
AFDELING INFORMATICA

COEN ZUIDEMA

stichting

mathematisch

centrum

CHESS, HOW TO PROGRAM THE EXCEPTIONS?
,-

~
MC

IW 21/74 SEPTEMBER

2e boerhaavestraat 49 amsterdam
M \T'~':'1,\T!SCH C~NTM:!!:l
A!!i.)l,t;I\WA,t1 ~-

AMS (MOS) subject classification scheme (1970): 68A45.

ABSTRACT

After nearly 25 years of chess programming it may be stated that the

original claims have not been fulfilled and that the problem has been

strongly underrated. In the present paper we are concerned with the bottle

necks.

A subproblem is defined and solved, with the intention of simulating

the main problem - programming chess - on a convenient scale. The exceptions

to general rules turn out to be mainly accountable for a poor level of

play. A continuous effort to improve this level will jam in an endless

stream of details.

Another serious source of troubles is formed by the way the tree of

moves has to be pruned. Also on that issue, still one of the main bottle

necks, the troubles arise from the numerous exceptions.

Other aspects of chess, as pattern recognition and experience, are

broadly dealt with. The most important problems from the point of view of

an experienced chess player are discussed. The prospects of having a

computer play master chess within a foreseeable future, look anything but

favourable.

The author is an international chess master and was champion of

the Netherlands in 1972.

KEYWORDS & PHRASES: ArtificiaZ inteZZigence, Chess programming, EvaZuation

functions, Pattern recognition.

CONTENTS

O. Structure of the paper

l • Introduction/ Acknowledgements

2. The rook endgame

3. Further elaboration. The primitive version

4. A new version

S. Extension of our method. Other programs

6. Reflections of a chess player

7. The program

References

2

5

9

17

26

31

39

48

O. STRUCTURE OF THE PAPER

Chapter 1 gives both an introduction to and a motivation for our

investigations. This motivation leads to a subproblem: the mating of the

deprived king by king and rook. Some results are given in advance.

The basic algorithm for this endgame has been supplie~ in the chapters

2 and 3. In chapter 2 we sketch the main lines. In chapter 3 we go more

into detail. That chapter is concluded with an evaluation of program play.

As we were not satisfied with the level of program play, a new version

was made. Chapter 4 provides a general description of the changes and a

discussion of a good many of the trouble spots in the primitive version.

The examples given are not really shocking, but they are characteristic of

the kind of difficulties one is confronted with in progrannning chess.

Improvement of play is compared to progrannning effort and program length.

Finally we give some examples of program play by both versions.

Chapter 5 is split up in two parts. Both are not directly important to

our goals, but are linked with progrannning endgames, Firstly, we speak

about application of our method to other elementary endgames. Secondly,

related work of HUBERMAN and TAN is discussed.

In chapter 6 we come to our conclusions. We dwell on the claims that

havebeenmade since the early fifties and the present state of the art.

Next, conclusions of our subproblem are made. Discussing strategy, the

ideas of BOTWINNIK - to us one of the better ways of attacking the

problem - are brought in. Furthermore we deal with several more aspects of

chess, as pattern recognition and experience. The most important problems

from the point of view of a chess player are described. These problems have

scarcely been mentioned in the literature. In the final section we are not

very optimistic about progress in the future.

The reader will find the program for the rook endgame in chapter 7,

together with some clarifying remarks.

We have tried to enable both information scientists and chess-players

to read this paper. We assume the reader is familiar with the rules of chess.

Chess-players not familiar with progrannning are reconnnended not to bother

too much about some technical terms.
'

2

1. INTRODUCTION

Current chess programs are, with respect to the tree of moves, based

on the ideas of SHANNON, stated in 1950:

1. Use a numerical scoring function. This function includes factors such as

material balance, centre control, pawn structure and open files for the

rook.

2. Limit the size of the tree (pruning).

For a historical survey see D.N. LEVY [7] and P.G. RUSHTON &

T.A. MARSLAND [9].

Recent publications show some criticism of these methods. The programs

are extremely weak in the endgame. They are tactically sound, but lack

direction of play or planning.

One of the participants in the annual ACM Computer Chess Championships

is the program TECH, written by GILLOGLY. The author states that the program

is a useful benchmark for other programs. This is because TECH spends at most

5 percent of its CPU-time on chess heuristics, viz. for sorting the moves in

the first ply, and then scans the tree by brute force. The end-positions are

evaluated with material as only criterion [5]. TECH's second pri~e in 1971

throws doubt upon more sophisticated methods.

There is consensus over the need of strategic play, the significance

of goals and relevant plans. However, new methods are not given,(D.N. LEVY

[7], B. MITTMAN [8] and P.G. RUSHTON & T.A. MARSLAND[9]). That means that

after two decades of practice in this field the problem of how to program

chess is basically unsolved. Moreover, we feel that the mere implementation

of goals, however difficult, will not suffice. The question is whether it

is possible to give numerical weights to a long list of chess heuristics and

immaterial factors as mentioned above, which are meaningful under different

circumstances (M.M. BOTWINNIK [I]). Related to this is the question whether

implementation of general rules does not lead to blundering moves, in view

of the many exceptions of the rules.

We would like to illustrate this by an existing program. However,

documentation usually consists of a description in general terms. Access

to the programs is hampered by their great bulk. And, how can one determine

• ? *) the effect of a single parameter .

To get around this, we state a very simple subproblem as a casestudy:

mating the deprived king by king and rook.

