stichting
mathematisch
centrum MC

AFDELING INFORMATICA IW 20/74 MAY

W.P. DE ROEVER
RECURSION AND PARAMETER MECHANI|SMS:
AN AXIOMATIC APPROACH

Prepublication

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEL MATHEMATISCH CENTRUR
AWSTERDAM

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and its
applications. It is sponsored by the Netherlands Governmment through the
Netherlands Onganization forn the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free University at Amsterndam, and by indusinies.

AMS (MOS) subject classification scheme (1970): 02J10, 68A05
ACM - Computing Reviews - category: 5.2k

RECURSION AND PARAMETER MECHANISMS:
AN AXTOMATTC APPROACH *)

W.P. DE ROEVER

ABSTRACT. Minimal fixed point operators were introduced by Scott and De Bakker in
order to describe the input~output behaviour of recursive procedures. As they con-
sidered recursive procedures acting upon a monolithic state only, i.e., procedures
acting upon one variable, the problem remsined open how to describe this input-output
behaviour in the presence of an arbitrary number of components which as a parameter
may be either called-~by-value or called-by~name. More precisely, do we need differ-
ent formalisms in order to describe the input-output behaviour of these procedures
for different parameter mechanisms, or do we need different minimal Fixed point
operators within the same formalism, or do different parameter mechanisms give rise
to different transformations, each subject to the same minimal fixed point operator?
Using basepoint preserving relations over cartesian products of sets with unique
basepoints, we provide a single formalism in which the different combinations of
call-by-value and call-by-name are represented by different products of relations,
and in which only one minimal fixed point operator is needed. Moreover this mathe-
matical description is axiomatized, thus yielding a relational calculus for recur-

sive procedures with a variety of possible parameter mechanisms.

0. STRUCTURE OF THE PAPER

The reader is referred to section 1.2 for a leisurely written motivation of the
~ contents of this paper.

Chapter 1. Section 1.1 deals with the relational description of wvarious programming
concepts, and introduces as a separate concept the parémeter list each parameter of
which may be either called-by-value or called-by-name. In section 1.2 Manna and
Vuillemin's indicfment of call-by-value as rule of computation is analyzed and re-
futed by demonstrating that call-by-value is as amenable to proving properties of
programs as call-by-name.

Chapter 2. In section 2.1 we define a language for binary relations over cartesian
products of sets which has minimal fixed point operators, and in section 2.2 a cal-
culus for recursive procedures, the parameters of which are called-by-value, is
developed by axiomatizing the semantics of this language.

Chapter 3. The calculus presented in section 2.2 is applied to prove an equivalence
due to Morris,and Wright's regularization of linear procedures; then lists are ax-
iomatized,and a correctness proof for a version of the Schorr-Walte marking algo-

rithm is g{ven, first informally and then formally;

*)

To appear in Proceedings of the Second Symposium on Automata, Languages and
Programming, Saarbriicken, July 29 - August 2, 19Th, Lecture Notes in Computer
Science, Springer-Verlag, Berlin etc.

2

Chapter 4. Using basepoint preserving relations over cartesian products of sets with
unique basepoints, we demonstrate in section 4.1 how a variety of possible parameter

mechanisms can be described by using different products of relations. In section 4.2

these relations are axiomatized.

Chapter 5. In section 5.1 we formulate some conclusions and briefly discuss the

topic of providing operational, interpreter-based, semantics for the various program-—
ming concepts, the mathematical semantics of which we axiomatized in chapters 2 and

4. Finally, section 5.2 is devoted to related work.

1. PARAMETER MECHANISMS, PROJECTION FUNCTIONS, AND PRODUCTS OF RELATIONS

1.1. The relational description of programs and their properties

The present paper presents an axiomatization of the input-output behaviour of
recursive procedures, which manipulate as values neither labels nor procedures, and
the parameters of which may be either called-by-value or called-by-name. It will be
argued that, in case all parameters are called-by-name, we may confine ourselves,
without restricting the generality of our results, to procedures with procedure
bodies in which at least one parameter is invoked, describing calls of the remaining
ones by suitably chosen constant terms.

The main vehicle for this axiomatization is a language for binary relations,
which is rich enough to express the input-output behaviour of programming concepts
such as the composition of statements, the conditional, the assignment, systems of
procedures which are subject +to the restriction stated above and which call each
other recursively, and lists of parameters each of which may be either called-by-

value or called-by-name.

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and final
states. The undefined statement L: goto L is expressed by the empty relation Q over
D. The dummy statement is expressed by the Zdentity relation E over D.

1;R2 of relations R1 and R2 by R1;R2 =

= {<x,y> | Jzl<x,z> € R1 and <z,y> € Rz]}. Obviously this operation expresses the

Define the composition R

composition of statements.

In order to describe the conditional if p then S. else S,, one first has to

1

transliterate p: Let D, be p’1(true) and D,, be p_1(false), then the predicate p is

1 2
uniquely determined by the pair <p,p'> of disjoint subsets of the identity relation
defined by: <x,X> ¢ p iff x ¢ D1, and <x,x> € p' iff x ¢ D2’ cf. Karp [18]1. If Ri is
the input-output behaviour of Si’ i=1,2, the relation described by the conditional

above is p3R, U p';R

Let ﬂi:1Dn + D ie the projection function of D" on its i-th component ,
i=1,...%n, let the comverse R of a relation R be defined by R = {<x,y> | <y.x> € R},
and let R1""’Rn be arbitrary relations over D. Consider R1;1\r’1 N ... n Rn;ﬁn.‘This
relation consists exactly of thosepairs K<Y gse e sy, > such that <X,¥;> € Ri for

i=1,...,n. Thus this expression terminates in x 1ff all its components Ri terminate

3

in-x. Observe the analogy with the following: The evaluation of a list of parameters

called-by-value terminates iff the evaluation of all its parameters terminates.

In case of a state vector of n components, an assigrmment to the i-th component
of the state, x; = f(x1,...,xn), 1s expressed by m3Ty Nl ... N ﬂi—T;wi—1
N ... n ﬁn;%g’ where the input-output behaviour of f is expressed by R.

n R;v‘f:.L n
v
041354
This description satisfies Hoare's axiom for the assignment (cf. section 2.2.3). [
Note that the input-output behaviour of systems of recursive procedures has not
been expressed above; this will be taken care of by extending our language for binary
relations in chapter 2 with minimal fixed point operators, introduced by Scott and
De Bakker [29]. |
Our use of the parameter list as a separate programming concept merits some
comment. In ALGOL 60 the evaluation of the parameter list (f1(£),...,fn(£)) is part
of the execution of the procedure call f(f1(5),...,fn(€)), with & denoting the state
vector. In case all parameters are called-by-value one might introduce
[f1(£),...,fn(£)] as a separate programming concept with the following semantics:
execution of [f1(£),...,fn(€)] amounts to the independent evaluation of the values
of f1(£),...,fn(g), and results in the n-tuple consisting of these values. Provided
all state components which are accessed in the original procedure body of f are also
contained in its parameter list, the procedure call f(f1(£),...,fn(£)) can then be
replaced by an expression of the form [f1(£),...,fn(£)];P, where P has no parameters
and operates upon a state the components of which are accessed by the projection

functions = N

.

The ge;eraliZZtion of this parameter list construct to the case where parameters
may also be called-by-name dictates our restriction, that, in case all parameters
are called-by-name, we must confine ourselves to procedures with procedure bodies in
which at least one parameter is invoked. This will be explained next.

Given a terminating call of a procedure some parameters of which are called-by-
value, the remaining one being called-by-name, the very fact of termination of this
call guarantees termination of the evaluation of the ?arameter expressions which are
called-by-value; however, the termination of this call guarantees the termination of
the evaluation of a parameter expression which is called-by-name only in case its
value is actually needed inside the procedure body. Thus the evaluation of some para-
meter expressions need not terminate at all. If one then separates the parameter
list from the actual procedure call as above, one is faced with the problem that in
the output of the generalized parameter list one has to handle the undefined compo-
nents. In order to complete an operationally partially defined n-tuple to an output
which is a formally well-defined n-tuple, we introduce a formal element, the so-
called basepoint, whose function is merely to represent the operationally undefined
components.+«Thus, a basepoint represents a nonterminating computation whose value ©s
sitmply not asked for, and hence may not be transformed into any operationally well-

defined value, for otherwise the relevance of our theory to actual programming gets

lost. On the other hand, in case of a terminating procedure call of which none of
its parameters terminate, e.g., the call f£("L:goto L","L:goto L") of the integer
procedure f(x,y);f := 1, the separation of the parameter list from the call results
in an expression of the form ["L:goto L","L:goto L"1;P with P always producing an
operationally completely defined output, even if its formalized input consists of a
pair of two basepoints, signalling an operationally completely undefined value as
input; i.e., P transforms an operationally undefined value into an operationally
well-defined value, in violation of the above condition. We resolve this conflict by
describing calls of those procedures, which produce an operationally well-defined
output by not looking at any component of their input state, by suitably chosen con-
stant terms. Hence we may assume that, in case all parameters are called-by-name, a
procedure asks for the value of at least one component of its input, and that conse-
guently, in case of a terminating call, the evaluation of the corresponding parameter
expression terminates.

Next we demonstrate how certain concepts, which we need in formulating correct-

ness properties of programs, can be expressed within the relational framework.

EXAMPLE 1.2. Let the input-output behaviour of programs S, S1 and 82 be described by

R, R1 and R2, and let the (partial) predicates p and q be represented by the pairs
<p,p'> and <q,q'> of disjoint subsets of the identity relation, cf. example 1.1.
With D as above, let the universal relation U be defined by U = DxD. R, ¢ R_ and

1 2
R2 [< R1 1 and R2, and will be abbreviated by R1 = R2.
81 and Se‘are called equivalent iff R1 = R2. P c R;ﬁ and p € R3;U both express termi-

nation of S provided p is satisfied. R3R € E expresses functionality of R, i.e., R

together express equality of R

describes the graph of a functiom.

Correctness in the sense of Hoare [16], {p}S{qa}, amounts to: Zf x satisfies
predicate p and program S terminates for input x with output y, then y satisfies
predicate q, and is expressed by p;R < Riq.

The "o" operator is defined by Rep = R;p;ﬁ n E. This operator has been inves-
tigated in De Bakker & De Roever [6] in order to prove (and express) various prop-
erties of while statements, and has been independently described in Dijkstra [11]
using the term "predicate-transformer". It satisfies Riyp;R n E = {<x,y> | <x,y> € E
and <xX,y> € R;p;ﬁ} = {<x,y> | x=y and Jz[<x,2> ¢ R, <z,2> € p, and <z,y> ¢ ﬁ]} =
= {<x,x> | 3z[<x,2z> ¢ R and <z,z> ¢ pl}. Thus, if R expresses the input-output be-
haviour of procedure f, and <p,p'> expresses the boolean procedure p, p(f(x)) =
= true iff <x,x> € Rep. If we take for p the identically true predicate, represented
by <E,Q>, <x,x> € RoE iff R is defined in x, i.e., RoE expresses the domain of con—
vergence of R. Note that R;p;ﬁ nE=R;psUnE. [

1.2. Parameter mechanisms and products of relations

Although in this section mostly partial functions are used, it 1s stressed that

the formalism to-be-developed concerns a calculus of relations.

