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RECURSION AND PARAMETER MECHANISMS: 

AN AXIOMATIC APPROACH *) " 

W.P. DE ROEVER 

ABSTRACT. Minimal fixed point operators were introduced by Scott and De Bakker in 

order to describe the input-output behaviour of recursive procedures. As they con­

sidered recursive procedures acting upon a monolithic state only, i.e., procedures 

acting upon one variable, the problem remained open how to describe this input-output 

behaviour in the presence of an arbitrary number of components which as a parameter 

may be either called-by-value or called-by-name. More precisely, do we need differ­

ent formalisms in order to describe the input-output behaviour of these procedures 

for different parameter mechanisms, or do we need different minimal fixed point 

operators within the same formalism, or do different parameter mechanisms give rise 

to different transformations, each subject to the same minimal fixed point operator? 

Using basepoint preserving relations over cartesian products of sets with unique 

basepoints, we provide a single formalism in which the different combinations of 

call-by-value and call-by-name are represented by different products of relations, 

and in which only one minimal fixed point operator is needed. Moreover this mathe­

matical description is axiomatized, thus yielding a relational calculus for recur­

sive procedures with a variety of possible parameter mechanisms. 

O. STRUCTURE OF THE PAPER 

The reader is referred to section 1.2 for a leisurely written motivation of the 

contents of this paper. 

ChapteP 1. Section 1.1 deals with the relational description of various programming 

concepts, and introduces as a separate concept the parameter list each parameter of 

which may be either called-by-value or called-by-name. In section 1.2 Manna and 

Vuillemin's indictment of call-by-value as rule of computation is analyzed and re­

futed by demonstrating that call-by-value is as amenable to proving properties of 

programs as call-by-name. 

ChapteP 2. In section 2.1 we define a language for binary relations over cartesian 

products of sets which has mtnimal fixed point operators, and in section 2.2 a cal­

culus for recursive procedures, the parameters of which are called-by-value, is 

developed by axiomatizing the semantics of this language. 

ChapteP 3. The calculus presented in section 2.2 is applied to prove an equivalence 

due to Morris,and Wright's regularization of linear procedures; then lists are ax­

iomatized,and a correctness proof for a version of the Schorr-Waite marking algo-
,. 

rithm is given, first informally and then formally. 

*) To appear in Pr>oaeedings of the Seaond Symposium on Automata, Languages and 
PPogPamming, Saarbrucken, July 29 - August 2, 1974, Lecture Notes in Computer 
Science, Springer-Verlag, Berlin etc. 
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Chapter 4. Using basepoint preserving relations over cartesian products of sets with 

unique basepoints, we demonstrate in section 4.1 how a variety of possible parameter 

mechanisms can be described by using different products of relations. In section 4.2 

these relations are axiomatized. 

Chapter 5. In section 5.1 we formulate some conclusions and briefly discuss the 

topic of providing operational, interpreter-based, semantics for the various program­

ming concepts, the mathematical semantics of which we axiomatized in chapters 2 and 

4. Finally, section 5.2 is devoted to related work. 

1. PARAMETER MECHANISMS, PROJECTION FUNCTIONS, AND PRODUCTS OF RELATIONS 

1.1. The relational description of programs and their properties 

The present paper presents an axiomatization of the input-output behaviour of 

recursive procedures, which manipulate as values neither labels nor procedures, and 

the parameters of which may be either called-by-value or called-by-name. It will be 

argued that, in case all parameters are called-by-name, we may confine ourselves, 

without restricting the generality of our results, to procedures with procedure 

bodies in which at least one parameter is invoked, describing calls of the remaining 

ones by suitably chosen constant terms. 

The main vehicle for this axiomatization is a language for binary relations, 

which is rich enough to express the input-output behaviour of programming concepts 

such as the composition of statements, the conditional, the assignment, systems of 

procedures which are subject to the restriction stated above and which call each 

other recursively, and lists of parameters each of which may be either called-by­

value or called-by-name. 

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and final 

states. The undefined statement L: goto Lis expressed.by the empty relation Q over 

D. The dummy statement is expressed by the identity relation E over D. 

Define the composition R1;R2 of relations R1 and R2 by R1 ;R
2 

= 

= {<x,y> I 3z[<x,z> E R1 and <z,y> E R2 J}. Obviously this operation expresses the 

composition of statements. 

In order to describe the conditional if p then s
1 

else s
2

, one first has to 

transliterate p: Let D1 be p-1(true) and D2 be p-1(false), then the predicate pis 

uniquely determined by the pair <p,p'> of disjoint subsets of the identity relation 

defined by: <x,x> E p iff x E D1, and <x,x> E p' iff x E D2 , cf. Karp [18]. If Riis 

the input-output behaviour of S., i=1,2, the relation described by the conditional 
l 

above is p;R 1 u p';R
2

. 

Let 1r.: Dn + D be the projection function of Dn on its i-th component, 
l 

i=1, ••• ;n, let the converse R of a relation R be defined by R = {<x,y> I <y,x> ER}, 

and let R1, ••. ,Rn be arbitrary relations over D. Consider R1;*1 n ••• n Rn;~n· This 

relation consists exactly ofthosepairs <x,<y1, ..• ,yn>> such that <x,yi> E Ri for 

i=1, ••• ,n. Thus this expression terminates in x iff all its components R. terminate 
l 



in x. Observe the analogy with the following: The evaluation of a list of parameters 

called-by-value terminates iff the evaluation of all its parameters terminates. 

In case of a state vector of n components, an assignment to the i-th component 

of the state, x. := f(x1,····x ), is expressed by TI1;*1 n .•• n TI. 1;i. 1 n R;rr. n 
l n 1- 1- l 

V .., 

n Tii+1;Tii+1 n ••• n Tin;Tin' where the input-output behaviour off is expressed by R. 

This description satisfies Hoare's axiom for the assignment (cf. section 2.2.3). D 
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Note that the input~output behaviour of systems of recursive procedures has not 

been expressed above; this will be taken care of by extending our language for binary 

relations in chapter 2 with minimal fixed point operators, introduced by Scott and 

De Bakker [ 29] . 

Our use of the parameter list as a separate programming concept merits some 

comment. In ALGOL 60 the evaluation of the parameter list (f1(,), .•• ,fn(,)) 1s ~art 

of the execution of the procedure call f(f 1(,), ••. ,fn(,)), with, denoting the state 

vector. In case all parameters are called-by-value one might introduce 

[f1(,), ••• ,fn(,)J as a separate programming concept with the following semantics: 

execution of [f1(,), ..• ,fn(,)J amounts to the independent evaluation of the values 

of f 1(,), ••• ,fn(,), and results in then-tuple consisting of these values. Provided 

all state components which are accessed in the original procedure body off are also 

contained in its parameter list, the procedure call f(f1(,), •.. ,fn(,)) can then be 

replaced by an expression of the form [f1(,), ... ,fn(,)J;P, where P has no parameters 

and operates upon a state the components of which are accessed by the projection 

functions.TI 1, ..• ,Tin. 

The generalization of this parameter list construct to the case where,parameters 

may also be called-by-name dictates our restriction, that, in case all parameters 

are called-by-name, we must confine ourselves to procedures with procedure bodies in 

which at least one parameter is invoked. This will be explained next. 

Given a terminating call of a procedure some parameters of which are called-by­

value, the remaining one being called-by-name, the very fact of termination of this 

call guarantees termination of the evaluation of the parameter expressions which are 

called-by-value; however, the termination of this call guarantees the termination of 

the evaluation of a parameter expression which is called-by-name only in case its 

value is actually needed inside the procedure body. Thus the evaluation of some para­

meter expressions need not terminate at all. If one then separates the parameter 

list from the actual procedure call as above, one is faced with the problem that 1n 

the output of the generalized parameter list one has to handle the undefined compo­

nents. In order to complete an operationally partially defined n-tuple to an output 

which is a formally well-defined n-tuple, we introduce a formal element, the so­

called basepoint, whose function is merely to represent the operationally undefined 

components • .,Thus, a basepoint represents a nonterminating computation whose value is 

sirrrply not asked for, and hence may not be transformed into any operationally well­

defined value, for otherwise the relevance of our theory to actual programming gets 
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lost. On the other hand, in case of a terminating procedure call of which none of 

its parameters terminate, e.g., the call f("L:goto L","L:goto L") of the integer 

procedure f(x,y);f := 1, the separation of the parameter list from the call results 

in an expression of the form ["L:goto L","L:goto L"];P with P always producing an 

operationally completely defined output, even if its formalized input consists of a 

pair of two basepoints, signalling an operationally completely undefined value as 

input; i.e., P transforms an operationally undefined value into an operationally 

well-defined value, in violation of the above condition. We resolve this conflict by 

describing calls of those procedures, which produce an operationally well-defined 

output by not looking at any component of their input state, by suitably chosen con­

stant terms. Hence we may assume that, in case all parameters are called-by-name, a 

procedure asks for the value of at least one component of its input, and that conse­

quently, in case of a terminating call, the evaluation of the corresponding parameter 

expression terminates. 

Next we demonstrate how certain concepts, which we need in formulating correct­

ness properties of programs, can be expressed within the relational framevlork. 

EXAMPLE 1.2. Let the input-output behaviour of programs S, s
1 

and s
2 

be described by 

R, R1 and R
2

, and let the (partial) predicates p and q be represented by the pairs 

<p,p'> and <q,q'> of disjoint subsets of the identity relation, cf. example 1.1. 

With D as above, let the universal relation U be defined by U = D x D. R1 ~ R2 and 

R
2 
~ R1 together express equality of R1 and R2 , and will be abbreviated by R

1 
= R2 . ..., 

s1 and s2 ·are called equivalent iff R
1 

= R
2

. p ~ R;R and p ~ R;U both express termi-

nation of S provided pis satisfied. R;R ~ E expresses functionality of R, i.e., R 

describes the graph of a function. 

Correctness in the sense of Hoare [16], {p}S{q}, amounts to: if x satisfies 

predicate p and program S terminates for input x with output y, then y satisfies 

predicate q, and is expressed by p;R ~ R;q. 
V 

The 11
0

11 operator is defined by Rop = R;p;R n E. This operator has been inves-

tigated in De Bakker & De Roever [ 6] in order to prove (and express) various prop­

erties of while statements, and has been independently described in Dijkstra [11] 

using the term "predicate-transformer". It satisfies R;p;R n E = {<x,y> I <x,y> EE 

and <x,y> E R;p;R} = {<x,y> I x=y and 3z[<x,z> ER, <z,z> E p, and <z,y> ER]}= 

= {<x,x> I 3z[<x,z> ER and <z,z> E p]}. Thus, if R expresses the input-output be­

haviour of procedure f, and <p,p'> expresses the boolean procedure p, p(f(x)) = 

= true iff <x,x> E R0 p. If we take for p the identically true predicate, represented 

by <E,Q>, <x,x> E R0 E iff R is defined in x, i.e., RoE expresses the domain of con-
V 

vergence of R. Note that R;p;R n E = R;p;U n E. D 

1.2. Parameter mechanisms and products of relations 

Although in this section mostly partial functions are used, it is stressed that 

the formalism to-be-developed concerns a calculus of relations. 
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Given a set D and functions f: D + D, g: D x D + D, and h: D x D x D + D, 

<x,y ,z> r--+ <f(y) ,g(x,y) ,h(x,z ,x)> 

certainly describes a function of D x D x D into itself. For a relational description 

this element-wise description is not appropriate. Therefore, when dealing with func­

tions between or with binary relations over finite cartesian products of sets, one 

introduces projection functions (cf. example 1.1) in order to cope with the notion of 

coordinates in a purely functional (relational) way, thus suppressing any explicit 

mention of variables. E.g.,(*) describes the function {1r2 ;f,(1r1 ,1r2 );g,(1r 1,1r
3

,1r1);h). 

