stichting

mathematisch

centrum MC
AFDELING INFORMATICA W 21/74 SEPTEMBER

COEN ZUIDEMA
CHESS, HOW TO PROGRAM THE EXCEPTIONS?

2e boerhaavestraat 49 amsterdam

DT e MATUEMATISCH CENTRUM
Lt R VR T T VR Y-V R—



AMS (MOS) subject classification scheme (1970): 68A45.




ABSTRACT

After nearly 25 years of chess programming it may be stated that the
original claims have not been fulfilled and that the problem has been
strongly underrated. In the present paper we are concerned with the bottle-
necks.

A subproblem is defined and solved, with the intention of simulating
the main problem - programming chess — on a convenient scale. The exceptions
to general rules turn out to be mainly accountable for a poor level of
play. A continuous effort to improve this level will jam in an endless
stream of details.

Another serious source of troubles is formed by the way the tree of
moves has to be pruned. Also on that issue, still one of the main bottle-
necks, the troubles arise from the numerous exceptions.

Other aspects of chess, as pattern recognition and experience, are
broadly dealt with. The most important problems from the point of view of
an experienced chess player are discussed. The prospects of having a
computer play master chess within a foreseeable future, look anything but
favourable.

The author is an internmational chess master and was champion of
the Netherlands in 1972.

KEYWORDS & PHRASES: Artificial intelligence, Chess programming, Evaluation

functions, Pattern recognition.






CONTENTS

0.
1.
2.
3.
4.
5.
6.
7.

Structure of the paper

Introduction /Acknowledgements

The rook endgame

Further elaboration. The primitive version
A new version

Extension of our method. Other programs
Reflections of a chess player

The program

References







0. STRUCTURE OF THE PAPER

Chapter 1 gives both an introduction to and a motivation for our
investigations. This motivation leads to a subproblem: the mating of the
deprived king by king and rook. Some results are given in advance.

The basic algorithm for this endgame has been supplied in the chapters
2 and 3. In chapter 2 we sketch the main lines. In chapter 3 we go more
into detail. That chapter is concluded with an evaluation of program play.

As we were not satisfied with the level of program play, a new version
was made. Chaptef 4 provides a general description of the changes and a
discussion of a good many of the trouble spots in the primitive version.
The examples given are not really shocking, but they are characteristic of
the kind of difficulties one is confronted with in programming chess.
Improvemént of play is compared to programming effort and program length.
Finally we give some examples of program play by both versions.

Chapter 5 is split up in two parts. Both are not directly important to
our goals, but are linked with programming endgames., Firstly, we speak
about application of our method to other elementary endgames. Secondly,
related work of HUBERMAN and TAN is discussed.

In chapter 6 we come to our conclusions. We dwell on the claims that
have beenmade since the early fifties and the present state of the art,
Next, conclusions of our subproblem are made. Discussing strategy, the
ideas of BOTWINNIK - to us one of the better ways of attacking the
problem — are brought in. Furthermore we deal with several more aspects of
chess, as pattern recognition and experience. The most important problems
from the point of view of a chess player are described. These problems have
scarcely been mentioned in the literature. In the final section we are not
very optimistic about progress in the future.

The reader will find the program for the rook endgame in chapter 7,

together with some clarifying remarks.

We have tried to enable both information scientists and chess-players
to read this paper. We assume the reader is familiar with the rules of chess.
Chess—players not familiar with programming are recommended not to bother

too much about some technical terms.




1. INTRODUCTION

Current chess programs are, with respect to the tree of moves, based

on the ideas of SHANNON, stated in 1950:

1. Use a numerical scoring function. This function includes factors such as
material balance, centre control, pawn structure and open files for the
rook.

2. Limit the size of the tree (pruning).

For a historical survey see D.N. LEVY [7] and P.G. RUSHTON &
T.A. MARSLAND [9].

Recent publications show some criticism of these methods. The programs
are extremely weak in the endgame. They are tactically sound, but lack
direction of play or planning.