3

It must be strongly emphasized that the solution of this problem is no

goal in itself. In fact, this ending has been progrannned often enough. For

this reason we reject the method of exhaustive enumeration: a prescription

for the situations with the black king on the eighth rank, the seventh, the

sixth and the fifth, further subdivision of these cases, etc. On the

contrary, the same·means are used as current in chess progrannning, e.g.

generation of moves and pruning the tree. These means are adapted to our

problem.

Besides this, the program is based on a good strategy. As said before,

strategy is suggested to be the next essential step to be made in chess

progrannning. Moreover, a good strategy can be given for our subproblem far

more easier than for complicated situations.

Our algorithm is of course not a perfect solution. The rules given

are never complete in chess. Otherwise, there would be no problem.

Each position will be evaluated on its own merits. Most legal moves

will be generated. The move that is best in the light of this strategy, is

performed.

Some moves are rejected beforehand on plausible grounds (pruning). We

have chosen to limit the depth of the tree to one move. This is a severe

restriction, but given the simplicity of the problem, easy to overcome.

We strive after a well-playing program. The number of moves must not

exceed the minimum needed for mate too far. The moves themselves must be

coherent, and, as a whole, must show a direction of play.

Our final purpose is to keep track of the following:

• level of program play

• effect of new criteria which refine the algorithm

*) Varying the value of one parameter and fixing the others is an impossible
task, because the number of parameters is too large. See also
A.L. SAMUEL [10], page 602. ,.

4

• exception of rules

• improvement of play in new versions versus progranrrning effort

and program length.

Because of the clarity of the problem we expect to get a better insight in

where the difficulties in chess progrannning lie.

It will appear that a global strategy provides a solution of the problem

from every starting position well within the required 50 moves. Level of

play is not high.

For any rule given in the program one is able to construct exceptional

situations. A more refined strategy is needed to elevate level of play.

A small improvement, however, entails a great deal of expense in progrannning

effort and program length. The new rules will have their exceptions too.

Exceptions that will not even be noticed by human players.

This is the kernel of the problem. A t-i:-ivial exercise as our endgame

gives rise to a burden of small problems that have to be overcome. What

about an overall-strategy for chess ?

ACKNOWLEDGEMENTS

I am indebted to J.W. de Bakker, D. GPUne and J. Wolleswinkel for

carefully reading and corronenting on the manuscript. Furthermore, T.H. Gunsing

who edited it, C.J. Klein Velderman-Los who did a fine typing job, and

D.Zwarst, J. Suiker and J. Schipper for printing.

My special gratitude goes to A. van Wijngaarden who, as the director

of the Mathematical Centre, supplied an ideal atmosphere in which it was

possible to pursue and combine both rrry professional activities in computer

prograrroning and rrry interests in chess.

2. THE ROOK ENDGAME

Abbreviation

KW: the white king

KB: the black king

R: the (white) rook

Notation

5

The algebraic notation, used everywhere except in

Spanish or English speaking countries, gives the

first letter of the moving piece and the square

to which this piece is moved, according to fig. I.

There is no difference in notation between black

and white.

fig.

Mating positions

fig. 2 fig. 3

The computer plays for white, and has a king and a rook. Its charge is

mating the black king. The starting position and the moves of black are

input via a terminal by the human opponent.

In order to deliver mate KB must be driven to the edge, fig. 2 and 3.

Although mating is possible with KB on any square of the edge, the corner

is of vital importance, since mate cannot be forced on a board with the

ranks unlimited on both sides.

KB can be driven row by row to the edge, regardless of the row where

KB stands. However, this is not a fine strategy, because it does not

6

utilize the power of R in vertical direction.

Program scheme

A symbolic program may help to clarify the following discussion

(ALGOL-like language):

begin initialization;

start: input position or opponents move;

·make your move;

goto start

end

In the routine make your move the program computes its next move. A scheme

follows:

begin transposition;

end

The algorithm

while not last move do

begin generate next move;

end;

ca Zou late room;

calculate measure;

compare with candidate

get candidate;

inverse transposition;
output

The leading idea of the algorithm is to minimize room, the number of

free squares KB can reach in one or more moves.

fig. 4

The rook divides the board in four quadrants.

KB stands in one of them. If R cannot be driven

away - such a position of R is called strong -

KB will never escape from its quadrant. Its room

is the number of squares in the quadrant:

room= a:dsv x axish

In fig. 4 the position of R is strong and

room= Z x 4 = 12.

If R does not hold a strong position and KB attacks it, R can retreat over

a file or over a rank, choosing the case with the smaller quadrant. Even

when R is not under direct attack, room is calculated as if the rook were

placed at the beginning of this file or rank:

room= 7 x min(a:dsv, a:dsh).

fig. 5

Example:

KB is able to attack R in two moves,

KW is far away. R may move to a5 or di.

room= 7 x min(4,Z) = 21.

When KW is in the same quadrant as its opponent, it controls a number

of squares. This is accounted for -tax- and room is diminished accordingly.

The program computes the room for most allowed moves, and takes the

moves which minimizes the room. So the depth of the tree is one. Some

moves are excluded beforehand. These are moves that increase the distance

between the kings, and the moves of the rook to the second, third and

fourth row, or the second and third file.

When we look upon the row where KB is to be mated as the eighth row,

then first row, second row etc. are also defined. For this the position
~

7

8

of KB is decisive. The representation in the program is simplified by an

internal transposition, such that KB stands in the triangle e5-e8-h8 (see

chapter 3).