Again, this function has been described component-wise, its third component being 

(1r 1 ,1r
3

,1r1);h. This does not necessarily imply that 

holds! E.g., consider the following: f, g and hare paPtial functions, and, for some 

<a,b,c> ED x D x D, f{b) is undefined, but g(a,b) and h(a,c,a) are well-defined. 

Therefore <f(b),g(a,b),h(a,c,a)> is undefined as one of its components is undefined. 

The problem whether or not(**) is valid turns out to depend on the paPticular 

pPoduct of relations one wishes to describe, or, in case of the input-output behav­

iour of procedures, on the paPticulaP parameter mechanism used. 

In order to understand this, consider the values of fv(1,0) and fn(1,0), with 

integer procedures fv and fn declared by 

integer procedure fv(x,y); value x,y; integer x,y; fv:= if x=O then O else 

fv(x-1,fv{x,y) ), 

and 

integer procedure fn(x,y); integer x,y; fn:= if x=O then O else fn(x-1,fn(x,y)). 

Application of the computation rules of the ALGOL 60 report leads to the conclusion 

that the value of fv(1,0) is undefined and the value of fn(1,0) is well-defined and 

equal to O. 

In order to describe this difference in terms of different products of relations 

and projection functions, we first discuss two possible products of relations: the 

call-by-value product, which resembles the call-by-value concept from the viewpoint 

of convergence, and the call-by-name product, which incorporates certain properties 

of the call-by-name concept. 

Call-by-value product: Let f 1 and f 2 be partial functions from D to D, then the 

call-by-value product of f 1 and f 2 is defined by [f1,f2 ] = f
1

;~1 n f 2 ;*2 , cf. 

example 1.1. This product satisfies the following properties: 

(1) [f1,f2J(x) = <y1,y
2

> iff f 1(x) and f
2

(x) are both defined in x,and f 1(x) = y
1

, 

f 2 (x) = y
2

. 

(2) [f1,f2];1r1 ~ f 1 , as f 2(x), whence <f1(x),f2(x)>, and therefore 1r
1
([f

1
,f

2
J(x)), 

may be undefined in x, although f 1(x) is well-defined. 
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(3) In order to transform [f
1
,f2 ];TT 1 we therefore need an expression for the domain 

of convergence of f
2

. Using the 11011 operator introduced in example 1.2, this ex­

pression is supplied for by f 2°E, as f
2

°E = {<x,x> I 3y[y=f2(x)J}, as follows 

from example 1.2. Thus we obtain [f1,f2];TT1 = f 2°E ;f
1

. D 

Call-by-name product: Let f 1 and f 2 be given as above. For the call-by-name product 

[f1xf2] of f 1 and f
2 

we stipulate [f1xf2];TTi = fi' i=1,2. Hence TTi([f1xf2J(x)) = 

= f.(x), even if f
3 

.(x) is undefined, i=1,2. The justification of this property 
1 -i 

originates from the ALGOL 60 call-by-name parameter mechanism for which the require-

ment of replacing the formal parameters by the corresponding actual parameters within 

the text of the procedure body prior to its execution leads to a situation in which 

evaluation of a particular actual parameter takes place independent of the conver­

gence of the other actual parameters. Possible models for this product are given in 

chapter 4. D 

Before expressing the difference between f 1 and f 2 in the more technical terms 

of our relational formalism, we discuss the opinion of Manna and Vuillemin [20] con­

cerning call-by-value and call-by-name. We quote: "In discussing recursive programs, 

the key problem is: What is the partial function f defined by a recursive program P? 

There are two viewpoints: 

(a) Fixpoint approach: Let it be the unique least fixpoint fp. 

(b) Computational approach: Let it be the computed function fc for some given compu-

tation rule C (such as call-by-name or call-by-value). 

We now come to an interesting point: all the theory for proving properties of recur­

sive programs is actually based on the assumption that the function defined by a re­

cursive program is exactly the least fixpoint fp. That is, the fixpoint approach is 

adopted. Unfortunately, almost all programming languages are using an implementation 

of recursion (such as call-by-value) which does not necessarily lead to the least 
. . " " . . f~xpo~nt. Hence they conclude: .•• existing computer systems should be modified, and 

language designers and implementors should look for computation rules which always 

lead to the least fixpoint. Call-by-name, for example, is such a computation rule .•. ". 

At this point the reader is forced to conclude, that, according to Manna and 

Vuillemin, call-by-value should be discarded (as a computation rule). 

Before arguing, that, quite to the contrary, call-by-value is as suitable for 

proofs as call-by-name is, (the latter being accepted by Manna c.s.), we present 

their argumentation for indictment of the former rule of computation. 

Consider again the recursive procedure f defined by 

(***) f(x,y) ., if x=O then O else f(x-1,f(x,y)). 

They ob;erve that evaluation of f(x,y), (1) using call-by-name, results in computa­

tion of ')..x,y. if x;;;:o then O else .1, (2) using call-by-value, results in computation 

of ')..x,y. if x=O then O else .1, provided y is defined (where .1 is a formal element 
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expressing operational undefinedness). Then they argue that the minimal fixed point 

of the transformation 

T = AX • Ax,y. if x=O then O else X(x-1,X(x,y)) 

according to the rules of the A-cafoulus, where,, e.g. (Au,v.u)<x,y> = x holds, in­

dependent of the value of y being defined or not, can be computed, fork a positive 

natural number, by a sequence of approximations of the form 

Tk(Q) = Ax,y. if x=O then O else ••. if x=k-1 then O else i. 

Hence the minimal fixed point U Ti(Q) of T equals Ax,y. if x~O then O _else i. The 
i=1 - --

observation that this minimal fixed point coincides with the computation of(***) 

using call-by-name, but is clearly different from the computation of(***) using 

call-by-value, then leads them to denounce call-by-value as a computation rule. 

We shall demonstrate that computation of the minimal fixed point of the trans­

foY'mation implied by(***) gives the call-by-value solution, when adopting the call­

by-value product, while computation of the minimal fixed point of this transfoY'mation 

using the call-by-name pPoduct results in the call-by-name solution. Hence we come to 

the conclusion that the minimal fixed point of a transfoY'!Tlation depends on the par­

ticular relational product used, i.e., on the a:x:ioms and rules of the foY'mal system 

one applies in order to compute this minimal fixed point. 

We are now in a position to comment upon Manna and Vuillemin' s point of view: as 

it happens they work with a formal system in which minimal fixed points coincide with 

recursive solutions computed with call-by-name as rule of computation. Quite correct­

ly they observe that within such a system call-by-value does not necessarily lead to 

computation of the minimal fixed point. Only this observation is too narrow a basis 

for discarding call-by-value as rule of computation in general, keeping the wide 

variety of formal systems in mind. 

The transformation implied by(***), using call-by-value as parameter mechanism, 

is expressed within our formalism by 

where {i) p0 is only defined for O with p
0

(o) = O, (ii) Sis the converse of the 

successor function S, whence S ( n) = n-1 , n E JN , n ~ 1 • 
00 

It will be demonstrated that the minimal fixed point U T1 (Q) of this trans-
i=1 V 

formation is equivalent with rr 1;p0 , which is in our formalism the expression for the 

call-by-value solution of(***), 

(1) Tv(n) =[rr
1

;p
0

,rr2 J;rr 1 and [rr1;p
0

,rr
2

];rr
1 

= rr 1 ;p
0

; rr2°E, by a property of the call­

by-valtfe product; as totality of rr2 implies rr2 °E = E, we obtain Tv(n) = rr 1 ;p
0

• 
2 V ..., • 

(2) Tv(n) = rr1 ;p
0 

u [rr1;s,rr1;p0J;rr 1 ;p
0

. For [rr1;s,rr1 ;p
0

J<x,y> to be defined, both 

(rr1;s)<x,y> and (rr1;p
0

)<x,y> must be defined, i.e., both x ~ 1 and x = 0 have to 
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(3) 

(4) 

,J 

hold. As these requirements are contradictory, [1r1 ;S,1r1 ;p0 l;1r1 ;p0 = n, and there-
2 fore T (r,i) = 1r1 ;p

0
. 

Assumi:! T!~n) = 1r 1;p0 , one argues similarly that T!+
1
(n) = 1r 1;p0 . 

Hence .U T1 (Q) = '1T
1

;p
0

, which corresponds with Ax,y. if x=O then O else .1. 0 
1=1 V 

The transformation implied by(***), using call-by-name as parameter mechanism, 

is expressed by 

We demonstrate that the minimal fixed point .U T1 (Q) of this transformation corre-
1=1 n 

spends with )..x,y • if x?:0 then O else .L, Manna and Vuillemin' s call-by-name solution 

of ( ***): 

(1) Tn(Q) = [1r
1

;p
0

x1r
2

];1r
1 

and [1r
1

;p
0

xn·
2

J;1r
1 

= 1r
1

;p
0

, by definition of the call-by­

name product; clearly 1T 1 ;p0 
corresponds with )..x,y . if x=O then O else .L. 

(2) T!(n) = 1r
1

;p
0 

u [1r
1

;sx1r
1

;p
0

];1r
1

;p
0

, by (1); as [1r 1;sx1r1;p
0

];1r1 = 1r
1
;s, we have 

T~(r,i) = 1r
1

;p
0 

u 1r 1;S;p
0

, corresponding with )..x,y. if x=O then O else if x=1 then 

0 else .L. 
k v 

(3) Assume Tn(r,i) = 1r 1;p0 u 1r1;S;p
0 

u ••• u v v As ~k+1(n) 1T1 ;S; .•• S;po. Ln •• = 1T1 ;po u 

(k-1 )times 
u [1r 1;SxT!(n)];T!(n), it follows from the assumption that T!+1(n) = 1r1 ;p

0 
u 

~ ._, V • • 

u 1r 1;S;p
0 

u ••• u 1r1;s; ... S;p
0

, which corresponds with 

k times 

(4) 
)..x,y ~ if x=O then O else ... if x=k then O else .1. 

-;;;; • -- 00-- v -: -- --

Hence U T1 (Q) = U 1r
1

;S; ..• S;p
0

, corresponding with )..x,y. if x?:0,then 0 
i=1 n i=1 

(i-1)times 
else .L. D 

2. A CALCULUS FOR RECURSIVE PROCEDURES, THE PARAMETERS OF WHICH ARE CALLED-BY-VALUE 

2 • 1 • Language 

In this section we define MU, a language for binary relations over cartesian 

products of sets, which has minimal fixed point operators in order to characterize 

the input-output behaviour of recursive procedures. 

As the binary relations considered are subsets of the cartesian product of one 

domain Dn or cartesian product of domains Dn
1 

x ... x Dnn, and another domain De or 

e n1x.,.xn ,e1x •.. xe 
• .., · D n, n n cartesian product O.L domains De x ..• x e , terms cr or cr 

1 n 
denoting these relations are typed. Types will not be mentioned or discussed unless 

explicitly needed, and are formally defined in De Roever [ 9]. 