Given a set D and functions f: D+ D, gt D xD > D, and h: D x D x D + D,

(*) X,¥,2>]—'—’ <f(y)sg(X9Y)sh(X,Zax)>

certainly describes a function of Dx D x D into itself. For a relational description
 this element-wise description is not appropriate. Therefore, when dealing with func-
tions between or with binary relations over finite cartesian products of sets, one
introduces projection functions (cf. example 1.1) in order to cope with the notion of
coordinaﬁes in a purely functional (relational) way, thus suppressing any explicit
mention of variables. E.g., (*) describes the function (ng;f,(w1,n2);g,(w1,w3,w1);h).
Again, this function has been described component-wise, its third component being

(ﬂ1,ﬂ3,ﬂ1);h. This does not necessarily imply that
(%) (mysfs(mysmy)sgs(mysmasm)sh)smy = (o ,my,m,)sh

holds! E.g., consider the following: f, g and h are partial functions, and, for some
<a,b,e> € D x D x D, f(b) is undefined, but g(a,b) and h(a,c,a) are well-defined.
Therefore <f(b),g(a,b),h(a,c,a)> is undefined as one of its components is undefined.
The problem whether or not (*x) is valid turns out to depend on the particular
product of relations one wishes to describe, or, in case of the input-output behav-
Zour of procedures, on the particular parameter mechanism used.
In order to understand this, consider the values of fv(1,0) and fn(1,0), with
integer procedures fv and fn declared by
integer procedure fv(x,y); value x,y; integer x,y; fv:= if x=0 then 0 else
fv(x-1,fv(x,y))

and

integer procedure fn(x,y); integer x,y; fn:= if x=0 then 0 else fn(x~1,fn(x,y)).

Application of the computation rules of the ALGOL 60 report leads to the conclusion
that the value of £v(1,0) is undefined and the value of fn(1,0) is well-defined and
equal to O. ‘ ’

In order to describe this difference in terms of different products of relations
and projection functions, we first discuss two possible products of relations: the
call-by-value product, which resembles the call-by-value concept from the viewpoint
of convergence, and the call-by-name product, which incorporates certain properties

of the call-by-name concept.

Call-by—value product: Let £, and T, be partial functions from D to D, then the

call-by-value product of f1 and f2 is defined by [f1,f2] = 7T

example 1.1, This product satisfies the following properties:

37, N f2;%2, ef.

1701

(1) [f1,f2](x) = <Y, iff f1(x) and_fe(x) are both defined in x,and f1(x) =¥qs

may be undefined in x, although f1(x) is well-defined.

, as f2(x), whence <f1(x),f2(x)>, and therefore w1([f1,f2](x)),

6

(3) In order to transform.[f1,f2];w we therefore need an expression for the domain

1

of convergence of £, Using the "o" operator introduced in example 1.2, this ex~-
pression is supplied for by f,°E, as f, °F = {<x,x> | 3y[y=f2(x)]}, as follows

oE ;T g

2
from example 1.2. Thus we obtain [f1,f2];1r1 = f 1;
Call~by-name product: Let £, and £, be given as above. For the call-by-name product

[f1><f2] of £, and f, we stipulate [f1><f‘2];1ri = f., i=1,2. Hence wi([f1><f2](x)) =

= fi(x), even if f3_i(x) is undefined, i=1,2. The justification of this property

2

originates from the ALGOL 60 call-by-name parameter mechanism for which the require-
ment of replacing the formal parameters by the corresponding actual parameters within
the text of the procedure body prior to its execution leads to a situation in which
evaluation of a particular actual parameter takes place independent of the conver-

. gence of the other actual parameters. Possible models for this product are given in

chapter 4. [

1 and f2 in the more technical terms

of our relational formalism, we discuss the opinion of Manna and Vuillemin [20] con-

Before expressing the difference between f

cerning call-by-value and call-by-name. We quote: "In discussing recursive programs,
the key problem is: What Zs the partial function T defined by a recursive program P?
There are two Vviewpoints:

(a) Fixpoint approach: Let it be the unique least fixpoint fo
(b) Computational approach: Let it be the computed function f, for some given compu-

tation rule € (such as call-by-name or call~by~value).

We now come to an interesting point: all the theory for proving properties of recur-
sive programs is actually based on the assumption that the function defined by a re-

cursive program is exactly the least fixpoint f_. That is, the fixpoint approach is

P
adopted. Unfortunately, almost all programming languages are using an implementation
of recursion (such as call-by-value) which does not necessarily lead to the least

M. .. existing computer systems should be modified, and

fimpointﬁ Hence they conclude:
language designers and implementors should look for computation rules which always
lead to the least fixpoint. Call-by-name, for example, is such a computation rule...".

At this point the reader is forced to conclude, that, according to Manna and
Vuillemin, call-by-value should be discarded (as a computation rule).

Before arguing, that, quite to the contrary, call-by-value is as suitable for
proofs as call-by-name ig, (the latter being accepted by Manna c.s.), we present
their argumentation for indictment of the former rule of computation.

Consider again the recursive procedure f defined by
(%%%) f(x,y) <« if x=0 then 0 else f(x-1,f(x,y)).

They observe that evaluation of f(x,y), (1) using call-by-name, results in computa-
tion of Ax,y. if x>0 then O else 1, (2) using call-by-value, results in computation

of Ax,y. if x=0 then O else 1, provided y is defined (where L is a formal element

I

expressing operational undefinedness). Then they argue that the minimal fixed point

of the transformation
T = AX . AX,¥ . if x=0 then 0 else X(x-1,X(x,y))

according to the rules of the A-calculus, where, e.g. (Au,v.u)<x,y> = x holds, in-
dependent of the value of y being defined or not, can be computed, for k a positive

nagtural number, by a sequence of approximations of the form
Tk(Q) = M,y. if x=0 then O else ... if x=k-1 then O else L.

Hence the minimal fixed point i§1 Ti(ﬂ) of T equals Ax,y. if x20 then O else L. The
observation that this minimal fixed point coincides with the computation of (%)
using call-by-name, but is clearly different from the computation of (*#x) using
call~by~-value, then leads them to denounce call~-by-value as a computation rule.

We shall demonstrate that computation of the minimal fized point of the trans—
formation implied by (*xx) gives the call-by-value solution, when adopting the call-
by-value product, while computation of the minimal fixed point of this transformation
using the call-by-name product results in the call~by-name solution. Hence we come to
the conclusion that the minimal fixed point of a transformation depends on the par-—
ticular relational product used, i.e., on the axioms and rules of the formal system
one applies in order to compute this minimal fized point.

We are now in a position to comment upon Manna and Vuillemin's point of view: as
it happens they work with a formal system in which minimal fixed points coincide with
recursive solutions computed with call-by-name as rule of computation. Quife correct-
ly they observe that within such a system call-by-value does not necessarily lead to
computation of the minimal fixed point. Only this observation is too narrow a basis
for discarding call-by~value as rule of computation in-general, keeping the wide

variety of formal systems in mind.

The transformation implied by (#%*), using call-by-value as parameter mechanism,

is expressed within our formalism by
T (X) = [myspsmydsm, v [w 38,X15X

where (i) P, is only defined for 0 with pO(O) = 0, (ii) § is the converse of the
successor function S, whence S(n) =n-1, ne W, n > 1.
o s
It will be demonstrated that the minimal fixed point _U1 Ti(ﬁ) of this trans-
1=

formation is equivalent with 7 3Py which is in our formalism the expression for the

1
call-by-value solution of (%*x).
(1) TV(Q) =[ﬂd;po,ﬂ2];ﬂ1 and [ﬂ1;p0,n23;n1 = T3Py m,°E, by a property of the call-
by-valde product; as totality of w, implies 7
2
Q) = . .
(2) T.V.() ."1 ,PO 1 on

(ﬂ1;§)<x,y> and (ﬂ1;p0)<x,y> must be defined, i.e., both x 2 1 and x = 0 have to

oE = E, we obtain TV(Q) PP
l<x,y> to be defined, both

2 2
u [W1;S,ﬁ1;poj;ﬂ1;po. For [w1;s,n

hold. As these requirements are contradictory, [ﬂ Ism = Q, and there-

fore T (Q) =

T;PO 1§PO
T13Pg"
. +
(3) Assumlng TV(Q) = T,3p,, one argues similarly that T$ 1(Q) = T 5Pye
(L) Hence ,§1 Ti(ﬂ) = ﬁ1;p0, which corresponds with Ax,y . if x=0 then 0 else L. [

The transformation implied by (**x), using call-by-name as parameter mechanism,
is expressed by

rn(X) = [7r1;p0><1r2];1r1 U [w1;§xX];X.

We demonstrate that the minimal fixed point i§1 Ti(ﬂ) of this transformation corre-

sponds with Ax,y .if x20 then O else L, Manna and Vuillemin's call-by-name solution

of (x%*):

(1) 1 (Q) = [ﬂ1;p0xw]'ﬂ1 and [w1;poxw]'w1 = ™, 3Pys bY definition of the call-by-
name product; clearly = ’PO corresponds with Ax,y .if x=0 then O else 1.

(2) 1 (Q) = T3P U [w1,SXﬂ1,pO] 37450 by (1); as [ﬂ1,SXW1,p0],ﬂ1 = n1,S we have

i(ﬂ) T3Py U T, S’PO’ corresponding with Ax,y . if x=0 then 0 else if x=1 then
0 else 1.
k - . LY. k+1 _ X
(3) Assume Tn(ﬂ) = T3P, U ﬂ1,S,p0 U seo U T ,...S,po As T () = T3Py U
. X (k-1)times o+
U [ﬂ1;SXTn(Q)] T (Q), it follows from the assumption that T (Q) = T, 5Py U
uTm ;é;p U ... U ,S ..S,p , which corresponds with
1 0 1222770
k times

Ax,y . if X—O then 0 else ... if x=k then 0 else ..

(L4) Hence .m1 T Q) = §

..§;po, corresponding with Ax,y .if x>0 .then 0
i= i —

1 'IT1 ;S’
(i-1)times
else 1. [

2. A CALCULUS FOR RECURSIVE PROCEDURES, THE PARAMETERS OF WHICH ARE CALLED-BY-VALUE

2.1. Language

In this section we define MU, a language for binary relations over cartesian
products of sets, which has minimal fixed point operators in order to characterize
the input-output behaviour of recursive procedures.

As the Pbinary relations considered are subsets of the cartesian product of one

domain Dr or cartesian product of domains Dn1 X oo an , and another domain De or
n

1
NiXewsXN 48,%...%0
cartesian product of domains D61 X...xDg , terms on’e or o 1 n’>"1 n
n

denoting these relations are typed. Types will not be mentioned or discussed unless

explicitly needed, and are formally defined in De Roever [9 1.
Elementary terms are the individual relation constants An’e,A?’e,..., boolean
relation constants pn’n,p'n’n,...,qn’n,q‘n’n,..., logical relation constants Q">

N1 Xe s e XNy 574
Ee’e, Un’e and n11] n? 1, i=1,...,n, for the empty, identity and universal rela-

O x18 .y .

tions, and the projection functions, and the relation variables X’ 1

Compound terms are constructed by means of the operators ";" (relational or

Peirce product), "u" (union), "n" (intersection), "~" (converse and "—" (complemen-
tation) and the minimal fixed point operators "ui",.which bind for i=1,...,n, n dif-
. . n,,0 n_,0_ . n n
ferent relation variables X, !’ 1,...,X n’’n in n-tuples of terms ¢ 1 1,...,0 n’'n
1 n 1 n ?

provided none of these variables occurs in any complemented subterm.

