
AFDELlNG INFORMATICA

W.P. DE ROEVER

stichting

mathematisch

centrum

RECURSION AND PARAMETER MECHANISMS:
AN AXIOMATIC APPROACH

Prepub I i cation

~
MC

IW 20/74 MAY

2e boerhaavestraat 49 amsterdam

IW:H.11.) li·lf.EX l',//l.THEf,M,TISCH CENTRLW

AM .. f!:i/'H)A/,11

Ptunted a..t. .:the Ma..t.hema.:ti.c.a.l Cen:tll.e, 49, 2e BoeJLhaaveo.tJr.aa..t., AmJ.i.:teJLdam.

The Ma..t.hema.:ti.c.a.l Ce.ntJr.e, oounded .:the 11-.:th oo FebJz.uaJLy 1946, ,U a non­
pJz.oo,i..:t -i.¥Ui:tltu;tlon cu.ming a..t. .:the pJz.omo.tion oo pUILe ma..t.hema.:ti.C-6 and U:-6
app.Uc.a.:ti.on.6. I.:t ,i6 1.ipo¥Ui0Jz.ed by .:the Ne.:thvila.ndo GoveJLnment :tlvwugh :the
Ne.:thvila.ndo 0Jz.gavuza.:ti.on ooJz. .:the Advanc.ement oo PU/Le ReoeMc.h (Z.W.O),
by .:the MUYUc.-i.pa.u:ty oo Am-0.:teJLdam, by .:the Un.i..ve.Mliy oo AmJ.i:teJLdam, by
:the FJz.ee Un.i..veMUy a..t. AmJ.i:te.Jz.dam, and by -i.nduJ.i:oueo.

AMS (MOS) subject classification scheme (1970): 02J10, 68A05

ACM - Computing Reviews - category: 5,24

RECURSION AND PARAMETER MECHANISMS:

AN AXIOMATIC APPROACH *) "

W.P. DE ROEVER

ABSTRACT. Minimal fixed point operators were introduced by Scott and De Bakker in

order to describe the input-output behaviour of recursive procedures. As they con­

sidered recursive procedures acting upon a monolithic state only, i.e., procedures

acting upon one variable, the problem remained open how to describe this input-output

behaviour in the presence of an arbitrary number of components which as a parameter

may be either called-by-value or called-by-name. More precisely, do we need differ­

ent formalisms in order to describe the input-output behaviour of these procedures

for different parameter mechanisms, or do we need different minimal fixed point

operators within the same formalism, or do different parameter mechanisms give rise

to different transformations, each subject to the same minimal fixed point operator?

Using basepoint preserving relations over cartesian products of sets with unique

basepoints, we provide a single formalism in which the different combinations of

call-by-value and call-by-name are represented by different products of relations,

and in which only one minimal fixed point operator is needed. Moreover this mathe­

matical description is axiomatized, thus yielding a relational calculus for recur­

sive procedures with a variety of possible parameter mechanisms.

O. STRUCTURE OF THE PAPER

The reader is referred to section 1.2 for a leisurely written motivation of the

contents of this paper.

ChapteP 1. Section 1.1 deals with the relational description of various programming

concepts, and introduces as a separate concept the parameter list each parameter of

which may be either called-by-value or called-by-name. In section 1.2 Manna and

Vuillemin's indictment of call-by-value as rule of computation is analyzed and re­

futed by demonstrating that call-by-value is as amenable to proving properties of

programs as call-by-name.

ChapteP 2. In section 2.1 we define a language for binary relations over cartesian

products of sets which has mtnimal fixed point operators, and in section 2.2 a cal­

culus for recursive procedures, the parameters of which are called-by-value, is

developed by axiomatizing the semantics of this language.

ChapteP 3. The calculus presented in section 2.2 is applied to prove an equivalence

due to Morris,and Wright's regularization of linear procedures; then lists are ax­

iomatized,and a correctness proof for a version of the Schorr-Waite marking algo-
,.

rithm is given, first informally and then formally.

*) To appear in Pr>oaeedings of the Seaond Symposium on Automata, Languages and
PPogPamming, Saarbrucken, July 29 - August 2, 1974, Lecture Notes in Computer
Science, Springer-Verlag, Berlin etc.

2

Chapter 4. Using basepoint preserving relations over cartesian products of sets with

unique basepoints, we demonstrate in section 4.1 how a variety of possible parameter

mechanisms can be described by using different products of relations. In section 4.2

these relations are axiomatized.

Chapter 5. In section 5.1 we formulate some conclusions and briefly discuss the

topic of providing operational, interpreter-based, semantics for the various program­

ming concepts, the mathematical semantics of which we axiomatized in chapters 2 and

4. Finally, section 5.2 is devoted to related work.

1. PARAMETER MECHANISMS, PROJECTION FUNCTIONS, AND PRODUCTS OF RELATIONS

1.1. The relational description of programs and their properties

The present paper presents an axiomatization of the input-output behaviour of

recursive procedures, which manipulate as values neither labels nor procedures, and

the parameters of which may be either called-by-value or called-by-name. It will be

argued that, in case all parameters are called-by-name, we may confine ourselves,

without restricting the generality of our results, to procedures with procedure

bodies in which at least one parameter is invoked, describing calls of the remaining

ones by suitably chosen constant terms.

The main vehicle for this axiomatization is a language for binary relations,

which is rich enough to express the input-output behaviour of programming concepts

such as the composition of statements, the conditional, the assignment, systems of

procedures which are subject to the restriction stated above and which call each

other recursively, and lists of parameters each of which may be either called-by­

value or called-by-name.

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and final

states. The undefined statement L: goto Lis expressed.by the empty relation Q over

D. The dummy statement is expressed by the identity relation E over D.

Define the composition R1;R2 of relations R1 and R2 by R1 ;R
2

=

= {<x,y> I 3z[<x,z> E R1 and <z,y> E R2 J}. Obviously this operation expresses the

composition of statements.

In order to describe the conditional if p then s
1

else s
2

, one first has to

transliterate p: Let D1 be p-1(true) and D2 be p-1(false), then the predicate pis

uniquely determined by the pair <p,p'> of disjoint subsets of the identity relation

defined by: <x,x> E p iff x E D1, and <x,x> E p' iff x E D2 , cf. Karp [18]. If Riis

the input-output behaviour of S., i=1,2, the relation described by the conditional
l

above is p;R 1 u p';R
2

.

Let 1r.: Dn + D be the projection function of Dn on its i-th component,
l

i=1, ••• ;n, let the converse R of a relation R be defined by R = {<x,y> I <y,x> ER},

and let R1, ••. ,Rn be arbitrary relations over D. Consider R1;*1 n ••• n Rn;~n· This

relation consists exactly ofthosepairs <x,<y1, ..• ,yn>> such that <x,yi> E Ri for

i=1, ••• ,n. Thus this expression terminates in x iff all its components R. terminate
l

in x. Observe the analogy with the following: The evaluation of a list of parameters

called-by-value terminates iff the evaluation of all its parameters terminates.

In case of a state vector of n components, an assignment to the i-th component

of the state, x. := f(x1,····x), is expressed by TI1;*1 n .•• n TI. 1;i. 1 n R;rr. n
l n 1- 1- l

V ..,

n Tii+1;Tii+1 n ••• n Tin;Tin' where the input-output behaviour off is expressed by R.

This description satisfies Hoare's axiom for the assignment (cf. section 2.2.3). D

3

Note that the input~output behaviour of systems of recursive procedures has not

been expressed above; this will be taken care of by extending our language for binary

relations in chapter 2 with minimal fixed point operators, introduced by Scott and

De Bakker [29] .

Our use of the parameter list as a separate programming concept merits some

comment. In ALGOL 60 the evaluation of the parameter list (f1(,), .•• ,fn(,)) 1s ~art

of the execution of the procedure call f(f 1(,), ••. ,fn(,)), with, denoting the state

vector. In case all parameters are called-by-value one might introduce

[f1(,), ••• ,fn(,)J as a separate programming concept with the following semantics:

execution of [f1(,), ..• ,fn(,)J amounts to the independent evaluation of the values

of f 1(,), ••• ,fn(,), and results in then-tuple consisting of these values. Provided

all state components which are accessed in the original procedure body off are also

contained in its parameter list, the procedure call f(f1(,), •.. ,fn(,)) can then be

replaced by an expression of the form [f1(,), ... ,fn(,)J;P, where P has no parameters

and operates upon a state the components of which are accessed by the projection

functions.TI 1, ..• ,Tin.

The generalization of this parameter list construct to the case where,parameters

may also be called-by-name dictates our restriction, that, in case all parameters

are called-by-name, we must confine ourselves to procedures with procedure bodies in

which at least one parameter is invoked. This will be explained next.

Given a terminating call of a procedure some parameters of which are called-by­

value, the remaining one being called-by-name, the very fact of termination of this

call guarantees termination of the evaluation of the parameter expressions which are

called-by-value; however, the termination of this call guarantees the termination of

the evaluation of a parameter expression which is called-by-name only in case its

value is actually needed inside the procedure body. Thus the evaluation of some para­

meter expressions need not terminate at all. If one then separates the parameter

list from the actual procedure call as above, one is faced with the problem that 1n

the output of the generalized parameter list one has to handle the undefined compo­

nents. In order to complete an operationally partially defined n-tuple to an output

which is a formally well-defined n-tuple, we introduce a formal element, the so­

called basepoint, whose function is merely to represent the operationally undefined

components • .,Thus, a basepoint represents a nonterminating computation whose value is

sirrrply not asked for, and hence may not be transformed into any operationally well­

defined value, for otherwise the relevance of our theory to actual programming gets

4

lost. On the other hand, in case of a terminating procedure call of which none of

its parameters terminate, e.g., the call f("L:goto L","L:goto L") of the integer

procedure f(x,y);f := 1, the separation of the parameter list from the call results

in an expression of the form ["L:goto L","L:goto L"];P with P always producing an

operationally completely defined output, even if its formalized input consists of a

pair of two basepoints, signalling an operationally completely undefined value as

input; i.e., P transforms an operationally undefined value into an operationally

well-defined value, in violation of the above condition. We resolve this conflict by

describing calls of those procedures, which produce an operationally well-defined

output by not looking at any component of their input state, by suitably chosen con­

stant terms. Hence we may assume that, in case all parameters are called-by-name, a

procedure asks for the value of at least one component of its input, and that conse­

quently, in case of a terminating call, the evaluation of the corresponding parameter

expression terminates.

Next we demonstrate how certain concepts, which we need in formulating correct­

ness properties of programs, can be expressed within the relational framevlork.

EXAMPLE 1.2. Let the input-output behaviour of programs S, s
1

and s
2

be described by

R, R1 and R
2

, and let the (partial) predicates p and q be represented by the pairs

<p,p'> and <q,q'> of disjoint subsets of the identity relation, cf. example 1.1.

With D as above, let the universal relation U be defined by U = D x D. R1 ~ R2 and

R
2
~ R1 together express equality of R1 and R2 , and will be abbreviated by R

1
= R2,

s1 and s2 ·are called equivalent iff R
1

= R
2

. p ~ R;R and p ~ R;U both express termi-

nation of S provided pis satisfied. R;R ~ E expresses functionality of R, i.e., R

describes the graph of a function.

Correctness in the sense of Hoare [16], {p}S{q}, amounts to: if x satisfies

predicate p and program S terminates for input x with output y, then y satisfies

predicate q, and is expressed by p;R ~ R;q.
V

The 11
0

11 operator is defined by Rop = R;p;R n E. This operator has been inves-

tigated in De Bakker & De Roever [6] in order to prove (and express) various prop­

erties of while statements, and has been independently described in Dijkstra [11]

using the term "predicate-transformer". It satisfies R;p;R n E = {<x,y> I <x,y> EE

and <x,y> E R;p;R} = {<x,y> I x=y and 3z[<x,z> ER, <z,z> E p, and <z,y> ER]}=

= {<x,x> I 3z[<x,z> ER and <z,z> E p]}. Thus, if R expresses the input-output be­

haviour of procedure f, and <p,p'> expresses the boolean procedure p, p(f(x)) =

= true iff <x,x> E R0 p. If we take for p the identically true predicate, represented

by <E,Q>, <x,x> E R0 E iff R is defined in x, i.e., RoE expresses the domain of con-
V

vergence of R. Note that R;p;R n E = R;p;U n E. D

1.2. Parameter mechanisms and products of relations

Although in this section mostly partial functions are used, it is stressed that

the formalism to-be-developed concerns a calculus of relations.

