretations I and I' that assign the same state

L. to the i-th segment. So we have
1

I
(0)

T1
(1) (i-1) (i)

Ti+1
(i+1) (n-1) T (n) and ~~~~ T. ~~~~ 1 ~~~~ n

LO L1 E.1 L. L. 1 L L
1- 1 1+ n-1 n

(0) I (1) (i-1) I (i) I (i+1) (_n_-_ 1_) T ' (n) I I: T1 ~~~~ T. Ti+1 ~~~~ ,
I I I 1 I I n I

LO L1 L. 1 L Li+1 L n-1
L

1- 1 n

where the T's stand for the transitions involved and the numbers of the seg-

ments are given between parentheses. Then, clearly, both of the following

interpretations are also locally admissible:

(0) (1) (i-1) (i) I (i+1) (_n_-:_~) T, (n)
T1 ••• ~~~~ Ti 'l'.i+1 and

I I n I

LO L1 E.1 L. Li+1 L
n-1

L 1- 1 n

(0) I (1) (i-1) I (i) (i+1) (n-1) T (n)
T1 ~~~~ Ti Ti+1

I I I
~~~~ n 

LO L1 L. 1 L. Li+1 L 
n-1 

L 
1- 1 n 

In words: it is admissible to cross over at the i-th segment. 

To give an example: from the two locally admissible interpretations 

(0) ( 1 ) (2) * ( 3) * (4) (5) ( 6) (7) 
¢ ¢ ¢ # ¢ # ¢ ~~~~ , 

N L¢ N N N L¢ L¢ N 

and 
(0) * ( 1 ) (2) ( 3) ( 4) (5) (6) * (7) 

¢ ¢ ¢ # ¢ # ¢ ~~~~ , 
N N L¢ N L# L# N N 

which both assign N to the third segment, we can derive yet two other local-

ly admissible interpretations: 



19 

(0) ( 1 ) (2) * (3) (4) (5) (6) * (7) 
¢ f ¢ # ¢ # ¢ ~~~~ , 

N r.¢ N N r.# r.# N N 

and 
(0) * ( 1 ) (2) ( 3) * (4) (5) (6) (7) 

¢" f ¢ # ¢ # ¢ ~~~~ . 
N N r.¢ N N r.¢ r.f N 

This l.S illustrated perhaps more vividly in the diagram of fig. 1 *) . , in 

which the interpretations are given by the paths from left to right. (This 

way of looking at interpretations has proved a powerful heuristic guide.) 

Now consider two partial interpretations 

P.: (0) 
T1 

( 1 ) (i-1) (i) and ~~~~ Ti l. 
r.o r. 1 r.. 1 r. . 

l.- l. 

I (0) I ( 1 ) ( i-1) I (i) P.: T1 ~~~~ T. ~~~~ , 
l. I I ' 

l. 

r.o r. 1 r. . 1 r.. 
l.- l. 

having their last states in common. Suppose that C is an optimal continua­

tion of P. resulting in a locally admissible interpretation, and, similarly, 
I ]. I I 

that C is an optimal continuation of P .• As stated above, C must be a lo-
i I 

cally admissible continuation of P. also, and C of P., so we have: 
]. I ]. 

error value (P.C) ~ error value (P.C) and 
l. l. 
I I 

error value (P.C.) ~ 
l. l. 

I 

error value (P.C). 
l. 

Since the error value is obtained by adding together the error values of the 

individual transitions and segments, it is possible to apply the principle 

of dynamic programming. The above inequalities can be written thus: 
I 

error value (P.) + error value (C) ~ error value (P.) + error value (C) 
l. l. 

and 
I I I 

error value (P.) + error value (C) ~ error value (P) + error value (C). 
l. 

I 

From this, we derive: error value (C) = error value (C ). Consequently, error 
I I I 

value (P.C) < error value (P.C) <==> error value (P.) < error value (P.). 
l. l. l. l. 

*) A]J. figures are collected at the end of this paper. 



20 

In words: a partial interpretation Pi can only then beat another partial 

interpretation P~, i.e., can only then be the initial part of an interpretation 
l. I 

which is better than the best possible completion of Pi, if its error value is 
I I 

less than that of P .• As a consequence, only one out of P. and P. needs to be 
l. l. l. 

retained. This means that the set of partial interpretations of the segments 

0 to i need contain at most one element for each of the (at most) eight pas-

sible states E. for the i-th segment, to wit, an 
l. 