Terms of MU are elementary or compound terms. The well-formed formulae of MU are

called assertions, and are of the form & | V¥, where ® and ¥ are sets of inclusions
between terms of the form O?’e = cg’e, the so~called atomic formulae.

Free occurrences of the variables X1""’Xn in a term ¢ are occurrences not con-

tained in any subterm ui...X...[...] of o, and are indicated by writing 0(X1,...,Xn);
Substitution of terms T for the free occurrences of Xi in o(X1,...,Xn), i=1,...,0,
is denoted by o(t,,...,T) or olr./X.1._ ; proper care has to be taken not to

1 n 1°717i=1,...,0

substitute terms containing free occurrences of X1""’Xn within uiX "'Xn[51""’cnl

1
a care reflected in the formal definition of substitution contained in De Roever [9 1.

The (mathematical) semantics m of MU is defined by:

(1) providing arbitrary (type-restricted) interpretations for the individual relation

n’n 'nan
3

constants and relation variables, interpreting pairs <p P > of boolean re-

lation constants as pairs <m(p"*"),m(p'"*")> of disjoint subsets of the identity

relation m(E"°"), and interpreting the logical relation constants Qn’e, ol
NqXe s e XNy, 9Ny

Un’e, and m, ns"1
i

and
i=1,...,n, as the empty relation ¢ (c anDe), the iden-

tity relation over Dn, the universal relation Dn x D, and the projection func-

0
tions with graph {<<x_ ,...,x >,x.>] x. €D, , J®1,...,n}, i=1,...,n,
1 n 1 J ﬂj
", "on "
9

(2) interpreting ";", "u

noonen wn
n 9 b

as usual,
(3) interpreting u-terms uiXT"'Xn[01"'

fixed point of the functional <m(01),...,m(cn)> acting on n-tuples of relationms.

.,cn] as the i-th component of the minimal

An assertion & |- ¥ is valid provided for all m the following holds: if the inclu-
sions contained in ¢ are satisfied by m, then the inclusions contained in ¥ are
satisfied by m.

The main result concerning MU is the union theorem,

...Xn[o1,...,cn]) = U m(og), i=1,...,n,

m(u.X
(uy 5%

1

J defined by 09 = Q, oq+1
i i i
the (unique) minimal fixed point of a continuous transformation of n-tuples of rela-

with ¢ = oi(ci,...,ci), i=1,...,n. This theorem states that

tions can be obtained by a sequence of finite approximations, and is proved using
the monotonicity, continuity and substitutivity properties, cf. De Roever [9 1. One
of its implications is the validity of Scott'’s induction rule, formulated in section
2.2.L4,

2.2. A, caldulus for recursive‘procedures, the parameters of which are called-by-value

De Bakker and De Roever describe in [6] a calculus for recursive procedures

10

which operate upon an undivided (monolithic) state vector. This calculus is general-
ized in the preseﬁt section to recursive procedures, operating upon a state vector,
the components of which can be accessed by using projection functions; conversely,
the relational framework enables us to compose a new state vector from operated-upon
components R1(E),...,Rn(£) by the call-by-value product R1;7T1 A ee. N Rn;%ﬁ’ which
is, as argued in section 1.2, a prerequisite for the relational description of the
call-by-value parameter mechanism. We axiomatize projection functions (in section
2.2.3) by introducing the following axiom schemes:

N,Xe e oeXN_ 4N, X.oeXN
> : 1 n’ " n
C.: - n3% n...nm ;¥ =E

C,: - X3¥, 0 coo n X 3Y = (X1;f

4
Y n...an,ﬂn),(w1,Y

n...nnn;Yn).

1 1

We want to point out that chapter 4 is devoted to a generalization of the results of
this chapter to basepoint preserving relations over cartesian products of sets with
unique basepoints, a generalization which is motivated by our wish to obtain a formal
description of call-by-value and certain aspects of call-by-name.

The axiomatization of MU proceeds in four successive stages:
1. In section 2.2.1 we develop the axiomstization of typed binary relations.
2. This axiomatization is extended in section 2.2.2 to boolean constants.
3. The axiomatization of projection functions in section 2.2.3 then results in the

axiomatization of binary relations over cartesian products.

4, The additional axiomatization of u-terms in section 2.2.4 completes the axiomati-

zation of MU.
2.2.1. Axiomatization of typed binary relations

Consider the following sublanguage of MU, called MUO:
The elementary terms of MUO are restricted to the individual relation constants,
relation variables and logical constants ﬂn’g, E"" ana Un,E of MU, i.e., boolean
constants and projection functions are excluded.
The compound terms of MUO are those terms of MU which are constructed using these
basic terms and the ";", "u", "a", "Y" and "—" operators, i.e., the "ui" operators
are excluded.
The assertions of MUO are those assertions of MU whose atomic formulae are inclusions
between terms of MUO. 0
MUO is axiomatized by the following axlioms and rules:
1. The typed versions of the axioms and rules of boolean algebra.

2. The typed version of Tarski's axioms for binary relations (cf. [301):
V)
. ""l . !—(Xn’ ;YG,C);ZC,Q = Xn’e;(Ye’C;Zg’t“)
T2 : l_inyg = Xn:&

T3 . l_ (Xn’e;Ye9£)V - §6,€;)‘(’n,6

11
Th . {_XH,E;EE,E - XH,E
T:; : (anB;Yesg) n Zn,€ - Qnﬂg t_(Ye,E;‘Z’n,E) n Xn,e = Qesn
3. u I_Un,g c Un36;U6a£

In the sequel we omit parentheses in our formulae, based on the associgtivity of

binary operators and on the convention that ";" has priority of "n", which has in

turn priority over "u".

LEMMA 2.1.
a. Xm& c Yn,«‘; l_ in,E c §n,€,xn,£’;z€,9 c Yn.’g;zgae,zean;xn’g < Ze’n;Ynsg
b. I_ Qn’g;xg’e - Qﬂ,e’xﬂ,g;ﬂﬁ,e - Qﬂ,‘e

'En,n‘; mE _ gnst
Un’g;UE’e - Un’e

EU,E = Qg,n En’n = En’n, ﬁan = Ug’n

£

o
T T T T

Xn,i;(YE,B U zg’e) = Xn’g;YE’e U 'Xn’g;zg’e,(xg’e U Y«Ese);ze,n =

g F &%y A AR ;n,E,(xn,ﬁ 0 Y8 = X108, g;n,E’j-‘En,E - §¢

Except for the proof of part 4, which is obtained using U and a law of boolean alge-
bra, the proofs for the typed case are similar to the proofs for the untyped case as
contained in Tarski [30].

Lemma 2.1.a expresses monotonicity of "" and ";". Together with the obvious

n,on n.n
u n

monotonicity of and , this will be used in lemma 2.9 to establish monotonicity

of syntactically continuous terms in general.

Remarks. 1. Henceforward the laws of boolean algebra are used without explicit refer-
ence.

2. Type indications are omitted provided no confusion arises.
The proofs of the following two lemmas can be found in De Bakker and De Roever
[61.

LEMA 2.2. } X3Y n 2 = X3(X;Z n ¥) n Z.

A number of useful properties of relations and functions are collected in lemma
2.3 below. Remember that XoE has been defined as X;i n E (cf. example 1.2). By con~—

vention the "o" operator has a higher priority then the ";" operator.

LEMMA 2.3.

&

a. GXcE F X3(Y n 2) = X3Y n X32

b. XcEF x=X

12

c. F X = XoE ;X, X = X; XoE, XoE = X;X n E, X3U = XeE ;U
d. X e Y, 57 ¢ E | XeE; Y =X

n n)
e. b n X.3Y, = X oB; ...5 X °F; (ig1 Xi;Yi); Y

N] °E; ...3 T oE.

1
2.2.2. Axiomatization of boolean relation constants

M7y wmose inter-

Partial predicates are represented within MU by pairs <pn’n,p
pretation is restricted to pairs of disjoint subsets of the identity relation cor-

responding to inverse images of true and false. MUO is extended to MU1 by adding the

boolean relation constants of MU to the basic terms of MUO. MU1 is axiomatized by

adding the following two axioms to those of MUO:

P. o I_ pnsn c Eﬂ,n, P,ﬂ,n < Eﬂ,n

P . I_ pn:n n p.n,n c Qn,ﬂ.

The axiomatization of MU1 leads to a theory of conditionals (cf. ex. 1.1), as
demonstrated by corollary 2.1, c¢f. McCarthy [22]. Again, proofs can be found in
De Bakker and De Roever [6] or De Roever [9].

LEMMA 2.k, L- P=Dp, P3a=pn q.

COROLLARY 2.1. Using the notation (p + X,Y) = p3X U 1;Y, we have |- (p+(p~+X,Y),2) =
= (p—)‘X’.Z)’(P_)'X’(P_)YSZ)) = (p+X9Z):(P"> (Q‘*X1,X2),(q+Y1,Y2)) =
= (@~ (p > X;,Y,),(p > X,,Y,)). .

COROLLARY 2.2. |} p3;X n Y = p3(X n Y).

nyn

In example 1.2 we defined the operator by Xep = X;p;i n E. Its basic prop-
erties are collected in lemmas 2.5, 3.2, 3.3, and theorem 3.2. This operator is cru-
cial to a theory of programs since it enables g description of the interaction be-
tween programs and predicates. This is demonstrated by the axiomatization both of
ordered data structures such as ordered linear lists (cf. De Roever [9 1), and of the
call-by-value parameter mechanism contained in the following section. For other exam-

ples of its use we refer to De Bakker and De Roever [6].
LEMMA 2.5.

a. F (X;¥)op = Xo(Yop)

b. | (X u Y)oep

Xop U Yop
c. F (X nY)op= X;p3Y n E
d. | Xp c Xop X

e, X3X

N

E | X3p = Xep 3X

a;X |- Xep < q.

In

f. Xsp

13
Observe that from parts d and f of this lemma, we obtain Xep = N{g ! X5p < q3X}.
2.2.3. Axiomatization of binary relations over cartesian products

The language MU2 for binary relations over cartesian products is obtained from
.. ; NqXe oo XNy M3 .
MU, by adding, for i=1,...,n, projection function symbols ﬂi1 221 to the basic

terms of MU,, for all types concerned. MU2 is axiomatized by adding the following two

13
axiom schemes to the axioms and rules of MU1:

C, = - w30 ... nm 3 = E

c,: | X,5Y

g0 e n X Y (X1;1r1 0ee an;arn);(wr1;Y1 oo nwn;Yn),

"

. : NiXe e e XNy, sN1Xe s o« XN
where m, is of type <n1X...xnn,ni>, E stands for E | n> 1 D and Xi and Yi
are of typés'<6,ni> and <ni,£>, respectively, i=1,...,n.

As remarked in example 1.1, an assignment V of the form x,:= f(x1,...,xn) is

described by a term T of the form n1;v1 N .. N ﬂi_1;ﬂi_1 n R;'rri N “i+1;“i+1 N esa
eee N ﬂn;ﬁ£. Hence Hoare's axiom for the assignment (cf. [163])
= {p(x1,...,xi_1,f(x1,...,xn),xi+1,...,xn)}xi = f(x1,...,xn){p(x1,...,xn)} corre-

sponds with the assertion | Tep ;T ¢ T;p, as by example 1.2‘{q1} v {q2} is expressed
by g, 3R < Riq, and p(x1,...,xi_1,f(x1,...,xn),xi+1,...,xn) =

= true iff <<x ..,xn>,<x1,...,xn>> € Top. As functionality of f implies f;T < B by

1?7
lemma 2.11 below, this assertion follows from lemma 2.5.e. Thus leads the axiomatiza-

tion of MU2 to a theory of assignments.