5

Given a set D and functions f: D + D, g: D x D + D, and h: D x D x D + D,

<x,y ,z> r--+ <f(y) ,g(x,y) ,h(x,z ,x)>

certainly describes a function of D x D x D into itself. For a relational description

this element-wise description is not appropriate. Therefore, when dealing with func­

tions between or with binary relations over finite cartesian products of sets, one

introduces projection functions (cf. example 1.1) in order to cope with the notion of

coordinates in a purely functional (relational) way, thus suppressing any explicit

mention of variables. E.g.,(*) describes the function {1r2 ;f,(1r1 ,1r2);g,(1r 1,1r
3

,1r1);h).

Again, this function has been described component-wise, its third component being

(1r 1 ,1r
3

,1r1);h. This does not necessarily imply that

holds! E.g., consider the following: f, g and hare paPtial functions, and, for some

<a,b,c> ED x D x D, f{b) is undefined, but g(a,b) and h(a,c,a) are well-defined.

Therefore <f(b),g(a,b),h(a,c,a)> is undefined as one of its components is undefined.

The problem whether or not(**) is valid turns out to depend on the paPticular

pPoduct of relations one wishes to describe, or, in case of the input-output behav­

iour of procedures, on the paPticulaP parameter mechanism used.

In order to understand this, consider the values of fv(1,0) and fn(1,0), with

integer procedures fv and fn declared by

integer procedure fv(x,y); value x,y; integer x,y; fv:= if x=O then O else

fv(x-1,fv{x,y)),

and

integer procedure fn(x,y); integer x,y; fn:= if x=O then O else fn(x-1,fn(x,y)).

Application of the computation rules of the ALGOL 60 report leads to the conclusion

that the value of fv(1,0) is undefined and the value of fn(1,0) is well-defined and

equal to O.

In order to describe this difference in terms of different products of relations

and projection functions, we first discuss two possible products of relations: the

call-by-value product, which resembles the call-by-value concept from the viewpoint

of convergence, and the call-by-name product, which incorporates certain properties

of the call-by-name concept.

Call-by-value product: Let f 1 and f 2 be partial functions from D to D, then the

call-by-value product of f 1 and f 2 is defined by [f1,f2] = f
1

;~1 n f 2 ;*2 , cf.

example 1.1. This product satisfies the following properties:

(1) [f1,f2J(x) = <y1,y
2

> iff f 1(x) and f
2

(x) are both defined in x,and f 1(x) = y
1

,

f 2 (x) = y
2

.

(2) [f1,f2];1r1 ~ f 1 , as f 2(x), whence <f1(x),f2(x)>, and therefore 1r
1
([f

1
,f

2
J(x)),

may be undefined in x, although f 1(x) is well-defined.

6

(3) In order to transform [f
1
,f2];TT 1 we therefore need an expression for the domain

of convergence of f
2

. Using the 11011 operator introduced in example 1.2, this ex­

pression is supplied for by f 2°E, as f
2

°E = {<x,x> I 3y[y=f2(x)J}, as follows

from example 1.2. Thus we obtain [f1,f2];TT1 = f 2°E ;f
1

. D

Call-by-name product: Let f 1 and f 2 be given as above. For the call-by-name product

[f1xf2] of f 1 and f
2

we stipulate [f1xf2];TTi = fi' i=1,2. Hence TTi([f1xf2J(x)) =

= f.(x), even if f
3

.(x) is undefined, i=1,2. The justification of this property
1 -i

originates from the ALGOL 60 call-by-name parameter mechanism for which the require-

ment of replacing the formal parameters by the corresponding actual parameters within

the text of the procedure body prior to its execution leads to a situation in which

evaluation of a particular actual parameter takes place independent of the conver­

gence of the other actual parameters. Possible models for this product are given in

chapter 4. D

Before expressing the difference between f 1 and f 2 in the more technical terms

of our relational formalism, we discuss the opinion of Manna and Vuillemin [20] con­

cerning call-by-value and call-by-name. We quote: "In discussing recursive programs,

the key problem is: What is the partial function f defined by a recursive program P?

There are two viewpoints:

(a) Fixpoint approach: Let it be the unique least fixpoint fp.

(b) Computational approach: Let it be the computed function fc for some given compu-

tation rule C (such as call-by-name or call-by-value).

We now come to an interesting point: all the theory for proving properties of recur­

sive programs is actually based on the assumption that the function defined by a re­

cursive program is exactly the least fixpoint fp. That is, the fixpoint approach is

adopted. Unfortunately, almost all programming languages are using an implementation

of recursion (such as call-by-value) which does not necessarily lead to the least
. . " " . . f~xpo~nt. Hence they conclude: .•• existing computer systems should be modified, and

language designers and implementors should look for computation rules which always

lead to the least fixpoint. Call-by-name, for example, is such a computation rule .•. ".

At this point the reader is forced to conclude, that, according to Manna and

Vuillemin, call-by-value should be discarded (as a computation rule).

Before arguing, that, quite to the contrary, call-by-value is as suitable for

proofs as call-by-name is, (the latter being accepted by Manna c.s.), we present

their argumentation for indictment of the former rule of computation.

Consider again the recursive procedure f defined by

(***) f(x,y) ., if x=O then O else f(x-1,f(x,y)).

They ob;erve that evaluation of f(x,y), (1) using call-by-name, results in computa­

tion of ')..x,y. if x;;;:o then O else .1, (2) using call-by-value, results in computation

of ')..x,y. if x=O then O else .1, provided y is defined (where .1 is a formal element

7

expressing operational undefinedness). Then they argue that the minimal fixed point

of the transformation

T = AX • Ax,y. if x=O then O else X(x-1,X(x,y))

according to the rules of the A-cafoulus, where,, e.g. (Au,v.u)<x,y> = x holds, in­

dependent of the value of y being defined or not, can be computed, fork a positive

natural number, by a sequence of approximations of the form

Tk(Q) = Ax,y. if x=O then O else ••. if x=k-1 then O else i.

Hence the minimal fixed point U Ti(Q) of T equals Ax,y. if x~O then O _else i. The
i=1 - --

observation that this minimal fixed point coincides with the computation of(***)

using call-by-name, but is clearly different from the computation of(***) using

call-by-value, then leads them to denounce call-by-value as a computation rule.

We shall demonstrate that computation of the minimal fixed point of the trans­

foY'mation implied by(***) gives the call-by-value solution, when adopting the call­

by-value product, while computation of the minimal fixed point of this transfoY'mation

using the call-by-name pPoduct results in the call-by-name solution. Hence we come to

the conclusion that the minimal fixed point of a transfoY'!Tlation depends on the par­

ticular relational product used, i.e., on the a:x:ioms and rules of the foY'mal system

one applies in order to compute this minimal fixed point.

We are now in a position to comment upon Manna and Vuillemin' s point of view: as

it happens they work with a formal system in which minimal fixed points coincide with

recursive solutions computed with call-by-name as rule of computation. Quite correct­

ly they observe that within such a system call-by-value does not necessarily lead to

computation of the minimal fixed point. Only this observation is too narrow a basis

for discarding call-by-value as rule of computation in general, keeping the wide

variety of formal systems in mind.

The transformation implied by(***), using call-by-value as parameter mechanism,

is expressed within our formalism by

where {i) p0 is only defined for O with p
0

(o) = O, (ii) Sis the converse of the

successor function S, whence S (n) = n-1 , n E JN , n ~ 1 •
00

It will be demonstrated that the minimal fixed point U T1 (Q) of this trans-
i=1 V

formation is equivalent with rr 1;p0 , which is in our formalism the expression for the

call-by-value solution of(***),

(1) Tv(n) =[rr
1

;p
0

,rr2 J;rr 1 and [rr1;p
0

,rr
2

];rr
1

= rr 1 ;p
0

; rr2°E, by a property of the call­

by-valtfe product; as totality of rr2 implies rr2 °E = E, we obtain Tv(n) = rr 1 ;p
0

•
2 V ..., •

(2) Tv(n) = rr1 ;p
0

u [rr1;s,rr1;p0J;rr 1 ;p
0

. For [rr1;s,rr1 ;p
0

J<x,y> to be defined, both

(rr1;s)<x,y> and (rr1;p
0

)<x,y> must be defined, i.e., both x ~ 1 and x = 0 have to

8

(3)

(4)

,J

hold. As these requirements are contradictory, [1r1 ;S,1r1 ;p0 l;1r1 ;p0 = n, and there-
2 fore T (r,i) = 1r1 ;p

0
.

Assumi:! T!~n) = 1r 1;p0 , one argues similarly that T!+
1
(n) = 1r 1;p0 .

Hence .U T1 (Q) = '1T
1

;p
0

, which corresponds with Ax,y. if x=O then O else .1. 0
1=1 V

The transformation implied by(***), using call-by-name as parameter mechanism,

is expressed by

We demonstrate that the minimal fixed point .U T1 (Q) of this transformation corre-
1=1 n

spends with)..x,y • if x?:0 then O else .L, Manna and Vuillemin' s call-by-name solution

of (***):

(1) Tn(Q) = [1r
1

;p
0

x1r
2

];1r
1

and [1r
1

;p
0

xn·
2

J;1r
1

= 1r
1

;p
0

, by definition of the call-by­

name product; clearly 1T 1 ;p0
corresponds with)..x,y . if x=O then O else .L.

(2) T!(n) = 1r
1

;p
0

u [1r
1

;sx1r
1

;p
0

];1r
1

;p
0

, by (1); as [1r 1;sx1r1;p
0

];1r1 = 1r
1
;s, we have

T~(r,i) = 1r
1

;p
0

u 1r 1;S;p
0

, corresponding with)..x,y. if x=O then O else if x=1 then

0 else .L.
k v

(3) Assume Tn(r,i) = 1r 1;p0 u 1r1;S;p
0

u ••• u v v As ~k+1(n) 1T1 ;S; .•• S;po. Ln •• = 1T1 ;po u

(k-1)times
u [1r 1;SxT!(n)];T!(n), it follows from the assumption that T!+1(n) = 1r1 ;p

0
u

~ ._, V • •

u 1r 1;S;p
0

u ••• u 1r1;s; ... S;p
0

, which corresponds with

k times

(4)
)..x,y ~ if x=O then O else ... if x=k then O else .1.

-;;;; • -- 00-- v -: -- --

Hence U T1 (Q) = U 1r
1

;S; ..• S;p
0

, corresponding with)..x,y. if x?:0,then 0
i=1 n i=1

(i-1)times
else .L. D

2. A CALCULUS FOR RECURSIVE PROCEDURES, THE PARAMETERS OF WHICH ARE CALLED-BY-VALUE

2 • 1 • Language

In this section we define MU, a language for binary relations over cartesian

products of sets, which has minimal fixed point operators in order to characterize

the input-output behaviour of recursive procedures.

As the binary relations considered are subsets of the cartesian product of one

domain Dn or cartesian product of domains Dn
1

x ... x Dnn, and another domain De or

e n1x.,.xn ,e1x •.. xe
• .., · D n, n n cartesian product O.L domains De x ..• x e , terms cr or cr

1 n
denoting these relations are typed. Types will not be mentioned or discussed unless

explicitly needed, and are formally defined in De Roever [9].