Initially, for i = o, this set contains only one 

the state switcher skeleton from left to right, 

optimal partial interpretation. 

1 t (o) s . e emen , ~~~~ • canning 
N 

at each state switcher the 

set of partial interpretations is replaced by a new set. The transitions in­

volved upon encountering a state switcher C can be depicted thus: 

(i-1) 

E. 1 
1.-

C 
( i) 

E. 
l. 

A decision has to be taken whether the new partial interpretation correspond­

ing to the state N is the continuation of the old partial interpretation cor­

responding to N (Pi_1(N)) or of that corresponding to EC (Pi_ 1(EC)). This can 

be decided by comparing the sum of the error values of the old partial inter­

pretation and the transition, i.e., by comparing 

error value (P. 
1

(N)) + error value (N ~ N) and 
i- C 

error value (Pi_1 (EC))+ er:i;-or value (EC + N). 

After having processed the last segment of the source text, the (then 

complete) interpretation corresponding to the state N is an optimal inter­

pretation. To give an example, which is slightly simplified in that only 

three states are involved, the state switcher skeleton which we already en­

countered in section 2.3. is displayed in fig. 2 (we assume that in segments 

2, 3, 6 and 7 bold symbols occur), together with the correct or admissible 

incorrect transitions (drawn as arrows between states) and the corresponding 

error values. Where two transitions come together, one of them is drawn asan arrow 

with a white head, indicating that the partial interpretation corresponding to 



21 

the other transition (drawn with a black head) is more profitable. The par­

tial error values are displayed in boxes. By following the black-headed ar­

rows back from the final state N, the optimal interpretation is obtained. 

There is, however, one proviso. Although the interpretation obtained is 

certainly optimal among the locally admissible interpretations, there is no 

guarantee at all that, as a whole, it is admissible. Therefore, it is neces­

sary to slightly amend the process sketched above. 

2.5.2. E-admissibility 

We define the notion "E-admissible" for partial interpretations in the 

following way: 

Let P. be a partial interpretation, assigning states to the segments Oto i. 
i 

P. is E-admissible (for short: P. E Adm.(E)) if i i i 
(i) all transitions of P. are either correct, or admissible incorrect 

i 

transitions, 

(ii) P. assigns the state 
i 

(iii) there does not exist 

N to segment O and E to segment i, and 

another partial interpretation Q. satisfying 
i 

(i) and (ii), all of whose transitions are either correct, or are 

the same as the corresponding transition of P .• (We say that such 
i 

a Q. "rules out" P .• ) 
i i 

We can observe some facts, expressed in the form of a 

Lemma: 

( a) For a ( total) interpretation I, the notions "admissible" and "N-admis­

sible11 coincide. Conseq_uently, Adm (N) :j: 0. 
n 

(b1) Adm0(N) = {·\o/·}· 
(b2) For E :j: N, Admo(E) = ¢. 

(c) (i) If Q. 1 ( E') T. E Adm. ( E), then Q. 
1 

( E') E Adm. 
1 

( E') . 
i- i E i i- i-

( d) If P. is ruled out from E-admissibility by some Q. (not necessarily 
i i 

E-admissible itself), then there exists a E-admissible R. ruling out P .• 
i i 



22 

(e) If Pi_ 1(E') 

of (_i_-_1_) Ti 
L I 

€ Ad.m.. 
1
(E') and T. is a correct transition 1.n the context 

1.- 1. 

Proof of (c): 

(i) 

E 

From any R. 
1 

ruling out Q. 1(E') we can construct R. 1T. 