One of the participants in the annual ACM Computer Chess Championships
is the program TECH, written by GILLOGLY. The author states that the program
is a useful benchmark for other programs. This is because TECH spends at most
5 percent of its CPU-time on chess heuristics, viz. for sorting the moves in
the first ply, and then scans the tree by brute force. The énd—positions are
evaluated with material as only criterion [5]. TECH's second prize in 1971

throws doubt upon more sophisticated methods.

There is consensus over the need of strategic play, the significance
of goals and relevant plans. However, new methods are not given, (D.N. LEVY
[7], B. MITTMAN [8] and P.G. RUSHTON & T.A. MARSLAND[9]). That means that
after two decades of practice in this field the problem of how to program
chess is basically unsolved. Moreover, we feel that the mere implementation
of goals, however difficult, will not suffice. The question is whether it
is possible to give numerical weights to a long list of chess heuristics and
immaterial factors as mentioned above, which are meaningful under different
circumstances (M.M. BOTWINNIK [1]). Related to this is the question whether
implementation of gemeral rules does not lead to blundering moves, in view
of the many exceptions of the rules.

We would like to illustrate this by an existing program. However,
documentation usually consists of a description in general terms. Access

to the programs is hampered by their great bulk. And, how can one determine



)

. *
the effect of a single parameter ?
To get around this, we state a very simple subproblem as a casestudy:

mating the deprived king by king and rook.

It must be strongly emphasized that the solution of this problem is no
goal in itself. In fact, this ending has been programmed often enough. For
this reason we reject the method of exhaustive enumeration: a prescription
for the situations with the black king on the eighth rank, the seventh, the
sixth and the fifth, further subdivision of these cases, etc. On the
contrary, the same means are used as current in chess programming, e.g.
generation of moves and pruning the tree. These means are adapted to our
problem.

Besides this, the program is based on a good strategy. As said before,
strategy is suggested to be the next essential step to be made in chess
programming. Moreover, a good strategy can be given for our subproblem far

more easier than for complicated situationms.

Our algorithm is of course not a perfect solution. The rules given
are never complete in chess. Otherwise, there would be no problem.

Each position will be evaluated on its own merits. Most legal moves
will be generated. The move that is best in the light of this strategy, is
performed.

Some moves are rejected beforehand on plausible grounds (pruning). We
have chosen to limit the depth of the tree to one move. This is a severe
restriction, but given the simplicity of the problem, easy to overcome.

We strive after a well-playing program. The number of moves must not
exceed the minimum needed for mate too far. The moves themselves must be

coherent, and, as a whole, must show a direction of play.

Our final purpose is to keep track of the following:
» level of program play

. effect of new criteria which refine the algorithm

Varying the value of one parameter and fixing the others is an impossible
task, because the number of parameters is too large. See also
A.L. SAMUEL [10], page 602.




. exception of rules
. improvement of play in new versions versus programming effort
and program length.
Because of the clarity of the problem we expect to get a better insight in

where the difficulties in chess programming lie.

It will appear that a global strategy provides a solution of the problem
from every starting position well within the required 50 moves. Level of
play is not high.

For any rule given in the program one is able to construct exceptional
situations. A more refined strategy is needed to elevate level of play.

A small improvement, however, entails a great deal of expense in programming
effort and program length. The new rules will have their exceptions too.
Exceptions that will not even be noticed by human players.

This is the kernel of the problem. A trivial exercise as our endgame

gives rise to a burden of small problems that have to be overcome. What

about an overall-strategy for chess ?

ACKNOWLEDGEMENTS

I am indebted to J.W. de Bakker, D. Grune and J. Wolleswinkel for
carefully reading and commenting on the manuscript. Furthermore, T.H. Gunsing
who edited it, C.J. Klein Velderman—Los who did a fine typing job, and
D.Zwarst, J. Suiker and J. Schipper for printing.