Calculation of room seems superfluous if the distance between the two

kings -measure- is large, e.g. four rows. In such a case a king move is

always played, unless R is under attack.

The black king being in the middle of the board, calculation of room

does not need to be too accurate. When the process proceeds, room must

correspond exactly to the number of free squares that KB can reach 9 includ

ing its own square.

If more than one possible move yields the same minimal room, more

criteria are needed. The first is a minimal measure. A final decision

may come from the order of move generation. Therefore, this order is not

arbitrary.

It is well-known that a check does not bring matters any further. It

is also inconvenient from the point of view of the algorithm: It allows the

defending king to choose the best of two quadrants. For this reason a check

is only considered if it forces KB to give up a row.

Mate could be a logical consequence of this case if room is zero. The

mating positions, however, are readily characterized. As a good policy,

mating moves are considered before anything else,

Stalemate, on the other hand, follows directly from the relation

room= 1

because the situations in which a check is made leave the king more than one

refuge (room> 1). A move which makes relation(*) true is rejected.

With the means described mate is not always brought about. For example,

the anticipation of a stalemate may result in a repetition of moves (see

fig. 14). Therefore, some specific cases are distinguished. Further, a

mechanism is built in to exclude repetition of moves. History of the game

is recorded in an array histo-py of fifty elements (the well-known drawing

limit). Moves leading to recorded positions are rejected.

We state that a program, based on these principles, solves the problem

from eyery starting position, and does so well within fifty moves.

9

3. FURTHER ELABORATION. THE PRIMITIVE VERSION

Firstly we recall our task: solving a subproblem with means reflecting

those of normal chess progrannning. We are of course free to adapt our tools

to this specific problem. In fact things like representation of pieces,

move generation and the algorithm itself are not apt to generalization.

Program scheme

An extension of the program scheme from the preceding chapter for the

body of make your move is given. In this routine the program computes its

next move. The discussion closely follows the scheme:

begin transposition;

end

Transposition

i.t. not immediate move then_

begin prune;

whiZe not Zast move do

begin generate next move;

ca Zcu Zate room;

compare with candidate

end;

get candidate

end;

inverse transposition;

output

Every position can be transposed such that the KB stays in the triangle

e5-e8-h8. The distance of the king to the edge is an indication for the

progress of the mating process. The main reason for the transposition is

that the program knows the eighth row for the nearest edge. In most cases

the king will be mated there. First row, second row etc. are also

defined. For example, the rook on the first file is far away from the

opposetl king. This affects the order of move generation. The transposition

10

is not yet completely described. With the defending king on the diagonal

al-h8 its colleague can be placed in the triangle al-h8-hl. When KW also

stands on this diagonal, R is placed in the triangle al-a8-h8. These

choices are justified looking upon the range a8-h8 as the nearest edge.

As a consequence, the program makes some distinctions between horizontal

and vertical.

The program works move by move. Transposition and inverse transposition

take place before and after computation of every move. For a person trying

to understand a sequence of moves, this may give some difficulties. When,

for example, KB goes from e6 to f5 or from c4 to d3, the meaning of

horizontal and vertical is interchanged.

There is an interesting side effect. The array history records the

position after transposition. Moves leading to previous positions are

rejected. But these are not the only ones. All moves leading to positions

that have the same transposition will be rejected as well.

Representation

As said earlier, representation of pieces is adapted to the problem.

Each of the three pieces has two coordinates. It is quite natural ~o

declare three vectors of two components each. However, in ALGOL 60, six

integers are more efficient: kwh, kwv, kbh, kbv, rh and rv for the

horizontal of KW, the vertical of KW etc.

Mate and mate in three

• • • • •• ~ ~ • • • • • • .. • ■ • • ■ !', ~ •• • • ■ • • • ~ • .. • • , • . ~. • • • • iw. • • • • ~ ~ • • • • • • •
fig. 6 fig. 7 fig. 8

The mating positions are characterized as follows:

"'

KB on the eighth rank, KW in opposition on the sixth, or on knight-jump

distance if KB is in the corner, and Ron minimally two files distance of

KB (fig. 6: I.Rd8 mate),

If the last condition is not fulfilled, it is mate in at most three

moves. Having detected this situation all the same, the program utilizes

it (boolean mate 2). The next move is automatically carried out:

fig. 7: I.Rel Kg8 2.Rhl Kf8 3.Rh8 mate.

The exception is fig. 8: I.Rgl is stalemate. So I.Rf2 Kg8 2.Rfl Kh8

3.Rf8 mate.

This is the only situation in which information is passed on to the

next move.

Measure

Measure is the distance between the two kings, computed as the sum

of squares:

More usual is a distance of the number of king moves between two

fields. This seems to be more natural. But as a chess player I feel that

the distance between say f2 and b6 is larger than that between f2 and f6.

One way to illustrate this is to argue that there is only one path for

the king to get in four moves from f2 to b6, but several ways lead from

f2 to f6. So the latter case offers a more flexible approach. This is

expressed in our measure. A more sophisticated measure might have been

possible, but for our problem we are not interested in the consequences of

a distance of more than four lines or rows.

l I

A measure smaller than three indicates an irregular situation. If

measure> 15 (a distance of more than three rows or exactly three squares

along a diagonal) there seems to be no use in calculating room. A king move

is needed anyhow, and is played immediately. Measure also acts a part in

pruning and as a second criterion after room. Out of the moves with the

same room, the move with minimal measure is chosen. However, there is no

reason to prefer kings in opposition (measure= 4) over kings on knight

jump distance (measure= 5) .. A value of 5 is accordingly changed in 4. ,,
(In the queen-ending it is possible to give such a preference. This leads

12

to the imaginary value 3).