E~ . . . . An,e n,e ~ementary terms are the individual relation constants ,A1 , •.• , boolean 

relation' constants pn 'n ,P' n 'n, ... ,q n 'n ,q' n 'n, ... , logical relation constants Qn ,e, 
e 0 n 0 n1x, .. xnn,ni . . . . 

E' , U' and ,r. , 1=1, ... ,n, for the empty, identity and universal rela-
1 --

tions, and the projection functions, and the relation variables xn ' 6 ,X~ 'e, .•. , yn • 6 , ..•. 
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Compound terms are constructed by means of the operators";" (relational or 

Peirce product), "u" (union), "n" (intersection), " ..... " (converse and"-" (complemen­

tation) and the minimal fixed point operators "µ.", which bind for i=1, .•• ,n, n dif-
n1,B1 nn,en. i n1,e1 nn,en 

ferent relation variables x 1 , .•. ,Xn inn-tuples of terms cr1 , ••. ,crn , 

provided none of these variables occurs in any complemented subterm.. 

TeWls of MU are elementary or compound terms. The well-formed formulae of MU are 

called assePtions, and are of the form~ ~ 7, where~ and 7 are sets of inclusions 

between terms of the form. cr~•
8 s cr~'

8
, the so-called atomic fopmulae. 

FPee occurrences of the variables x
1 

, ••. ,Xn in a term cr are occurrences not con­

tained in any subterm. µ .... X •.• [ ••. ] of cr, and are indicated by writing cr(x1 , ••• ,X ). 
i n 

Substitution of terms T. for the free occurrences of X. in cr(X1 , ... ,X ), i=1, .•• ,n, 
i i n 

is denoted by cr(T
1

, .•. ,T ) or cr[T./X.]._
1 

; proper care has to be taken not to 
n i ii- , ... ,n 

substitute terms containing free occurrences of x 1, ••. ,X within µ.X 1 .•. X [cr1 , ... ,cr ], n i n n 
a care reflected in the formal definition of substitution contained in De Roever [ 9 J. 

The (mathematical) semantics m of MU is defined by: 

(1) providing arbitrary (type-restricted) interpretations for the individual relation 

constants and relation variables, interpreting pairs <pn,n,p,n,n> of boolean re­

lation constants as pairs <m(pn'n),m(p'n,n)> of disjoint subsets of the identity 
. ( n,n) . . . . nn,e En,n d relation m E , and interpreting the logical relation constants •• , an 

n,B n1x ••. xnn,ni ·- ( ) 
U , and ~i , i-1, ••• ,n, as the empty relation 0 s DnxD

0
, the iden-

tity relation over D, the universal relation Dn x D
0

, and the projection func-
. n 

tions with graph {<<x
1

, ••• ,x >,x.> Ix. E Dn , j=1, ••• ,n}, i=1, ..• ,n, 
n i J j 

(2) interpreting";", "u", "n", '""", "-" as usual, 

(3) interpreting µ-terms µ.X 1 ••• X [cr
1

, •.• ,cr] as the i-th component of the minimal 
i n n 

fixed point of the functional <m(cr1), •.• ,m(crn)> acting on n-tuples of relations. 

An assertion ~ ~ 7 is valid provided for all m the following holds: if the inclu­

sions contained in~ are satisfied by m, then the inclusions contained in 7 are 

satisfied by m. 

The main result concerning MU is the union theorem, 

C0 • 

m(µ.x
1 
.•. x [cr

1
, ..• ,cr J) = U m(cr~), 

i n n j=O i 
i=1, ..• ,n, 

j O j+1 ( j j) with cri defined by cri = Q, cri = cri cr 1 , ••. ,crn, i=1, ••. ,n. This theorem states that 

the (unique) minimal fixed point of a continuous transformation of n-tuples of rela­

tions can be obtained by a sequence of finite approximations, and is proved using 

the monotonicity, continuity and substitutivity properties, cf. De Roever [ 9 ]. One 

of its implications is the validity of Scott's induction PUle, formulated in section 

2.2.4. 

2.2. A.calculus foP PecUPsive pPoceduPes, the paPametePs of which aPe called-by-value 

De Bakker and De Roever describe in [ 6] a calculus for recursive procedures 
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which operate upon an undivided {monolithic) state vector. This calculus is general­

ized in the present section to recursive procedures, operating upon a state vector, 

the components of which can be accessed by using projection functions; conversely, 

the relational framework enables us to compose a new state vector from operated-upon 

components R1(s), •.. ,Rn(s) by the call-by-value product R1;~1 n ..• n Rn;tn, which 

is, as argued in section 1.2, a prerequisite for the relational description of the 

call-by-value parameter mechanism. We axiomatize projection functions (in section 

2.2.3) by introducing the following axiom schemes: 

We want to point out that chapter 4 is devoted to a generalization of the results of 

this chapter to basepoint preserving relations over cartesian products of sets with 

unique basepoints, a generalization which is motivated by our wish to obtain a formal 

description of call-by-value and certain aspects of call-by-name. 

The axiomatization of MU proceeds in four successive stages: 

1. In section 2.2.1 we develop the axiomatization of typed binary relations. 

2. This axiomatization is extended in section 2.2.2 to boolean constants. 

3. The axiomatization of projection functions in section 2.2.3 then results in the 

axiomatization of binary relations over cartesian products. 

4. The additional axiomatization of µ-terms in section 2.2.4 completes the axiomati­

zation of MU. 

2.2.1. Axiomatization of typed binary relations 

Consider the following sublanguage of MU, called MU
0

: 

The elementary terms of MU
0 

are restricted to the individual relation constants, 

relation variables and logical constants nn,s, En,n and Un,s of MU, i.e., boolean 

constants and projection functions are excluded. 

The compound terms of MU
0 

are those terms of MU which are constructed using these 

basic terms and the";", "u", "n", 11
"'

11 and 11
-

11 operators, i.e., the 11µ." operators 
i 

are excluded. 

The assertions of MU
0 

are those assertions of MU whose atomic formulae are inclusions 

between terms of MU
0

. D 

MU
0 

is axiomatized by the following axioms and rules: 

1. The typed versions of the axioms and rules of boolean algebra. 

2. The typed version of Tarski's axioms for binary relations (cf. [30]): 

~ cxn,e;Ye,s);zs,s = xn,e;(Ye,s;zs'~) 

~ jfn,s = xn ,s 
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T4 1-xn',;Es,s = xn,s 

T, (Xn,8;Y8,s) n zn,, = nn,s r (Y8,s;zn,s) n Xn,8 = Qe,n 

3. u 

In the sequel we omit parentheses in our formulae, based on the associativity of 

binary operators and on the convention that 

turn priority over "u". 

LEMMA 2.1. 

b. I- nn'~;xs,e = n n, e xn , ~. n s, e n ,.e = Q 
' ' 

c. I- En,n;xn,, = xn,~ 

d, I- un,s;u~,e = un,e 

e. I- '?ln,s = ns,n, En,n = En,n, u11•~ = u~,n 

II • II 

' 
has priority of "n", which has in 

f. I- xn'~;(Ys,e u z''e) = xn'~;Y~,e u xn'~;zs,e,(x~'e u y,,e);ze,n = 

= xs,e;ze,n u Y~'e;ze,n 

g. I- (Xn,~ u yn'~)v = Xn,s u yn,~,(Xn,s n yn•~r = Xn,~ n yn,,Jn,s = in,,. 

Except for the proof of part d, which is obtained using U and a law of boolean alge­

bra, the 'proofs for the typed case are similar to the proofs for the untyped case as 

contained in Tarski [30]. 

Lemma 2.1.a expresses monotonicity of""'" and";". Together with the obvious 

monotonicity of "u" and "n", this will be used in lemma 2.9 to establish monotonicity 

of syntactically continuous terms in general. 

Remarks. 1. Henceforward the laws of boolean algebra are used without explicit refer­

ence. 

2. Type indications ~e omitted provided no confusion arises. 

The proofs of the following two lemmas can be found in De Bakker and De Roever 

[ 6 ] . 

LEMMA 2.2. 1- X;Y n Z = X;(X;Z n Y) n z. 

A number of useful properties of relations and functions are collected in lemma 

2.3 below. Remember that XoE has been defined as X;X n E (cf. example 1.2). By con­

vention the " 0 " operator has a higher priority then the "; " operator. 

LEMMA 2.3. 

a. X;X c E I- X; (Y n Z) = X;Y n X;Z 

b. X s. E I- X = X 
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I-
.., ..., 

C • X = XoE ;X, X = X; X0 E, XoE = X;X n E, X;U = XoE ;U 
V 

d. X .s Y, Y;Y .s E r XoE; y = X 

I-
n n 

X.;Y.); 
v .., 

e. n X. ;Y. = X 0 E· ... , X 0 E· ( n y oE• ... ·' y oE. 
i=1 l l 1 , n , i=1 l l 1 ' n 

2.2.2. Axiomatization of boolean relation constants 

Partial predicates are represented within MU by pairs <pn,n,P,n,n> whose inter­

pretation is restricted to pairs of disjoint subsets of the identity relation cor­

responding to inverse images of true and false. MU
0 

is extended to MU
1 

by adding the 

boolean relation constants of MU to the basic terms of MU
0

. MU
1 

is axiomatized by 

adding the following two axioms to those of MU
0

: 

P1. I- Pn,n c En,n - , P,n,n .s En,n 

p2 I- Pn,n n P,n,n .s nn,n. 

The axiomatization of MU
1 

leads to a theory of conditionals (cf. ex. 1.1), as 

demonstrated by corollary 2.1, cf. McCarthy [22]. Again, proofs can be found in 

De Bakker and De Roever [ 6 ] or De Roever [ 9 ] . 

LEMMA 2.4. I- p = p, p;q = p n q. 

COROLLARY 2.1. Using the notation (p + X,Y) = p;X u p';Y, we have 1-(p+(p+X,Y),Z) = 

= (p + x;z),(p + x,(p + Y,Z)) = (p + x,z),(p + (q + x 1,x2 ),(q + Y1 ,Y2 )) = 

= (q + (p + x1,Y1),(p + x2,Y2)). 

COROLLARY 2.2. I- p;X n Y = p;(X n Y). 

.., 
In example 1.2 we defined the 11011 operator by X0 p = X;p;X n E. Its basic prop-

erties are collected in lemmas 2.5, 3.2, 3.3, and theorem 3.2. This operator is cru­

cial to a theory of programs since it enables a description of the interaction be­

tween programs and predicates. This is demonstrated by the axiomatization both of 

ordered data structures such as ordered linear lists (cf. De ~oever [ 9 ] ) , and of the 

call-by-value parameter mechanism contained in the following section. For other exam­

ples of its use we refer to De Bakker and De Roever [ 6 ] • 

LEMMA 2.5. 

a. I- (X; Y) op = Xo(Yop) 

b. I- (X u Y)op = Xop u Yop 

c. I- (X n Y)op 
V 

= X;p;Y n E 

I-
,. 

d. X;p .S Xop ;X 
,., 

I-e. X;X .SE X;p = Xop ;X 

f. X;p .S q;X I- Xop .s q. 
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Observe that from parts d and f of this lemma, we obtain X0 p = O{q I X;p ~ q;X}. 