My special gratitude goes to A. van Wijngaarden who, as the director
of the Mathematical Centre, supplied an ideal atmosphere in which it was
possible to pursue and combine both my professional activities inm computer

programming and my interests in chess.




2. THE ROOK ENDGAME

Abbreviation

KW: the white king
KB: the black king
R: the (white) rook

Notation

The algebraic notation, used everywhere except in
Spanish or English speaking countries, gives the
first letter of the moving piece and the square
to which this piece is moved, according to fig. 1.
There is no difference in notation between black

and white.

Mating positions

a2 el 7
5
V/%//@//%
%/%///
@%%/

LR NN

////@/
B
///////

% 7 ] &
%/

i ///
%,%/%

The computer plays for white, and has a king and a rook. Its charge is
mating the black king. The starting position and the moves of black are
input via a terminal by the human opponent.

In order to deliver mate KB must be driven to the edge, fig. 2 and 3.
Although mating is possible with KB on any square of the edge, the corner
is of vital importance, since mate cannot be forced on a board with the

ranks unlimited on both sides.

KB can be driven row by row to the edge, regardless of the row where

KB stards. However, this is not a fine strategy, because it does not




utilize the power of R in vertical direction.

Program scheme

A symbolic program may help to clarify the following discussion
(ALGOL-1ike language):

begin- initialization;

start: input position or opponents move;
make your move;
goto start

end

In the routine make your move the program computes its next move. A scheme

follows:

begin transposition;
while not last move do
begin generate next move;
ealceulate room;
calceulate measure;
compare with candidate
end;
get candidate;
inverse transposition;
output
end

The algorithm N

The leading idea of the algorithm is to minimize room, the number of

free squares KB can reach in one or more moves.




The rook divides the board in four quadrants.

%Z %Zl%% // KB stands in one of them. If R cannot be driven
7

n .
% % %W%ﬁ

away — such a position of R is called strong -

KB will never escape from its quadrant. Its room

/{%7%7/7%% %% is the number of squares in the quadrant:
%%%%%éz¢////%//z room = qxisv x axtsh

fig. 4

In fig. 4 the position of R is strong and
room = 3 x 4 = 12,

If R does not hold a strong position and KB attacks it, R can retreat over
a file or over a rank, choosing the case with the smaller quadrant. Even
when R is not under direct attack, room is calculated as if the rook were

placed at the beginning of this file or rank:

room = 7 x min(axisv, axish).

///7/////%
/¢
%//////
//,//,%
//7/%/
///%%
///%////

Example:

i

KB is able to attack R in two moves,

KW is far away. R may move to a5 or dl.

\

room = 7 x min(4,3) = 21,

fig. 5

When KW is in the same quadrant as its opponent, it controls a number
of squares. This is accounted for =~tax~ and room is diminished accordingly.
The program computes the room for most allowed moves, and takes the
moves which minimizes the room. So the depth of the tree is one. Some
moves are excluded beforehand. These are moves that increase the distance
between the kings, and the moves of the rook to the second, third and
fourth row, or the second and third file.
When we look upon the row where KB is to be mated as the eighth row,

then first row, second row etc. are also defined. For this the position




of KB is decisive. The representation in the program is simplified by an
internal transposition, such that KB stands in the triangle e5-e8-h8 (see
chapter 3).

Calculation of room seems superfluous if the distance between the two
kings -measure— is large, e.g. four rows. In such a case a king move is
always played, unless R is under attack.

The black king being in the middle of the board, calculation of room
does not need to be too accurate. When the process proceeds, room must
correspond exactly to the number of free squares that KB can reach, includ-
ing its own square.

If more than one possible move yields the same minimal room, more
criteria are needed. The first is a minimal megsure. A final decision
may come from the order of move generation. Therefore, this order is not
arbitrary.

It is well-known that a check does not bring matters any further. It
is also inconvenient from the point of view of the algorithm: It allows the
defending king to choose the best of two quadrants. For this reason a check
is only considered if it forces KB to give up a row.