LEMMA 2.6. For i=1,...,n:

XeoaX . . . XaosoX XsseX
n nn’n N.sn n n_»n nn

a. fom! gt 1-g! no
N XeeeXn_,N: N.,E N, XeeoXn ,E
b. F’ Tri1 n l;U 1 = U 1 n
NosN XX N, %XeosXN_4N, N; N,
v 17 n,_ 1 n"1_ 171
Cc. F- "i ,ﬂi = E
N.:sN Xse XN N.XeosXN_ 40 N:.sNe=
v i n 1 n’"'§ i’ e ge .
a. i 375 =U ?, for i#j, j=t1,...,n.

X, .oX XoooX

Proof. a. Let E denote E n.on n’ then En = (C1) w.37. N B =
. 5N,
= (lemma 2.3.c) ﬂiOE e cE.
n;,E€ ngaNy N Xe..Xn LE nyXeooxn LE

: i
b. 73U = (lemma 2.3.c) m;°E 35U = (part a above) U ! .

c. Consider, e.g., n=2,i=1:
n1 ’n-]

NysN PR N4e7N NN
1 3
. UL Rl B L I

E ;U

(lemma 2.1.4) E
Ny 50y NNy Ny 5Ny

n1,n1 o
ves (Cz) (E 3T, 0 U ;ﬁé);(n1;E n my3U) =

= (lemma 2.1 and part b above) ?1;n1.
d&. Consider, e.g., n=2, i=1 and j=2:

NqsN Nqs7M NqsMN '
g2 o g1 M2 " U"1’”2;E“2’”2

2

1h

U M N7 n,5M
.. = (C.) (E L 1;ﬁ nvu " 2 s, 35U 1ve nm ;E‘2 2) = (part b above)
2 1 2 1 2
T oym.. 0O

1272

Already in example 1.1 we signalled tha analogy between 1Qn X. ,ﬂl and a list of
parameters called-by-value. From this point of view properties such as
(_6 Xi;\'ﬁi)oEn1>< "M aNpXe s XNy = i§1 XiOE i -the computation of such a list ter-
mi;;tes iff the computations of its individual members terminates- and
(. n X, ,w)s sy = (. ﬂ X;°E i nl),Xj -the request for the value of a parameter con-
talned in such a 1lst amounts to computation of the individual value of this para-
meter plus termination of the computation of the other parameters- are 1ntu1t1vely
evident. These and similar properties follow from the following lemms and its corol-

lary.

LEMMA 2.7. For k,1 € n,

(a4

b X, oE 5...5 X, oBE 3(, _ n_ X. 3Y)3 Y oF 3...5 Y oE =
t= 1,... 1
~ l . -
= (Jn1 Xl‘;ﬂi.),(t21 L), with m, of type <n x...xn ,n.>, and X; and Y, of
J 7 d t ot . . J t
types <e,ni > and <ng ,£>, respectively, i=1,...,0, j=1,...,k, t=1,...,1.
J t
Proof. The case of n=3, k=1=2, i1=1, i2=2, 51'2, s =3 is representative. Hence we
prove X, oF ;X oF ;X,3Y,3 Y,°F 3 Y30E = (X1,'rr1 n X,) (n n g) By lemma 2.6,
S S X, 37 O:n3 3Y ' ,g Y ;Y
X1,w1 n 2,ﬂ2 = 1,w1 n Xg’“e n U ,n3 and W2 5 n ﬂ3 Y3 = 1,U nﬂ2, 5 nn3 32
W~ e . . - . Tl1a€ . 63”3.
whence (X1,1r1 n Xg,ﬂe),(wz,Y2 n s Y3) (Cg) X,5U nX,3Y¥, nU ,Y3
6 0 bed
.o. = (lemma 2.3.¢) X oE ;U £ X,5¥, 0 U 1N ¥ om
0 6 =
veo = (lemma 2.3.e) X °E ;X,°F ;(X1°E ;U € X,3Y, n U 3 Y oE) 2oE; Y30E.
0 0
By corollary 2.2, X1°E ;U 3 n X2;Y2 nvu ’E; Y3oE = X1oE X2 Y2, Y3oE, whence the
result follows by lemma 2.4. [
OROLLARY 2 - (A X.3%.)e(.N 7.) =X X ‘th X t
m H o : H = o : 2 o
C 3. iy 53T M T3P 3T, 1°Pq 3ee5 X oD s wt 5 of type

<e:ni> and pi Of type <ﬂi,ni>-
n1x...xn 56

n v n . i — n . N . n 9,9
Proof. (Q Xia'ﬂ'i) (2 “iapiaﬂi) = (Cg) <ig1 Xi,Pi,Tfi)aU n E
n,,0
.. = (lemma 2.6.1) (n X, 5p; ,n)3 m, 11’ n 5200 = o
i= 0,0
= (lemma 2.7) (X1,p1)°E P (X 5D,)°B 3X,3p,3U MY g8

LI}

... = {corollary 2.2 and lemma 2.5.a) X Py e Xnopn' 0

One of the consequences of lemma 2.7 is

n-1) n-1
I‘ (n X) (191 WiaYi - i21 Xi’Yi’

15

with s Xi and Yi of types <n1x...xnn,ni>, <6,ni> and <ni,£>, respectively. Assume
Ny =N, = ..o =0 for simplicity, then, apart from the intended interpretation of

™, as special subset of D x D,

1

"axiom 02 for n-1, in which TiseeesT are interpreted as subsets of D" x D

n-1
"follows from" axiom C2 for n, n > 2",

This line of thought may be pursued as follows: Change the definition of type in that
only compounds (n1Xn2) are considered, and introduce projection function symbols

“gnxi),n and “énxg),g only. For n > 2 define (n1 ...Xn_) as (...((n1xn2)xn3)x xn_)

n,]X...Xnn,ni ((n1xn2)xn3) (n1><n2) ﬂ(n1><n2)m1

and 7. as, e.g., for n=3 and i=1,2,3, 7
((n,xn)xn_),(n,xn,) (n,xn,),n ({nyxn,)xng) 4m !
. « ,
™ 12 3712 HUN 12772 and Ty e 3 3. Then it is a simple exercise

to deduce C1 and C2 for n=3 from axioms C1 and C2 for n=2. This indicates that our
original approach may be conceived of as a "sugared" version of the more fundamental
set-up suggested above. These considerations are related to the work of Hotz on X-

categories (ef. Hotz [17]1). O

non

Arbitrary applications of the operator can be restricted to projection func-

tions, as demonstrated below; this result will be used in section 3.2 to prove

Wright's result on the regularization of linear procedures.

LEMA 2.8. | X = ¥,5(8 o w3X3H,) 5w

Proof. We.prove X = 51;(E nom 'X;ﬁé);ﬂg. The result then follows by lemma 2.3.b.

-]3
L ,ﬂ (C) 73X ng n ﬂ1;ﬁ1 nw = (lemmas 2.6.c and 2.3.a)

.\/
23Tp
w1;(X;n2 n w1) n my3¥,.

Hence, ﬁ1;(w1;X;5 = (lemma 2.7) (X;#2 n ﬁ1);ﬂ = (lemma 2.7 again) X. [

3o 2

2.2.4, Axiomatization of the minimal fized point operators

MU is obtained from MU2 by introducing the "ui" operators, and is axiomatized

by adding Scott's induction rule I and axiom scheme M, which are both formulated

below, to the axioms and rules of MU2:

n QE n ,E
I: e e ® xS n
n, »& n, »&
k*>7k,. k’’k
o,¥ |- vlo /Xk]k=1,...,n
k’E
@ |- ¥lwX,...X Lo ,...,0 1/, yeensn?

with @ only containing occurrences of X which are bound (i.e., not free) and ¥ only
containing occurrences of X which are not contained in any complemented subterm,

i=1,...,n.

16

T,0..,00 = qu1

M- {oj[uiX1...Xn[c1,...,on]/Xi]i= ...Xh[c1,...,0 1%. .

n"J=l,...,0

The basic results about minimal fixed point operators are collected in lemma
2.9, proved in De Bakker and De Roever [61, and lemma 2.10, which asserts that si-
multaneous wminimalization by U, -terms is equivalent to successive singular minimal-
ization by p-terms,and is proved in Hitchcock and Park [15]. The modularity property

(corollary 2.4), which is new, is proved in De Roever [9 1.
LEMMA 2.9.

a. If T1(X1,...,Xn,Y),...,Tn(X1,...,Xn,Y) are monotonie in X
A eBys.eunh S B - Ti(A1""’An+1) c Ti(B1""’Bn+1)’ i=1,...,n, then
Yoy, = {ujx1...xn[r1(x1,...,Xn,Y1L..Tn(x1,...,xn,Y1)] c

c qu .;.Xh[T1(X1,...,Xn,Y2)...Tn(X1,...,Xn,Yg)]}j=1’.

1""’Xn and Y, Z.e.

1 I o)

b. (Monotonicity). If T(X1,...,Xn) i8 syntactically continuous in X1""’Xn then T 18

monotonic in XyseeesX s Z.e., X, ¢© YoseennX ¥ - o(x ..,Xn) c T(Y1,...,Y).

12°

1 n n
c. (leed‘p01nt property). |- {Tj[”ix1"‘xn[T1""’Tn]/xi]i=1,---an =
= qu1...Xn[T_I,.-.,Tn]}j=1’...’n.
d. (Minimal fixed point property, Park [25]).
brs(Yyee ¥) e b b fugX X Drser T Yode

LEMMA 2.10. (Tteration, Scott and De Bakker [291).

- WX X (XX
X. X.X [0, ,...
n 1

...XHEGT,...,GJ_T,G.,G.

J J+1""’Un] =

= qu[cj[uiX1... 5o1%541 ’Uj—1’0j+1""’cn]/xi]ieIL with

I={1,...,5=1,§%1,...,0}.

COROLLARY 2.4. (Modularity). For i=1,...,n,
- uiX1.L,Xn[c1(r11(X1,...,Xn),...,T1m(X1,...,Xn)),...,
on(THT(X1,...,Xn),...,Tnm(X1,...,Xn))] =

= Gi(“i1x11"'Xnm[T11(01(X11""’X)"'"Gn(Xn1""’Xnm))""’T QP B R TR I8

Tm nm im

Modularity has some interesting applications, e.g., it reduces the two-page
proof of the "tree-traversal" result of De Bakker and De Roever [6] to a two-line
proof, as demonstrated below. Let pxA be defined by pxA = uX[p;A;X u p'l. This
construct describes the while statement while p do A. We quote: "Suppose one wishes
to perform a certain action A in all nodes of all trees of a forest (in the sense of
Knuth [19], pp.305-307). Let, for x any node, s(x) be interpreted as "has x a son?",
and b(x) as "has x a brother?". Let S(x) be: "Visit the first son of x", B(x) be:
"Visit the first brother of x", and F(x): "Visit the father of x". The problem posed
to us can then be formulated as: Let T = uX[A;{s » 8;X;F,E);(b > B3;X,E)], and

1
T, = uX{A;(s > 8;X; b*(B;X) ;F,E)]. Show that T, = T b*(B;Te)".

17
Proof. Apply first corollary 2.4, taking n=1, m=2, 01(X,Y) = X3Y, 111(X) =

= Aj;(s + 83X;F,E), and T12(X) = (b » B;X,E), and apply then lemma 2.10. []

The last lemma of this chapter states some sufficient conditions for provability

of & 630 ¢ E, i.e. funetionality of o.