E~ An,e n,e ~ementary terms are the individual relation constants ,A1 , •.• , boolean

relation' constants pn 'n ,P' n 'n, ... ,q n 'n ,q' n 'n, ... , logical relation constants Qn ,e,
e 0 n 0 n1x, .. xnn,ni

E' , U' and ,r. , 1=1, ... ,n, for the empty, identity and universal rela-
1 --

tions, and the projection functions, and the relation variables xn ' 6 ,X~ 'e, .•. , yn • 6 , ..•.

9

Compound terms are constructed by means of the operators";" (relational or

Peirce product), "u" (union), "n" (intersection), " " (converse and"-" (complemen­

tation) and the minimal fixed point operators "µ.", which bind for i=1, .•• ,n, n dif-
n1,B1 nn,en. i n1,e1 nn,en

ferent relation variables x 1 , .•. ,Xn inn-tuples of terms cr1 , ••. ,crn ,

provided none of these variables occurs in any complemented subterm..

TeWls of MU are elementary or compound terms. The well-formed formulae of MU are

called assePtions, and are of the form~ ~ 7, where~ and 7 are sets of inclusions

between terms of the form. cr~•
8 s cr~'

8
, the so-called atomic fopmulae.

FPee occurrences of the variables x
1

, ••. ,Xn in a term cr are occurrences not con­

tained in any subterm. µ X •.• [••.] of cr, and are indicated by writing cr(x1 , ••• ,X).
i n

Substitution of terms T. for the free occurrences of X. in cr(X1 , ... ,X), i=1, .•• ,n,
i i n

is denoted by cr(T
1

, .•. ,T) or cr[T./X.]._
1

; proper care has to be taken not to
n i ii- , ... ,n

substitute terms containing free occurrences of x 1, ••. ,X within µ.X 1 .•. X [cr1 , ... ,cr], n i n n
a care reflected in the formal definition of substitution contained in De Roever [9 J.

The (mathematical) semantics m of MU is defined by:

(1) providing arbitrary (type-restricted) interpretations for the individual relation

constants and relation variables, interpreting pairs <pn,n,p,n,n> of boolean re­

lation constants as pairs <m(pn'n),m(p'n,n)> of disjoint subsets of the identity
. (n,n) nn,e En,n d relation m E , and interpreting the logical relation constants •• , an

n,B n1x ••. xnn,ni ·- ()
U , and ~i , i-1, ••• ,n, as the empty relation 0 s DnxD

0
, the iden-

tity relation over D, the universal relation Dn x D
0

, and the projection func-
. n

tions with graph {<<x
1

, ••• ,x >,x.> Ix. E Dn , j=1, ••• ,n}, i=1, ..• ,n,
n i J j

(2) interpreting";", "u", "n", '""", "-" as usual,

(3) interpreting µ-terms µ.X 1 ••• X [cr
1

, •.• ,cr] as the i-th component of the minimal
i n n

fixed point of the functional <m(cr1), •.• ,m(crn)> acting on n-tuples of relations.

An assertion ~ ~ 7 is valid provided for all m the following holds: if the inclu­

sions contained in~ are satisfied by m, then the inclusions contained in 7 are

satisfied by m.

The main result concerning MU is the union theorem,

C0 •

m(µ.x
1
.•. x [cr

1
, ..• ,cr J) = U m(cr~),

i n n j=O i
i=1, ..• ,n,

j O j+1 (j j) with cri defined by cri = Q, cri = cri cr 1 , ••. ,crn, i=1, ••. ,n. This theorem states that

the (unique) minimal fixed point of a continuous transformation of n-tuples of rela­

tions can be obtained by a sequence of finite approximations, and is proved using

the monotonicity, continuity and substitutivity properties, cf. De Roever [9]. One

of its implications is the validity of Scott's induction PUle, formulated in section

2.2.4.

2.2. A.calculus foP PecUPsive pPoceduPes, the paPametePs of which aPe called-by-value

De Bakker and De Roever describe in [6] a calculus for recursive procedures

10

which operate upon an undivided {monolithic) state vector. This calculus is general­

ized in the present section to recursive procedures, operating upon a state vector,

the components of which can be accessed by using projection functions; conversely,

the relational framework enables us to compose a new state vector from operated-upon

components R1(s), •.. ,Rn(s) by the call-by-value product R1;~1 n ..• n Rn;tn, which

is, as argued in section 1.2, a prerequisite for the relational description of the

call-by-value parameter mechanism. We axiomatize projection functions (in section

2.2.3) by introducing the following axiom schemes:

We want to point out that chapter 4 is devoted to a generalization of the results of

this chapter to basepoint preserving relations over cartesian products of sets with

unique basepoints, a generalization which is motivated by our wish to obtain a formal

description of call-by-value and certain aspects of call-by-name.

The axiomatization of MU proceeds in four successive stages:

1. In section 2.2.1 we develop the axiomatization of typed binary relations.

2. This axiomatization is extended in section 2.2.2 to boolean constants.

3. The axiomatization of projection functions in section 2.2.3 then results in the

axiomatization of binary relations over cartesian products.

4. The additional axiomatization of µ-terms in section 2.2.4 completes the axiomati­

zation of MU.

2.2.1. Axiomatization of typed binary relations

Consider the following sublanguage of MU, called MU
0

:

The elementary terms of MU
0

are restricted to the individual relation constants,

relation variables and logical constants nn,s, En,n and Un,s of MU, i.e., boolean

constants and projection functions are excluded.

The compound terms of MU
0

are those terms of MU which are constructed using these

basic terms and the";", "u", "n", 11
"'

11 and 11
-

11 operators, i.e., the 11µ." operators
i

are excluded.

The assertions of MU
0

are those assertions of MU whose atomic formulae are inclusions

between terms of MU
0

. D

MU
0

is axiomatized by the following axioms and rules:

1. The typed versions of the axioms and rules of boolean algebra.

2. The typed version of Tarski's axioms for binary relations (cf. [30]):

~ cxn,e;Ye,s);zs,s = xn,e;(Ye,s;zs'~)

~ jfn,s = xn ,s

11

T4 1-xn',;Es,s = xn,s

T, (Xn,8;Y8,s) n zn,, = nn,s r (Y8,s;zn,s) n Xn,8 = Qe,n

3. u

In the sequel we omit parentheses in our formulae, based on the associativity of

binary operators and on the convention that

turn priority over "u".

LEMMA 2.1.

b. I- nn'~;xs,e = n n, e xn , ~. n s, e n ,.e = Q
' '

c. I- En,n;xn,, = xn,~

d, I- un,s;u~,e = un,e

e. I- '?ln,s = ns,n, En,n = En,n, u11•~ = u~,n

II • II

'
has priority of "n", which has in

f. I- xn'~;(Ys,e u z''e) = xn'~;Y~,e u xn'~;zs,e,(x~'e u y,,e);ze,n =

= xs,e;ze,n u Y~'e;ze,n

g. I- (Xn,~ u yn'~)v = Xn,s u yn,~,(Xn,s n yn•~r = Xn,~ n yn,,Jn,s = in,,.

Except for the proof of part d, which is obtained using U and a law of boolean alge­

bra, the 'proofs for the typed case are similar to the proofs for the untyped case as

contained in Tarski [30].

Lemma 2.1.a expresses monotonicity of""'" and";". Together with the obvious

monotonicity of "u" and "n", this will be used in lemma 2.9 to establish monotonicity

of syntactically continuous terms in general.

Remarks. 1. Henceforward the laws of boolean algebra are used without explicit refer­

ence.

2. Type indications ~e omitted provided no confusion arises.

The proofs of the following two lemmas can be found in De Bakker and De Roever

[6] .

LEMMA 2.2. 1- X;Y n Z = X;(X;Z n Y) n z.

A number of useful properties of relations and functions are collected in lemma

2.3 below. Remember that XoE has been defined as X;X n E (cf. example 1.2). By con­

vention the " 0 " operator has a higher priority then the "; " operator.

LEMMA 2.3.

a. X;X c E I- X; (Y n Z) = X;Y n X;Z

b. X s. E I- X = X

12

I-
.., ...,

C • X = XoE ;X, X = X; X0 E, XoE = X;X n E, X;U = XoE ;U
V

d. X .s Y, Y;Y .s E r XoE; y = X

I-
n n

X.;Y.);
v ..,

e. n X. ;Y. = X 0 E· ... , X 0 E· (n y oE• ... ·' y oE.
i=1 l l 1 , n , i=1 l l 1 ' n

2.2.2. Axiomatization of boolean relation constants

Partial predicates are represented within MU by pairs <pn,n,P,n,n> whose inter­

pretation is restricted to pairs of disjoint subsets of the identity relation cor­

responding to inverse images of true and false. MU
0

is extended to MU
1

by adding the

boolean relation constants of MU to the basic terms of MU
0

. MU
1

is axiomatized by

adding the following two axioms to those of MU
0

:

P1. I- Pn,n c En,n - , P,n,n .s En,n

p2 I- Pn,n n P,n,n .s nn,n.

The axiomatization of MU
1

leads to a theory of conditionals (cf. ex. 1.1), as

demonstrated by corollary 2.1, cf. McCarthy [22]. Again, proofs can be found in

De Bakker and De Roever [6] or De Roever [9] .

LEMMA 2.4. I- p = p, p;q = p n q.

COROLLARY 2.1. Using the notation (p + X,Y) = p;X u p';Y, we have 1-(p+(p+X,Y),Z) =

= (p + x;z),(p + x,(p + Y,Z)) = (p + x,z),(p + (q + x 1,x2),(q + Y1 ,Y2)) =

= (q + (p + x1,Y1),(p + x2,Y2)).

COROLLARY 2.2. I- p;X n Y = p;(X n Y).

..,
In example 1.2 we defined the 11011 operator by X0 p = X;p;X n E. Its basic prop-

erties are collected in lemmas 2.5, 3.2, 3.3, and theorem 3.2. This operator is cru­

cial to a theory of programs since it enables a description of the interaction be­

tween programs and predicates. This is demonstrated by the axiomatization both of

ordered data structures such as ordered linear lists (cf. De ~oever [9]) , and of the

call-by-value parameter mechanism contained in the following section. For other exam­

ples of its use we refer to De Bakker and De Roever [6] •

LEMMA 2.5.

a. I- (X; Y) op = Xo(Yop)

b. I- (X u Y)op = Xop u Yop

c. I- (X n Y)op
V

= X;p;Y n E

I-
,.

d. X;p .S Xop ;X
,.,

I-e. X;X .SE X;p = Xop ;X

f. X;p .S q;X I- Xop .s q.

13

Observe that from parts d and f of this lemma, we obtain X0 p = O{q I X;p ~ q;X}.

2.2.3. Axiomatization of binary relations over cartesian products

The language MU
2

for binary relations over cartesian products is obtained from
. n1x ..• xnn,Tli

MU, by adding, for i=1, ••. ,n, proJection function symbols 1r. to the basic
i

terms of MU 1, for all types concerned. MU2 is axiomatized by adding the following two

axiom schemes

c1

c2

to the axioms

I- ..,
7T1;7T1 n

I- X1 ;Y 1 n

and rules of MU 1:

n 7T . ir
n' n

n X ·Y n' n

= E

n1x ..• xnn,n1x ••. xnn
where 1r. is of type <n 1x •.. xn ,n.>, E stands for E ,and X. and Y. i n i i i
are of types ·<e,n.> and <n.,~>, respectively, i=1, ... ,n.

i i

As remarked in example 1.1, an assignment V of the form xi·= f(x1 , ••• ,xn) is

described by a term T of the form 1r 1 ;w1 n ••• n 1ri_1 ;1fi_1 n R;-rri n 7Ti+1 ;-rri+1 n

... n 1rn;¥n. Hence Hoare's axiom for the assignment (cf. [16])

~ {p(x1 , ••• ,x. 1 ,f(x1, •.• ,x),x.+1 , ••. ,x)}x. := f(x1, ... ,x){p(x1 , ... ,x)} carre-
l- n i n i n n

sponds with the assertion ~ T0 p ;T ~ T;p, as by example 1.2 {q1} V {q2} is expressed

by q1 ;R ~ R;q2 and p(x1, •.. ,xi_1,f(x1 , ••• ,xn),xi+1 , •.• ,xn) =
-.J

= true iff <<x1, .•• ,xn>,<x1, ••• ,xn>> E T0 p. As functionality off implies T;T ~Eby

lemma 2.11 below, this assertion follows from lemma 2.5.e. Thus leads the axiomatiza­

tion of MU2 to a theory of assignments.