Mate could be a logical consequence of this case if room is zero. The
mating positions, however, are readily characterized. As a good policy,
mating moves are considered before anything else.

Stalemate, on the other hand, follows directly from the relation
room = 1 (*)

because the situations in which a check is made leave the king more than one

refuge (room > 1). A move which makes relation (%) true is rejected.

With the means described mate is not always brought about. For example,
the anticipation of a stalemate may result in a repetition of moves (see
fig. 14). Therefore, some specific cases are distinguished. Further, a
mechanism is built in to exclude repetition of moves. History of the game
is recorded in an array history of fifty elements (the well-known drawing
limit). Moves leading to recorded positions are rejected.

We state that a program, based on these principles, solves the problem

from eyery starting position, and does so well within fifty moves.




3. FURTHER ELABORATION. THE PRIMITIVE VERSION

Firstly we recall our task: solving a subproblem with means reflecting
those of normal chess programming. We are of course free to adapt our tools
to this specific problem. In fact things like representation of pieces,

move generation and the algorithm itself are not apt to generalization.

Program scheme

An extension of the program scheme from the preceding chapter for the
body of make your move is given. In this routine the program computes its

next move. The discussion closely follows the scheme:

begin transposition;
if not immediate move then
begin prune;
while not last move do
begin generate next move;
caleculate rooms
compare with candidate
end;
get candidate
end;
inverse transposition;
output
end

———

Transposition

Every position canbe transposed such that theKB stays in the triangle
e5-e8-h8. The distance of the king to the edge is an indication for the
progress of the mating process. The main reason for the transposition is
that the program knows the eighth row for the nearest edge. In most cases
the king will be mated there. First row, second row etc. are also
defined. For example, the rook on the first file is far away from the

opposetl king. This affects the order of move generation. The transposition




10

is not yet completely described. With the defending king on the diagonal

al-h8 its colleague can be placed in the triangle al-h8-hl.

When KW also

stands on this diagonal, R is placed in the triangle al-a8-h8. These

choices are justified looking upon the range a8~h8 as the nearest edge.

As a consequence, the program makes some distinctions between horizontal

and vertical.

The program works move by move. Transposition and inverse transposition

For a person trying

take place before and after computation of every move.

to understand a sequence of moves, this may give some difficulties.

When,

for example, KB goes from e6 to £5 or from c4 to d3, the meaning of

horizontal and vertical is interchanged.

There is an interesting side effect. The array Aistory records the

position after transposition. Moves leading to previous positions are

rejected. But these are not the only ones.

All moves leading to positions

that have the same transposition will be rejected as well.

Representation

As said earlier, representation of pieces is adapted to the problem.

Each of the three pieces has two coordinates. It is quite natural to

declare three vectors of two components each. However, in ALGOL 60, six

integers are more efficient: kwh, kwv, kbh, kbv, rh and rv for the

horizontal of KW, the vertical of KW etc.

.
////.
n . %
-

<

mm

// /

/ /
o / |
\ 0 //
-
BB

N N
B W W
%%%&//%4
\ .
. %é
N
T
B om o

%

%

N\

Mate and mate in three

fig. 8

fig. 7

fig. 6

The mating positions are characterized as follows:




11

KB on the eighth rank, KW in opposition on the sixth, or on knight-jump
distance if KB is in the corner, and R on minimally two files distance of
KB (fig. 6: 1.Rd8 mate).

If the last condition is not fulfilled, it is mate in at most three
moves. Having detected this situation all the same, the program utilizes
it (boolean mate 2). The next move is automatically carried out:
fig. 7: 1.Rel Kg8 2.Rhl1 Kf8 3.Rh8 mate.

The exception is fig. 8: 1.Rgl is stalemate. So 1.Rf2 Kg8 2.Rfl Kh8
3.Rf8 mate.