2.2.3. Axiomatization of binary relations over cartesian products 

The language MU
2 

for binary relations over cartesian products is obtained from 
. . . . . n1x ..• xnn,Tli 

MU, by adding, for i=1, ••. ,n, proJection function symbols 1r. to the basic 
i 

terms of MU 1, for all types concerned. MU2 is axiomatized by adding the following two 

axiom schemes 

c1 

c2 

to the axioms 

I- .., 
7T1;7T1 n 

I- X1 ;Y 1 n 

and rules of MU 1: 

n 7T . ir 
n' n 

n X ·Y n' n 

= E 

n1x ..• xnn,n1x ••. xnn 
where 1r. is of type <n 1x •.. xn ,n.>, E stands for E ,and X. and Y. i n i i i 
are of types ·<e,n.> and <n.,~>, respectively, i=1, ... ,n. 

i i 

As remarked in example 1.1, an assignment V of the form xi·= f(x1 , ••• ,xn) is 

described by a term T of the form 1r 1 ;w1 n ••• n 1ri_1 ;1fi_1 n R;-rri n 7Ti+1 ;-rri+1 n 

... n 1rn;¥n. Hence Hoare's axiom for the assignment (cf. [16]) 

~ {p(x1 , ••• ,x. 1 ,f(x1, •.• ,x ),x.+1 , ••. ,x )}x. := f(x1, ... ,x ){p(x1 , ... ,x )} carre-
l- n i n i n n 

sponds with the assertion ~ T0 p ;T ~ T;p, as by example 1.2 {q1} V {q2} is expressed 

by q1 ;R ~ R;q2 and p(x1, •.. ,xi_1,f(x1 , ••• ,xn),xi+1 , •.• ,xn) = 
-.J 

= true iff <<x1, .•• ,xn>,<x1, ••• ,xn>> E T0 p. As functionality off implies T;T ~Eby 

lemma 2.11 below, this assertion follows from lemma 2.5.e. Thus leads the axiomatiza­

tion of MU2 to a theory of assignments. 

LEMMA 2.6. For i=1, ••• ,n: 

n 1 X • • • xn , n • n • , n • 
a. I- 1r. n 1 oE 1 1 = 

l. 

n{·. ,xn ,n. n, .~ 
b. I- 1r n 1 •U 1 

i , 

Proof. a. Let E 
n 

= ( lemma 2 • 3 • c ) 

n1x ••• xn ,n1x ••• xn 
E n . n 

n- ,n. 
E i. l. 

n E n 
= 

n .• ~ 
i 

b. 1r.;U 
i 

= (lemma 2.3.c) 
n1x· .• xn .~ 

= (part a above) U n 

c. Consider, e.g., n=2,i=1: 
n1,n1 

E 
n1,n1 n1,n1 n1,n1 n1,n1 

= (lemma 2.1.d) E ;E n U ;U 

n1 ,n1 "' n1 ,n1 ,J. n1 ,n1 n1 ,n1 
= (C2 ) (E ;1r1 n U ;1r2 );(1r 1;E n 1r2 ;u ) = 

= ( lemma 2 . 1 and part b above ) 1r 
1 

; 7T 
1 

• 

d. Consider, e.g., n=2, i=1 and j=2: 

n1,n2 n1,n1 n1,n2 n1,n2 n2,n2 
U = E ;U n U ;E 
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n 
Already in example 1.1 we signalled tha analogy between n X. ;i. and a list of 

i=n l l 
parameters called-by-value. From this point of view properties such as 

( 
n ~) n1x ... xnn,n1x ... xnn n ni,ni n X.;1r. 0 E = .n X. 0 E -the computation of such a list ter-

i=1 l l 1=1 l 
minates iff the computations of its individual members terminates- and 

n n n-,n-
(.n X.;i.);n. = (.n X.oE 1 1 );X. -the request for the value of a parameter con-
1=1 l l J 1=1 l J 

tained in such a list amounts to computation of the individual value of this para-

meter plus termination of the computation of the other parameters- are intuitively 

evident. These and similar properties follow from the following lemma and its corol­

lary. 

LEMMA 2.7. For k,l ~ n, 

.., 
, 8 e Ill , ,·( n X. ,·Y ),· Y oE 

. • 1 l S S 
, ... , 

lj=st,J= , ... ,k j t 1 
t=1, •.. ,1 

k _, 1 
= ( n x. ;n. );( n 1r ;Y ), with 1r. of type <n 1x ... xn ,n.>, and x. and Y of 

j=1 lj lj t=1 st st 1 n 1 lj st 
types <0,n. > and <n ,l;>, respectively, i=1, ••. ,n, j=1, ..• ,k, t=1, •.. ,l. 

lj St 

Proof. The case of n=3, k=l=2, i
1
=1, i 2=2, s

1
=2, s 2=3 is representatiye. Hence we 

prove x1°E ;X
2

oE ;X2 ;Y2 ; Y2oE ;Y
3

oE = (X1;ir1 n x2 ;i2 );(1r2 ;Y2 n 1r
3

;Y
3

). By lemma 2.6, 

.., ..., e,n3.- - . n1,l; . . x1 ;n 1 n x2 ;1r
2 

= x
1

;-ii\ n x
2

;i'2 n U ,1r
3 

and n
2

;Y
2 

n 1r
3

;Y
3 

- 1r 1 ,u An2 ,Y
2 

nn
3

,Y
3

, 

h ( X .., x .., ) ( Y Y ) ( c
2 

) x · un 1' t; x y u0 'n 3 . y w ence 1;1r1 n 2;1r2; 1r2; 2 n 1r3; 3 = 1' n 2; 2 n '3 
e i:- e i:- .., 

= (lemma 2.3.c) X
1

oE ;U ,s n x
2

;Y
2 

n U ,s; Y
3

°E 

= ( ) ( 0,l; 0,l; V ) V ._, lemma 2.3.e x
1

oE ;X
2
oE; x1oE ;U n x

2
;Y

2 
n U ; Y

3
oE; Y

2
oE; Y

3
oE. 

By corollary 2.2, x
1

°E ;u6 •l; n x
2

;Y
2 

n u6 •S; Y
3

oE = X
1

oE ;X
2

;Y
2

; Y
3

oE, whence the 

result follows by lemma 2.4. D 

n n 
COROLLARY 2 . 3 . I- ( n x. ; ¥. ) 0 ( n 

i=1 l l i=1 
<0,n.> and p. of type <n.,n.>. l l l l 

7f. ;p. ;-ir.) = X1op1 l l l X 0 p with X. of type n n' 1 

n n n n1x ... xn ,e 0 0 
(n "' v ) "') n nE' Proof. X. ;n.) 0 ( n 7r. ;p. ;1r.) = ( C2 ( 

1
.=n

1 
X. ;p. ;1r. ;U 

i=1 l l i=1 l l l l l l 
n ~ n1 ,e 

= (lemma 2.6.b) ( n X.;p.;1r.);1r1;U1 
i=1 l l l 

= (lemma 2.7) (X1;p1) 0 E ; .•. ; (Xn;pn) 0 E 

= (corollary 2.2 and lemma 2.5.a) x1°p 1 

On~ of the consequences of lemma 2.7 is 

n-1 n-1 n-1 

; ••• ; X op . 
n n 

~ ( n x.;ir.);( n n.;Y.) = 
i=1 l l i=1 l l 

.n X.;Y., 
1=1 l l 

□ 



15 

with 1r., X. and Y. of types <n
1
x •.. xn ,n.>, <0,n.> and <n. ,1;>, respectively. Assume 

1 1 1 ni 1 1 
n1 = n2 = •.• = nn for simplicity, then, apart from the intended interpretation of 

1T. as special subset of Dn x D, 
J_ 

" · C f 1 · h 0 h · t d b t f n-
1 

D axiom 
2 

or n-, in w ic 1r1 , •.• ,1rn_1 are interpre e as su se so D x 

"follows from" axiom C2 for n, n > 2 11
• 

This line of thought may be pursued as follows: Change the definition of type in that 

only compounds (n 1xn
2

) are considered, and introduce projection function symbols 

1r;nx1;),n and 1r1nx1;),1; only. For n > 2 define (n
1
x .•• xnn) as ( .•• ((n

1
xn

2
)xn

3
)x ..• xnn) 

n1x .•. xn ,n· . ((n1xn2)xn3),(n1xn2) (n1xn2),n1 
and 1Ti n 1 as, e.g., for n=3 and 1=1,2,3, 1r1 ;1r

1 
, 

((n1xn2)xn3),(n1xn2) (n1xn2),n2 ((n1xn2)xn3),n3 
1r

1 
;1r

2 
and 1r

2 
Then it is a simple exercise 

to deduce C
1 

and C2 for n=3 from axioms C1 and C2 for n=2. This indicates that our 

original approach may be conceived of as a "sugared" version of the more fundamental 

set-up suggested above. These considerations are related to the work of Hotz on X­

categories (cf. Hotz [17]). 0 

Arbitrary applications of the 11
v

11 operator can be restricted to projection func­

tions, as demonstrated below; this result will be used in section 3.2 to prove 

Wright's result on the regularization of linear procedures. 

Proof. We.prove X = t
1

;(E n 1r
1
;x;t

2
);1r2 • The result then follows by lemma 2.3.b. 

1r
1

;X;w2 n E = (C 1) 1r
1

;X;t2 n 1r1;t1 
n 1r2 ;~2 = (lemmas 2.6.c and 2.3.a) 

1r1;(X;*2 n ~1) n 1r2;*2· 

= (lemma 2.7) (X;~2 n t
1

);1r2 = (lemma 2.7 again) X. 

2.2.4. Axiomatization of the minimal fixed point operators 

□ 

MU is obtained from MU
2 

by introducing the"µ." operators, and is axiomatized 
J_ . 

by adding Scott's induction rule I and axiom scheme M, which are both formulated 

below, to the axioms and rules of MU
2

: 

I: 

nk,1;k 
<P I- 'l'[µkX1 ••. X [cr1, ... ,cr ]/X ]k=1 ' n n -11: , ••• ,n 

with IP only containing occurrences of X. which are bound (i.e., not free) and'¥ only 
J_ 

containing occurrences of x. which are not contained in any complemented subterm, 
• J_ 

i=1, ... ,n. 
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M: I- {cr.[µ.X1···x [cr,, ... ,cr ]/X.J._, 5:. µ.x, ... x ecr,, ... ,cr ]}._, • J 1 n n 1 1- , ••• ,n J n n J- , ... ,n 

The basic results about minimal fixed point operators are collected in lemma 

2.9, proved in De Bakker and De Roever [ 6], and lemma 2.10, which asserts that si­

mu.Zta:neous minimalization by µ.-terms is equivalent to successive singular minimal-
1 

ization by µ-terms,and is proved in Hitchcock and Park [15]. The modularity property 

( corollary 2. 4) , which is new, is proved in De Roever [ 9 ] • 

LEMMA 2.9. 

a. If , 1(x1, .•• ,xn,Y), ... ,,n(x1, .•. ,Xn,Y) are monotonic in x 1 , .•. ,Xn a:nd Y, i.e. 

A1 E B1, •.. ,An+ 1 5:. Bn+1 I- 'i (A1 , ••• ,An+l) 5:. 'i (B1 , •.. ,Bn+1), i=1, ... ,n, then 

Y1 5:. Y2 I- {µjX1 ... Xn[T1(X1,···•Xn,Y1) ... ,n(X1,···,Xn,Y1)] E 

E µ.x 1 .•. x CT 1(x1, ... ,x ,Y2 ) ... , (x1 , ••. ,x ,Y2 )JL_
1 

. 
J n n n n J- , ..• ,n 

b. (Monotonicity). If ,(x1, .•. ,Xn) is syntacticaZZy continuous in x1 , ••. ,Xn then, is 

monotonic in x 1, ••. ,Xn' i.e . ., x 1 5:. Y1, ... ,Xn 5:. Yn l- ,(x1, •.. ,Xn) 5:. 1(Y1 , •.. ,Yn). 

c. (Fixed point property). I- {,.[µ.X
1 
.•. X CT

1
, ... ,, ]/X.J._

1 
= 

J 1 n n 1 1- , ••• ,n 
= µ.X1 ... X [T1, ... ,T J}._1 . J n n J- , ... ,n 

d. (Minimal fixed point property, Park [25]). 