1.- 1.- 1.- 1. 

out Q. 1 ( E ' ) T . 1.- 1. 

Proof of ( d) : 

(i) 

E 

(i) 

E 
, ruling 

First, observe that "to rule out" is a transitive relationship. More­

over, if Q. rules out P., then the number of incorrect transitions in Q. is 1. 1. 1. 
less than in P .• Therefore, a sequence of partial interpretations P., Q., Q!, 1. 1. 1. 1. 
Q!', ••• , each ruled out by the next, must have a finite length (in fact, can-

1. 
not exceed the number of incorrect transitions in P. by more than one). Con-1. 
sider such a sequence of maximal length P., Q., Q!, Q!' , ••• , Q~n) (that is, 

no Q~n+1) exists ruling out Q~n)). Then, ~~n)
1

is ~uch
1

an R. as w~ were look-
1. 1. 1. 1. 

ing for. 

Proof of (e): 

Suppose P. 
1 

( E') T. ~~i~)~ I. Ad.m.. (E), so 
i- 1. E 1. 

that some Q. 
1

(E") T~ _(_i_)_ rules 
i- 1. E 

out P. 
1
(E') T. -~i~)~ • Now, assume T. :f: T!. From the definition of "ruling 

i- 1. E 1. i 

out" we derive the correctness of T ! • So we have T. :j: T ! , T. is correct and 1. 1. 1. 1. 
T! is correct, simultaneously. However, for two different transitions to 1. 
yield one and the same new state E, it is necessary that one of them be a 

transition N + N and therefore incorrect, which yields a contradiction. 

Evidently, the assumption was incorrect: T. = T!. But then, Q. 
1

(E") alone 
1. 1. 1.-

already rules out Pi_ 1(E'), contradicting Pi_
1
(E') € Ad.m.i_

1
(E'). 

2.5.3, The Companion Theorem 

Given a partial interpretation P.(E) and some state E*, we can infor-1. 
mally define the "companion interpretation" of -P.(E) corresponding to i:* 1. 



thus: follow, in a diagram in which P.(E) is given by a path and in which 
·i 

the correct transitions are indicated, the correct transitions backwards 

starting from the state E* at the i-th segment, until P.(E) is met, and 
i 

then continue along P.(r). The partial interpretation thus obtained is the 
i 

companion interpretation sought for. For example, in the diagram of fig. 3, 

in which an interpretation P6 (Ef) is indicated by a path of bold arrows, we 

can obtain its companion interpretations corresponding to N and E#, as dis­

played in the diagram of fig. 4. Such a companion interpretation need not 

always exist, since following the correct transitions backwards may either 

bring one to a point to which no correct transition leads, or the path thus 

obtained may never meet the given partial interpretation. 

Furthermore, it is possible to distinguish two types of companion in­

terpretations, in that one may or may not require that the last transition 

of the companion interpretation is a correct one. (This gives a distinction 

only if E = E* and the last transition of P.(E) is incorrect.) It is pos-
i 

sible to give a more formal definition, by means of mutual recursion: 

P.(E) if E* = E 
i 

, 

(i) if P.(E) = P. 
1
(E') T. and there exists a 

i i- i E 

r** -which then is uniquely determined- such 

that T! is 
i 

( i-1) * 
of~~~~ T. 

r** i 

a correct transition in the context 

(i) 

and, otherwise, undefined. 

It is now possible to state the 

23 



24 

Companion Theorem: 

(i) 
Let P.(E) = P. 

1
(E') T. , where P. 

1
(E') E Adm. 

1
(E'). Then 

1 1- 1 E . 1- 1-

P. (E) i Adm.(E) if and only if Com~(P.(E)) is defined and T. is an incor-1 1 ~ 1 1 
rect transition, in which case, moreover, Com_(P.{E)) rules out P.(E). 

2.; 1 1 

Proof: 

Let P.(E) be written as 
1 

(i-1) (i) 
~~~~ T. , where E. 