LEMMA 2.6. For i=1, ••• ,n:

n 1 X • • • xn , n • n • , n •
a. I- 1r. n 1 oE 1 1 =

l.

n{·. ,xn ,n. n, .~
b. I- 1r n 1 •U 1

i ,

Proof. a. Let E
n

= (lemma 2 • 3 • c)

n1x ••• xn ,n1x ••• xn
E n . n

n- ,n.
E i. l.

n E n
=

n .• ~
i

b. 1r.;U
i

= (lemma 2.3.c)
n1x· .• xn .~

= (part a above) U n

c. Consider, e.g., n=2,i=1:
n1,n1

E
n1,n1 n1,n1 n1,n1 n1,n1

= (lemma 2.1.d) E ;E n U ;U

n1 ,n1 "' n1 ,n1 ,J. n1 ,n1 n1 ,n1
= (C2) (E ;1r1 n U ;1r2);(1r 1;E n 1r2 ;u) =

= (lemma 2 . 1 and part b above) 1r
1

; 7T
1

•

d. Consider, e.g., n=2, i=1 and j=2:

n1,n2 n1,n1 n1,n2 n1,n2 n2,n2
U = E ;U n U ;E

14

n
Already in example 1.1 we signalled tha analogy between n X. ;i. and a list of

i=n l l
parameters called-by-value. From this point of view properties such as

(
n ~) n1x ... xnn,n1x ... xnn n ni,ni n X.;1r. 0 E = .n X. 0 E -the computation of such a list ter-

i=1 l l 1=1 l
minates iff the computations of its individual members terminates- and

n n n-,n-
(.n X.;i.);n. = (.n X.oE 1 1);X. -the request for the value of a parameter con-
1=1 l l J 1=1 l J

tained in such a list amounts to computation of the individual value of this para-

meter plus termination of the computation of the other parameters- are intuitively

evident. These and similar properties follow from the following lemma and its corol­

lary.

LEMMA 2.7. For k,l ~ n,

..,
, 8 e Ill , ,·(n X. ,·Y),· Y oE

. • 1 l S S
, ... ,

lj=st,J= , ... ,k j t 1
t=1, •.. ,1

k _, 1
= (n x. ;n.);(n 1r ;Y), with 1r. of type <n 1x ... xn ,n.>, and x. and Y of

j=1 lj lj t=1 st st 1 n 1 lj st
types <0,n. > and <n ,l;>, respectively, i=1, ••. ,n, j=1, ..• ,k, t=1, •.. ,l.

lj St

Proof. The case of n=3, k=l=2, i
1
=1, i 2=2, s

1
=2, s 2=3 is representatiye. Hence we

prove x1°E ;X
2

oE ;X2 ;Y2 ; Y2oE ;Y
3

oE = (X1;ir1 n x2 ;i2);(1r2 ;Y2 n 1r
3

;Y
3

). By lemma 2.6,

.., ..., e,n3.- - . n1,l; . . x1 ;n 1 n x2 ;1r
2

= x
1

;-ii\ n x
2

;i'2 n U ,1r
3

and n
2

;Y
2

n 1r
3

;Y
3

- 1r 1 ,u An2 ,Y
2

nn
3

,Y
3

,

h (X .., x ..,) (Y Y) (c
2

) x · un 1' t; x y u0 'n 3 . y w ence 1;1r1 n 2;1r2; 1r2; 2 n 1r3; 3 = 1' n 2; 2 n '3
e i:- e i:- ..,

= (lemma 2.3.c) X
1

oE ;U ,s n x
2

;Y
2

n U ,s; Y
3

°E

= () (0,l; 0,l; V) V ._, lemma 2.3.e x
1

oE ;X
2
oE; x1oE ;U n x

2
;Y

2
n U ; Y

3
oE; Y

2
oE; Y

3
oE.

By corollary 2.2, x
1

°E ;u6 •l; n x
2

;Y
2

n u6 •S; Y
3

oE = X
1

oE ;X
2

;Y
2

; Y
3

oE, whence the

result follows by lemma 2.4. D

n n
COROLLARY 2 . 3 . I- (n x. ; ¥.) 0 (n

i=1 l l i=1
<0,n.> and p. of type <n.,n.>. l l l l

7f. ;p. ;-ir.) = X1op1 l l l X 0 p with X. of type n n' 1

n n n n1x ... xn ,e 0 0
(n "' v) "') n nE' Proof. X. ;n.) 0 (n 7r. ;p. ;1r.) = (C2 (

1
.=n

1
X. ;p. ;1r. ;U

i=1 l l i=1 l l l l l l
n ~ n1 ,e

= (lemma 2.6.b) (n X.;p.;1r.);1r1;U1
i=1 l l l

= (lemma 2.7) (X1;p1) 0 E ; .•. ; (Xn;pn) 0 E

= (corollary 2.2 and lemma 2.5.a) x1°p 1

On~ of the consequences of lemma 2.7 is

n-1 n-1 n-1

; ••• ; X op .
n n

~ (n x.;ir.);(n n.;Y.) =
i=1 l l i=1 l l

.n X.;Y.,
1=1 l l

□

15

with 1r., X. and Y. of types <n
1
x •.. xn ,n.>, <0,n.> and <n. ,1;>, respectively. Assume

1 1 1 ni 1 1
n1 = n2 = •.• = nn for simplicity, then, apart from the intended interpretation of

1T. as special subset of Dn x D,
J_

" · C f 1 · h 0 h · t d b t f n-
1

D axiom
2

or n-, in w ic 1r1 , •.• ,1rn_1 are interpre e as su se so D x

"follows from" axiom C2 for n, n > 2 11
•

This line of thought may be pursued as follows: Change the definition of type in that

only compounds (n 1xn
2

) are considered, and introduce projection function symbols

1r;nx1;),n and 1r1nx1;),1; only. For n > 2 define (n
1
x .•• xnn) as (.•• ((n

1
xn

2
)xn

3
)x ..• xnn)

n1x .•. xn ,n· . ((n1xn2)xn3),(n1xn2) (n1xn2),n1
and 1Ti n 1 as, e.g., for n=3 and 1=1,2,3, 1r1 ;1r

1
,

((n1xn2)xn3),(n1xn2) (n1xn2),n2 ((n1xn2)xn3),n3
1r

1
;1r

2
and 1r

2
Then it is a simple exercise

to deduce C
1

and C2 for n=3 from axioms C1 and C2 for n=2. This indicates that our

original approach may be conceived of as a "sugared" version of the more fundamental

set-up suggested above. These considerations are related to the work of Hotz on X­

categories (cf. Hotz [17]). 0

Arbitrary applications of the 11
v

11 operator can be restricted to projection func­

tions, as demonstrated below; this result will be used in section 3.2 to prove

Wright's result on the regularization of linear procedures.

Proof. We.prove X = t
1

;(E n 1r
1
;x;t

2
);1r2 • The result then follows by lemma 2.3.b.

1r
1

;X;w2 n E = (C 1) 1r
1

;X;t2 n 1r1;t1
n 1r2 ;~2 = (lemmas 2.6.c and 2.3.a)

1r1;(X;*2 n ~1) n 1r2;*2·

= (lemma 2.7) (X;~2 n t
1

);1r2 = (lemma 2.7 again) X.

2.2.4. Axiomatization of the minimal fixed point operators

□

MU is obtained from MU
2

by introducing the"µ." operators, and is axiomatized
J_ .

by adding Scott's induction rule I and axiom scheme M, which are both formulated

below, to the axioms and rules of MU
2

:

I:

nk,1;k
<P I- 'l'[µkX1 ••. X [cr1, ... ,cr]/X]k=1 ' n n -11: , ••• ,n

with IP only containing occurrences of X. which are bound (i.e., not free) and'¥ only
J_

containing occurrences of x. which are not contained in any complemented subterm,
• J_

i=1, ... ,n.

16

M: I- {cr.[µ.X1···x [cr,, ... ,cr]/X.J._, 5:. µ.x, ... x ecr,, ... ,cr]}._, • J 1 n n 1 1- , ••• ,n J n n J- , ... ,n

The basic results about minimal fixed point operators are collected in lemma

2.9, proved in De Bakker and De Roever [6], and lemma 2.10, which asserts that si­

mu.Zta:neous minimalization by µ.-terms is equivalent to successive singular minimal-
1

ization by µ-terms,and is proved in Hitchcock and Park [15]. The modularity property

(corollary 2. 4) , which is new, is proved in De Roever [9] •

LEMMA 2.9.

a. If , 1(x1, .•• ,xn,Y), ... ,,n(x1, .•. ,Xn,Y) are monotonic in x 1 , .•. ,Xn a:nd Y, i.e.

A1 E B1, •.. ,An+ 1 5:. Bn+1 I- 'i (A1 , ••• ,An+l) 5:. 'i (B1 , •.. ,Bn+1), i=1, ... ,n, then

Y1 5:. Y2 I- {µjX1 ... Xn[T1(X1,···•Xn,Y1) ... ,n(X1,···,Xn,Y1)] E

E µ.x 1 .•. x CT 1(x1, ... ,x ,Y2) ... , (x1 , ••. ,x ,Y2)JL_
1

.
J n n n n J- , ..• ,n

b. (Monotonicity). If ,(x1, .•. ,Xn) is syntacticaZZy continuous in x1 , ••. ,Xn then, is

monotonic in x 1, ••. ,Xn' i.e . ., x 1 5:. Y1, ... ,Xn 5:. Yn l- ,(x1, •.. ,Xn) 5:. 1(Y1 , •.. ,Yn).

c. (Fixed point property). I- {,.[µ.X
1
.•. X CT

1
, ... ,,]/X.J._

1
=

J 1 n n 1 1- , ••• ,n
= µ.X1 ... X [T1, ... ,T J}._1 . J n n J- , ... ,n

d. (Minimal fixed point property, Park [25]).

{T.(Y
1

, ... ,Y) E Y.}._
1

J- {µ.X
1
... X [,

1
, ... ,,] 5:. Y.}. 1 •

J n J J- , ... ,n J n n J J= , ... ,n

LEMMA 2.1Q. (Iteration, Scott and De Bakker [29]).

I- µ.X 1 ••. x. 1x.x. 1 .•. x ecr1, ..• ,cr. 1 ,cr.,cr.+ 1 , ..• ,cr J =
J J- J J+ n J- J J n

= µX.[cr.[µ.X
1
... x.

1
x.+

1
••• x [cr

1
, ... ,cr.

1
,cr.

1
, ... ,a J/X.J.

1
],with

J J l J- J n J- J+ n l lE

I= {1, .•. ,j-1,j+1, .•. ,n}.

COROLLARY 2.4. (Modularity). For i=1, ..• ,n,

I- µiX1 · •• Xn[cr1 (-r 11 (x, '· • • ,xn)' · · · •' 1m(X1 '· · · ,xn)) '· · ·'
cr (,

1
(x1, .•. ,x), .•• ,, (x1, ••. ,x))J =

n n n nm n
= cr.(µ.1X11··-X [T11<cr1(X11'''·•x1), •.. ,cr (X 1'···,X)), .•. ,, (•.•)], ..• ,µ ..•.).