{T.(Y
1

, ... ,Y) E Y.}._
1 

J- {µ.X
1 
... X [,

1
, ... ,,] 5:. Y.}. 1 • 

J n J J- , ... ,n J n n J J= , ... ,n 

LEMMA 2.1Q. (Iteration, Scott and De Bakker [29]). 

I- µ.X 1 ••. x. 1x.x. 1 .•. x ecr1, ..• ,cr. 1 ,cr.,cr.+ 1 , ..• ,cr J = 
J J- J J+ n J- J J n 

= µX.[cr.[µ.X
1 
... x. 

1
x.+

1 
••• x [cr

1
, ... ,cr. 

1
,cr. 

1
, ... ,a J/X.J. 

1
],with 

J J l J- J n J- J+ n l lE 

I= {1, .•. ,j-1,j+1, .•. ,n}. 

COROLLARY 2.4. (Modularity). For i=1, ..• ,n, 

I- µiX1 · •• Xn[cr1 (-r 11 (x, '· • • ,xn)' · · · •' 1m(X1 '· · · ,xn)) '· · ·' 
cr (, 

1
(x1, .•. ,x ), .•• ,, (x1, ••. ,x ))J = 

n n n nm n 
= cr.(µ.1X11··-X [T11<cr1(X11'''·•x1 ), •.. ,cr (X 1'···,X )), .•. ,, ( •.• )], ..• ,µ ..•. ). 

11 nm m nn nm nm im 

Modularity has some interesting applications, e.g., it reduces the two-page 

proof of the "tree-traversal" result of De Bakker and De Roever [ 6] to a two-line 

proof, as demonstrated below. Let P*A be defined by P*A = µX[p;A;X u p 1
]. This 

construct describes the while statement while p do A. We quote: "Suppose one wishes 

to perform a certain action A in all nodes of all trees of a forest (in the sense of 

Knuth [19], pp.3O5-3O7). Let, for x any node, s(x) be interpreted as "has x a son?", 

and b(x) as "has x a brother?". Let S(x) be: "Visit the first son of x", B(x) be: 

"Visit the first brother of x", and F(x): "Visit the father of x". The problem posed 

to us c~n then be formulated as: Let T
1 

= µX[A;(s + S;X;F,E);(b-+ B;X,E)], and 

T2 = µX[A;(s + S;X; b*(B;X) ;F,E)J. Show that T1 = T2 ; b*(B;T2 )". 



Proof. Apply first corollary 2.4, taking n=1, m=2, o1(X,Y) = X;Y, T11 (X) = 

= A;(s + S;X;F,E), and T12(X) = (b + B;X,E), and apply then lemma 2.10. □ 
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The last lemma of this chapter states some sufficient conditions for provability 

of qi I- cr ;o :=. E' i.e. functionality of O. 

LEMMA 2.11. (Functionality). The assertion qi I- cr;o :=.Eis provable if one of the 

following assertions is provable: 
n 

I- ;o.}1<"<"< {cr. ;o. E}. . a. If o = .u 0. then qi {o. 0 E ; 0 . = o. oE u :=. 
1=1 l l J J l -1-J-n l l 1=1, ... ,n 

b. If o 
.., .., 

then qi I- {cr. ;o . C E}. • = 01 ;1r1 n ... n 0 . 1f 
n' n l l - 1=1, ... ,n 

If o then qi I- v 
:=. E, 

.., 
E. c. = o1 ;02 01;01 02;02 :=. 

d. If o 

qi I-
= o 1 ~ o 2 then qi I- cr 1 ; o 1 :=. E or qi j- cr 2 ; o 2 :=. E or qi I- a 1 ; o 2 :=. E or 
,J 

o
2

;o
1 

:=. E. 

e. If o = µ.X1 ..• x [01, ... ,o ] then qi,{X. ;X. :=. E}._1 I- {cr. ;o. :=. E}._1 , 
l n n l l 1- , •.. ,n l l 1- , ... ,n 

provided Xi does not oeeur free in qi, i=1, ... ,n. 

In the following chapter we shall use the following notations: 
V v 

1. [o1, •.• ,on] for o1 ;1r 1 n ••• n on;,rn. 

2. [011 ••• jon] for 1r1 ;o1;t1 n ••• n 1rn;on;*n· 

3. APPLICATIONS 

3 • 1 • An exanrp le due to Morris 

In [24] Morris proves equivalence of f(x,y) and g(x,y) given by: 

f(x,y).,. if p(x) then y else h(f(k(x),y)), - -- --
g(x,y).,. if p(x) then y else g(k(x),h(y)). - -- --

We present a proof in our framework. The following equivalence 1s stated without 

proof: 

LEMMA 3.1. I- [A1 I ... jA. 1 IA. IA. 1 I ... IA J;,r. = [A1 I ... jA. 1 jEjA. 1 I• .. IA ];1r. ;A .. 1- l 1+ n l 1- 1+ n l l 

THEOREM 3.1. (Morris) Let F = µX[[pjE];1r2 u [p'jEJ;[KjE];X;H] and 

G = µY[[pjEJ;1r2 u [p' IEJ;[K!HJ;YJ. Then 1- F = G, [EjH];G = G;H. 

Proof. Let qi be empty, f(X,Y) = {X = Y, [EjH];Y = Y;H}, 

o(X) = [pjE];1r2 u [p' IEJ;[KjE];X;H and T(Y) = [pjE];1r2 u [p' jEJ;[KjH];Y. Hence, we 

must prove 

•J- f(µX[o(X)], µY[T(Y)J) (3.1.1) 

We intend to use Scott's induction rule. Unfortunately, this rule (as formulated in 
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section 2.2.4) does not apply to (3.1.1), as, in case of a sirrrultaneous induction 

argument, it only yields results· about components of one sirrrultaneous µ-te1"171. How­

ever, the observation that I- µ1XY[cr(X) ,r(Y) J = µX[cr(X) J and I- µ2XY[cr(X) ,r(Y) J = 

= µY[T(Y)] are straightforward applications of iteration (lemma 2.10), gives us the 

equivalent assertion I- 1(µ
1
XY[cr(X),T(Y)], µ2XY[cr(X),T(Y)J) to which Scott's induc­

tion rule does apply. Thus, we have to prove: 

1. I- t(n,n). Obvious. 

2. X = Y, [EIHJ;Y = Y;H I- cr(X) = T(Y), [E!HJ;T(Y) = T(Y);H. 

a. cr(X) = T(Y) : [p!EJ;~2 u [p' IEJ;[K!EJ;X;H = (hyp.) [p!EJ;~2 u [p'IEJ;[K!EJ;Y;H = 

= (hyp.) [p!EJ;~2 u [p'IEJ;[K!EJ;[EIHJ;Y = (C2) [plEJ;~2 u [p' IEJ;[KIHJ;Y. 

b. [EIHJ;T(Y) = T(Y);H: [EIHJ;([p!EJ;~2 u [p'IEJ;[KIHJ;Y) = 
= [EIHJ;[p!EJ;~2 u [E!HJ;[p'IEJ;[KIHJ;Y = (C2) [p!HJ;~2 u [p';KIH;H];Y = 
= (lemma 3-.1) [p!EJ;~2 ;H u [p';KIHJ;[E!HJ;Y = 

= (hyp.) [p!EJ;~2;H u [p' IEJ;[KIHJ;Y;H = ([plEJ;~2 u [p' IEJ;[KIHJ;Y);H. 0 

3. 2. Wright's regularization of linear procedures 

In [33] Wright obtains the following results: 

a. The class of recursively enumerable subsets of N2 is the smallest class of sets 

with the successor relation Sas member and closed under the operations""'",";" 

and "µX[Q u P;X;R]", where Q, P and Rare subsets of N2 which are contained in 

this class. 

b. In the proof of part a the main auxiliary result can be generalized to a setting 

in which N is replaced by any abstract domain V. This generalization is: 

(3.2.1) 

In the present calculus (3.2.1) can be proved axiomatically. The following two 

auxiliary lemmas are needed: 

Proof. Straightforward from lemma 2.5.c. D 

LEMMA 3.3. I- µX[A;X U B] 0 p = µX[AoX U Bop]. 

Proof. Amounts to a straightforward application of Scott's induction rule. D 

Now Wright's result (3.2.1) follows by application of lemma 3.3 from 

THEOREM 3.2. (Wright) l- µX[Q u P;X;R] = 1r1 ;µX[(E n ~1 ;Q;1r2 ) U [P!RJ;X] 0 E ;~2 

L R 

Proof.~: Follows by the minimal fixed point property from: ~1; R0 E ~2 = 

= (fpp) w1;{(E n ~1;Q;i2) u [PIRJ;R} 0 E ;~2 = (lemma 2.5.a) 
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ir1;(E n 1r 1;Q;n'2 );1r2 U !rr 1;[PIRJ 0 (R 0 E) ;1r
2 

= (lemma 2.8) Q U -ir
1

; [PIRJo(RoE) ;1r2 = 

= (lemma 3.2) Q u 1T
1 
;(En 1r 1 ;P;'Ji'.1; R0 E ;1r

2
;R;'ff2 ) ;1r

2 
= (lemma 2.8) Q u P;ir1 ; R0 E ;1r2 ;R . 

.., .., I'"' V ~: One derives 1r1 ;((E n 1r 1;Q;1r2 ) u [P R] 0 (E n 1r1;L;1r
2

)) ;1r2 = L by similar tech-

niques, whence by lemmas 2.8 and 3.2 (En 1r1 ;Q;1T2 ) u [PIRJ 0 (E n 1r
1

;L;~2 ) 5. 

5. En 1r1 ;L;*
2

, and by the minimal fixed point property R0 E 5. En 1r1;L;ir
2 

5. 1r
1

;L;rr2 • 

By lemma 2.6.c one therefore obtains 'ff
1

; R0 E ;1r
2 

5. L. 0 

The reader might notice that ir1 ;µX[(1r 1;Q;ir
2 

n E) u [PIRJ;X] 0 E ;1r2 does not 

correspond with any program scheme. Using work of Luckham and Garland [12] this has 

been remedied in Guessarian [13] by replacing this term by an equivalent one which 

does correspond with a program scheme. 

3.3. Axiomatization of lists 

In general, programs manipulate data of a special structure, such as natural 

numbers, lists and trees. Consequently, proofs about the input-output relationships 

of these program often make use of the specific structural properties of these data. 

In order to axiomatize such proofs, we have to axiomatize relations over special 

domains. This is effected by adding certain axioms, characterizing the structural 

properties of these data as properties of certain relation constants, to the general 

system of chapter 2. 

Symbolstrings have been axiomatized in De Bakker [ 5], finite domains in 

Hitchcock.[14], and the natural numbers, linear lists and ordered linear lists in 

De Roever [ 9]. Lists are axiomatized below; in the following section this axiomati­

zation is applied to derive both an informal and a formal correctness proof for the 

Schorr-Waite marking algorithm. 