Coding of moves

A move is put into effect by changing the coordinates of the playing

piece. To be able to discuss a specific move, the boolean array move

[1:3,1:8] is declared. This array contains all the legal white moves. It

is initialized~- Illegal or rejected moves have the value false.

Computation is only done for moves with a value true. The coordinates of the

pieces are changed·as soon as the move is decided upon. A set of shadow

variables, kwh1, kwvl and so on, reflects the situation corresponding to

a move under consideration.

An array element

move[type,fieZd]
represents a move of the following type:

type= 1, a rook move along a horizontal. Field indicates the new vertical

coordinate,

rv1 := field

type= 2, a rook move along a vertical. Field indicates the new horizontal

coordinate,

rh1 := field

type= 3, a king move. There are eight of these. The meaning of field is

given in the diagram:

6 7 8 field= 1, KW goes bottom left

4~5 field= 2, KW goes bottom middle

1 2 3 and so on.

diagram for the

moves of the king

Some moves are ruled out:

Rook moves to their own square (field is the value of rh or rv respectively)

and rook moves jumping over the white king are illegal. The same holds for

king moves out of the board or into the range of the opponent king.

The~order of moves is now fixed:

rook moves along a line, rook moves along a file, king moves. Within each

type field steps from l to 8. Move order becomes important if room and

measure break even.

The order of king moves is experimental. Considerations of room and

measure force the attacking king in the direction of his opponent. The

reverse effect of the order of moves keeps it off the edge, where it is

in the way of the black king.

13

The order of rook moves reflects the long range of the rook. If it

makes no difference for the value of room, the move with field= 1 comes

first, that is, R gets far away from KB. So R has an effective retreat when

it is under attack.

Pruning and Tempo

I.

Some moves are excluded beforehand.

Rook moves to the second, third and fourth rank (move[2,2] [2, 3] and

[2,4~ and to the b- and c-file. Since KB is in the upper part of the

board, these moves serve no purpose. The rook move to the first row

(file) must remain for selection, among others as a tempo move. If black

would have no obligation to move, white could not force checkmate. This

demonstrates the importance of the tempo move. If, however, the rook

is already on the first row (file), the move to the second row (file)

must take over, and is indeed not excluded.

2. King moves that enlarge measure with a value greater than one.

Such moves are obviously aimless.

fig. 9

The eventuality of making a tempo move is not

excluded by this rule.

In fig. 9 white has to make a tempo move, Kd4.

Measure is increased by one.

14

Role of the king

In the procedure room the king plays a secondary role. The rook

determines the quadrant, according to the term

axisv x axish (fig. 5)

Dependent of the position of KW, this term is decreased by a value, tax.

Globally, there are four disjunct cases:

1. Check: is only considered if the kings are in opposition (measure= 4):

KB is driven ba~k over one line.

2. The rook can be chased away by black (rook not strong). No tax.

3. KW is outside the quadrant. No tax.

4. KW is inside the quadrant. Tax equals the number of rows white has

penetrated into the quadrant times a factor.

This factor is initialized to three, corresponding to the influence of the

king on a line upon its own square, one on the left and one on the right.

Factor is decreased by one if the king is on an edge and again by one if

rook and king are on a neighbouring file.

Examples:

fig. 10 fig. I 1 fig. 12

quadrant 4*4 quadrant 3*4 quadrant 7*1

tax 2*3 tax 2*2 tax 6*1

room 16-1 = IO room 12-4 = 8 room=
An example of stalemate !

An exception is made for the case where black can leave his area in

the shadow of the white king:

fig. 13

The move 1.Ke4 is rejected because of

the answer I ••• Kg4.

An exception to this exception is the already mentioned position of

fig. 14.

I.Kh6 results in stalemate. t.Rg2 gives no

no solution at all:

l.Rg2 Kh7 2.Rgl Kh8 etc.

15

The move l.Kg6, interrupting the influence of

the r6ok over g8 gets a room of value 2. This

is the same value as the move 1.Rg2 has, but

a smaller measure decides in favour of Kg6.
fig. 14

fig. I 5

Evaluation

So the next position results in the forced

variation:

I.KhS! Kh8 2.Kg6 Kg8 3.RfS Kh8 4.Rf8 mate.

A good impression of program play is given at fig. 28 (see examples

of program play).

16

It is not always easy to start off. A pathological case is fig. 29.

The algorithm has a limited look ahead of one move. This is a rather

severe restriction. Of course the problem stated is so easy in comparison

with general chess positions, that the program should be able to overcome

this. Yet the program play often lacks a clear direction. Room is not

decreased by every step. Occasionally the given criteria lead to an attempt

to restore a previous position. The mechanism for excluding repetition of

moves is essential to the solution of the problem.

Nevertheless, as the ultimate trend is the decrease of room, the

process will converge to mate.

17

4. A NEW VERSION

The algorithm is good enough to solve the problem well within the

prescribed 50 moves. Yet the moves themselves are not very impressive. There

are too many rook moves, indicating that the long range effect of R is not

very well employed. In several cases too many erratic moves are made before

the ultimate strategy is found. It is known, theoretically, that from any

starting position mate can be achieved within 18 moves. Unfortunately, an

example was readily constructed for which the program needed 27 moves

(fig. 29). So the algorithm had to be adjusted. This was an essential part

of our case study.