11 nm m nn nm nm im

Modularity has some interesting applications, e.g., it reduces the two-page

proof of the "tree-traversal" result of De Bakker and De Roever [6] to a two-line

proof, as demonstrated below. Let P*A be defined by P*A = µX[p;A;X u p 1
]. This

construct describes the while statement while p do A. We quote: "Suppose one wishes

to perform a certain action A in all nodes of all trees of a forest (in the sense of

Knuth [19], pp.3O5-3O7). Let, for x any node, s(x) be interpreted as "has x a son?",

and b(x) as "has x a brother?". Let S(x) be: "Visit the first son of x", B(x) be:

"Visit the first brother of x", and F(x): "Visit the father of x". The problem posed

to us c~n then be formulated as: Let T
1

= µX[A;(s + S;X;F,E);(b-+ B;X,E)], and

T2 = µX[A;(s + S;X; b*(B;X) ;F,E)J. Show that T1 = T2 ; b*(B;T2)".

Proof. Apply first corollary 2.4, taking n=1, m=2, o1(X,Y) = X;Y, T11 (X) =

= A;(s + S;X;F,E), and T12(X) = (b + B;X,E), and apply then lemma 2.10. □

17

The last lemma of this chapter states some sufficient conditions for provability

of qi I- cr ;o :=. E' i.e. functionality of O.

LEMMA 2.11. (Functionality). The assertion qi I- cr;o :=.Eis provable if one of the

following assertions is provable:
n

I- ;o.}1<"<"< {cr. ;o. E}. . a. If o = .u 0. then qi {o. 0 E ; 0 . = o. oE u :=.
1=1 l l J J l -1-J-n l l 1=1, ... ,n

b. If o
.., ..,

then qi I- {cr. ;o . C E}. • = 01 ;1r1 n ... n 0 . 1f
n' n l l - 1=1, ... ,n

If o then qi I- v
:=. E,

..,
E. c. = o1 ;02 01;01 02;02 :=.

d. If o

qi I-
= o 1 ~ o 2 then qi I- cr 1 ; o 1 :=. E or qi j- cr 2 ; o 2 :=. E or qi I- a 1 ; o 2 :=. E or
,J

o
2

;o
1

:=. E.

e. If o = µ.X1 ..• x [01, ... ,o] then qi,{X. ;X. :=. E}._1 I- {cr. ;o. :=. E}._1 ,
l n n l l 1- , •.. ,n l l 1- , ... ,n

provided Xi does not oeeur free in qi, i=1, ... ,n.

In the following chapter we shall use the following notations:
V v

1. [o1, •.• ,on] for o1 ;1r 1 n ••• n on;,rn.

2. [011 ••• jon] for 1r1 ;o1;t1 n ••• n 1rn;on;*n·

3. APPLICATIONS

3 • 1 • An exanrp le due to Morris

In [24] Morris proves equivalence of f(x,y) and g(x,y) given by:

f(x,y).,. if p(x) then y else h(f(k(x),y)), - -- --
g(x,y).,. if p(x) then y else g(k(x),h(y)). - -- --

We present a proof in our framework. The following equivalence 1s stated without

proof:

LEMMA 3.1. I- [A1 I ... jA. 1 IA. IA. 1 I ... IA J;,r. = [A1 I ... jA. 1 jEjA. 1 I• .. IA];1r. ;A .. 1- l 1+ n l 1- 1+ n l l

THEOREM 3.1. (Morris) Let F = µX[[pjE];1r2 u [p'jEJ;[KjE];X;H] and

G = µY[[pjEJ;1r2 u [p' IEJ;[K!HJ;YJ. Then 1- F = G, [EjH];G = G;H.

Proof. Let qi be empty, f(X,Y) = {X = Y, [EjH];Y = Y;H},

o(X) = [pjE];1r2 u [p' IEJ;[KjE];X;H and T(Y) = [pjE];1r2 u [p' jEJ;[KjH];Y. Hence, we

must prove

•J- f(µX[o(X)], µY[T(Y)J) (3.1.1)

We intend to use Scott's induction rule. Unfortunately, this rule (as formulated in

18

section 2.2.4) does not apply to (3.1.1), as, in case of a sirrrultaneous induction

argument, it only yields results· about components of one sirrrultaneous µ-te1"171. How­

ever, the observation that I- µ1XY[cr(X) ,r(Y) J = µX[cr(X) J and I- µ2XY[cr(X) ,r(Y) J =

= µY[T(Y)] are straightforward applications of iteration (lemma 2.10), gives us the

equivalent assertion I- 1(µ
1
XY[cr(X),T(Y)], µ2XY[cr(X),T(Y)J) to which Scott's induc­

tion rule does apply. Thus, we have to prove:

1. I- t(n,n). Obvious.

2. X = Y, [EIHJ;Y = Y;H I- cr(X) = T(Y), [E!HJ;T(Y) = T(Y);H.

a. cr(X) = T(Y) : [p!EJ;~2 u [p' IEJ;[K!EJ;X;H = (hyp.) [p!EJ;~2 u [p'IEJ;[K!EJ;Y;H =

= (hyp.) [p!EJ;~2 u [p'IEJ;[K!EJ;[EIHJ;Y = (C2) [plEJ;~2 u [p' IEJ;[KIHJ;Y.

b. [EIHJ;T(Y) = T(Y);H: [EIHJ;([p!EJ;~2 u [p'IEJ;[KIHJ;Y) =
= [EIHJ;[p!EJ;~2 u [E!HJ;[p'IEJ;[KIHJ;Y = (C2) [p!HJ;~2 u [p';KIH;H];Y =
= (lemma 3-.1) [p!EJ;~2 ;H u [p';KIHJ;[E!HJ;Y =

= (hyp.) [p!EJ;~2;H u [p' IEJ;[KIHJ;Y;H = ([plEJ;~2 u [p' IEJ;[KIHJ;Y);H. 0

3. 2. Wright's regularization of linear procedures

In [33] Wright obtains the following results:

a. The class of recursively enumerable subsets of N2 is the smallest class of sets

with the successor relation Sas member and closed under the operations""'",";"

and "µX[Q u P;X;R]", where Q, P and Rare subsets of N2 which are contained in

this class.

b. In the proof of part a the main auxiliary result can be generalized to a setting

in which N is replaced by any abstract domain V. This generalization is:

(3.2.1)

In the present calculus (3.2.1) can be proved axiomatically. The following two

auxiliary lemmas are needed:

Proof. Straightforward from lemma 2.5.c. D

LEMMA 3.3. I- µX[A;X U B] 0 p = µX[AoX U Bop].

Proof. Amounts to a straightforward application of Scott's induction rule. D

Now Wright's result (3.2.1) follows by application of lemma 3.3 from

THEOREM 3.2. (Wright) l- µX[Q u P;X;R] = 1r1 ;µX[(E n ~1 ;Q;1r2) U [P!RJ;X] 0 E ;~2

L R

Proof.~: Follows by the minimal fixed point property from: ~1; R0 E ~2 =

= (fpp) w1;{(E n ~1;Q;i2) u [PIRJ;R} 0 E ;~2 = (lemma 2.5.a)

19

ir1;(E n 1r 1;Q;n'2);1r2 U !rr 1;[PIRJ 0 (R 0 E) ;1r
2

= (lemma 2.8) Q U -ir
1

; [PIRJo(RoE) ;1r2 =

= (lemma 3.2) Q u 1T
1
;(En 1r 1 ;P;'Ji'.1; R0 E ;1r

2
;R;'ff2) ;1r

2
= (lemma 2.8) Q u P;ir1 ; R0 E ;1r2 ;R .

.., .., I'"' V ~: One derives 1r1 ;((E n 1r 1;Q;1r2) u [P R] 0 (E n 1r1;L;1r
2

)) ;1r2 = L by similar tech-

niques, whence by lemmas 2.8 and 3.2 (En 1r1 ;Q;1T2) u [PIRJ 0 (E n 1r
1

;L;~2) 5.

5. En 1r1 ;L;*
2

, and by the minimal fixed point property R0 E 5. En 1r1;L;ir
2

5. 1r
1

;L;rr2 •

By lemma 2.6.c one therefore obtains 'ff
1

; R0 E ;1r
2

5. L. 0

The reader might notice that ir1 ;µX[(1r 1;Q;ir
2

n E) u [PIRJ;X] 0 E ;1r2 does not

correspond with any program scheme. Using work of Luckham and Garland [12] this has

been remedied in Guessarian [13] by replacing this term by an equivalent one which

does correspond with a program scheme.

3.3. Axiomatization of lists

In general, programs manipulate data of a special structure, such as natural

numbers, lists and trees. Consequently, proofs about the input-output relationships

of these program often make use of the specific structural properties of these data.

In order to axiomatize such proofs, we have to axiomatize relations over special

domains. This is effected by adding certain axioms, characterizing the structural

properties of these data as properties of certain relation constants, to the general

system of chapter 2.

Symbolstrings have been axiomatized in De Bakker [5], finite domains in

Hitchcock.[14], and the natural numbers, linear lists and ordered linear lists in

De Roever [9]. Lists are axiomatized below; in the following section this axiomati­

zation is applied to derive both an informal and a formal correctness proof for the

Schorr-Waite marking algorithm.

For our present purpose it is sufficient to characterize a domain of lists as a

collection of binary trees which is closed w.r.t. the following operations:

(1) taking a binary tree t apart by applying the car and cdr functions, resulting in

its constituent subtrees car(t) and cdr(t), if possible; otherwise, tis an atom

and satisfies the predicate at, whence at(t) = t.

(2) constructing a new binary tree from two old ones by application of the function

cons,
.._,, ,_,,

where car, cdr and cons are related by car= cons;1r1 and cdr = cons;1r
2

.

Thus we introduce one individual constant consnxn,n and one boolean constant atn,n,

and postulate

L1 I-
'--' Enxn,nxn cons;cons =

L2 I-
......... En,n cons;cons 5.

L3 ~ at ~ Qn,n n cons;cons =

f:.4 I- En,n 5. µX[at u [cons;1r1 ;X,cons;1r2 ;X];cons].

k -- ...__; - (Remar. L1 implies that cons is total and cons, whence cons;1r1 and cons;1r
2

by

20

lemma 2.11), are functions, L
2

that cons is a function, L
3

that an atom can never by

taken apart,and L
4

that any list is either an atom or can be first taken apart and

then fitted together again.

LEMMA 3.4. Let at' denote ccfus;cons. Then lists satisfy the following properties:

I- E = µX[at u [car;X,cdr;X];cons], at u at' = E, cons;at' = cons, cons;at = Q.

Proof. E = µX[at u [car;X,cdr;X];cons]: ~- Axiom L4.

~- Use 1 with~ empty, taking {X ~ E} for 1, and (at u [car;X,cdr;X];cons) for cr.

at u at'= E: E = µX[at u [car;X,cdr;X];cons] = (fpp) at u [car,cdr];cons =

= (lemma 2.3.a axioms C1 ,L1) at u cons;cons = at u at'.

cons;at' = cons: cons;at' = cons;cons;cons = (L 1) cons.

cons;at = Q: cons;at = cons;consoE ;at= (L
2

) cons;(cons;cons n at)= (L
3

) Q. □

3.4. Correctness proofs for the Schorr-Waite marking algorithm

3. 4. 1 • Informal proof

The correctness will be proved of a certain version of the Schorr-Waite marking

algorithm (cf. Knuth [19], pp.417-418) for binary trees with one bitfield in each

non-atomic node, the so-called marked binary trees.

Assume that the bitfields of a given marked binary tree have been initialized

to zero. The Schorr-Waite algorithm traverses this tree in pre-order and in such a

way, that~ once a subtree has been traversed, the bitfields of this subtree all are

set to one, whence upon termination of the algorithm all nodes are mark~d by ones.

The interesting property of the algorithm is that it does not use an external auxil­

iary stack, but codes during this process of traversal the stack of its return links

into the tree itself. This is realized by

(1) temporarily destroying the branching structure of the tree in order to store the

return links, and

(2) using the bitfields both in order to distinguish which field of a node refers to

a tree with a return link and for the actual process of marking.