For our present purpose it is sufficient to characterize a domain of lists as a 

collection of binary trees which is closed w.r.t. the following operations: 

(1) taking a binary tree t apart by applying the car and cdr functions, resulting in 

its constituent subtrees car(t) and cdr(t), if possible; otherwise, tis an atom 

and satisfies the predicate at, whence at(t) = t. 

(2) constructing a new binary tree from two old ones by application of the function 

cons, 
.._,, ,_,, 

where car, cdr and cons are related by car= cons;1r1 and cdr = cons;1r
2

. 

Thus we introduce one individual constant consnxn,n and one boolean constant atn,n, 

and postulate 

L1 I-
'--' Enxn,nxn cons;cons = 

L2 I-
......... En,n cons;cons 5. 

L3 ~ at ~ Qn,n n cons;cons = 

f:.4 I- En,n 5. µX[at u [cons;1r1 ;X,cons;1r2 ;X];cons]. 

k -- ...__; - ( Remar. L1 implies that cons is total and cons, whence cons;1r1 and cons;1r
2 

by 
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lemma 2.11), are functions, L
2 

that cons is a function, L
3 

that an atom can never by 

taken apart,and L
4 

that any list is either an atom or can be first taken apart and 

then fitted together again. 

LEMMA 3.4. Let at' denote ccfus;cons. Then lists satisfy the following properties: 

I- E = µX[at u [car;X,cdr;X];cons], at u at' = E, cons;at' = cons, cons;at = Q. 

Proof. E = µX[at u [car;X,cdr;X];cons]: ~- Axiom L4. 

~- Use 1 with~ empty, taking {X ~ E} for 1, and (at u [car;X,cdr;X];cons) for cr. 

at u at'= E: E = µX[at u [car;X,cdr;X];cons] = (fpp) at u [car,cdr];cons = 

= (lemma 2.3.a axioms C1 ,L1) at u cons;cons = at u at'. 

cons;at' = cons: cons;at' = cons;cons;cons = (L 1) cons. 

cons;at = Q: cons;at = cons;consoE ;at= (L
2

) cons;(cons;cons n at)= (L
3

) Q. □ 

3.4. Correctness proofs for the Schorr-Waite marking algorithm 

3. 4. 1 • Informal proof 

The correctness will be proved of a certain version of the Schorr-Waite marking 

algorithm (cf. Knuth [19], pp.417-418) for binary trees with one bitfield in each 

non-atomic node, the so-called marked binary trees. 

Assume that the bitfields of a given marked binary tree have been initialized 

to zero. The Schorr-Waite algorithm traverses this tree in pre-order and in such a 

way, that~ once a subtree has been traversed, the bitfields of this subtree all are 

set to one, whence upon termination of the algorithm all nodes are mark~d by ones. 

The interesting property of the algorithm is that it does not use an external auxil­

iary stack, but codes during this process of traversal the stack of its return links 

into the tree itself. This is realized by 

(1) temporarily destroying the branching structure of the tree in order to store the 

return links, and 

(2) using the bitfields both in order to distinguish which field of a node refers to 

a tree with a return link and for the actual process of marking. 

In informal notation our version of this algorithm looks as follows: 

SCHORR-WAITE(i) <= LEFT(i.,NIL), 

LEFT(i,r) 

BACK(i,r} 

<= ii at(i) v niUiJ then BACK(i,r) 

else LEFT(car(l),cons(cdr(lJr,1)), 

<= ii niUr) then <l,NIL> else ii 
bitfield(r)=l then LEFT(car(r),cons(cdr(r),l,0)) 

else BACK(cons(cdr(r),l,1),car(r)), 

(3.4.1) 

with NIL denoting the empty marked binary tree, and bitfield(r) isolating the bit-
~ 

field of r. 

This program may be understood as follows: 



( 1 ) LEFT is called with 1 still to be traversed and marked, 

(2) BACK is called with 1 traversed and marked already, 

(3) if r is not NIL or no atom, bitfield(r) = 1 implies that car(r) must still be 

traversed, 

( 4) if -r is not NIL or no atom, bi tfield( r) = 0 implies that cdr( r) has been tra-

versed and marked already. 
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Consider both NIL and any atom to be marked. Then it follows from (3.4.1) by a simple 

induction argument on the number of nodes of 1, that the four assertions above are 

invariants of LEFT and BACK. Hence, provided 1 is unmarked and LEFT(l,NIL) terminates, 

LEFT(l,NIL) results in the marking of 1, i.e., in this way we convince ourselves of 

the partial correctness of SCHORR-WAITE only. 

An informal proof of total correctness of SCHORR-WAITE by a different argument, 

using Burstall's structural induction (cf. [ 2]) is given below. In the next section 

this proof will be formalized. 

Let M(l) and Notmarked(l) be declared by 

M(l) <= :!:f.. at(l) v nil(l) then l else cons(M(car(l)),M(cdT'(l)),1), 

Notmarked(l) <= :!:f.. at(l) v niUlJ then true else bitfield(l}=O A 

A Notmarked(car(l)) A Notmarked(cdr(l)). 

(3.4.2) 

(3.4.3) 

Then total correctness of SCHORR-WAITE follows as special case from the validity of 

(Notmarked(l) ~ LEFT(l,r) = BACK(M(l),r)} (3.4.4) 

by taking r = NIL, since BACK(M(l),NIL) = <M(l),NIL> follows from (3.4.1). 

Proof of (3.4.4). (1) If at(l) v nil(l) holds, (3.4.4) follows directly from (3.4.1). 

(2) Let 1 = cons(1 1,12 ,o) and let Notmarked(l) = true. (3.4.5) 

Assume by hypothesis, (Notmarked(l.) ~ LEFT(l.,r) = BACK(M(l. ),r)), i=1,2. 
l l l 

LEFT(cons(1 1,12 ,o),r) = LEFT(1 1,cons(12 ,r,1)). 

From (3.4.5) and (3.4.3) we have Notmarked(l.) = true, i=1,2, hence 
l 

LEFT(l 1,cons(l2 ,r,1)) = (hypothesis) BACK(M(l 1),cons(l2 ,r,1)) = 

= LEFT(l2 ,cons(r,M(l 1),o)) = (hypothesis) BACK(M(l2),cons(r,M(l 1),0)) = 
I 

= BACK(cons(M(11),M(12 ),1),r) = BACK(M(cons(11 ,12 ,o)),r). D 

3.4.2. Formal proof 

Prior to formalizing the informal correctness proof of SCHORR-WAITE of the pre­

vious section, the axiomatization of lists (or binary trees) of section 3,3 must be 

extended in order to incorporate (1) the presence of a bitfield in each non-atomic 

node, and (2) the empty list. 

First we formalize 2-elements sets by introducing two boolean constants Q and l, 
and postulating 

TW0 1 I- Q;U n U;Q ~ Q, l;U n U;l ~ l 
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I- u 5:: U;Q;U, us U;J_;U 

I- Q u J_ = E, 0 n 1 = Q, 

TW0
1 

confines any interpretation of both Q and J_ to at most one pair of (identical) 

elements, TW0
2 

expresses that any interpretation of both Q and J_ must contain at 

least one pair of elements, and TW0 3 speaks for itself. 

Satisfaction of these axioms establishes <D ,On,n,1n,n> as a structure for a 2-ele-
n - -

ment set. This leads us to introduce _g_ as type reserved for 2-element sets. 

Next marked binary trees with an empty element are axiomatized by introducing 

cons nxnx_g_, n as relation constant, and nil n 'n and atn 'n as boolean constants, and 

postulating 

ML1 I-
......,. 

E cons;cons = 

ML
2 I- '---' E cons;cons C 

ML3 I-
..__., 

(at u nil) Q cons;cons n = 

ML4 I- at n nil = Q 

ML
5 I- E 5:: µX[TML(X)], 

where TML(X) is defined by TML(X) = (at u nil u [car;X,cdr;X,bitfield];cons), and 

car, cdr and bit field are defined by car = cons ;'ff 1 , cdr = COIJ.s ;'lf2 , bitfield = cons ;'lf
3

• 

Satisfaction of these axioms establishes <D ,cons,at,nil> as a structure of marked 
n 

binary trees with an empty element, of type ML. 

LEMMA 3.5 .. Let a'= cons;cons. Then marked binary trees satisfy 

I- E = µX[TML(X)], at u nil u at'= E, cons;at' = cons, cons;at = Q, cons;nil = Q. 

Proof. Similar to the proof of lemma 3.4. D 

Finally, we give a formal definition of LEFT, BACK, Mand Notmarked, which were 

informally declared in the previous section. 

Let TLEFT(X,Y} = ('rr 1°(at u nil) ;Yu ['lf 1;car,['lf1 ;cdr,'lf2 ,u;J_];cons];X), and 

TBACK{X,Y) = ('rr2°nil u ('rr2 ;bitfield)o1 ;['lf2 ;car,['lf2 ;cdr,'lf 1,u;Q];cons];X u 

u ('rr
2

;bitf'ield) 0Q; [['lf
2

;cdr,'lf1 ,U;J_];cons,'lf2 ;car];Y, where U is of type (MLxML,_g_). 

Then LEFT, BACK, Mand N(otmarked) are defined by 

LEFT = µ1XY[TLEFT{X,Y),TBACK(X,Y)], 

BACK = µ2XY[TLEFT(X,Y),TBACK(X,Y)], 

M = µX[at u nil u [car;X,cdr;X,~'g;J_J;cons], 

N = µX[at u nil u caroX ;cdroX ;bitfieldoQ]. □ 

THEOREM 3. 3. I- 'ff 1 °N ;LEFT = 'ff 1 °N ; [ 'ff 1 ;M, 'lf2 ] ;BACK. 

Proof. ~y lemma 3.5, ~,ML= µX[TML(X)]. Hence we prove 

and 

~ ['lf
1

;µX[TML(X)],'lf2 ];'1f 1°N ;LEFT= ['lf1 ;µX[TML(X)],'rr 2 ];'1f1oN ;['lf 1;M,'lf2 ];BACK 

using Scott's induction rule. It is sufficient to prove the induction step: 
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[rr 1;X,rr2J;rr 1oN ;LEFT= [rr 1;X,rr2J;rr1°N ;[rr1;M,rr2J;BACK ~ 

[rr1;TML(X),rr2J;rr1oN ;LEFT= [rr 1;TML(X),rr2J;rr 1°N ;[rr1 ;M,rr2];BACK. 

Part a 

[rr 1;(at u nil),rr2J;rr 1°N ;LEFT= (lemma 2.4) rr 1°N ;[rr1;(at u nil),rr2J;LEFT = (fpp) 
I 

rr 1°N ;[rr1;(at u nil),rr2J;BACK = (fpp and C2 ) rr 1°N ;[rr 1;(atunil),rr2J;frr1;M,rr2J;BACK • 
I = (lemma 2.4) [rr 1;(at u nil),rr2J;rr1°N ;[rr1;M,rr2J;BACK. 

Part b. Assume the hypothesis. 