LEMMA 2.11. (Functionality). The assertion ¢ |- &30 < E is provable if one of the

following assertions is provable:

n
a. If o = _U1 o; then ¢ L— {ciOE ;cj = ojoE ,oi}

i= 1<i<j<n i’ti = TYi=1,...,n"
b. If o = 01;51 N .o n cn;%n then o |- {5'i;oi c E}i=1,...,n'
c. If o = 7,30, then ¢ |- 51;01 c E, 52;02 c E.
d. If o = 9, p o, then @ L— 51;01 c Eor d F— 52;02 < Eor ¢ L— 51;02 c E or
] L— 6’2;01 < E.
e. If o = “iX1'°'Xn[01""’Un] then @,{ii;Xi c E}i=1,...,n - {5;;01 [= E}i=1,...,n’

provided X; does not occur free in @, i=1,...,n.

In the following chapter we shall use the following notations:

“ L e
1. [01,...,0n] for o 3Ty N e N O 3T

1 n’n

2. [c1|...lcn] for Ty303, 0 eee 0TS0 ST .

3. APPLICATIONS
3.1. An example due to Morris
In [2L4] Morris proves equivalence of f(x,y) and g(x,y) given by:

f(x,y) <= if p(x) then ¥y else h(f(k(x),y)),
g(x,y) « if p(x) then y else g(k(x),h(y)).

We present a proof in our framework. The following equivalence is stated without

proof:

LEMMA 3.1. | [A1|...lAi_1IAiIAiHI...]An];wi = [A1|...]Ai_1IElAiHI...]An];wi;Ai.

THEOREM 3.1. (Morris) Let F = uX[[p|Elsm, v [p'|EJ;[K[E];X;H] and
G = wllp|Elsm, v [p'|EL[K|HI;Y]. Then |- F = G, [E[H]G = G3H.

Proof. Let ® be empty, ¥(X,Y) = {X = Y, [E|HI;Y = Y;H},
o(X) = [p|Elsm, v [p'|EL;IK[ED;X5H and ©(Y) = [p|Elsm, u [p'[EJ;[K[H];Y. Hence, we

must prove

+ v(uxlo(x)1, u¥l<(¥)1) (3.1.1)

We intend to use Scott's induction rule. Unfortunately, this rule (as formulated in

18

section 2.2.4) does not apply to (3.1.1), as, in case of a simultaneous induction

argument, it only yields results about compoments of one simultaneous u-term. How-

ever, the observation that |- u1XY[U(X),T(Y)] = wX[o(X)] and | ngY[o(X),T(Y)] =

= uY[1(Y)] are straightforward applications of iteration (lemma 2.10), gives us the

equivalent assertion |- W(u1XY[U(X),T(Y)], UZXYEO(X),T(Y)]) to which Scott's induc-

tion rule does apply. Thus, we have to prove:

1. ¥(2,2). Obvious.

2. X =Y, [B|JH];Y = Y30 | o(X) = ©(¥), [E|H];7(Y) = =(Y¥);H.

a. o(X) = ©(Y) : [p]E];ﬂ2 u [p'|E1;[K|E1:X3H = (hyp.) [p]E];n2 u [p'|ELIK|ET;Y3H =
= (hyp.) [p|Elsm, u [p'|EL;IK|ED;LE[H];Y = (C,) [p|Elsm, u [p'|ED;0K[HI;Y.

b. [E[HI;T(Y) = ©(Y);H : [ElH];([plEj;n2 v [p'|ED;LK|HI;Y) =

[E|81;0p|ETsm, v [BlE);0p' [EX;IK|HD;Y = (C,) [p|HIsm, U [p';K|H;H]Y =

(lemma 3.1) [p]E];wQ;H u [p';k|H1;[E|HD;Y =

(hyp.) [PlE];ﬂg;H u [p'|E1;IK[HI;YH = ([p]E];w2 v [p'|EI;[K|HI;Y)H. O

3.2. Wright's regularization of linear procedures

In [33] Wright obtains the following results:

a. The class of recursively enumerable subsets of N2 1s the smallest class of sets

with the successor relation S as member and closed under the operations "v", ";"

and "uX[Q v P3X;R1", where Q, P and R are subsets of N2 which are contained in
this class.
b. In the proof of part a the main auxiliary result can be generalized to a setting

in which N is replaced by any abstract domain V. This generalizatian is:
I uXCQ v P3X3R] = ¥ 5uY(E v [P|R1;YTe(E n T 3Q3E,)M, - (3.2.1)

In the present calculus (3.2.1) can be proved axiomatically. The following two
auxiliary lemmas are needed:
LEMMA 3.2. |- [A|Blep = E n w1;A;%1;p;n2;§;Fé.

Proof. Straightforward from lemma 2.5.c. [

LEMMA 3.3. |- uX[A3;X u Blop = uX[AoX u Bepl.

Proof. Amounts to a straightforward épplication of Scott's induction rule. [J
Now Wright's result (3.2.1) follows by application of lemma 3.3 from

THEOREM 3.2, (Wright) |- uX[Q u P3;X3R] = %1;UXE(E n n1;Q;F2) u [P|RI;XIeE 3T,

L ' R

Proof. c: Follows by the minimal fixed point property from: F1; ReE T, =
= (fpp) ?1;{(E n w1;Q;52) u [P|RI;R}eE 3T, = (lemma 2.5.a)

19

~

51;(E n ﬂ1;Q;%2);n2 U'ﬁ1;[PIﬁ]°(R°E) 3T, = (lemma 2.8) Q v Ts [P!§]°(R°E) ST, =

2
(lemma 3.2) QlJﬁ1;(Erwn1;P;§1; RoE R;Fé);ng = (lemma 2.8) Q u P;%1; RoR 3T, 3R,

03

2: One derives %1;((E n ﬂ1;Q;ﬁ2) U [PI§]0(E n w1;L;Fg)) 37, = L by similar tech-

2
niques, whence by lemmas 2.8 and 3.2 (E n ﬂ1;Q;E2) u [P|RI(E n ﬂ1;L;F2)

In

c En w1;L;¥2, and by the minimal fixed point property ReE ¢ E n ﬂ1;L;%2

In

w1;L;§2.
By lemma 2.6.c one therefore obtains F1; ReoE 3T, € L. 0O

The reader might notice that %1;uX[(n1;Q;%2 nE)u [P]R];XJOE 3Ty does not
correspond with any program scheme. Using work of Luckham and Garland [12] this has
been remedied in Guessarian [13] by replacing this term by an equivalent one which

does correspond with a program scheme.
3.3. Axtomatization of lists

In general, programs manipulate data of a special structure, such as natural
numbers, li;ts and trees. Consequently, proofs about the input-output relationships
of these program often make use of the specific structural properties of these data.
In order to axiomatize such proofs, we have to axiomatize relations over special
domains. This is effected by adding certain axioms, characterizing the structural
properties of these data as properties of certain relation comstants, to the general
system of chapter 2.

Symbolstrings have been axiomatized in De Bakker [5], finite domains in
Hitchcock [14], and the natural numbers, linear lists and ordered linear lists in
De Roever [9]. Lists are axiomatized below; in the following section this axiomati-
zation is applied to derive both an informal and a formal correctness proof for the

Schorr-Waite marking algorithm.

For our present purpose it is sufficient to characterize a domain of Iists as a
collection of binary trees which is closed w.r.t. the followlng operations:

(1) taking a binary tree t apart by applying the car and edr functions, resulting in
its constituent subtrees car(t) and cdr(t), if possible; otherwise, t is an atom
and satisfies the predicate at, whence at(t) = t.

(2) comstructing a new binary tree from two old ones by application of the function
eons,

[— A’
where car, cdr and cons are related by car = cons;w1 and cdr = cons;T
nxNsn

o

Thus we introduce one individual constant cons and one boolean constant atn’n,

and postulate

L1 ; F’ COns;cBﬁS = gnsnXn

L2 : L— CSES;COns c En,n

Ly - l- at n cShsjcons = "

b, - - E"" ¢ uX[at u [°5553“1;X’CBESSFQ;X];conS],

Remark. L1 implies that cons is total and cons, whence cons;w, and éBHé;nz (vy

1

20

lemma 2.11), are fﬁnctions, L2 that cons is a function, L., that an atom can never by

3
taken apart,and Lh that any list is either an atom or can be first taken apart and

then fitted together again.

LEMMA 3.kh. Let at' demote cOnsjcons. Then lists satisfy the following properties:

|— E = pyX[at u [car;X,cdr;X]l;cons], at u at' = E, cons;at' = cons, consjat = Q.

Proof. E = uXlat u [car;X,cdr;X]jcons]: <. Axiom Lh'
o5, Use T with ¢ empty, taking {X ¢ E} for ¥, and (at u [car;X,cdr;X];cons) for o.

at U at' = E: E = pX[at v [car;X,cdr;X];cons] = (fpp) at u [car,cdrl;cons =
= (lemma 2.3.a axioms C1,L1) at U consicons = at U at'.
consjat' = cons: consjat' = cons;cons;cons = (L1) cons.

cons;at = Q: consjat = cons;conscE jat = (L2) cons;(cSns;cons n at) = (L3) Q. 0O
3.4, Correctness proofs for the Schorr-Waite marking algorithm
3.4.1. Informal proof

The correctness will be proved of a certain version of the Schorr-Waite marking
algorithm (cf. Knuth [19], pp.L417-418) for binary trees with one bitfield in each
non-atomic node, the so-called marked binary trees.

Assume that the bitfields of a given marked binary tree have been initialized
to zero. The Schorr-Waite algorithm traverses this tree in pre-order and in such a
way, that, once a subtree has been traversed, the bitfields of this subtree all are
set to one, whence upon termination of the algorithm all nodes are marked by ones.
The interesting property of the algorithm is that it does not use an external auxil-
iary stack, but codes during this process of traversal the stack of its return links
into the tree itself. This is realized by
(1) temporarily destroying the branching structure of the tree in order to store the

return links, and
(2) using the bitfields both in order to distinguish which field of a node refers to
a tree with é return link and for the actual process of marking.

In informal notation our version of this algorithm looks as follows:

SCHORR-WAITE(l) <« LEFT(1,NIL), b
LEFT(1,r) < if at(l) v nil(l) then BACK(L,r)
else LEFT(car(l),cons(ecdr(llr,1)),
BACK(1,7) « if nil(r) then <1,NIL> else if (3.4.1)
bitfield(r)=1 then LEFT(car(r),cons(cdr(r),1,0))
else BACK(cons(edr(r),1,1),car(r)),]

with NIL denoting the empty marked binary tree, and bitfield(r) isolating the bit-
field of r.

This program may be understood as follows:

21

(1) LEFT is called with 1 still to be traversed and marked,
(2) BACK is called with 1 traversed and marked already,
(3) if r is not NIL or no atom, bitfield(r)

1 implies that car(r) must still be
traversed,

(4) if v is not NIL or no atom, bitfield(r)

0 implies that cdr{(r) has been tra-
versed and marked already.

Consider both NIL and any atom to be marked. Then it follows from (3.4.1) by a simple

induction argument on the number of nodes of 1, that the four assertions above are

invariants of LEFT and BACK. Hence, provided 1 is unmarked and LEFT(1,NIL) terminates,

LEFT(1,NIL) results in the marking of 1, i.e., in this way we convince ourselves of

the partial correctness of SCHORR-WAITE only.