In informal notation our version of this algorithm looks as follows:

SCHORR-WAITE(i) <= LEFT(i.,NIL),

LEFT(i,r)

BACK(i,r}

<= ii at(i) v niUiJ then BACK(i,r)

else LEFT(car(l),cons(cdr(lJr,1)),

<= ii niUr) then <l,NIL> else ii
bitfield(r)=l then LEFT(car(r),cons(cdr(r),l,0))

else BACK(cons(cdr(r),l,1),car(r)),

(3.4.1)

with NIL denoting the empty marked binary tree, and bitfield(r) isolating the bit-
~

field of r.

This program may be understood as follows:

(1) LEFT is called with 1 still to be traversed and marked,

(2) BACK is called with 1 traversed and marked already,

(3) if r is not NIL or no atom, bitfield(r) = 1 implies that car(r) must still be

traversed,

(4) if -r is not NIL or no atom, bi tfield(r) = 0 implies that cdr(r) has been tra-

versed and marked already.

21

Consider both NIL and any atom to be marked. Then it follows from (3.4.1) by a simple

induction argument on the number of nodes of 1, that the four assertions above are

invariants of LEFT and BACK. Hence, provided 1 is unmarked and LEFT(l,NIL) terminates,

LEFT(l,NIL) results in the marking of 1, i.e., in this way we convince ourselves of

the partial correctness of SCHORR-WAITE only.

An informal proof of total correctness of SCHORR-WAITE by a different argument,

using Burstall's structural induction (cf. [2]) is given below. In the next section

this proof will be formalized.

Let M(l) and Notmarked(l) be declared by

M(l) <= :!:f.. at(l) v nil(l) then l else cons(M(car(l)),M(cdT'(l)),1),

Notmarked(l) <= :!:f.. at(l) v niUlJ then true else bitfield(l}=O A

A Notmarked(car(l)) A Notmarked(cdr(l)).

(3.4.2)

(3.4.3)

Then total correctness of SCHORR-WAITE follows as special case from the validity of

(Notmarked(l) ~ LEFT(l,r) = BACK(M(l),r)} (3.4.4)

by taking r = NIL, since BACK(M(l),NIL) = <M(l),NIL> follows from (3.4.1).

Proof of (3.4.4). (1) If at(l) v nil(l) holds, (3.4.4) follows directly from (3.4.1).

(2) Let 1 = cons(1 1,12 ,o) and let Notmarked(l) = true. (3.4.5)

Assume by hypothesis, (Notmarked(l.) ~ LEFT(l.,r) = BACK(M(l.),r)), i=1,2.
l l l

LEFT(cons(1 1,12 ,o),r) = LEFT(1 1,cons(12 ,r,1)).

From (3.4.5) and (3.4.3) we have Notmarked(l.) = true, i=1,2, hence
l

LEFT(l 1,cons(l2 ,r,1)) = (hypothesis) BACK(M(l 1),cons(l2 ,r,1)) =

= LEFT(l2 ,cons(r,M(l 1),o)) = (hypothesis) BACK(M(l2),cons(r,M(l 1),0)) =
I

= BACK(cons(M(11),M(12),1),r) = BACK(M(cons(11 ,12 ,o)),r). D

3.4.2. Formal proof

Prior to formalizing the informal correctness proof of SCHORR-WAITE of the pre­

vious section, the axiomatization of lists (or binary trees) of section 3,3 must be

extended in order to incorporate (1) the presence of a bitfield in each non-atomic

node, and (2) the empty list.

First we formalize 2-elements sets by introducing two boolean constants Q and l,
and postulating

TW0 1 I- Q;U n U;Q ~ Q, l;U n U;l ~ l

22

I- u 5:: U;Q;U, us U;J_;U

I- Q u J_ = E, 0 n 1 = Q,

TW0
1

confines any interpretation of both Q and J_ to at most one pair of (identical)

elements, TW0
2

expresses that any interpretation of both Q and J_ must contain at

least one pair of elements, and TW0 3 speaks for itself.

Satisfaction of these axioms establishes <D ,On,n,1n,n> as a structure for a 2-ele-
n - -

ment set. This leads us to introduce _g_ as type reserved for 2-element sets.

Next marked binary trees with an empty element are axiomatized by introducing

cons nxnx_g_, n as relation constant, and nil n 'n and atn 'n as boolean constants, and

postulating

ML1 I-
......,.

E cons;cons =

ML
2 I- '---' E cons;cons C

ML3 I-
..__.,

(at u nil) Q cons;cons n =

ML4 I- at n nil = Q

ML
5 I- E 5:: µX[TML(X)],

where TML(X) is defined by TML(X) = (at u nil u [car;X,cdr;X,bitfield];cons), and

car, cdr and bit field are defined by car = cons ;'ff 1 , cdr = COIJ.s ;'lf2 , bitfield = cons ;'lf
3

•

Satisfaction of these axioms establishes <D ,cons,at,nil> as a structure of marked
n

binary trees with an empty element, of type ML.

LEMMA 3.5 .. Let a'= cons;cons. Then marked binary trees satisfy

I- E = µX[TML(X)], at u nil u at'= E, cons;at' = cons, cons;at = Q, cons;nil = Q.

Proof. Similar to the proof of lemma 3.4. D

Finally, we give a formal definition of LEFT, BACK, Mand Notmarked, which were

informally declared in the previous section.

Let TLEFT(X,Y} = ('rr 1°(at u nil) ;Yu ['lf 1;car,['lf1 ;cdr,'lf2 ,u;J_];cons];X), and

TBACK{X,Y) = ('rr2°nil u ('rr2 ;bitfield)o1 ;['lf2 ;car,['lf2 ;cdr,'lf 1,u;Q];cons];X u

u ('rr
2

;bitf'ield) 0Q; [['lf
2

;cdr,'lf1 ,U;J_];cons,'lf2 ;car];Y, where U is of type (MLxML,_g_).

Then LEFT, BACK, Mand N(otmarked) are defined by

LEFT = µ1XY[TLEFT{X,Y),TBACK(X,Y)],

BACK = µ2XY[TLEFT(X,Y),TBACK(X,Y)],

M = µX[at u nil u [car;X,cdr;X,~'g;J_J;cons],

N = µX[at u nil u caroX ;cdroX ;bitfieldoQ]. □

THEOREM 3. 3. I- 'ff 1 °N ;LEFT = 'ff 1 °N ; ['ff 1 ;M, 'lf2] ;BACK.

Proof. ~y lemma 3.5, ~,ML= µX[TML(X)]. Hence we prove

and

~ ['lf
1

;µX[TML(X)],'lf2];'1f 1°N ;LEFT= ['lf1 ;µX[TML(X)],'rr 2];'1f1oN ;['lf 1;M,'lf2];BACK

using Scott's induction rule. It is sufficient to prove the induction step:

23

[rr 1;X,rr2J;rr 1oN ;LEFT= [rr 1;X,rr2J;rr1°N ;[rr1;M,rr2J;BACK ~

[rr1;TML(X),rr2J;rr1oN ;LEFT= [rr 1;TML(X),rr2J;rr 1°N ;[rr1 ;M,rr2];BACK.

Part a

[rr 1;(at u nil),rr2J;rr 1°N ;LEFT= (lemma 2.4) rr 1°N ;[rr1;(at u nil),rr2J;LEFT = (fpp)
I

rr 1°N ;[rr1;(at u nil),rr2J;BACK = (fpp and C2) rr 1°N ;[rr 1;(atunil),rr2J;frr1;M,rr2J;BACK •
I = (lemma 2.4) [rr 1;(at u nil),rr2J;rr1°N ;[rr1;M,rr2J;BACK.

Part b. Assume the hypothesis.

[rr 1;[car;X,cdr;X,bitfield];cons,rr2J;rr 1°N ;LEFT= (lemmas 2.3.a and 2.6.c)

[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;rr 1°N ;LEFT= (lemma 2.5.e, since function­

ality of [rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons follows in standard fashion from

lemma 2.11, b~ adding X;X ~ E to the hypotheses, and proving TML;TML ~ E using

lemma 2.11 again)

[[rr1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2Jo(rr1oN) ;

E [[rr1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2 J;LEFT = (fpp)

E;[rr1;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];LEFT = (part c below)

E;(rr1;car;X) 0 N ;[rr1 ;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];LEFT = (lemmas 2.5.e and 2.7)

E;[rr 1;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];rr1°N ;LEFT= (C2)

E;[rr 1;car,[rr1;cdr;X,rr2 ,U;J_];cons];[rr1;x,rr2J;rr 1oN ;LEFT= (hypothesis)

E;[rr1;car,[rr1;cdr;X,rr2 ,U;J_];cons];[rr1;x,rr2J;rr 1°N ;[rr1;M,rr2J;BACK = (similar to above)

E;[rr 1;car;X;M,[rr1;cdr;X,rr2 ,U;J_];cons];BACK = (fpp)

E;[rr 1;cdr;X,[rr2 ,rr 1;car;X;M,U;Q];cons];LEFT = (part c below)

E;(rr1;cdr;X) 0 N ;[rr1 ;cdr;X,[rr2 ,rr1;car;X;M,U;Q];cons];LEFT = (lemmas 2.5.e and 2.7,

and C2)

E;[rr1;cdr ,[rr2 ,rr1;car;X;M,U;Q];cons];[rr1;X,rr2J;rr 1°N ;LEFT= (hypothesis)

E;[rr1;cdr ,[rr2 ,rr
1

;car;X;M,U;Q];cons];[rr1;x,rr2J;rr1°N ;[rr1;M,rr2J;BACK = (similar to
above) E;[rr1;cdr;X;M,[rr2 ,rr1;car;X;M,U;Q];cons];BACK = (fpp)

E;[[rr 1;car;X;M,rr1;cdr;X;M,U;J..];cons,rr
2

J;BACK = (lemmas 2.3.c, 2.6.c, and ML 1, ML
2

)

E;[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons;[car;M,cdr;M,UML,,?;l];cons,rr2];BACK = (fpp)
I

E;[[rr1 ;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;[rr1;M,rr2J;BACK = (lemmas 2.5.e and 2.11,

cf. above, and lemma 2.3.a)

Part a

We prove E = E;(rr1;car;X) 0 N ;(rr1;cdr;X) 0 N ;(rr1;bitfield) 0 Q, with E as defined above.

[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2Jo(rr 1oN) = (lemma 2.5.a, since NoE = N

follows from lemma 2.4 and P1)

([[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;rr1;N) 0 E = (lemmas 2.7 and 2.6.a)

([1T 1 ;car ;X, 1T 1 ;cdr ;X, 1T 1 ;bi tfield] ;cons ;N) oE = (fpp)

([rr1;car;X,rr1;cdr;X,rr 1;bitfield];cons;caroN ;cdroN ;bitfieldoQ) 0 E = (lemma 2.5.e and

ML
1

)

24

([TI
1

;car;X,TI
1

;cdr;X,TI1;bitfield];TI1°N ;TI2 °N ;TI
3

°Q ;cons) 0 E = (lemma 2.5.e, cf. part b)

((TI 1;car;X) 0 N ;(TI
1

;cdr;X) 0 N ;(TI 1;bitfield)oQ;

[TI 1;car;X,TI1;cdr;X,TI 1;bitfield];cons) 0 E = (corollary 2.2)

E;(TI 1;car;X) 0 N ;(TI1 ;cdr;X) 0 N ;(TI 1 ;bitfield)oQ. D

4. A CALCULUS FOR RECURSIVE PROCEDURES WITH VARIOUS PARAMETER MECHANISMS

4.1. The interpretation of products of reZations

In chapter 1 we demonstrated how the call-by-value and call-by-name parameter

mechanisms could be'described (from the viewpoint of convergence) within the rela­

tional framework by introduction of a call-by-value product of relations, which has

been axiomatized in section 2.2.3, and a call-by-name product of relations, which

will be discussed in the present section. In particular, we introduce a product of

relations describing a parameter list some components of which are called-by-value,

the remaining ones being called-by-name. Section 4.2.2 contains an axiomatization of

aii these products. By replacing in the axiom system of chapter 2 axioms C1 and C2
(the axioms for projection functions upon which our axiomatization of the call-by­

value product was based) by the new axioms of section 4.2.2, we obtain a calculus for

recursive procedures with various parameter mechanisms.