1
= E' and E. = E. 1 1- 1 E.

1
E.

1- 1

(if) Suppose ComE(Pi(E)) is defined and Ti is an incorrect transition.

ComE(Pi(E)) may be written as

(0) T*
1

(1)

E*
1

E! = E., but T! :/- T., since, by the definition of Com, T! 1s a correct trans-1 1 1 1 1
ition. Consequently, Ei_ 1 :/- Ei_ 1 • On the other hand, z:; = E0(=N), so there

must exist a maximal m, 0 ~ m < i, such that E* = E • From the definition m m
of Com (and com) we have that for n ~ m, T* = T , and for n > m, T* is cor-n n n
rect. So P.(E) is ruled out by Com~(P.(E)).

1 ~ 1

(only if)

E! = E. , 1 1

Let the partial interpretation ruling out P.(E) be written as
1

(0) T* (1) ~i---~) T! .< i)
E* 1 E* * 1 E! E . 1 0 1 1- 1

but E! 1 :f:. E. 1, since, otherwise, Pi_
1
(E') would be ruled out by 1- 1-

(0) T* (1) (i-1)

E* 1 E* * E.1 0 1 1-

Consequently, Ti :f:. Ti. On the other hand, z:; = E
0

(= N) , so there must exist

a maximal m, 0 ~ m < i, such that E* = E • From (e) of the Lemma we derive m m
the incorrectness of T .• On the other hand, according to the definition of

1

25

ruling out, T! must be correct. Also, form< n < i, T* must be correct,
l. n

since, otherwise, we would have T* = T and, therefore, z::* =
n n n E , contradic­n

ting the maximality of m. Therefore, the following partial interpretation

serves equally well to rule out P. (E). But this is exactly the companion
l.

2.5.4. Ensuring admissibility

We are now in a position to describe the amendment to the process:

When it has to be decided for so~e P.(I) which of two candidates
(i) li) 1

P.
1
(I') T.~-~- and P. 1(I") T!--~- is chosen, then, before their error

l.- l. t, l.- l. t,

values are compared, a test is made to see if one candidate,say C, is ruled

out by ComI(C), in which case only the other candidate is retained. We shall

show that, for each i from Oto n, the set of partial interpretations of the

segments Oto i thus obtained contains for each state I a partial interpre­

tation P.(I) E Adm.(I), provided of course that Adm.(I) # 0.
l. l. l.

It has to be shown:

(A) that, for i = O, the set of partial interpretations fulfils the above

requirement and

(B) that, for i ~ 1, it is possible to construct from such a set {Pi_1(I)}

a new set {P.(I)}, also fulfilling the requirement, such that all of
l.

its elements are continuations(i) ~ome element of {Pi_1(I)}, i.e., if

Admi(I) #¢,then Pi_ 1(I') Ti-~E~ E Admi(I) for some I' and some transition

T. •
l.

From (A) and (B), together with the Companion Theorem, the claim then

follows. For suppose that P.(I) has been constructed by the process as the
l.

one and only continuation of some P. 1(I') leading to the state I. According
l.-

to (B), some I-admissible continuation exists; so, as there is only one con-

tinuation, it must be I-admissible. If, on the other hand, P.(I) has been
l.

chosen from two candidates, then these have been tested against their com-

panion interpretation ComE , so that, if they have been retained, they are,

according to the Companion Theorem, E-admissible.

26

Proof of (A):

We have to show: if Adm
0

(t:) ¥¢,then P0(t:) E Adm0(t:). This follows

directly from the initial value of the set of partial interpretations,

{-(;)~} , combined with (b1) and (b2) of the Lemma.

Proof of (B):

Assume that, for some E, Adm.(E) ~ ¢. Adm.(E) contains at least one
1 l{i)

element, which can be written as Q(E') T.---- • From (c) of the Lemma,
1 E

we see that Q(E') E Admi_ 1(E'). Admi_ 1(E') f ¢, so th~re exists, by

hypothesis, a P.
1

(E') E Adm.
1

(E'). If P.
1

(E') T. _(_1_)_ E Adm. (E) , we
1- 1- 1- 1 1

are done. Suppose therefore P. 1(E') T. -~~~ I Adm.(E)~ By (d) of tne
1- 1 E 1

Lemma, this implies the existence of a Q(E") T ! ~ ~i_)_ E Adm. (E) , ruling out
1 E 1