This is the only situation in which information is passed on to the

next move.

Measure

Measure is the distance between the two kings, computed as the sum

of squares:
(kbh—twh)? + (kbv—kww)Z.

More usual is a distance of the number of king moves Between two
fields. This seems to be more natural. But as a chess player I feel that
the distance between say f2 and b6 is larger than that between f2 and f6.
One way to illustrate this is to argue that there is only one path for
the king to get in four moves from £2 to b6, but several ways lead from
f2 to £6. So the latter case offers a more flexible approach. This is
expressed in our measure. A more sophisticated measure might have been
possible, but for our problem we are not interested in the consequences of
a distance of more than four lines or rows.

A measure smaller than three indicates an irregular situation. If
measure > 15 (a distance of more than three rows or exactly three squares
along a diagonal) there seems to be no use in calculating room. A king move
is needed anyhow, and is played immediately. Measure also acts a part in
ﬁruning and as a second criterion after room., Out of the moves with the
same room, the move with minimal measure is chosen. However, there is no
reason to prefer kings in opposition (measure = 4) over kings on knight-
jump diftance (measure = 5).. A value of 5 is accordingly changed in 4.

(In the queen—-ending it is possible to give such a preference. This leads




12

to the imaginary value 3).

Coding of moves

A move is put into effect by changing the coordinates of the playing
piece. To be able to discuss a specific move, the boolean array move
[1:3,1:8] is declared. This array contains all the legal white moves. It
is initialized true. Illegal or rejected moves have the value false.
Computation is only done for moves with a value true. The coordinates of the
pieces are changed as soon as the move is decided upon. A set of shadow
variables, kwhl, kwvl and so on, reflects the situation corresponding to

a move under consideration.

An array element
movel type, field]
represents a move of the following type:
type = 1, a rook move along a horizontal. Field indicates the new vertical
coordinate,
rvl := field

type = 2, a rook move along a vertical. Field indicates the new horizontal
coordinate, \
rhl := field
type = 3, a king move. There are eight of these. The meaning of field is

given in the diagram:

6(7 |8 field = 1, KW goes bottom left
4 [KwWi5 | field = 2, KW goes bottom middle
1123 and so on.

diagram for the

moves of the king

Some moves are ruled out:

Rook moves to their own square (fZeld is the value of rh or rv respectively)
and rook moves jumping over the white king are illegal. The same holds for
king moves out of the board or into the range of the opponent king.

The,order of moves is now fixed:




13

rook moves along a line, rook moves along a file, king moves. Within each
type field steps from 1 to 8. Move order becomes important if room and
measure break even.

The order of king moves is experimental. Considerations of room and
measure force the attacking king in the direction of his opponent. The
reverse effect of the order of moves keeps it off the edge, where it is
in the way of the black king.

The order of rook moves reflects the long range of the rook. If it
makes no difference for the value of room, the move with field = 1 comes
first, that is, R gets far away from KB. So R has an effective retreat when

it is under attack.

Pruning and Tempo

Some moves are excluded beforehand.

1. Rook moves to the second, third and fourth rank (movel2,2]1 [2,3] and
[2,43 and to the b- and c-file. Since KB is in the upper part of the
board, these moves serve no purpose. The rook move to the first row
(file) must remain for selection, among others as a tempb move, If black
would have no obligation to move, white could not force checkmate. This
demonstrates the importance of the tempo move. If, however, the rook
is already on the first row (file), the move to the second row (file)’
must take over, and is indeed not excluded.

2. King moves that enlarge measure with a value greater than one.

Such moves are obviously aimless.

Db i,

;/ /V é/ %% / The eventuality of making a tempo move is not

é% ;/ //, 0 excluded by this rule.

» / ig. i Kd4.
%Z é/ Zé ¢¢ In fig. 9 white has to make a tempo move, Kd4

7 7 %% Measure is increased by one.
7/%/%%
B BN

fig. 9




14

Role of the king

In the procedure room the king plays a secondary role. The rook

determines the quadrant, according to the term
axtsv x axish (fig. 5)

Dependent of the position of KW, this term is decreased by a value, tax.