It has been argued in section 1.1 that the interpretation of the call-by-name

product r~quires the introduction of a special element to each domain, the so-called

basepoint, the function of which is merely to complete an operationally partially

defined n-tuple to a formally well-defined n-tuple by representing the operationally

undefined components, in case these might simply not be invoked within a procedure

body (and hence are potentially redundant).

Now the very fact, that the introduction of a basepoint is so closely connected

with a relation being undefined in some point, suggests using Scott's undefined

value i, cf. Scott [27,28] as basepoint; an originally partial function then becomes

a total function, which assigns the formal value l to those elements for which the

original function was undefined, and the same applies to relations: formally they

become total. However, when considering converses of such relations-made-total, we

are stuck for the following reason: an operationaZZy undefined vaiue shouZd never be

transformed by any reiation into an operationaZZy weit-defined vaiue, since otherwise

the relevance to programming of a theory of such relations gets lost, for once a

computer initiates an unending computation it will not produce any definite value (if

left to itself). Thus we refrain from the transition of basepoints to undefined

values in general.

Pri@r to interpreting the call-by-name product, we first define the cartesian

product of domains with basepoints: The product of domains D1, ••• ,Dn with basepoints

p_i1, ••• ,p~, which are contained in D1, .•. ,Dn, respectively, is the cartesian product

25

of D1, ••• ,Dn with basepoint <p_i1 , •.. ,p~>- 0

Next we define our admissable relations. The requirement that a basepoint should

not be transformed into an operationally defined value, implies conversely that, due

to the presence of the conversion operator, an operationally well-defined value

should never be transformed into a basepoint. Hence we must observe the following

two restrictions when interpreting relations over domains with basepoints:

(1) A basepoint should be tPansforrned into a basepoint.

(2) Only a non-basepoint can be tPansforrned into a non-basepoint.

(4.1.1)

(4.1.2)

EXAMPLE 4.1. Let D1, •.. ,D be domains with basepoints, pt 1 , ... ,pt , respectively, n - -n
then the projection function 1r.: D1 x ••. x D + D. is defined as follows:

l n l

{

xi, provided xi -:/, p~,

1r.(<x1, .•. ,x >) = pt., in case x. = pt.,
l• n -i J -J

undefined, otherwise,

for i=1, ... ,n. O

j=1, ... ,n, (4.1.3)

At last we are in a position to discuss the interpretation of the call-by-name

product:

Let D,D1 , ••. ,Dn be domains with basepoints p_i,p_i1, ... ,p~, and R1, ••• ,Rn be binary

relations such that Ri 5:: DxDi, for i=1, ... ,n, which satisfy (4.1.1) and (4.1.2).

Then [R1 x .•. x Rn] is interpreted as follows:

[R1 x ••• x Rn] =

U · {<x,<y
1

, ... ,y >> I xR.y. for jEI, and y.=pt. for jE{1, ..• ,n}-I}. D
I5:;{ 1, ••• ,n} n J J J -J

and I-:/,</J

For example, [R
1

xR2] = {<x,<y
1
,p~» jxR

1
y

1
} u {<x,<p!_

1
,y

2
» lxR

2
y

2
} u

u { <x,<y 1,y 2» I xRiy i, i=1 ,2}. In particular, [Ex Q] = { <x,<x,p_i» I xED}.

The reader should verify himself, using the interpretation of 1r. in example 4.1,
l

that [R 1 x ••• xR];1r. = R., i=1, ... ,n. Notice also that n l l

[R1 x ... xR];(1r. ;TI1 n ••. n1r. ;-lrk) = (R. ;n1 n ••• n R. ;¥k), for 1~j
1
< ••• <jk~n,

n J 1 Jk J 1 Jk
i.e., a list of n parameters called-by-name, of which only the j 1-st, ... ,jk-th compo-

nents are invoked, is equivalent with the list of k invoked parameters which are

called-by-value.

Nevertheless, for a relational calculus this element-wise description is not

appropriate. Therefore we introduce the following constants:

Let D,D1, ••. ,Dn be as above, then the relation constants *1, .. ·,*n are defined by

for i=1, ... ,n. O

x = p_i, in case x.
J

x ED-pt, provided

x. :f. pt. for at
J . J

= pt . , j = 1 , ••• ,n ,
-J

x. = pt., and
l -i

least one j, j-:/,i,

undefined, otherwise,

(4.1.4)

26

The introduction of these constants is motivated by the following property: *· trans­
l

forms any non-basepoint into any n-tuple, the i-th component of which is pt., pro­
--i

vided this n-tuple is not composed out of basepoints altogether. Hence we have

[R x ••• x R J = u { (n R. ; rr.) n (n ;'_) } .
1 n I~{ 1 , ..• ,n}, iEI 1 1 id 1 , ... ,n}-I 1

and I#0

For example, [R 1 xR
2

] = (R 1 ;1r1 n R2 ;-rr'
2

) u (*1 n R
2
;i2) u ,(R1 ;rr1 n *

2
).

In general, the, ALGOL 60 parameter mechanism allows within the same parameter

list for a combination of parameters called-by-value and called-by-name. This combi­

nation of parameter mechanisms results in a product of relations, which reflects this

mixed structure.

Let procedure f hav~ for simplicity a parameter list of n components, the first k

components of.which are called-by-value, and the last n-k components of which are

called-by-name. Lets denote a statevector. As in our formal model of description the

parameter list is separated from the procedure call, cf. section 1.1, the separation

of (f1(s), ... ,fn(s)) from the call f(f 1(s), ..• ,fn(s)) results rn an expression of the

form [f
1

(s) x .•. x fn (,)]~{ 1 ' · · · ,k} ;P, where the value of

[f
1

(s) x ... x fn (s)]value{ 1 '· · • ,k} is only defined in case the evaluation of the first

k parameters, the call-by-value parameters f 1(s), ... ,fk(s), terminates. Therefore a

relational description of this parameter list is obtained by introducing a product of

t . [R R Jvalue{1, ... ,k} . . f" rela ions 1 x ••• x n -- , which satis ies

, [R1 x •.. R]value{1, ... ,k}. = R E. . R R
X n ,1fi 1° , .•• , k 0 E; i'

for i=1, ... ,n.

In general, such products are interpreted as follows:

Let D,D 1, ... ,Dn be given as above. Let J ~ {1, ... ,n} and let I= {1, •.. ,n}-J. Then

[R x •.. x R]Value J is defined by:
1 n

for J £ {1, .•. ,n} s.t. J # ¢:

[R R]value J =
1 X • • • X n u {(n R.;-rr.) n (n Rk;1rk) n (n *k)},

K~I jEJ J J kEK kEI-K (4.1.5)
for J = 0:

value 0 (v) [R 1 x •.• xR J-- = U -.u.{ n Rk;1rk n (n *)}.
n &:I,Kr-~ kEK kEI-K k □

=

R1oE ;Ri, i=1,2,3.

Observe finally that both the call-by-value and the call~by-name product can be ob­

tained as special case of the product defined above by taking J = {1, •.. ,n} and

J =¢,respectively. ,

27

4.2. A calculus for recui>sive procedures with Vanous pai>ameter mechanisms

4.2.1. Language

. The language MU* for basepoint preserving relations over cartesian products of

domains with unique basepoints, which has minimal fixed point operators, is a simple

extension of the language MU, defined in section 2.1.

* The syntax of MU is obtained from the syntax of MU by adding for n~2 the logi-
n1x· .• xn ,n•

cal relation constants* n 1 for i=1, ••. ,n, and all n1, ..• ,nn' to the ele-i ,
mentary terms of MU.

The semantics of MU* is determined by considering binary relations over domains

with unique basepoints only, observing restrictions (4.1.1) and (4.1.2), and inter-
. n1x ... xnn,Tli n1x .•. xn ,Tl·

preting ~- and*· n i as in (4.1.3) and (4.1.4), for i=1, ..• ,n, and
i i

all n1, •.• ,nn: Hence,

(1) m(Qn,e) = {<p1n,P1e> p¾ E Dn, Pie E De}, m(En,n) = {<x,x> Ix

m(un,e) = {<x,y> I x E Dn -{p¾}, YE De - {pie}} u {<p¾,pie>},

(2) interpretations of elementary relation constants An,e satisfy

m(Qn,e) ~ m(An,e) ~ m(un,e),

ED},
n

(3) interpretations of pairs <pn,n,P,n,n> of boolean constants satisfy

m(Qn,n) ~ m(pn'n) ~ m(En'n), m(Qn,n) ~ m(p'n,n) ~ m(En'n), and

m(pn'n) n m(p'n'n) = m(Qn,n),

(4) inter~retations of relation variables xn,e satisfy m(Qn,e) ~ m(Xn,e) ~ m(un,e),

(5)

(6)

the operators "u", "n", ";", 11
"'

11 are interpreted as usual, and the

is interpreted by m(Xn'e) = (m(un,e) - m(Xn'e)) u m(Qn,e),
"-" operator

µ.X 1 ... X [cr1, ... ,cr] is interpreted as the i-th component of the (unique) minimal
i n n

fixed point of the transformation <m(cr1), .•• ,m(crn)> acting on n-tuples of rela-

tions satisfying (4.1.1) and (4.1.2), i=1, ... ,n. Observe that it follows from the

definitions that any fixed point of <m(cr1), ..• ,m(crn)> acting on these relations

satisfies (4.1.1) and 4.1.2); hence the minimal fixed point of this transforma­

tion, being the intersection of all these fixed points, satisfies (4.1.1) and

(4. 1 . 2) also.

4.2.2. Axiomatization

MU* is axiomatized by replacing in the axiom system for MU, as contained in

chapter 2, axioms c1 and C2 by BP1, BP2, BP
3

, BP4 and BP
5

below: For n~2,

I- ..., "' n 1 x ••. xnn, n 1 x ..• xnn
BP1 *1;*1 n ·•· n *n;*n = Q

28

C

BP5 For all I# {1, •.. ,n} s.t. I#¢:

I- .n
1

x. ;Y. = {(.n x. ;¥.)
lE l l lEI l l

{(.n 'IT.;Y.)
lEI l l

and for I= {1, ••. ,n}:

n(.{ n } lE 1 , ... ,n -I
n (. { n } lE 1, ... ,n -I

~ .n
1

x.;Y. = (.n x.;'li-'.);(.n 'IT.;Y.),
lE l l lEI l l lEI l l

*·)};
l

*.) } ,
l

with 'IT. and*· of types (n 1x .•. xn ,n.), and X. and Y. of types (e,n.) and l l Ill l l l
(n.,~), respectively, i=1, ... ,n.

l

LEMMA 4.1. Let n~2, i=1, .•. ,n, and j=1, ... ,n, then

l-
.., u, i#j' and I- Q. a. *·;'IT. = *·;'IT. =
l J l l

b. For I-
i#j, and I-

..,
n=2: *· ;*. = Q, *i;*i = u.

l J
For n~3: I- v u. *· =*- =

l J
I- V u, i#j, and I-

..,
E. c. 'IT. ;'IT. = 'IT. ;'IT. =

l J l l

Proof. We prove parts a and b only.

a. *.;'IT.= U, i#j: The case n=2, i=1, j=2 is representative.
l J

*
1

= *1 n ('IT2 u *2);U and 'IT2 = ('IT 1 u *1);U n 'IT2 follow by BP4 from lemma 2.3.c.