Apart from a more general description, this chapter deals with a number

of positions that induced specific changes. An important issue for our

investigations is the effort needed for raising level of play by one class.

We adhere to a tree depth of one move and do the same pruning as in the

primitive version.

Room

Most of our reconstruction was
0

'applied to this procedure. The influence

of the king is substantially increased. The primitive version is less

accurate for central positions of KB. The choice of a move becomes indistinct

and program play has no clear direction.

In the new version a number of distinctions are made on the basis of

the position of KW. If KW is not inside the quadrant, the situation

is not altered, no tax. As a consequence, R has less opportunity to

penetrate between the two kings. If KW is inside the quadrant, but the

position of R is not strong, ta,x is taken into account all the same.

Allowance has been made for the weak rook position in the calculation of

the quadrant (see fig. 5), and by increasing room by one. On the other hand,

the rook can get secured in one move. Therefore, its safety must not have

too many consequences for the weight of the king position.

18

fig. 16

fig. 1 7

fig. I 8

Both after l.Ke7 and l.Ke5 the quadrant is 7*2,

No tax. However, after 1. Ke7 the rook is not

strong and Poom is increased by one. This caus

es a natural preference to Ke5.

Unfortunately, 1.Rf2 is played. Compare to

fig. 23.

l.Rd6, no good, rook not stPong.

l.Rd5 is a better move. Black can no more

cross the fifth rank.

I.Kf4, another move which gives white control

over the fifth rank.

Room is computed as if the rook was on d5(4*3).

A smaller measuPe decides in favour of 1.Kf4.

The primitive version plays 1 .. Ra5, moving R to

the only stPong square of the fifth row

(••• Kc4 2.Ka3). This makes no difference for

the calculation of the quadrant (7*4). For the

tax it does. If R is stPong, tax is 2*3,

yielding a Poom of 22.

The new version plays l.Kb3. The rook is not

strong, but tax is accounted for. Quad!'ant

7*4+1, tax 2*4, POOm 21.

Note that 1.Kb3 is forceful, e.g •••• Ke4 2.Kc3

or ••• Kd3 2.Rh4 etc.

The algorithm was modified since a number of cases were not satis

factory. The changes, however, may have an adverse effect on other situa

tions. The decision taken appears then to be too specific. This gives

rise to more changes. These must be integrated in the framework of the

algorithm.

19

The weight of the position of KW is not readily expressed in a number.

Via a number of stages the new version has been reached. We shall not be

able to discuss all of them.

Here an important issue for documentation turns up. The why and where

fore of each individual decision soon gets lost, for the programmer as well.

A large number of considerations, processed in the program, is not transfer

able, especially those of chess-technical nature.

In the procedure room not less than fifteen cases are distinguished.

These originate from the relation of the position of the three pieces on

the board: which piece is in the middle, in horizontal and in vertical

direction. If R is in one direction in the middle, then KW is outside the

quadrant, no tax. If KB is in both directions in the middle, R is not

strong, but tax is accounted for. KB may be in one direction in the middle,

and KW in the other, or on the same line as _R, etc. It is checked which

case applies. The calculation of room is then readily done.

Distance rook - black king

fig. 19

In the new version l,Kf3 and l.Rd4 get the same

value of room (compare with fig. 17). Also

measure is the same. The nice move is l.Kf3;

after 1.Rd4 white has to retreat a step:

l .Rd4 KeS 2.Kd3.

The long range effect of R has already been

mentioned before. A new criterion is intro

duced, distanee, the distance between the

black king and the rook. A maximal distance follows in priority after a

minimal room and a minimal measure. This criterion having been progrannned, the

game proceeds: l.Kf3 KeS 2.Rd2 (tempo) KfS 3.Re2 etc.

The last move is preferred over 3.RdS check, owing to this same criterion

distance.

20

A well-known pattern

■.

■
fig. 20 ·

fig. 21

Excluded moves

Often a well-known pattern pops up, which is

readily progrannned. Best is I.Rel. Black must

abandon a row, I ..• Kf7 2.Kg5 or I ••• Kg6 2.Re6t.

The situation can easily be characterized

(measure= 5, etc.). The room is calculated as

if R was already on e6, and is then increased

by 2.

Here, room= 2*3+2.

Fig. 21. Mate in one move: 1 ••• Kg8 2.Re8.

room= 2*0+2 = 2 (one more than stalemate).

One may claim that the program in this pattern

looks further than one move, viz. three half

moves (of white, black and white).

In the primitive version the first moves are:

I.Kg5 Ke6 2.Rc5 Kd6 3.Rb5 Kc6 4.Ra5 Kb6

5 • Rd5 Kc6 6 • Rd I •

Why such a despairing start?

The first two moves are okay. The rest does not

seem appropriate. 3.Rf5 looks alright. Indeed,

this move should have got a smaller room. But
fig. 22 this move is pruned, being a move to the third

file (transpose to Kb5, Rf5, Ke6, the move under consideration is then

3.Rc5, move[l,3]). We have excluded these moves, as being useless because

KB is in the upper part of the board.

The point is that in this example moveCl,1] is blocked by the position of

the white king: 3.Rh5 is illegal in the non-transposed situation. 3.Ra5

looks better all the same, having equal values for room and measure as

3.Rb5. But now the order of moves is decisive, generating Rb5 (move~l., 7]) ,,
before Ra5 (move[l,8]).

(In the new version the new criterion distance turns the tables).