Globally, there are four disjunct cases:

1. Check: is only considered if the kings are in opposition (measure = 4):
KB is driven back over one line.

2. The rook can be chased away by black (rook not strongj. No tax.

3. KW is outside the quadrant. No tax.

4. KW is inside the quadrant. Tax equals the number of rows white has
penetrated into the quadrant times a factor.

This factor is initialized to three, corresponding to the influence of the

king on a line upon its own square, one on the left and one on the right.

Facetor is decreased by one if the king is on an edge and again by one if

rook and king are on a neighbouring file.

Examples:

@////,///
'y
,/, »
"y
%,///////
7 7 T

\
\\\

\

\\

////
B B

fig. 10 fig. 11 fig. 12
quadrant 4x4 quadrant 3x4 quadrant 71
tax 2%3 : tax 2%2 tax 6x1
room 16-1=10 room 12-4 =8 room = |

An example of stalemate !



15

An exception is made for the case where black can leave his area in

the shadow of the white king:

/% e
//%%//%
%%/ -

The move 1.Ke4 is rejected because of

%% 7 e 7 %%%% the answer 1...Kgé.
,/,//2//%

An exception to this exception is the already mentioned position of

fig. 14.

7 7 7 W% 1.Kh6 results in stalemate. 1.Rg2 gives no

;/ 5/ %% %%- no solution at all:
/% %¢ // // 1.Rg2 Kh7 2.Rgl Kh8 etc.

B 2
n // 7 The move 1.Kgb6, interrupting the influence of

.0 the roéok over g8 gets a room of value 2. This
y / LB
% / //

is the same value as the move 1,Rg2 has, but

a smaller measure decides in favour of Kgé6.

So the next position results in the forced

/
//
/ / .
// 7 % ‘ 1.Kh5! Kh8 2.Kg6 Kg8 3.Rf5 Kh8 4.Rf8 mate.

/%/%
%/////,

variation:

Evaluation

A good impression of program play is given at fig. 28 (see examples

of program play).




16

It is not always easy to start off. A pathological case is fig. 29.

The algorithm has a limited look ahead of one move. This is a rather
severe restriction. Of course the problem stated is so easy in comparison
with general chess positions, that the program should be able to overcome
this. Yet the program play often lacks a clear direction. Foom is not
decreased by every step. Occasionally the given criteria lead to an attempt
to restore a previous position. The mechanism for excluding repetition of
moves is essential to the solution of the problem.

Nevertheless, as the ultimate trend is the decrease of room, the

process will converge to mate.




17

4. A NEW VERSION

The algorithm is good enough to solve the problem well within the
prescribed 50 moves. Yet the moves themselves are not very impressive. There
are too many rook moves, indicating that the long range effect of R is not
very well employed. In several cases too many erratic moves are made before
the ultimate strategy is found. It is known, theoretically, that from any
starting position mate can be achieved within 18 moves. Unfortunately, an
example was readily constructed for which the program needed 27 moves
(fig. 29). So the algorithm had to be adjusted. This was’an essential part
of our case study.

Apart from a more general description, this chapter deals with a number
of positions that induced specific changes. An important issue for our
investigations is the effort needed for raising level of play by one class.
We adhere to a tree depth of one move and do the same pruning as in the

primitive version.

Room

Most of our reconstruction Was*applied to this procedure. The influence
of the king is substantially increased. The primitive version is 1eés
accurate for central positions of KB. The choice of a move becomes indistinct
and program play has no clear directiom.