P. 1(E') T. -~~~ • Now, clearly, T. and T! are two different transitions,
1- 1 E 1 1

since otherwise Q(E") alone would already rule out P.
1
(t: 1). Since

1-

Q("'") T' (i) ul t P ("'') T (i) T' t b .
£, • ~~~~ r es ou . 1 £, • ~~~~ , . mus e a correct trans1-

1 E 1- 1 E 1

tion, according to the definition of "ruling out". Now, again applying

(c) of the Lemma and the hypothesis, we infer the existence of a

P. (E") E Adm.
1

(E") • Using { e) of the Lemma, we can construct
1-1 1-

(i) p. (E II) T ! E Adm. (E) •
1-1 1 E 1

By ensuring the admissibility of the interpretation obtained, we have,

at the same time, lost the guarantee that the result will be optimal. This

loss, however, does not worry us: sub-optimality can be shown to occur only

as a consequence of having a non-vanishing error value for bold symbols

within item sequences; setting these values equal to zero restores the

guaranteed optimality. Since the error value in question has been chosen

small compared to the other error values, a sub-optimal result, if at all,

can only be so by a relatively small amount.

2.5.5, Implementation

In view of the complexity of the correctness proof for our method for

ensuring admissibility, the actual implementation of the algorithm turns

27

out surprisingly simple. In order to be able to test the candidates against

their companion interpretations, it is unnecessary to keep the ComE*(Pi(E)),

which would be cumbersome, or even information allowing their reconstruc­

tion. Instead, it suffices to remember, for each pair (E*,E'), whether

com~*(P.
1
(E')) is defined, or, for short, whether def.

1
(E*,E') holds.

~ 1- 1-

Then, P.
1
(E') T. ~~~~ € Adm.(E) if and only if T. is a correct transition

1- 1 E 1 1

or def.
1
(E*,E') does not hold, where E* is the state, if any, such that T!

1- 1

(i-1) * (i) . is correct in the context of ~~~~ T. ~~~~ • This follows immediately from
E* 1 E

the Companion Theorem and the definition of Com, Since such a E* must differ

from E', the diagonal values def. 1(E,E) are irrelevant.
1-

The algorithm makes use of a number of variables:

[1:8] int ev. This will be used to accumulate the error values for the

partial interpretations P.{E), for each of the eight states E, coded as an
1

integer from 1 to 8. A value of max .lnt is used to indicate the absence of a

partial interpretation for a state.

[1:n] struat (int st sw, booZ. mark) t;r,a:ns. This variable is used to

store the state switchers encountered at each of then transitions. The mark

field will indicate, at the completion of the algorithm, whether the corre­

sponding state switcher is marked. At an intermediate stage it will indicate

whether the partial interpretation Pi(N) is a continuation of Pi_1(EC)

(where C is the i-th state switcher), in which case the field is 6al6e, or

of P. 1{N), in which case the field is bw.e. In this way, t;r,a:ns contains suf-
1-

ficient information to follow the optimal interpretation back from the final

state neutral. This is done at the last stage of the algorithm and at such

places only where a transition N + N is chosen, the value :tftue is retained

for the ma:Pk field.

[1:8, 1:8] booZ. def. During the treatment of the i-th state switcher,

def[E*,E'] contains the value of defi_ 1(E*,E'). Initially, co~*(P0{E')) is

28

undefined for all r* f E', so that the entries of def are initially set to

6al.6e. After the P.(r) have been determined(, which is trivial, except for
i (i)

r = N), def has to be updated. Let Pi (r) be equal to Pi_ 1 (r') Ti ~~~~ • For
r

r* fr, defi(r*,r) <=> comr*(Pi(r)) is defined<=> Comr*(Pi(r)) is defined

<=> there exists a r** such that T! is a correct transition in the context of
(i-1) * (i) (P ("'))i. . ~~~~ T. ~~~~ and comr** . 1 u is defined.
r** i r* i-

Case A: There does not exist such a correct predecessor r** of r*. In this

case, def.(r*,r) is false (for all r).
i

Case B: There exists a correct predecessor r** and r** f E'. Then

defi_ 1(r**,r 1
) <=> co~**(Pi_ 1(r')) is defined, so defi(r*,r)

= def. 1(r**,r 1
). Since in many cases the correct predecessor of

i-

r** is r*, and the actual predecessor of E' is r, this can often

be achieved by swapping in def the r* column with the r** column

and the r row with the E' row.