An informal proof of total correctness of SCHORR-WAITE by a different argument,
using Burstall's structural indﬁction (ef. [2]) is given below. In the next section
this proof will be formalized.

Let M(1) and Notmarked(l) be declared by

M(1) « if at(1l) v nil(1l) then 1 else cons(M(car(l)),M(edr(1)),1), coo (3.k4.2)

Notmarked(1l) « if at(l) v nil(1l) then true else bitfield(1)=0 A
A Notmarked(car(1)) A Notmarked(cdr(1)). .o (3.4.3)

Then total correctness of SCHORR-WAITE follows as special case from the validity of
(Notmarked(l) > LEFT(1,») = BACK(M(1),»)) cee {3.4.4)

by taking r = NIL, since BACK(M(1),NIL) = <M(1),NIL> follows from (3.4.1).

Proof of (3.4.4). (1) If at(1) v nil(1) holds, (3.k.4) follows directly from (3.Lk.1).
(2) Let 1 = cons(l1,12,0) and let Notmarked(l) = true. ve. {3.h.5)
Assume by hypothesis, (Notmarked(li)) LEFT(li,r) = BACK(M(li),r)), i=1,2,
LEFT(cons(11,12,O),r) = LEFT(11,cons(12,r,1)).
From (3.4.5) and (3.%.3) we have Notmarked(li) = true, i=1,2, hence
LEFT(11,cons(12,r,1)) = (hypothesis) BACK(M(11Lcons(12,r,1)) =
LEFT(lz,cons(r,M(l1),O)) = (?ypothesis) BACK(M(IZLconS(r,M(11),O)) =
BACK(cons(M(l1),M(lz),1),r) = BACK(M(cons(l1,12,0)),r). 0

3.4.2. Formal proof

Prior to formalizing.the informal correctness proof of SCHORR-WAITE of the pre-
vious section, the axiomatization of lists (or binary trees) of section 3.3 must be
extended in order to incorporate (1) the presence of a bitfield in each non-atomic
node, and (2) the empty list.

First we formalize 2-elements sets by introducing two boolean constants 0 and 1,

and postulating

22

TWo,, :- -

U
Tw03 : o

TWO1 confines any interpretation of both 0 and 1 to at most one pair of (identical)

In

U;0:U,
1 =8,

o <
in

o

- U150
1= Q.

c

elements, TW02 expresses that any interpretation of both 0 and 1 must contain a#
least one pair of elements, and TW03 speaks for itself.

NN ,MNseN
,0"", 1m0

Satisfaction of these axioms establishes <Dn as a structure for a 2-ele~

ment set. This leads us to introduce 2 as type reserved for 2-element sets.

Next marked binary trees with an empty element are axiomatized by introducing

X . .
cons" nx2,1 as relation constant, and nil"*" and at™" as boolean constants, and
postulating
ML, : |- cons;cons = E
ML, : |- cohsjcons ¢ E
ML, - - cohsscons n (at u nil) = @
MLh': - at n nil =@
ML5 F— Ec uX[TML(X)],

where TML(X) is defined by TML(X) = (at v nil v [car;X,cdr;X,bitfield];cons), and

car, cdr and bitfield are defined by car = Eaﬁs;w1, cdr==55ﬁs;ﬂ pitfield = cdns;w

2’
Satisfaction of these axioms establishes <Dn,cons,at,ni1> as a structure of marked

3

binary trees with an empty element, of type ML.

LEMMA 3.5. Let a' = cons;cons. Then marked binary trees satisfy
|— E = uX[TML(X)], at unil v at' = E, cons;at' = cons, consjat = Q, consjnil = Q.

Proof. Similar to the proof of lemma 3.4, [

Finally, we give a formal definition of LEFT, BACK, M and Notmarked, which were
informally declared in the previous section.
Let TLEFT(X’Y) = (ﬂ1°(at U nil) ;Y u [w1;car,[w1;cdr,ﬂ2,
(X,Y) = (w2°nil U (ﬁg;bitfield)ol ;[wz;car,[ﬂg;cdr,n1,U;Qj;cons];X U

U3;1]scons]1;X), and

T
BACK
U (ﬁggbitfield)og_; E[wzgcdr,w1,U;l];cons,wzgcar];Y, where U is of type (ML xML,2).

Then LEFT, BACK, M and N(otmarked) are defined by

LEFT = u1XY[TLEFT(X,Y),TBACK(X,Y)],

BACK = u2XY[TLEFT(X,Y),TBACK(X,Y)], ,

M = uXfat v nil u [car;X,cdr;X,UML’—;l];cons], and
N = yXfat U nil v caroeX jcdroX ;bitfieldo0]. [

THEOREM 3.3. |- m oN ;LEFT = m oN ;[;M,m,J3BACK.

1 1
Proof. By lemma 3.5, oM uX[TML(X)]. Hence we prove
b [ﬂ1;uX[TML(X)],W2];ﬂ1°N sLEFT = [ﬂ1;uX[TML(Xﬂ,ﬂ2];W1°N ;[wi;M,ﬂQJ;BACK

using Scott's induction rule. It is sufficient to prove the induction step:

23

[ﬂ1;X,ﬂ2];ﬂ1°N sLEFT = [ﬂ1;X,ﬂ2];ﬁ1°N ;[n1;M,w2];BACK L
[ﬂ1;TML(X),W2];ﬂ1°N yLEFT = [ﬂ1;TML(X),ﬂ2];W1°N ;[ﬂ1;M,v2];BACK.

Part a

[w1;(at u nil),nz];ﬂ1°N 3LEFT = (lemma 2.4) v10N ;[ﬂ1;(at U nil),wz];LEFT = (fpp)

. oN ;[n1;(at U nil),ﬂz];BACK (fpp and 02) . oN ;[w1;(attJnil),wEJ;fw1;M,v2];BACK
]

2 (lemma 2.h),[w1;(at U nil),wzj;n1°N ;[w1;M,n2];BACK.

(1
o

Part b. Assume the hypothesis.

[w1;[car;X,cdr;X,bitfield];cons,ﬁe];ﬂ1oN 3LEFT = (lemmas 2.3.a and 2.6.c)
[[ﬂ1;car;X,n1;cdr;X,w1;bitfield];cons,nQJ;nTON 3LEFT = (lemma 2.5.e, since function-

ality of [ﬂ1;car;X,ﬂ1;cdr;X,ﬂ bitfieldljcons follows in standard fashion from

13

lemma 2.11, by adding X;X c E to the hypotheses, and proving T, ; c E using

ML
lemma 2.11 again)
[[W1;car;X,ﬂ1;cdr;X,ﬂ bitfield];cons,ﬂ2]°(n10N) 3

E

13

[[w1;car;X,ﬂ1;cdr;X,ﬂ1;bitfield];cons,n2];LEFT = (fpp)
U;1];cons];LEFT = (part c below)

2,U;_1_];cons];LEFT = (lemmas 2.5.e and 2.7)
2,U;1J;cons];n1oN ;LEFT = (C2)

U;l];cons];[n1;X,wg];wjoN ;LEFT = (hypothesis)

E;[ﬂ1;car;X,[ﬂ1;cdr;X,wg,
E;(w1;car;X)0N ;[ﬂT;car;X,[w1;cdr;X,n
E;[ﬂ1;car;X,[n1;cdr;X,n
E;[w1;car,[w1;cdr;x,n2,
E;[n1;car,[w1;cdr;X,ﬂg,U;jj;cons];[w1;X,w2];w1°N ;[ﬂ1;M,n2];BACK = (similar to above)
2,U;1J;cons];BACK (fpp)

1;car;X;M,U;_Q];cons];LEFT {(part c below)

E;[ﬂ1;car;X;M,[ﬂ1;cdr;X,ﬂ

E;[ﬂ1;cdr;x,[ﬂ2,w \

E;(ﬂ1;cdr;X)°N ;[n1;cdr;X,[ﬂ2,ﬂ1;car;X;M,U;QJ;cons];LEFT = (lemmas 2.5.e and 2.7,
and C2)

E;[w1;cdr ,[ﬂ2,ﬂ1;Car;X;M,U;QJ;COHS];[ﬂ1;X,Wej;ﬂ1°N sLEFT = (hypothesis)

E;[ﬂ1;cdr ,[ﬂg,ﬂ1;car;X;M,U;g];cons];[ﬂ1;X,ﬂz];ﬂ1°N ;[n1;M,n2];BACK = (similar to
E;[v1;cdr;X;M,[ﬂz,ﬂ1;car;X;M,U;QJ;cons];BACK = (fpp) sbove)
E;[[n1;car;X;M,n1;cdr;X;M,U;jJ;cons,wgl;BACK (1emmas 2.3.c, 2.6.c, and ML1, ML2)

E;[[ﬂ1;car;X,w1;cdr;X,w1;bitfield];cons;[car;M,cdr;M,UML’g;l];cons,ﬂe];BACK = (fpp)
H

E;[[n1;car;X,nT;cdr;X,HT;bitfield];cons,w2];[n1;M,ﬂg];BACK = (lemmas 2.5.e and 2.11,
cf. above, and lemma 2.3.a)
[ﬂ1;[car%X,cdr;X,bitfield];cons,ﬂg];wTON ;[ﬂ1;M,ﬁ2];BACK.

Part c

We prove E = E;(wi;car;X)ON ;(w1;cdr;X)0N ;(n1;bitfield)°g, with E as defined above.

[[ﬂ1;car;X,ﬁ1;cdr;X,n bitfield];cons,ﬁ2]°(ﬂ1oN) = (lemma 2.5.a, since NoE = N

5
1 follows from lemms 2.4 and P1)
([[n1;car;X,w1;cdr;X,ﬂ1;bitfield];cons,ﬂg];ﬂ1;N)OE = (lemmas 2.7 and 2.6.a)
([ﬂ1;car;X,w{;cdr;X,w1;bitfield];cons;N)OE = (fpp)
bitfieldl;cons;careN jcdroN ;bitfielde0)eE = (lemma 2.5.e and

)

([ﬂ1;car;X,n1;cdr;X,ﬂ1;

2k

([ﬂ1;car;X,n1;cdr;X,ﬂ1;bitfield];ﬂ1°N 3T oN 5w o0 j;cons)eE = (lemma 2.5.e, cf. part b)

((n1;car;X)°N ;(ﬂ1;cdr;X)°N ;(ﬂ1;bitfield)qg ;

3

[ﬂT;car;X,ﬂ1;cdr;X,n1;bitfield];cons)OE = (corollary 2.2)

E;(ﬂT;car;X)ON ;(ﬂ1;cdr;X)°N ;(w1;bitfield)qg. 0

4. A CALCULUS FOR RECURSIVE PROCEDURES WITH VARIOUS PARAMETER MECHANISMS
4.1. The interpretation of products of relations

In chapter 1 we demonstrated how the call-by-value and call-by-name parameter
mechanisms could be’described (from the viewpoint of convergence) within the rela-
tional framework by introduction of a call-by-value product of relations, which has
been axiomatized in section 2.2.3, and a call-by-name product of relations, which
will be discussed in the present section. In particular, we introduce a product of
relations describing a parameter list some components of which are called-by-value,
the remaining ones being called-by-name. Section 4.2.2 contains an axiomatization of
all these products. By replacing in the axiom system of chapter 2 axioms C1 and C2
(the axioms for projection functions upon which our axiomatization of the call-by-
value product was based) by the new axioms of section 4.2.2, we obtain a calculus for

recursive procedures with various parameter mechanisms.