[rr 1;[car;X,cdr;X,bitfield];cons,rr2J;rr 1°N ;LEFT= (lemmas 2.3.a and 2.6.c) 

[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;rr 1°N ;LEFT= (lemma 2.5.e, since function­

ality of [rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons follows in standard fashion from 

lemma 2.11, b~ adding X;X ~ E to the hypotheses, and proving TML;TML ~ E using 

lemma 2.11 again) 

[[rr1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2Jo(rr1oN) ; 

E [[rr1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2 J;LEFT = (fpp) 

E;[rr1;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];LEFT = (part c below) 

E;(rr1;car;X) 0 N ;[rr1 ;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];LEFT = (lemmas 2.5.e and 2.7) 

E;[rr 1;car;X,[rr1;cdr;X,rr2 ,U;J_];cons];rr1°N ;LEFT= (C2 ) 

E;[rr 1;car,[rr1;cdr;X,rr2 ,U;J_];cons];[rr1;x,rr2J;rr 1oN ;LEFT= (hypothesis) 

E;[rr1;car,[rr1;cdr;X,rr2 ,U;J_];cons];[rr1;x,rr2J;rr 1°N ;[rr1;M,rr2J;BACK = (similar to above) 

E;[rr 1;car;X;M,[rr1;cdr;X,rr2 ,U;J_];cons];BACK = (fpp) 

E;[rr 1;cdr;X,[rr2 ,rr 1;car;X;M,U;Q];cons];LEFT = (part c below) 

E;(rr1;cdr;X) 0 N ;[rr1 ;cdr;X,[rr2 ,rr1;car;X;M,U;Q];cons];LEFT = (lemmas 2.5.e and 2.7, 

and C2 ) 

E;[rr1;cdr ,[rr2 ,rr1;car;X;M,U;Q];cons];[rr1;X,rr2J;rr 1°N ;LEFT= (hypothesis) 

E;[rr1;cdr ,[rr2 ,rr
1

;car;X;M,U;Q];cons];[rr1;x,rr2J;rr1°N ;[rr1;M,rr2J;BACK = (similar to 
above) E;[rr1;cdr;X;M,[rr2 ,rr1;car;X;M,U;Q];cons];BACK = (fpp) 

E;[[rr 1;car;X;M,rr1;cdr;X;M,U;J..];cons,rr
2

J;BACK = (lemmas 2.3.c, 2.6.c, and ML 1, ML
2

) 

E;[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons;[car;M,cdr;M,UML,,?;l];cons,rr2];BACK = (fpp) 
I 

E;[[rr1 ;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;[rr1;M,rr2J;BACK = (lemmas 2.5.e and 2.11, 

cf. above, and lemma 2.3.a) 

Part a 

We prove E = E;(rr1;car;X) 0 N ;(rr1;cdr;X) 0 N ;(rr1;bitfield) 0 Q, with E as defined above. 

[[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2Jo(rr 1oN) = (lemma 2.5.a, since NoE = N 

follows from lemma 2.4 and P1) 

([[rr 1;car;X,rr1;cdr;X,rr1;bitfield];cons,rr2J;rr1;N) 0 E = (lemmas 2.7 and 2.6.a) 

( [ 1T 1 ;car ;X, 1T 1 ;cdr ;X, 1T 1 ;bi tfield] ;cons ;N) oE = ( fpp) 

([rr1;car;X,rr1;cdr;X,rr 1;bitfield];cons;caroN ;cdroN ;bitfieldoQ) 0 E = (lemma 2.5.e and 

ML
1

) 
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([TI
1

;car;X,TI
1

;cdr;X,TI1;bitfield];TI1°N ;TI2 °N ;TI
3

°Q ;cons) 0 E = (lemma 2.5.e, cf. part b) 

((TI 1;car;X) 0 N ;(TI
1

;cdr;X) 0 N ;(TI 1;bitfield)oQ; 

[TI 1;car;X,TI1;cdr;X,TI 1;bitfield];cons) 0 E = (corollary 2.2) 

E;(TI 1;car;X) 0 N ;(TI1 ;cdr;X) 0 N ;(TI 1 ;bitfield)oQ. D 

4. A CALCULUS FOR RECURSIVE PROCEDURES WITH VARIOUS PARAMETER MECHANISMS 

4.1. The interpretation of products of reZations 

In chapter 1 we demonstrated how the call-by-value and call-by-name parameter 

mechanisms could be'described (from the viewpoint of convergence) within the rela­

tional framework by introduction of a call-by-value product of relations, which has 

been axiomatized in section 2.2.3, and a call-by-name product of relations, which 

will be discussed in the present section. In particular, we introduce a product of 

relations describing a parameter list some components of which are called-by-value, 

the remaining ones being called-by-name. Section 4.2.2 contains an axiomatization of 

aii these products. By replacing in the axiom system of chapter 2 axioms C1 and C2 
(the axioms for projection functions upon which our axiomatization of the call-by­

value product was based) by the new axioms of section 4.2.2, we obtain a calculus for 

recursive procedures with various parameter mechanisms. 

It has been argued in section 1.1 that the interpretation of the call-by-name 

product r~quires the introduction of a special element to each domain, the so-called 

basepoint, the function of which is merely to complete an operationally partially 

defined n-tuple to a formally well-defined n-tuple by representing the operationally 

undefined components, in case these might simply not be invoked within a procedure 

body (and hence are potentially redundant). 

Now the very fact, that the introduction of a basepoint is so closely connected 

with a relation being undefined in some point, suggests using Scott's undefined 

value i, cf. Scott [27,28] as basepoint; an originally partial function then becomes 

a total function, which assigns the formal value l to those elements for which the 

original function was undefined, and the same applies to relations: formally they 

become total. However, when considering converses of such relations-made-total, we 

are stuck for the following reason: an operationaZZy undefined vaiue shouZd never be 

transformed by any reiation into an operationaZZy weit-defined vaiue, since otherwise 

the relevance to programming of a theory of such relations gets lost, for once a 

computer initiates an unending computation it will not produce any definite value (if 

left to itself). Thus we refrain from the transition of basepoints to undefined 

values in general. 

Pri@r to interpreting the call-by-name product, we first define the cartesian 

product of domains with basepoints: The product of domains D1, ••• ,Dn with basepoints 

p_i1, ••• ,p~, which are contained in D1, .•. ,Dn, respectively, is the cartesian product 
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of D1, ••• ,Dn with basepoint <p_i1 , •.. ,p~>- 0 

Next we define our admissable relations. The requirement that a basepoint should 

not be transformed into an operationally defined value, implies conversely that, due 

to the presence of the conversion operator, an operationally well-defined value 

should never be transformed into a basepoint. Hence we must observe the following 

two restrictions when interpreting relations over domains with basepoints: 

(1) A basepoint should be tPansforrned into a basepoint. 

(2) Only a non-basepoint can be tPansforrned into a non-basepoint. 

(4.1.1) 

(4.1.2) 

EXAMPLE 4.1. Let D1, •.. ,D be domains with basepoints, pt 1 , ... ,pt , respectively, n - -n 
then the projection function 1r.: D1 x ••. x D + D. is defined as follows: 

l n l 

{ 

xi, provided xi -:/, p~, 

1r.(<x1, .•. ,x >) = pt., in case x. = pt., 
l• n -i J -J 

undefined, otherwise, 

for i=1, ... ,n. O 

j=1, ... ,n, (4.1.3) 

At last we are in a position to discuss the interpretation of the call-by-name 

product: 

Let D,D1 , ••. ,Dn be domains with basepoints p_i,p_i1, ... ,p~, and R1, ••• ,Rn be binary 

relations such that Ri 5:: DxDi, for i=1, ... ,n, which satisfy (4.1.1) and (4.1.2). 

Then [R1 x .•. x Rn] is interpreted as follows: 

[R1 x ••• x Rn] = 

U · {<x,<y
1

, ... ,y >> I xR.y. for jEI, and y.=pt. for jE{1, ..• ,n}-I}. D 
I5:;{ 1, ••• ,n} n J J J -J 

and I-:/,</J 

For example, [R
1 

xR2] = {<x,<y
1
,p~» jxR

1
y

1
} u {<x,<p!_

1
,y

2
» lxR

2
y

2
} u 

u { <x,<y 1,y 2» I xRiy i, i=1 ,2}. In particular, [Ex Q] = { <x,<x,p_i» I xED}. 

The reader should verify himself, using the interpretation of 1r. in example 4.1, 
l 

that [R 1 x ••• xR ];1r. = R., i=1, ... ,n. Notice also that n l l 

[R1 x ... xR ];(1r. ;TI1 n ••. n1r. ;-lrk) = (R. ;n1 n ••• n R. ;¥k), for 1~j
1
< ••• <jk~n, 

n J 1 Jk J 1 Jk 
i.e., a list of n parameters called-by-name, of which only the j 1-st, ... ,jk-th compo-

nents are invoked, is equivalent with the list of k invoked parameters which are 

called-by-value. 

Nevertheless, for a relational calculus this element-wise description is not 

appropriate. Therefore we introduce the following constants: 

Let D,D1, ••. ,Dn be as above, then the relation constants *1, .. ·,*n are defined by 

for i=1, ... ,n. O 

x = p_i, in case x. 
J 

x ED-pt, provided 

x. :f. pt. for at 
J . J 

= pt . , j = 1 , ••• ,n , 
-J 

x. = pt., and 
l -i 

least one j, j-:/,i, 

undefined, otherwise, 

(4.1.4) 
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The introduction of these constants is motivated by the following property: *· trans­
l 

forms any non-basepoint into any n-tuple, the i-th component of which is pt., pro­
--i 

vided this n-tuple is not composed out of basepoints altogether. Hence we have 

[R x ••• x R J = u { ( n R. ; rr. ) n ( n ;'_ ) } . 
1 n I~{ 1 , ..• ,n}, iEI 1 1 id 1 , ... ,n}-I 1 

and I#0 

For example, [R 1 xR
2

] = (R 1 ;1r1 n R2 ;-rr'
2

) u (*1 n R
2
;i2 ) u ,(R1 ;rr1 n *

2
). 

In general, the, ALGOL 60 parameter mechanism allows within the same parameter 

list for a combination of parameters called-by-value and called-by-name. This combi­

nation of parameter mechanisms results in a product of relations, which reflects this 

mixed structure. 

Let procedure f hav~ for simplicity a parameter list of n components, the first k 

components of.which are called-by-value, and the last n-k components of which are 

called-by-name. Lets denote a statevector. As in our formal model of description the 

parameter list is separated from the procedure call, cf. section 1.1, the separation 

of (f1(s), ... ,fn(s)) from the call f(f 1(s), ..• ,fn(s)) results rn an expression of the 

form [f 
1 

( s) x .•. x fn (,) ]~{ 1 ' · · · ,k} ;P, where the value of 

[ f 
1 

( s) x ... x fn ( s )]value{ 1 '· · • ,k} is only defined in case the evaluation of the first 

k parameters, the call-by-value parameters f 1(s), ... ,fk(s), terminates. Therefore a 

relational description of this parameter list is obtained by introducing a product of 

t . [R R Jvalue{1, ... ,k} . . f" rela ions 1 x ••• x n -- , which satis ies 

, [R1 x •.. R ]value{1, ... ,k}. = R E. . R R 
X n ,1fi 1° , .•• , k 0 E; i' 

for i=1, ... ,n. 

In general, such products are interpreted as follows: 

Let D,D 1, ... ,Dn be given as above. Let J ~ {1, ... ,n} and let I= {1, •.. ,n}-J. Then 

[R x •.. x R ]Value J is defined by: 
1 n 

for J £ {1, .•. ,n} s.t. J # ¢: 

[R R ]value J = 
1 X • • • X n u {( n R.;-rr.) n ( n Rk;1rk) n ( n *k)}, 

K~I jEJ J J kEK kEI-K (4.1.5) 
for J = 0: 

value 0 ( v) [R 1 x •.• xR J-- = U -.u.{ n Rk;1rk n ( n * )}. 
n &:I,Kr-~ kEK kEI-K k □ 

= 

R1oE ;Ri, i=1,2,3. 