4.RfS and 4.ReS are excluded for similar reason (moves[2,3] and [2,4]

after transposition to Ke2, Re7, Kf6). On the sixth move the rook has no

more moves over the fifth row, 6.RaS being forbidden by history. From

sheer necessity it takes the d-file, and white proceeds pretty well to

check-mate.

fig. 23

Blocking the edge

li' • ■m
~ m ~

m m

fig. 24

l .Rb6 is played.

Here an intrinsic weakness of the algorithm is

shown. The necessity to minimize room leads to

trivialities. 1.Rc6 would be better for that,

but is again excluded (move to third file).

I.KdS would have been a good move.

The attacking king is fixed by its opponent on

the edge, the very place where black is to be

mated. Prospects for an early mate are no good:

1.Ra3, check, spoils room, 1.Kdl is followed by

I ••• Kd3. If it is black's turn, the ban is

broken: l ... Kd3 2.Kf2 or l ... Kf3 2.Kd2.

So if it is black's turn, opposition is

favourable for white, knight-jump (measure= 5) not. The last case gets no

ta::c, the former does. In the diagram position 1.Kdl and l.Kfl are rejected

and a tempomove is made: 1.Rb4.

Order of king moves

The initial order of king moves aimed at keeping the white king off

the edge. This care is not needed in the new version. Experimentally it

appears to be better to reverse the order, as expressed in the next diagram.

22

4 2 I

5 KW3

8 7 6

field= 1, KW goes top right,

field= 2, Kw goes top middle,

and so on.

diagram for the

moves of the king

fig. 25

KW prefers the direction of the corner h8. In

an earlier stage 3 and 4 were interchanged. The

present order is understood, because 3 aims

more at the square h8 than 4. This is expressed

in fig. 25.

I.Kf5 is better than 1.Kd6 (Poom and measu:r>e

breaking even, the order of moves is decisive).

Blind obedience

Check

fig. 26

fig. 27

If measuPe > 15, a king move is played. This

move is only based on measu:r>e •. In some instan

ces this goes at the expense of poom.

In the figure: l,Kc7 Kg7 2.Kd7 Kf6 3.Ra5,

in stead of I.Kc6 etc.

This is not altered in the new version.

Being careful with checks has its drawbacks

as well. The best move here is l.Rc7 check,

forcing black backwards, for I ••• Kh6 2.Ra7 !

Kh5 3.Rh7 is mate.

What are the pro's and the con's of progrannning this pattern? It goes

withou~. saying that we appreciate any increase of program play. On the other

hand our starting point was a program calculating moves rather than going

through a long list of all possible situations (exhaustive enumeration).

Brought on the level of general chess programming, what is the limit

to the number of patterns a program may contain?

Evaluation

The performance of the program has been improved in the new version.

Pretty good examples are at fig. 30 and 31. There are still some starting

problems, but they ·demand only a few moves, see fig. 32. However, many

indications remain of a brain without human flexibility. Refer to fig. 23

and 26. A class-C player would do better, I guess.

23

The most important change was made in the procedure room. The following

figures give a rough impression of the increase in program length (in

lines of ALGOL-text) and in object code (in -00-bits words):

ALGOL-text object code

prim. new prim. new

total program 275 390 2000 2900

r-0 80 80 715 715

procedure room 45 135 280 1070

A small improvement entails a great deal of effort. The conclusion

forces itself that refining the algorithm and exceptions of rules give rise

to an overburdened program, at least for more complicated chess problems.

Note that runtime is not increased in that way. Only a part of the object

code is executed for each position. The new criterion distance, however,

do~s not ask for much program text, but, on the other hand, it takes some

runtime.

24

Examples of programplay

primitive version

"

~ ¾ . -. ,

fig. 28

fig. 29

new version

fig. 30

1.Kg3 Kd3 2.Kf4 Kd4 3.Re5 Kd3 4.Re4 Kd2

5.Re3 Kc2 6.Ke4 Kd2 7.Kd4 Rc2 8.Rd3 Kcl

9.Kc3 Kbl IO.Rd2 Kcl 11.Rd8 Kbl 12.Ra8 Kcl

13.Ral mate.

1,Ra4 Kb3 2.Rh4 Kc3 3.Rg4 Kd3 4.Rh4 Kc3

5,Kdl Kd3 6,Rg4 Ke3 7.Ra4 Kd3 8.Rh4 Ke3

9,Rg4 Kd3 IO.Rb4 Kc3 11.Ra4 Kd3 12.Kel Ke3

13.Rh4 Kf3 14.Kd2 Kg3 15.Ra4 Kf3 16.Rb4 Kf2

17.Rf4t Kg2 18.Ke3 Kg3 19.Ke4 Kg2 20.Rf3 Kh2

21.Kf4 Kg2 22.Kg4 Kh2 23.Rf2t Kgl 24.Kf3 Khl

25.Kg3 Kgl 26.Rf8 Khl 27.Rfl mate.

1.Kg2 Ke5 2.Rdl Ke4 3.Kf2 Kf4 4.Rel Kg4

5,Kg2 Kf4 6.Re2 Kg4 7.Rf2 Kh4 8.Rf4t Kh5

9.Kh3 Kg5 10.Rfl Kh5 11.Rgl Kh6 12.Kh4 Kh7

13.KhS Kh8 14.Kg6 Kg8 15.Rfl Kh8 16,Rf8 mate.