In the new version a number of distinctions are made on the basis of
the position of KW. If KW is not inside the quadrant, the situation
is not altered, no tax. As a consequence, R has less opportunity to
penetrate between the two kings. If KW is inside the quadrant, but the
position of R is not strong, tax is taken into account all the same.
Allowance has been made for the weak rook position in the calculation of
the quadrant (see fig. 5), and by increasing room by one. On the other hand,
the rook can get secured in one move. Therefore, its safety must not have

too many consequences for the weight of the king position.




18

| i g%%y// Both after 1.Ke7 and 1.Ke5 the quadrant is 7+%2.
Zy/ﬂﬁg/{%?%%<% No tax. However, after 1. Ke7 the rook is not
%,
n strong and room is increased by one. This caus-
%% /2 Z% // es a natural preference to Ke5.
//%/f//” Unf tely, 1.Rf2 is played. C
) %% %Z %% %{ nfortunately, 1. 1s played. Compare to
//E% fig. 23.

1.Rd6, no good, rook not strong.

1.Rd5 is a better move. Black can no more
cross the fifth rank.

1.Kf4, another move which gives white control
over the fifth rank.

Room is computed as if the rook was on d5(4*3).

A smaller measure decides in favour of 1.Kf4.

The primitive version plays 1.Ra5, moving R to
_ the only strong square of the fifth row

v /4 ;2,'22 (...Kc4 2.Ka3). This makes no difference for
4} // /Z the calculation of the quadrant (7%4). For the

4,

A‘y /
// ﬁ% %g yielding a room of 22,

' éé’ %% %% The new version plays 1.Kb3. The rook is not
fig. 18 1x4+1, tax 2x4, room 21.
Note that 1.Kb3 is forceful, e.g. ...Ke4 2.Ke3
or ...Kd3 2.Rh4 etc.

tax it does. If R is strong, tax is 2x3,

strong, but tax is accounted for. Quadrant

The algorithm was modified since a number of cases were not satis-—
factory. The changes, however, may have an adverse effect on other situa-—
tions. The decision taken appears then to be too specific. This gives
rise to more changes. These must be integrated in the framework of the

algorithm.




19

The weight of the position of KW is not readily expressed in a number.
Via a number of stages the new version has been reached. We shall not be
able to discuss all of them.

Here an important issue for documentation turns up. The why and where-
fore of each individual decision soon gets lost, for the programmer as well.
A large number of considerations, processed in the program, is not transfer-

able, especially those of chess-technical nature.

In the procedure room not less than fifteen cases are distinguished.
These originate from the relation of the position of the three pieces on
the board: which piece is in the middle, in horizontal and in vertical
direction. If R is in one direction in the middle, then KW is outside the
quadrant, no tax. If KB is in both directions in the middle, R is not
strong, but tax is accounted for. KB may be in one direction in the middle,
and KW in the other, or on the same line as R, etc. It is checked which

case applies. The calculation of room is then readily done.

Distance rook - black king

ZV // Z% %% In the new version 1.Kf3 and 1.Rd4 get the same

_
Y
/é /% %é %% value of room (compare with fig. 17). Also

e m B
//Z%ZVAégyégZ%// measure is the same. The nice move is 1.K£3;

%% /% %% 0 after 1.Rd4 white has to retreat a step:

> .
. 0 // // 7 1.Rd4 Ke5 2.Kd3.
B The long range effect of R has already been

mentioned before. A new criterion is intro-

fig. 19

duced, distance, the distance between the
black king and the rook. A maximal distance follows in priority after a
minimal room and a minimal measure. This criterion having been programmed, the
game proceeds: 1.Kf3 Ke5 2.Rd2 (tempo) Kf5 3.Re2 etc.
The last move is preferred over 3.Rd5 check, owing to this same criterion

distance.



20

A well-known pattern

//7/
///’”/
nn

i %
%/////
W

/%///@¢
%,////
7////%
_E

|
/

%y////%
%y /

fig. 21

W
i,

fig. 22

Often a well-known pattern pops up, which is
Black must
.Kgb 2.Rebt.

readily programmed. Best is 1.Rel.
abandon a row, 1...Kf7 2.Kg5h or 1I..
The situation can easily be characterized
(measure = 5, etc.). The room is calculated as
if R was already on e6, and is then increased
by 2.