Case C: There exists a correct predecessor r** and r** = E'. This case may

only arise at a fork in the interpretation paths, so r** = E' = N.

Since co~(Pi_ 1(N)) = Pi_ 1(N), which is always defined, defi(r*,r)

= true.

The algorithm is given in an ALGOL-68-like notation:

[J booZ rowfaZse = (faZse, faZse, faZse, faZse, faZse, faZse, faZse, faZse);

for S to B

do ev[S]:= max int; def[S,]:= rowfaZse· od;

ev[N] := O;

for i to n

do if_ bo Zd syrribo Z encountered

then for S to B

do (S = N I 'v I: ev[S] =j= max int I ev[S] +:= error vaZue boZd

~ see 2.4.3. i:)

od

f.:!:.;
int C = next state 8/JJitaher; trans[i]:= (C, false);

int ev i = error value type i,

int ev ii= error value type ii,

int ev iv= error value type iv¢ see 2.4. ¢;

interval= ev[N] + ev i;
:f:i. ev ii = o A deflr.c,NJ
then ev[N] := ev[r.C]; ev[r.C] := erval; swap (def[, r.c], def[,N]);

:f:i. ev i = 0

then swap (def[r.C, J, def[N, J)

else def[N, J := def[r.c, J; def[r.C, J := rowfalse

f.:!:.

else interval 1 = (ev[r.C] = max int I max int I ev['f.c] + ev ii),
interval 2 = ev[N] + ev iv;

f.:!:.

:f:i. erval 2 > erval 1

then ev[N]:= erval 1; ev['f.C]:= erval; swap (def[,r.c], def[,N]);
:f:i. ev i = O

then 8/JJap (def[r.c, J, def[N, J)

else def[N,]:= def[r.c,]; def[r.c,]:= rowfalse

f.:!:.
else ev[N]:= erval 2; ev[r.C]:= erval; mark Et. trans[i]:= true;

def[, 'f.C] := def[,N];

:f:i. ev i = O

then def[r.c, J := def[N, J; def[r.C,N] := true

else def['f.C,] := rowfalse.

f.:!:.;

def[N,]:= rowfalse

int S:= N;

for i from n ~ -1 to 1
do :f:i. S = N

29

30

then(, mark oF trans[i] IS:= Et •. , nF t ['])
-- ::::.L.. S Sw £L_ rans~
eZse mark E.i_ trans[i]:= false;

(S - L IS·- N) - st sw E.f_ trans[iJ .-

od

2 • 6 • An example

The program given below is example 11.12 from [2]. It was punched by a

punch card operator who was instructed not to correct any errors (so these

may be considered typical). As for the state switchers, two errors have been

made:

(i) In line 10, which ought to run: name. "Z., a quote-symbol has been re­

placed by an equals-symbol. The algorithm marked the quote-symbol on

line 11 (pointed at by an arrow). Since the first quote-symbol on

that line cannot be marked, for, otherwise, an inadmissible transi-,,
tion E,, + E,, would result, this is the best possible correction.

(ii) In line 14, which ought to start with "for~a~Zisting., a quote-symbol

has been inserted. The algorithm marked the next quote-symbol. One

might wonder why not the first quote-symbol on that line was marked.