Putting the rook in the starting position on a8

instead of al, the game proceeds

(fig. 30A: Khl, Ra8, Kd5):

1.Kg2 Ke4 2.Rd8 Ke3 3.Kfl Kf3 4.Re8 Kf4 (or

4 ••• Kg3 5.Rf8 Kh3 6.Rg8 etc.) 5.Kg2 Kf5

6.Kg3 Kf6 7.Kg4 Kf7 8.Re5 Kf6 9.Rel Kg6 (or

9 ••• Kf7 10.KgS etc.) 10.Rfl Kh6 ll.Rf6t Kh7

etc. (17 moves).

fig.

fig. 32

I.Re2 Kf6 2.Kg4 Kg6 3.Rf2 Kh6 4,Rf6t Kg7

5. Kg5 Kh7 6.Rf7t Kh8 7.Kh6 Kg8 8.Rfl Kh8

9. Rf8 mate.

I.Ra5 Kb4 2.Rd5 Kc4 3.Rd2 Kb3 4.Rc2 Ka3

5.Rb2 Ka4 6,Ka2 etc. (12 moves).

25

26

5. EXTENSION OF OUR METHOD. OTHER PROGRAMS

Not important to our goals but still interesting is the question

whether our method can be applied to the other elementary endgames, king

and queen, king and two bishops, king and bishop and knight. The queen

ending has been programmed, the other endgames have not. The chapter is

concluded with a discussion of the endgames of HUBERMAN [6] and TAN [II].

The queen ending

This ending is much easier to program than king and rook. Therefore,

we give only a short description of the algorithm.

The queen is more powerful than the rook. The program has to exploit

this. When KW is positioned at one side of KB and the queen at the other

side, black has a narrow path in which he can walk. If the queen follows,

proceeding from the center, black is easily driven up and checkmated.

The narrow path KB has available implies that black has only a few moves

at his disposal. This is exploited in the program. The principle idea is to

minimize the number of legal moves black has. This number is computed for

every white move. The move leaving a minimal choice to black is de~ided

upon. This leads automatically to the desired situation: the white king at

one side and the queen at the other side of the black monarch. A minor

criterion gives preference to central queen positions over positions near

the edge. So the queen does not block the edge.

fig. 33

A fine example is shown by fig. 33.

Mate is reached in four moves, the denth

of the tree being one !

l.QdS Kg4 2.Qe5 Kh4 (••• Kh3 3.Qh5 mate)

3.Kf3 Kh3 4.Qh5 mate.

Special cases, as in the rook endgame, are exceptional. Yet the array

history is of vital importance. Some problems arise because of the many

stalemate positions. However, we may conclude that this ending is not

appropriate for a case study. It is just too simple.

27

Two Bishops

This ending can be programmed with the same means as the rook ending.

The notion of room is essentially the same. Here the two bishops make up

the area. The program has to surmount more problems. First, coordination of

three pieces is more difficult than coordination of two. Secondly, the

mating proces takes more moves, and mate can only be forced in the corner.

Thirdly, when black is driven into the edge, things do not go off of their

own accord. The numerous stalemate positions hinder a straightforward

strategy. Tempo moves are a natural outcome. In fact, the anticipation of

stalemate asks for a tree depth greater than one.

Bishop and Knight

This is an order of magnitude more difficult than all the previous

endgames. I conjecture that the best way to program it is using the method

given by CHERON for human players [2]. The problem is split up in four

stages by means of three triangles. They border the area to which the

black king is confined successively.

Assume the bishop occupies the white coloured squares •

• ·~ ~ ~ ~

fig. 34 fig. 35

The large triangle, bl-h7-hl, is seen in fig. 34. Black never comes out

because the neighbouring black squares are controlled by knight and king.

Especially the knight, occupying a square of the same colour as the bishop,

can be of great help. The medium triangle, dl-h5-hl, given in fig. 35, is

made up by bishop and knight alone. The small triangle is formed by

fl-h3-hl.

The first st~p is forcing black into the large triangle. Then KW will

28

drive KB backwards, so that white can take up a smaller triangle. The

bishop may support its king along the hypothenuse. Eventually confined to
...

the small triangle, black is mated in a few moves. CHERON demonstrates

succesfully that each separate step is readily made.

In programming, a notion of room may be supplied for all stages.

However, the innnediate goal is switching to the next stage. Here a map for

moving the knight to an arbitrary selected square can be put to good use.

This map is introduced by BOTWINNIK (next chapter). The transition to

this next stage is-more easily computed by inspection of the map than by

just scanning the tree for a number of single moves. The depth of the

tree should of course be greater than one.

The endgames of HUBERMAN

As mentioned before the endgame of king and rook has often been

progrannned. Most chess programs are able to mate with rook and king. It

is more remarkable that so many are not. However, the endgame is rarely

documented. A reason could be that this is only interesting if the program

serves a special purpose.

This applies for the study of HUBERMAN [6], one out of the two

documents about programs of chess endgames I know of. The study is

concerned with the process of translating book descriptions of problem

solving methods into program heuristics. The chess endgames provide a

good area for this research. The book method used is that of REUBEN FINE

[4].

Two functions, better and wor~e , are supplied to compare positions.

The program will search the tree for positions that are better than the

starting position. The tree is pruned at positions that are worse than

the starting position. The functions better and worse are built up out of

information derived from the description in the book.

An example of program play demonstrates that the program closely follows an

example given by the book, An informal proof of program correctness shows

that the program reaches mate from every starting position.

It would be still interesting to know how the program would behave in some

special situations. Unfortunately, no more examples of program play are

given.