Here, room = 2%x3+2.

Fig. 21. Mate in one move:

room = 2%0+2 =

1...Kg8 2.Re8.

2 (one more than stalemate).

One may claim that the program in this pattern
looks further than one move, viz. three half

moves (of white, black and white).

In the primitive version the first moves are:
1.,Kg5 Ke6 2,Rc5 Kd6 3.Rb5 Kcb 4.Ra5 Kbé

5.Rd5 Kc6 6.Rd41.

Why such a despairing start?

The first two moves are okay. The rest does not
seem appropriate. 3.Rf5 looks alright. Indeed,
this move should have got a smaller room. But

this move is pruned, being a move to the third

file (transpose to Kb5, Rf5, Ke6, the move under consideration is then

3.Re5, movell,37).

We have excluded these moves, as being useless because

KB is in the upper part of the board.

The point is that in this example movel1,1] is blocked by the position of

the white king: 3.Rh5 is illegal in the non-transposed situation. 3.Ra5

looks better all the same, having equal values for room and meqsure as

3.Rb5. But now the order of moves is decisive, generating Rb5 (movel1,71)
before Ra5 (movel1,81).



~ 21

(In the new version the new criterion distance turns the tables).

4.Rf5 and 4.Re5 are excluded for similar reason (moves[2,3] and [2,4]
after transposition to Ke2, Re7, Kf6)., On the sixth move the rook has no
more moves over the fifth row, 6.Ra5 being forbidden by history. From
sheer necessity it takes the d-file, and white proceeds pretty well to

check~mate.

7 7
;/jfzyjjgzj%¢7f% 1.Rb6 is.pla?ed: . .
é%//;%{/%%%%%%§42 Here an 1ntr1ns1c.weaknes? ?f‘the algorithm is
%% Z% %7 shown. The necessity ;o minimize room leads to
}/ %; ZV 47 trivialities. 1.Rec6b would be better for that,
%%//%Z/Q%%////// but is again excluded (move to third file).
_ _ 1.Kd5 would have been a good move,
fig. 23

Blocking the edge

?/
B The attacking king is fixed by its opponent on

7////

7 7 U the edge, the very place where black is to be
%% A? é% ;/ mated. Prospects for an early mate are no good:
z/////,.

7 1.Ra3, check, spoils room, 1.Kdl is followed by

// Z% 5? %% 1...Kd3. If it is black's turn, the ban is
I E U broken: 1...Kd3 2.Kf2 or 1...Kf3 2.Kd2.
fig. 24 So if it is black's turn, opposition is

favourable for white, knight—jump (measure = 5) not. The last case gets no
tax, the former does. In the diagram position 1.Kdl and 1.Kfl are rejected

and a tempomove is made: 1.Rb4.

Order of king moves

The initial order of king moves aimed at keeping the white king off
the edge. This care is not needed in the new version. Experimentally it
appears to be better to reverse the order, as expressed in the next diagram.

&




22

4l 211 field = 1, KW goes top right,
5 KW|(3 field = 2, KW goes top middle,
81716 and so on.

diagram for the

moves of the king

KW prefers the direction of the corner h8. In
an earlier stage 3 and 4 were interchanged. The
present order is understood, because 3 aims
more at the square h8 than 4. This is expressed
in fig. 25.

1.Kf5 is better than 1.Kdé6 (room and measure

breaking even, the order of moves is decisive).

If measure > 15, a king move is played. This
move is only based on measure. In some instan-
ces this goes at the expense of room.

In the figure: 1.Kc7 Kg7 2.Kd7 Kf6 3.Ra5,

in stead of 1.Kc6 etc.

This is not altered in the new version.

Check

Being careful with checks has its drawbacks
as well. The best move here is 1.Rc7 check,
forcing black backward