Indeed, the error values for both interpretations are equal. In such

a case, the interpretation ending in a transition N ~ N prevails, the

rationale being that thereby in most cases the interpretation is cho­

sen which, from left to right, is the last one to have an incorrect

transition.

begin
·mode ra = ref auth, rb = ref bock;
mode ,~ = struct (string name; ra next; rb book) ,

book = ·struct{strlng title, rb next);
ra auth., first auth : = nil., last auth;
rb book; stri~ name, title; int i; file input., output;
open (input., , remote in) ; open (output ., "", remote out) ;
putf (output, ($p

"to.enter.a.new .author. '"'author'"', .a.space., .and.his.
(1 o) name. =1 - - - - + - - - - -

"to.enter.a.new .book.,. type. ""book'"', .a.space,. the.name. of. - -- - - - -rr. - - - -the..:..author,i_a.new..:..line,..:..and..:..the..:..title. 1
(14) "for" .a.listing.of. the.books .by.an.author,. type. ""list"'',

..:..a..:..space,..:..and.his.name-:-" I - - - - -
"to..:..find..:..the..:..author..:..of..:..a..:..book.,..:..tYPe..:..""find'"' ,..:..a..:..new..:..line,
.and.the.title. 111
"to .end, -:-type. ""end111111al$, 11 •. '~));

proc update -;;- void :
if ·ra (first auth) :=: nil
then auth : = first auth : = last auth : = heap auth : =
----cname., nil, ~l)
else auth := first auth;
~le ra (auth) : t: nil

do - --
-(name = name of auth I goto known I auth := next of auth)
9.£;
last auth : = next of last auth : = auth : = ~ auth : =

(name, nil., nil);
known: skip

fi;
do
try again:

getf (input, ($c("author", 11book", "list", "find"., "end".,"").,
x30al., 80al$, .i));

case i in
-if"author # (getf (input, name):· update),

book #
begin getf (input, (name, title)); update;

if rb (book of auth) :=: nil
-then book of auth := heap book := (title, nil)

else book : = book of auth;
~le rb (next ofbook) : f: nil

fi

(title = title of book I goto try again
I book:= next of book)

od· -_,
(title f title of book next of book := heap book :=

(title, nil))-

31

32

#list#
·begin getf (input, name); update;

putf (output, ($p"author:. 1130all$, name));
if rb (book : = book · of auth) : =: nil
then put (output, ("nc _J)Ublications", newline))
else on page end (output,
°(ref file .f) bool:

TPutf (f, ($p"author:. "30a41k"continued"ll$, name));
true)); -

w~re (book) : :j:: nil
do - --
-putf (output, ($180a$, title of book));

book : = next of book -
od;
on page end (output, (ref file .f) bool : false)

fl
end
#find#
begin getf (input., (loc string~ title)); auth := first auth;
· While ra (auth) :=I=: nil

do book:= book ·of auth;
-while rb (bookJ::j:: nil

do - -
-if title = title of book

then putf (output-;-($l"author:. 1130a$., name of auth));
goto try again -
else book := next of book
fl od;
auth: = next of auth

od;
put (output., (newline., "unknown", newline))

end
end # (put (output., (new page, 11 signed. off"., close));

close (input); roto stop), -
error # (put output, (newline., "mistake.,. try. again'()) ;

newline (input)) - -
esac

od--
end

33

References

[1] L.G.L.T. Meertens and J.C. van Vliet, Repainng the parenthesis skele­

ton of ALGOL 68 programs, Report IW 2/73, Mathematical Centre,

Amsterdam, February 1973,

[2] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sint­

zoff, C.H. Lindsey, L.G.L.T. Meertens and R.G. Fisker, Revised

Report on the Algorithmic Language ALGOL 68, to be published.

[3] D.V. Lindley, Introduction to Probability and Statistics, Vol. I, II,

Cambridge University Press, 1965.

[4] F.S. Hillier and G.J. Lieberman, Introduction to Operations Research,

Holden-Day, Inc., San Francisco, 1969.

34

Fig. 1. Two locally admissible interpretations

(0) (1) (2) (3) (4) (5) (6)

N N

Fig. 2. Obtaining an optimal interpretation

(0) (1) (2) (3) (4) (5) (6)
¢ f ¢ # f ~~~~ #

35

(0) (1) (2) (3) (4) (5) (6) (7)

Fig. 4. Two companion interpretations of P6(Lf).