Observe finally that both the call-by-value and the call~by-name product can be ob­

tained as special case of the product defined above by taking J = {1, •.. ,n} and 

J =¢,respectively. , 
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4.2. A calculus for recui>sive procedures with Vanous pai>ameter mechanisms 

4.2.1. Language 

. The language MU* for basepoint preserving relations over cartesian products of 

domains with unique basepoints, which has minimal fixed point operators, is a simple 

extension of the language MU, defined in section 2.1. 

* The syntax of MU is obtained from the syntax of MU by adding for n~2 the logi-
n1x· .• xn ,n• 

cal relation constants* n 1 for i=1, ••. ,n, and all n1, ..• ,nn' to the ele-i , 
mentary terms of MU. 

The semantics of MU* is determined by considering binary relations over domains 

with unique basepoints only, observing restrictions (4.1.1) and (4.1.2), and inter-
. n1x ... xnn,Tli n1x .•. xn ,Tl· 

preting ~- and*· n i as in (4.1.3) and (4.1.4), for i=1, ..• ,n, and 
i i 

all n1, •.• ,nn: Hence, 

(1) m(Qn,e) = {<p1n,P1e> p¾ E Dn, Pie E De}, m(En,n) = {<x,x> Ix 

m(un,e) = {<x,y> I x E Dn -{p¾}, YE De - {pie}} u {<p¾,pie>}, 

(2) interpretations of elementary relation constants An,e satisfy 

m(Qn,e) ~ m(An,e) ~ m(un,e), 

ED}, 
n 

(3) interpretations of pairs <pn,n,P,n,n> of boolean constants satisfy 

m(Qn,n) ~ m(pn'n) ~ m(En'n), m(Qn,n) ~ m(p'n,n) ~ m(En'n), and 

m(pn'n) n m(p'n'n) = m(Qn,n), 

(4) inter~retations of relation variables xn,e satisfy m(Qn,e) ~ m(Xn,e) ~ m(un,e), 

(5) 

(6) 

the operators "u", "n", ";", 11
"'

11 are interpreted as usual, and the 

is interpreted by m(Xn'e) = (m(un,e) - m(Xn'e)) u m(Qn,e), 
"-" operator 

µ.X 1 ... X [cr1, ... ,cr] is interpreted as the i-th component of the (unique) minimal 
i n n 

fixed point of the transformation <m(cr1), .•• ,m(crn)> acting on n-tuples of rela-

tions satisfying (4.1.1) and (4.1.2), i=1, ... ,n. Observe that it follows from the 

definitions that any fixed point of <m(cr1), ..• ,m(crn)> acting on these relations 

satisfies (4.1.1) and 4.1.2); hence the minimal fixed point of this transforma­

tion, being the intersection of all these fixed points, satisfies (4.1.1) and 

( 4. 1 . 2) also. 

4.2.2. Axiomatization 

MU* is axiomatized by replacing in the axiom system for MU, as contained in 

chapter 2, axioms c1 and C2 by BP1, BP2, BP
3

, BP4 and BP
5 

below: For n~2, 

I- ..., "' n 1 x ••. xnn, n 1 x ..• xnn 
BP1 *1;*1 n ·•· n *n;*n = Q 
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C 

BP5 For all I# {1, •.. ,n} s.t. I#¢: 

I- .n
1 

x. ;Y. = {( .n x. ;¥.) 
lE l l lEI l l 

{(.n 'IT.;Y.) 
lEI l l 

and for I= {1, ••. ,n}: 

n(.{ n } lE 1 , ... ,n -I 
n (. { n } lE 1, ... ,n -I 

~ .n
1 

x.;Y. = (.n x.;'li-'.);(.n 'IT.;Y.), 
lE l l lEI l l lEI l l 

*·)}; 
l 

*. ) } , 
l 

with 'IT. and*· of types (n 1x .•. xn ,n.), and X. and Y. of types (e,n.) and l l Ill l l l 
(n.,~), respectively, i=1, ... ,n. 

l 

LEMMA 4.1. Let n~2, i=1, .•. ,n, and j=1, ... ,n, then 

l-
.., u, i#j' and I- Q. a. *·;'IT. = *·;'IT. = 
l J l l 

b. For I- .... 
i#j, and I-

.., 
n=2: *· ;*. = Q, *i;*i = u. 

l J 
For n~3: I- v u. *· =*- = 

l J 
I- V u, i#j, and I-

.., 
E. c. 'IT. ;'IT. = 'IT. ;'IT. = 

l J l l 

Proof. We prove parts a and b only. 

a. *.;'IT.= U, i#j: The case n=2, i=1, j=2 is representative. 
l J 

*
1 

= *1 n ('IT2 u *2 );U and 'IT2 = ('IT 1 u *1);U n 'IT2 follow by BP4 from lemma 2.3.c. 

Hence, *1 ;'IT2 = (*1 n U;(i2 u *2 ));(('IT 1 u *1);U n 'IT2 ) ~ (lemma 2.1.f, BP2 ) 

( * 1 n U ; 'IT 2 ) ; ( * 1 n 'IT 2 ; E ) = ( BP 5 ) U • * i ; 'IT i = Q : * i ; 'IT i = * i ; * i o E ; 'IT 2 a E ; 'IT 2 = Q , 

since *iaE ;'ITi 0 E ~ *i;~i n 'ITi;'ITi = (BP3 ) Q. 

b. *i;*. = n, i#j, n=2: t 1;*2 = (*1 n U;(*2 u *2 ));(('IT 1 u *1 );U n *2 ) = (BP2 ) 

((*/n U;t
2

) u (*1 n *
2

));(('IT 1;U n *2 ) u (*1 n *2 )) = (i;1 n U;'IT2 );('IT1 ;U n *2 ), 

since *1 n *2 = Q follows from BP1 ; moreover, (*1 n U;~2 );('IT1 ;u n *2 ) ~ *1;'IT 1 ;u = 

(part a) Q. *·;*. = U, for n=2, and*·;*.= U, i#j, for n~3: proved u~ing similar l l l J 
techniques. 0 

Let [X
1 

x ..• x Xn] value J be defined as in ( 4. 1. 5). Then the proofs of corol­

laries 4.1 and 4.2 follow from lemma 4.1 and the definitions. 

COROLLARY 4. 1 . ~ X. oE ; ... ;X. oE ;X., i=1, .•. ,n. 
J1 Jk l 

COROLLARY 4.2. I [X
1 

x ... xX ]~{j1, ..• ,jm}.('IT •,r 
r n • k ' 1 

( ..,, ..,, ) 1 
n ... n ~k ;~) = 

p p 
= X. oE ; ... ;X. oE ; ~ ;'IT 1 n ••. n X. ;'IT • 

J 1 Jm 1 i p p 

5. CONCLUSION AND RELATED WORK 

5 . 1. Cone lusion 

This investigation shows that 

1. The relational approach allows a unified axiomatization of both call-by-value and 

certain aspects of call-by-name (chapter 1 and 4). 

2. A theory of correctness of programs requires an operator describing the inter­

action between programs and predicates; in the present theory this is the 11011 



operator (theory: section 2.2.2, applications: sections 3.2 and 3.4). 

3. The 11
0

11 operator is crucial to an expedient formalization of the call-by-value 

parameter mechanism (theory: section 2.2.3, application: section 3.4). 
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4. The axiomatization of correctness proofs for recursive programs can be applied to 

recursive data structures (sections 3.3 and 3.4, the main reference being 

Hitchcock and Park [15]). 

5. Informal use of structural induction may lead to understandable and conceptually 

attractive correctness proofs (section 3.4.1, the main reference being Burstall 

[ 2]; cf. also section 6. 3 .a of De Roever [ 9 ] which contains an informal correct­

ness proof for the recursive solution of the Towers of Hanoi problem). 

Notably, we have not discussed the topic of providing any operationally, inter­

preter-defined~ semantics for the various programming concepts whose mathematical 

semantics were axiomatized. Here the main issue is that one must actually prove that 

the interpreter-defined input-output behaviour of the programs of one's particular 

programming language coincides with the mathematically defined semantics of the cor­

responding (relational) terms. 

An interpreter for a simple recursive programming language with call-by-value as 

parameter mechanism has been defined in De Roever [ 8 , 9 ] • The input-output behaviour 

of the programs of this language has been proved to coincide with the mathematical 

semantics of the corresponding relational terms in De Roever [ 9]. 

Using the techniques of introducing parameters called-by-name by procedures which 

have these parameters as their bodies (suggested in this context by J.W. de,Bakker), 

and of describing an invokation of such a parameter by a call of the corresponding 

procedure, we defined an interpreter for a recursive programming language with both 

call~by-value and call-by-name as parameter mechanism, with the use of the latter 

being restricted as in section 1.2. A proof that the input-output behaviour again 

coincides with the mathematical semantics is presently being investigated. 

5.2. Related work 

This discussion of related work confines itself mainly to the relational ap­

proach to correctness of recursive programs. Dominant in this approach is the minimal 

fixed point characterization, which is initiated by Scott and De Bakker in [29], 

elaborated by De Bakker in [ 4], and crossbred with Tarski' s algebra of relations 

[ 30] in De Bakker and De Roever [ 6 ] to yield an axiomatic framework for proving 

equivalence, correctness and termination of first-order recursive programs with one 

variable. The present paper amplifies on the latter in that that the restriction to 

one variable is removed by considering arbitrary subdivisions of the state; these are ,. 
incorporated within the relational framework by considering binary relations over 

cartesian products of domains, introduced in unpublished work of Milner [23] and 

Park [26]. In De Roever [ 9] we ( 1) clarify the distinction on the one hand and the 
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connection on the other between operational and mathematical semantics, (2) axiom­

atize the natural numbers, lists, linear lists and ordered linear lists within the 

relational framework, and (3) give numerous axiomatic correctness proofs for programs 

which manipulate values from these domains, with special emphasis on axiomatic list 

manipulation and correctness of the recursive solution of the Towers of Hanoi problem. 

The connection between induction rules and tePmination proofs is described in 

Hitchcock and Park [15] and elaborated in Hitchcock's dissertation [14], which also 

contains a correctness proof of a translator of arbitrary recursive programs into 

regular recursive procedures with stacks, and an axiomatization of finite domains. 

Maximal fixed points, introduced by Park in [25], are applied in Mazurkiewicz 

[21] to obtain a mathematical characterization of divergent computations, and may 

lead to the axiomatization of Hitchcock and Park's results within an extension of our 

framework. 

In a different setting Blikle and Mazurkiewicz [ 1] also use an algebra of rela­

tions to investigate programs. 

The completeness of the method of inductive assertions for general recursive 

procedures is proved in De Bakker and Meertens [ 7 ] . 

The relation between the minimal fixed point characterization and various rules 

of computation is studied by Manna, Cadiou, Vuillemin and their colleagues in, e.g., 

Manna and Vuillemin [20], Cadiou [3] and Vuillemin [31]. 

The works of Dijkstra [10,11], Hoare [16] and Wirth [32] relate to the present 

paper in that we provide a possible axiomatic basis for some techniques of structured 

programming; e.g., our correctness operator 11
0

11 is independently describ,ed in 

Dijkstra [11]. 
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