It has been argued in section 1.1 that the interpretation of the call-by-name
product requires the introduction of a special element to each domain, the so-called
basepoint, the function of which is merely to complete an operationally partially
defined n-tuple to a formally well-defined n-tuple by representing the 6perationally
undefined components, in case these might simply not be invoked within a procedure
body (and hence are potentially redundant).

Now the very fact, that the introduction of a basepoint is so closely connected
with a relation being undefined in some point, suggestsvusing Scott's undefined
value 1, cf. Scott [27,28] as basepoint; an originally partial function then becomes
a total function, which assigns the formal value 1 to those elements for which the
original function was undefined, and the same applies to relations: formally they
become total. However, when considering converses of such relations-made-total, we
are stuck for the following reason: an operationally undefined value should never be
transformed by any relation into an operationally well-defined value, since otherwise
the relevance to programming of a theory of such relations gets lost, for once a
computer initiates an unending computation it will not produce any definite value (if
left to itself). Thus we refrain from the transition of basepoints to undefined

values in general.

Prier to interpreting the call-by-name product, we first define the cartesian
product of domains with basepoints: The product of domains D1,...,Dn with basepoints

931,...,p§n, which are contained in D1""’Dn’ respectively, is the cartesian product

25

of D1""’Dn with basepoint <p§1,...,p§n>. O

Next we define our admissable relations. The requirement that a basepoint should
not be transformed into an operationally defined value, implies conversely that, due
to the presence of the conversion operator, an operationally well-defined value
should never be transformed into a basepoint. Hence we must observe the following
two restrictions when interpreting relations over domains with basepoints:
(1) A basepoint should be transformed into a basepoint. e (Bo1.71)
(2) Only a non-basepoint can be transformed into a non-basepoint. v (ko1.2)

EXAMPLE L4.1. Let D,,- 120

then the projection function s D1 X oo XDn > Di is defined as follows:

..,Dn be domains with basepoints, pt .,p&n, respectively,

s 5 provided X, # pzi,

. (<x

;! 1,...,xn>) = { pt;, in case x5 = Pt.» J=1,...,1, vee (B.1.3)

d
undefined, otherwise,

for i=1,...,n. [I

At last we are in a position to discuss the interpretation of the call-by-name
product:
Let D,D,,.. o ,
relations such that R, ¢ DxD,, for i=1,...,n, which satisfy (L.1.1) and (4.1.2).

.,Dn be domains with basepoints pt,pt ,pﬁn, and R ,...,Rn be binary

Then [R1 X e an] is interpreted as follows:

[R.x...xR] =
n

1

U {<x,< ve >> | xR.y. for jeI, and y.=pt. for je{l,...,n}-I}. [
Te{1,...,n} > y1s 9yn l JyJ Jel, YJ P__J dJ s s

and I#¢

For example, [R1 XR2] = {<x,<y1,p§2>> [xR1y1} U {<x,<Q§1,y2>> |xR2y2} U

U {<x,<y1,y2>> IXRiyi’ i=1,2}. In particular, [ExQ] = {<x,<x,pt>> | xeD}.

The reader should verify himself, using the interpretation of ™ in example 4.1,
that [R1 X ous an];ﬂi = Ri’ i=1,...,n. Notice also that

[R, X ... XRn];(nj1;w

1 1
i.e., a list of n parsmeters called-by-name, of which only the j1—st,...,jk-th compo-~

.V = .u . .\4. <- Ve . S
Noeeo nﬂjk,wk) (Rj1,n1 N eve N Rjk,nk), for 1ﬁ31< <j <n,

nents are invoked, 1s equivalent with the list of k invoked parameters which are
called-by-value.

Nevertheless, for a relational calculus this element-wise description is not
appropriaté. Therefore we introduce the following constants:

Let D,D ,...,Dn be as above, then the relation constants =* ,...,*n are defined by

1 1

X = pt, in case Xj = pzj, J=1,...,.1,
X € D-pt, provided X, = pﬁi, and

vee o (Wotll)

S<HyseensX ZHX> € Ko iff
Xy #,ptj for at least one J, j#i,

. undefined, otherwise,

for i=1,...,n. [J

26

The introduction of these constants is motivated by the following property: ;i trans-
forms any non~basepoint into any n-tuple, the i-th component of which is pEi’ pPro-

vided this n~tuple is not composed out of basepoints altogether. Hence we have

[R.x...xR]= u {(,n_R;3¥) n n %)%
1 n Ic{t,...,n}, ieI ? ie{1,...,n}-I 12
and TI#¢
For example, [R1 ><R2]==(R1;1r1) U (* R, 3 2) u‘(R1;1r1 n *2).

In general, the ALGOL 60 parameter mechanism allows within the same parameter
list for a combination of parameters called-by-value and called-by-name. This combi-
nation of parameter mechanisms results in a product of relations, which reflects this
mixed structure.

Let procedure f have for simplicity a parameter 1list of n components, the first k
components of.which are called-by-value, and the last n-k components of which are
called-by-name. Let & denote a statevector. As in our formal model of description the
parameter list is separated from the procedure call, cf. section 1.1, the separation
of (f1(5), f (£)) from the call f(f (), ceesf (£)) results in an expression of the
form [f1(€) X ... Xix(g)jvalue{1,.. k} ;P, where the value of

[f1(£) X .y xi-(g)]value{T ook} g only defined in case the evaluation of the first
k parameters, the call-by-value parameters f1(£),...,fk(€), terminates. Therefore a

relational description of this parameter list is obtained by introducing a product of
value{1,...,k}

relations [R1 X eaa XRn] , which satisfies

]va,lue{h...,k};1T

[R, x... xR
1 n

= R10E Seess RkoE ;Ri,

for i=1,...,n.

In general, such products are interpreted as follows:

Let D,D.,...,D be given as above. Let J < {1,...,n} and let T = {1,...,n}-J. Then
1 n

[R1 X ... XRn]Yglgg J is defined by:

for J € {1,...,n} s.t. J # @

lue J ~ [~

[R, x...xR 122=2€ <9 o y(n R.3¥.)n(n R:¥)n(n %)}

1 n KcI (jeJ J’? J) ke k' k (keI—K k> i L (4.1.5)

; - 1.

for J = 0:
[R, x...xg jadue @ _ (0 RGH) 0 £)). O

1 n KeI, K¢¢ ke k keI K k ~

value{1} .5 - o e -

For example, [R, XR2><R === (R1 ;0% 0 *3) U (R1,1r1 n R,37 2 n *) U
U (R1,n f *2 n R) u (R 1,ﬂ1 n Re;ﬂ2 n R3,n). Hence, [R XR2><R]value{1} ™=

R,°E 3R., 1—1,2,3.
Observe finally that both the call-by-value and the call-by-name product can be ob-
tained as special case of the product defined above by taking J = {1,...,n} and

J = @, respectively.

27
h.2. 4 calculus for recursive procedures with various parameter mechanisms
4.2.1. Language

‘The language MU* for basepoint preserving relations over cartesian products of
domains with unique basepoints, which has minimal fixed point operators, is a simple
extension of the language MU, defined in section 2.1.

The syntax of MU* is obtained from the syntax of MU by adding for n22 the logi-

e e XN

. ngx .
cal relation constants *i1 , for i=1,...,n, and all Myseeesn s to the ele-

mentary terms of MU.
The semantics of MU* is determined by considering binary relations over domains
with unique basepoints only, observing restrictions (4.1.1) and (k.1.2), and inter-
. NqXe e XNy yNg MpXeeXNpsng . .
preting =, and *. as in (k.1.3) and (4.1.4), for i=1,...,n, and

all n1,...,nn; Hence,

0 NN
(1) m(e"*") = {<pt ,pte> | Pt €D, Bty < Do}, m(EVT) = {<x,x> | x e D }s

__e
o
m(u™%) = {<x,y> | x € Dn-{pﬁn}, Y € Dy - {pzﬂ}} U {<p§n,p§€>},

(2) interpretations of elementary relation constants An’e satisfy

m(2"*®) c m(a"*®) < mu™?),

NeN _,NsN
s

(3) interpretations of pairs <p P > of boolean constants satisfy

m(@"") < m(p™") ¢ m(z""), m(a™") ¢ m(»'™") ¢ m(e"""), and
m(pn,n) n m(p.n,n) = m(ﬂn,n)’

(L) interpretations of relation variables x"0 satisfy m(Qn’e) c m(Xn’e) = m(Un’e),

(5) the operators "u", "n", ";", "" are interpreted as usual, and the

is interpreted by m(x"°°) = (m(v"*®) - m(x"*?)) u m(a™*?),

" "

operator

(6) uix1"'Xn[U1""’On] is interpreted as the i-th component of the (unique) minimal
fixed point of the transformation <m(01),...,m(on)> acting on n-tuples of rela-
tions satisfying (4.1.1) and (k.1.2), i=1,...,n. Observe that it follows from the
definitions that any fixed point of <m(o1),...,m(cn)> acting on these relations
satisfies (4.1.1) and 4.1.2); hence the minimal fixed point of this transforma-
tion, being the intersection of all these fixed points, satisfies (L4.1.1) and
(4.1.2) also.

y.2.2. Axiomatization

MU* is axiomatized by replacing in the axiom system for MU, as contained in

BP3, BPh and BP5

chapter 2, axioms C1 and C2 by BP1, BP below: For n22,

29

~ (v n1x'0'xnn9n1x'°'xnn
: - ; e N X 3k =
BP, | *pi¥qg O nohpsky T8
Ns: 5Ny .
BP2 : *; = %30 1710 i=1,...,n,
n1x--.><n, ,n1x...xn

w (¥ n n -
BP3 : }- T N koK. = Q , 1=1,...,0,

~r “ - n xcnnxn s N X, ..%XN
BP, : - (1r1;1r1 U *1;51) N eee N (nn;wn u *n;*n) =g n’ n

28

BP5 : For all I ; {1,...,n} s.¢t. I # @
F g0 %Yy = G0 X58) 0 Gerr, 0. npor 01
t QI “i;Y) ie{T,?..,n}—I B

and for I = {1,...,n}:
Y. = 3T) .3Y.
Foinp Xty = (00 X750 00 msY),
with m. and *s of types (HTX"'xnn’ni)’ and Xi and Yi of types (e,ni) and

(ni,E), respectively, i=1,...,n.

LEMMA 4.1. Let n22, i=1,...,n, and j=1,...,n, then

a. | ;i;ﬂj = U, i#j, and } ;i;“i = Q;
b. For n=2: |- *i;*j = Q, i#j, and | gk, = U.
For n23:]- *, 1%, = U,
i3 .
c. - sy = U, i#j, and | wsm. = E.

Proof. We prove parts a and b only.

8.

. ;;;*. = Q, i#3, n=2:

;i;ﬂj = U, i#j: The case n=2, i=1, J=2 is representative.