Hence, *1 ;'IT2 = (*1 n U;(i2 u *2));(('IT 1 u *1);U n 'IT2) ~ (lemma 2.1.f, BP2)

(* 1 n U ; 'IT 2) ; (* 1 n 'IT 2 ; E) = (BP 5) U • * i ; 'IT i = Q : * i ; 'IT i = * i ; * i o E ; 'IT 2 a E ; 'IT 2 = Q ,

since *iaE ;'ITi 0 E ~ *i;~i n 'ITi;'ITi = (BP3) Q.

b. *i;*. = n, i#j, n=2: t 1;*2 = (*1 n U;(*2 u *2));(('IT 1 u *1);U n *2) = (BP2)

((*/n U;t
2

) u (*1 n *
2

));(('IT 1;U n *2) u (*1 n *2)) = (i;1 n U;'IT2);('IT1 ;U n *2),

since *1 n *2 = Q follows from BP1 ; moreover, (*1 n U;~2);('IT1 ;u n *2) ~ *1;'IT 1 ;u =

(part a) Q. *·;*. = U, for n=2, and*·;*.= U, i#j, for n~3: proved u~ing similar l l l J
techniques. 0

Let [X
1

x ..• x Xn] value J be defined as in (4. 1. 5). Then the proofs of corol­

laries 4.1 and 4.2 follow from lemma 4.1 and the definitions.

COROLLARY 4. 1 . ~ X. oE ; ... ;X. oE ;X., i=1, .•. ,n.
J1 Jk l

COROLLARY 4.2. I [X
1

x ... xX]~{j1, ..• ,jm}.('IT •,r
r n • k ' 1

(..,, ..,,) 1
n ... n ~k ;~) =

p p
= X. oE ; ... ;X. oE ; ~ ;'IT 1 n ••. n X. ;'IT •

J 1 Jm 1 i p p

5. CONCLUSION AND RELATED WORK

5 . 1. Cone lusion

This investigation shows that

1. The relational approach allows a unified axiomatization of both call-by-value and

certain aspects of call-by-name (chapter 1 and 4).

2. A theory of correctness of programs requires an operator describing the inter­

action between programs and predicates; in the present theory this is the 11011

operator (theory: section 2.2.2, applications: sections 3.2 and 3.4).

3. The 11
0

11 operator is crucial to an expedient formalization of the call-by-value

parameter mechanism (theory: section 2.2.3, application: section 3.4).

29

4. The axiomatization of correctness proofs for recursive programs can be applied to

recursive data structures (sections 3.3 and 3.4, the main reference being

Hitchcock and Park [15]).

5. Informal use of structural induction may lead to understandable and conceptually

attractive correctness proofs (section 3.4.1, the main reference being Burstall

[2]; cf. also section 6. 3 .a of De Roever [9] which contains an informal correct­

ness proof for the recursive solution of the Towers of Hanoi problem).

Notably, we have not discussed the topic of providing any operationally, inter­

preter-defined~ semantics for the various programming concepts whose mathematical

semantics were axiomatized. Here the main issue is that one must actually prove that

the interpreter-defined input-output behaviour of the programs of one's particular

programming language coincides with the mathematically defined semantics of the cor­

responding (relational) terms.

An interpreter for a simple recursive programming language with call-by-value as

parameter mechanism has been defined in De Roever [8 , 9] • The input-output behaviour

of the programs of this language has been proved to coincide with the mathematical

semantics of the corresponding relational terms in De Roever [9].

Using the techniques of introducing parameters called-by-name by procedures which

have these parameters as their bodies (suggested in this context by J.W. de,Bakker),

and of describing an invokation of such a parameter by a call of the corresponding

procedure, we defined an interpreter for a recursive programming language with both

call~by-value and call-by-name as parameter mechanism, with the use of the latter

being restricted as in section 1.2. A proof that the input-output behaviour again

coincides with the mathematical semantics is presently being investigated.

5.2. Related work

This discussion of related work confines itself mainly to the relational ap­

proach to correctness of recursive programs. Dominant in this approach is the minimal

fixed point characterization, which is initiated by Scott and De Bakker in [29],

elaborated by De Bakker in [4], and crossbred with Tarski' s algebra of relations

[30] in De Bakker and De Roever [6] to yield an axiomatic framework for proving

equivalence, correctness and termination of first-order recursive programs with one

variable. The present paper amplifies on the latter in that that the restriction to

one variable is removed by considering arbitrary subdivisions of the state; these are ,.
incorporated within the relational framework by considering binary relations over

cartesian products of domains, introduced in unpublished work of Milner [23] and

Park [26]. In De Roever [9] we (1) clarify the distinction on the one hand and the

30

connection on the other between operational and mathematical semantics, (2) axiom­

atize the natural numbers, lists, linear lists and ordered linear lists within the

relational framework, and (3) give numerous axiomatic correctness proofs for programs

which manipulate values from these domains, with special emphasis on axiomatic list

manipulation and correctness of the recursive solution of the Towers of Hanoi problem.

The connection between induction rules and tePmination proofs is described in

Hitchcock and Park [15] and elaborated in Hitchcock's dissertation [14], which also

contains a correctness proof of a translator of arbitrary recursive programs into

regular recursive procedures with stacks, and an axiomatization of finite domains.

Maximal fixed points, introduced by Park in [25], are applied in Mazurkiewicz

[21] to obtain a mathematical characterization of divergent computations, and may

lead to the axiomatization of Hitchcock and Park's results within an extension of our

framework.

In a different setting Blikle and Mazurkiewicz [1] also use an algebra of rela­

tions to investigate programs.

The completeness of the method of inductive assertions for general recursive

procedures is proved in De Bakker and Meertens [7] .

The relation between the minimal fixed point characterization and various rules

of computation is studied by Manna, Cadiou, Vuillemin and their colleagues in, e.g.,

Manna and Vuillemin [20], Cadiou [3] and Vuillemin [31].

The works of Dijkstra [10,11], Hoare [16] and Wirth [32] relate to the present

paper in that we provide a possible axiomatic basis for some techniques of structured

programming; e.g., our correctness operator 11
0

11 is independently describ,ed in

Dijkstra [11].

ACKNOWLEDGEMENTS

The original incentive which lead to this work arose out of the lectures of

E.W. Dijkstra, C.A.R. Hoare, and N. Wirth at the International Summer School on Pro­

gram Structures and Fundamental Concepts of Programming, organized by F.L. Bauer,

H.J. Helms and M. Paul in 1971.

I am deeply indebted to my thesis adviser J.W. de Bakker for his guidance during

my studies and his scrutiny of my writings, which lead to numerous improvements.

I am grateful to M. Nivat for his remarks about the first version of this paper,

for his invitation to lecture at the University of Paris and at IRIA~and for pub­

lishing its second version in the Seminaires IRIA series.

This particular paper would not have been written were it not for the constant

support of Peter van Emde Boas, and his interest in my work.

BIBLIOGRAPHY

[1 J Blikle, A. , and A. Mazurkiewicz, An algebraic approach to the theor-y of programs,

algorithms., languages and reeu:l'siveness, in Proc. of an International

Symposium and Summer School on the Mathematical Foundations of Computer

Science, Warsaw-Jablonna, 1972.

31

[2] Burstall, R.M., Proving properties of programs by structural induction, Comput.

J. , Jg_ (1969) , 4 1-48 ..

[3] Cadiou, J.M., Recursive definitions of partial functions and their corrrputations,

Thesis, Stanford University, 1972.

[4] De Bakker, J.W., Reeu:l'sive procedures, Mathematical Centre Tracts 24, Amsterdam,

1971.

[5] De Bakker, J. W., Reeu:l'sion., induction and symbol manipulation, in Proc. MC-25

Informatica Symposium, Mathematical Centre Tracts 37, Amsterdam, 1971.

[6] De Bakker, J.W., and W.P. de Roever, A calculus for recursive program schemes,

in-Proc. IRIA Symposium on Automata, Formal languages and Programming,

M. Nivat (ed.), North-Holland, Amsterdam, 1972.

[7] De Bakker, J.W., ·and L.G.L.Th. Meertens, On the completeness of the inductive

assertion method, Prepublication, Mathematical Centre Report IW 12/73,

Amsterdam, 1973,

[8] De Roever, W.P., Operational and mathematical semantics for recursive polyadic

program schemata (Ea:tended abstract), in Proceedings of Symposium and

Summer School 11Mathematical Foundations of Computer Science", 3-8 Septem­

ber 1973, High Tatras, Czechoslovakia, pp.293-298.

[9] De Roever, W.P., Operational., mathematical and a:xiomatized semantics for re­

cursive procedures and data structures, Mathematical Centre Report ID/1,

Amsterdam.

[10] Dijkstra, E.W., Notes on structured programming, in Hoare, C.A.R.,

Dijkstra, E.W., and 0.J. Dahl, Structured Programming, Academic Press,

New York, 1972.

[11 J Dijkstra, E.W. , A simple aa:iomatic basis for prog:r>amming la:aguage constructs,

Indagationes Mathematicae, 36 (1974) 1-15,

[12] Garland, S.J., and D.C. Luckham, T:r>anslating :r>ecursion schemes into p:r>og:r>am

schemes, in Proc. of an ACM Conference on Proving Assert.ions about Pro­

grams, Las Cruces, New Mexico, January 6-7, 1972,

[13] Guessarian, I., Su:r> une :r>eduction des schemas de p:r>o{JT'ammes polyadiques a des

schemas monadiques et ses applications, Memo GRIT no. 73. 05, Universite

de Paris, 1973.

[14] Hitchcock, P., An app:r>oach to fonnal :r>easoning about p:r>og:r>ams, Thesis, Univer­

sity of Warwick, Coventry, England, 1974.

[15] Hitchcock, P., and D. Park, Induction rules and proofs of termination, in Proc.

IRIA Symposium on Automata, Formal Languages and Programming, M. Nivat

'(ed.), North-Holland, Amsterdam, 1972.

[16] Hoare, C.A.R., An aa:iomatic basis fo:r> aorrrpute:r> p:r>og:r>amming, Comm. ACM, 12 (1969)

576-583.

32

[17] Hotz, G., Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, Electron. Infor­

mationsverarbeit. Kybernetik, ~ (1966), 235-246.

[18] Karp, R.M., Some applications of logical syntax to digital computer programming,

Thesis, Harvard University, 1959.

[19] Knuth, D.E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms,

Addison Wesley, Reading (Mass.), 1968.

[20] Manna, Z., and J. Vuillemin, Fixpoint approach to the theory of computation,

Comm. ACM, .12. (1972) 528-536.

[21] Mazurkiewicz, A., Proving properties of processes, PRACE CO PAN-CC, PAS Reports

134, Warsaw, 1973.

[22 J McCarthy, J. , A basis for a mathematical theory of computation, in Computer Pro­

gramming and Formal Systems, pp.33-70, P. Braff'ort and D. Hirschberg

(eds.), North-Holland, Amsterdam, 1963.

[23] Milner, R., Algebraic theory of computable polyadic functions, Computer Science

Memorandum _lg_, University College of Swansea, 1970.

[24] Morris Jr., J .H., Another recursion induction principle, Comm. ACM, l!!_ (1971)

351-354.

[25] Park, D., Fixpoint induction and proof of program semantics, in Machine Intel­

ligence, Vol. 5, pp.59-78, B. Meltzer and D. Michie (eds.), Edinburgh

University Press, Edinburgh, 1970.

[26 J Park, D. , Notes on a formalism for reasoning about schemes , Unpublished notes ,

University of Warwick, 1970.

[27] Scott, D., Outline of a mathematical theory of computation, in Proceedings of

the Fourth Annual Princeton Conference on Information Sciences and Sys­

tems, pp.169-176, Princeton. 1970.

[28] Scott, D., Lattice theory, data types, and semantics, in NYU Symposium on formal

semantics, pp.64-106, Prentice Hall, 1972.

[29 J Scott, D. , and J. W. de Bakker, A theory of programs, Unpublished notes, IBM

Seminar, Vienna, 1969.

[30] Tarski, A., On the calculus of relations, J. Symbolic Logic, 6 (1941) 73-89.

[31] Vuillemin, J., Proof techniques for recursive programs, Thesis, Stanford Univer­

sity, 1972.

[32] Wirth, N., Program development by stepwise refinement, Comm. ACM, l!!_ (1971)

221-227.

[33] Wright, J.B., Characterization of recursively enumerable sets, J. Symbolic

Logic, 37 (1972) 507-511.