*, 0= %0 (n2 U *2);U and , 5

Hence, ;1;n2 = (¥1 n U;(?f2 U ;é));((“l U *1);U nvng) > (iemma 2.1.f, BPE)
(*1 n U;ng);(*1 n ng;%) = (BP5) U. ;5w = Q: *53m, = ko gk oF gw
since *; °F ;ﬂiOE € xg 3%, 0o = (BP3) Q.
'
*

= (n1 u *1);U n m, follow by BP, from lemma 2.3.c.

ok 7, = Q,

2 2

3% = (870 U500, v %,))s((m v %)50 n %) = (BP,)

e ~ 4 ~ ~ ()
((*1 n U,ve) U (*1 n *2))J(ﬂ1,U n *2) U (*1 n *2)) = (*1 n U,ﬂ2),(ﬂ1,U n *2),
since *p0 %, = 2 follows from BP1; moreover, (;1 n U;%é 13

(part a) Q. ;i;*i = U, for n=2, and ;i;*j = U, i#j, for n>3: proved using similar

);(ﬂ1;U n *2) c 11;w U =

techniques. [J

Let [Xﬁ X v xXn]YélEg J be defined as in (4.1.5). Then the proofs of corol-

laries L.1 and 4.2 follow from lemms 4.1 and the definitions.

COROLLARY k.1. | [X, x... xXn]M{J““.,Jk};“i = X. oF ...;X. oE ;X., i=1,...,n.

3 3y i
COROLLARY 4.2. |- [X, x... ><>¢zn]@l‘i?-{‘”"',”‘]m};(vrk 0o) =
y 1 D
= X. oF 3...3X. oE ;(.00 ... n X %)
JT Jm Xk1 L i ! p

5.

5.

1.

2.

CONCLUSION AND RELATED WORK
1. Conclusion

This investigation shows that

The relational approach allows & unified axiomatization of both call~by-value and

certatn aspects of call-by-name (chapter 1 and L4).

A theory of correctness of programs requires an operator describing the inter-

action between programs and predicates; in the present theory this is the "o"

29

operator (theory: section 2.2.2, applications: sections 3.2 and 3.4).

3. The "o" operator is crucial to an expedient formalizabtion of the call-by-value

parameter mechanism (theory: section 2.2.3, application: section 3.L4).

4. The axiomatization of correctness proofs for recursive programs can be applied to
recursive data structures (sections 3.3 and 3.L, the main reference being

Hitchcock and Park [15]).

5. Informal use of struetural induction may lead to understandsble and conceptually
attractive correctness proofs (section 3.4.1, the main reference being Burstall
[2]; ef. also section 6.3.a of De Roever [9] which contains an informal correct-

ness proof for the recursive solution of the Towers of Hanoi problem).

Notably, we have not discussed the topic of providing any operationally, inter-
preter-defined, semantics for the various programming concepts whose mathematical
semantics were axiomatized. Here the main issue is that one must actually prove that
the interpreter-defined input-output behaviour of the programs of one's particular
programming language coincides with the mathematically defined semantiecs of the cor-
responding (relational) terms.

An interpreter for a simple recursive programming language with call-by-value as
parameter mechanism has been defined in De Roever [8, 9 1. The input-output behaviour
of the programs of this language has been proved to coincide with the mathematical
semantiecs of the corresponding relational terms in De Roever [91].

Using the techniques of introducing parameters called-by-name by procedures which
have these parameters as their bodies (suggested in this context by J.W. de-Bakker),
and of describing an invokatlon of such a parameter by a call of the corresponding
procedure, we defined an interpreter for a recursive programming language with both
call=-by-value and call-by-name as parameter mechanism, with the use of the latter
being restricted as in section 1.2. A proof that the input-output behaviour again

coincides with the mathematical semantics is presently being investigated.
5.2. Related work

This discussion of related work confines itself mainly to the »elational ap-
proach to correctness of recursive programs. Dominant in this approach is the minimal
fixed point characterization, which is initiated by Scott and De Bakker in [29],
elaborated by De Bakker in [4], and crossbred with Tarski's algebra of relations
[30] in De Bakker and De Roever [6] to yield an axiomatic framework for proving
equivalence, correctness and termination of first-order recursive programs with one
variable. The present paper amplifies on the latter in that that the restriction to
one variable is removed by considering arbitrary subdivisions of the statej; these are
incorporateéiwithin the relational framework by considering binary relations over

cartesian products of domains, introduced in unpublished work of Milner [23] and

Park [26]. In De Roever [91 we (1) clarify the distinction on the one hand and the

30

connection on the other between operational and mathematical semantics, (2) axiom-
atize the natural numbers, lists, linear lists and ordered linear lists within the
relational framework, and (3) give numerous axiomatic correctness proofs for programs
which manipulate values from these domains, with special emphasis on axiomatic list
manipulation and correctness of the recursive solution of the Towers of Hanoi problem.

The connection between induction rules and termination proofs is described in
Hitchcock and Park [15] and elaborated in Hitchcock's dissertation [147, which also
contains a correctness proof of a translator of arbitrary recursive programs into
regular recursive procedures with stacks, and an axiomatization of finite domains.

Maximal fized points, introduced by Park in [25], are applied in Mazurkiewicz
[21] to obtain a mathematical characterization of divergent computations, and may
lead to the axiomatization of Hitchcock and Park's results within an extension of our
framework.

In a different setting Blikle and Mazurkiewicz [1] also use an algebra of rela-
tions to investigate programs.

The completeness of the method of <nductive assertions for general recursive
procedures is proved in De Bakker and Meertens [T1.

The relation between the minimal fixed point characterization and various rules
of computation is studied by Manna, Cadiou, Vuillemin and their colleagues in, e.g.,
Manna and Vuillemin [20], Cadiou [3] and Vuillemin £311.

The works of Dijkstra [10,11], Hoare [16] and Wirth [32] relate to the present
paper in that we provide a possible axiomatic basis for some techniques of structured
programming; e.g., our correctness operator "o"
Dijkstra [11].

is independently described in

ACKNOWLEDGEMENTS

The original incentive which lead to this work arose out of the lectures of
E.W. Dijkstra, C.A.R. Hoare, and N. Wirth at the International Summer School on Pro-
gram Structures and Fundamental Concepts of Programming, organized by F.L. Bauer,
H.J. Helms and M. Paul in 1971.

I am deeply indebted to my thesis adviser J.W. de Bakker for his guidance during
my studies and his scrutiny of my writings, which lead to numerous improvements.

I am grateful to M. Nivat for his remarks about the first version of this paper,
for his invitation to lecture at the University of Paris and at IRIA,and for pub-
lishing its second version in the Séminaires IRIA series.

This particular paper would not have been written were it not for the constant -

support of Peter van Emde Boas, and his interest in my work.

BIBLIOGRAPHY

[1] Blikle, A., and A. Mazurkiewicz, 4n algebraic approach to the theory of programs,

(21

£3]

(4]

[51

[6]

71

[81]

£9l

(101

[11]

[12]

[131]

[14]

[15]

[16]

31

algorithms, languages and recursiveness, in Proc. of an International
Symposium and Summer School on the Mathematical Foundations of Computer
Science, Warsaw-Jablonna, 1972.

Burstall, R.M., Prcoving properties of programs by structural induction, Comput.
J., 12 (1969), 41-L8..

Cadiou, J.M., Recursive definitions of partial functions and their computations,
Thesis, Stanford University, 1972.

De Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24, Amsterdam,
1971.

De Bakker, J.W., Recursion, induction and symbol manipulation, in Proc. MC-25
Informatica Symposium, Mathematical Centre Tracts 37, Amsterdam, 1971.

De Bakker, J.W., and W.P. de Roever, 4 caleulus for recursive program schemes,
in Proc. IRIA Symposium on Automata, Formal languages and Programming,

M. Nivat (ed.), North-Holland, Amsterdam, 1972.

De Bakker, J.W., and L.G.L.Th. Meertens, On the completeness of the inductive
assertion method, Prepublication, Mathematical Centre Report IW 12/73,
Amsterdam, 1973.

De Roever, W.P., Operational and mathematical semantics for recursive polyadic
program schemata (Extended abstract), in Proceedings of Symposium and
Summer School "Mathematical Foundations of Computer Science", 3-8 Septem-
ber 1973, High Tatras, Czechoslovakia, pp.293-298.

De Roever, W.P., Operational, mathematical and axiomatized semantics for re—
eursive procedures and data structures, Mathematical Centre Report ID/1,
Amgterdam. \

Dijkstra, E.W., Notes on structured programming, in Hoare, C.A.R.,

Dijkstra, E.W., and O.J. Dahl, Structured Programming, Academic Press,
New York, 1972.

Dijkstra, E.W., 4 simple axiomatic basis for programming language constructs,
Indagationes Mathematicae, 36 (197Lk) 1-15.

Garland, S.J., and D.C. Luckham, Translating recursion schemes into program
schemes, in Proc. of an ACM Conference on Proving Assertions about Pro-
grams, Las Cruces, New Mexico, January 6-T, 1972.

Guessarian, T., Sur une réduction des schémas de programmes polyadiques & des
schémas monadiques et ses &pplications, Memo GRIT no. T3. 05, Université
de Paris, 1973.

Hitchcock, P., An approach to formal reasoning about programs, Thesis, Univer-
sity of Warwick, Coventry, England, 19Tk, ‘

Hitchcock, P., and D. Park, Induction rules and proofs of termination, in Proc.
IRTIA Symposium on Automata, Formal Languages and Programming, M. Nivat
(ed.), North-Holland, Amsterdam, 1972.

Hoare, C.A.R., An axiomatic basis for computer programming, Comm. ACM, 12 (1969)
576-583.

32

0171

[18]

[19]

[20]

[21]

[22]

(231

[2h]

[251]

[26]

fat]

[281]

[29]

[30]
[31]

[32]

[33]

Hotz, G., Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, Electron. Infor-
mationsverarbeit. Kybernetik, 2 (1966), 235-246, |

Karp, R.M., Some applications of logical syntax to digital computer programming,
Thesis, Harvard University, 1959. o

Knuth, D.E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms,
Addison Wesley, Reading (Mass.), 1968.

Manna, Z., and J. Vuillemin, Fixpoint approach to the theory of computation,
Comm. ACM, 15 (1972) 528-536.

Mazurkiewicz, A., Proving properties of processes, PRACE CO PAN-CC, PAS Reports
134, Warsaw, 1973.

McCarthy, J., 4 bagis for a mathematical theory of computation, in Computer Pro-
gramming and Formal Systems, pp.33-7T0, P. Braffort and D. Hirschberg
(eds.), North~Holland, Amsterdam, 1963.

Milner, R., Algebraic theory of computable polyadic functions, Computer Science
Memorandum 12, University College of Swansea, 1970.

Morris Jr., J.H., Another recursion induction principle, Comm. ACM, 14 (1971)

~ 351-35L,

Park, D., Fiapoint induction and proof of program semantics, in Machine Intel-
ligence, Vol. 5, pp.59-78, B. Meltzer and D. Michie (eds.), Edinburgh
University Press, Edinburgh, 1970.

Park, D., Notes on a formalism for reasoning about schemes, Unpublished notes,
University of Warwick, 1970.

Scott, D., Outline of a mathematical theory of computation, in Proceedings of
the Fourth Annual Princeton Conference on Information Sciences and Sys~
tems, pp.169-176, Princeton. 1970.

Scott, D., Lattice theory, data types, and semantics, in NYU Symposium on formal
semantics, pp.6L4-106, Prentice Hall, 1972.

Scott, D., and J.W. de Bakker, 4 theory of programs, Unpublished notes, IBM
Seminar, Vienna, 1969.

Tarski, A., On the caleulus of relations, J. Symbolic Logic, 6 (1941) 73-89.

Vuillemin, J., Proof techniques for recursive programs, Thesis, Stanford Univer-
sity, 1972.

Wirth, N., Program development by stepwise refinement, Comm. ACM, 14 (1971)
221227,

Wright, J.B., Characterization of recursively enumerable sets, J. Symbolic
Logic, 37 (1972) 507-511.