29

Three endgames are dealt with by this method: king and rook, king and

two bishops, and king and bishop and knight. The two-bishops ending is

rather laborious, but essentially not more difficult than king and rook.

The strength of the method is demonstrated by coping with king and bishop

and knight, indeed one of the most difficult endings.

From the point of view of chessprograms it is a disadvantage that FINE

is not concerned with the best method, but only with a simple one. E.g.

rather curiously a rule is supplied in the program, which is nearly the

opposite of a rule in our method. This rule prefers positions in which

the distance between the white king and its rook is minimal (here distance

equals the minimum numbers of king moves). By this rule the rook is

hampered in its movements. Compare to our rule for maximizing distance
between the black king and the rook (fig. 19).

A combination of both didactis and speed is given by EUWE [3].

Comparing our rook ending with the program of HUBERMAN' the way of

pruning the tree is worth mentioning. HUBERMAN splits up the program in

stages, according to the method of the book. The program computes the

transition to the next stage. If the tree becomes too long, additions are

made to the functions better and worse. Better is responsible for a smaller

tree-depth. Maximum tree-depth is five double moves (for white and black).

Because of this length, the width of the tree must be reduced considerably:

this is the responsability of worse.

In our program the width of the tree is not so important. So we could

restrict ourselves to pruning some plausibly weak moves. That our pruning

is not too bad may also be deduced from the comparison of program play. We

think our program better, that is to say it is reaching checkmate in

fewer moves.

Of course the two programs serve a different purpose. The comparison,

therefore, has no great significance.

30

The endgames of TAN

When the endgames with a queen, a rook, two bishops and bishop and

knight have been programmed succesfully, the attention may be turned to

endings with a single pawn. This endings are investigated by Dr.S.T.TAN [11].

His main purpose, however, is the representation, organization and

use of knowledge, and the program supplies a specific form of representa

tion of knowledge. As such, it does not give us new starting points for

discussion. But it does strengthen our opinion that b~sic work like these

endings are worth programming, in order to get a better perception of what

chess programming really is.

6. REFLECTIONS OF A CHESS PLAYER

Introduction

Chess is a game of exploiting the coincidences. A rule merely serves

as a guideline. Experienced players know to use it at the right moment.

Here weak or inexperienced players will fail.

31

This obvious observation has not discouraged the workers in the field

of chess programming, who, it should be put clearly, have done invaluable

work. Nevertheless, it is the main cause of troubles in nearly all aspects

of the field. Therefore, it seems incredible that this point hardly has

got any attention in the literature.

There would be less reason for surpise if chess programmers only

would have the intention to have the machine play chess on a level not

much higher than that of the average player. But their goal is just the

opposite. There is no discussion about expert level*) (class-A, a high

level indeed), even not about master level, but the claim is to beat the

world champion. This claim, stated in the early fifties, has not vanished.

A recent example is found in the title of Prof. MITTMAN's ~rticle: Ca:n a

Computer Beat Bobby Fisher? [8].

Firstly, this clearly indicates that the difference in strength

between an expert and a master, subtle and hard to describe, is not at all

understood, let alone the elusive difference between master and grand

master level. The result of twenty years progrannning is that any expert

can easily beat a computer. This is not a depreciation of the work done.

It only shows that the expectations have been put too high.

Various aspects of chess progrannning will be discussed in the rest of

this chapter. Some of them have been built in into existing programs, some

have not. The topics chosen cover a larger field than is strictly justified

by the scope of our subproblem, the rook endgame. For the sake of clarity,

note that the results of this will be applied only to the topics of

pruning and strategy. As for the other topics, I did not want to let pass

the opportunity to discuss them. There has always been great scepticism

*) technical term.

32

about programming chess amongst strong chess players. However, their

opinions are rarely voiced - nor solicited, for that matter.

Pruning and Evaluating

The first thing in programming chess is limiting the size of the tree,

This can be done by rejecting the non-plausible moves. One can only hope

that the best moves are not thrown out in this way.

A different method starts by determining the state the program is in.

Then a list of possible goals is derived from that state, and moves are

generated accordingly. This method is better, but it does not get around

the problem: Will not the best moves be thrown away? How to program the

states? What to do with the exceptions? If there is a class of exceptions,

what to do with the exceptions to that class ? How to choose, in general,

goals according to a given state ? How to decide, in general, which

moves are conducive to these goals and which are not ? Again, what about

the exceptions ?

The same holds for the components of the evaluation fqnction, the

value of open lines, attacking chances, passed pawns, double pawns etc.

Chess heuristics may seem plausible in many situations, however, there

is just no reason to assume that this is the road to master level.

Here a recently made remark of TAN applies. Referring to evaluation

functions in the SHANNON-TURING-way he states that chess programs in the

now traditional sense do not seem to have any interest from the point of

view of artificial intelligence any more [11].

Strategy

As said in the introduction, there is consensus over the need for

strategy play. The problems involved are similar to those above. How to

describe a strategy in a program? What strategy for what class of

positions ?

Our rook endgame has a start at two points.

1. The problem can be solved, it is evident that white wins, and

33

it is anything but complicated.

2. A fairly good strategy is given.

All the same, numerous small problems pop up. Improving the play entails a

burden of programtext.

So I have come to the conclusion that, given a reasonable strategy in a compli

cated game like chess, a continuous attempt to improve level·.of play will jam in

proliferating details, long before master level will have been reached.

The strategy of BOTWINNIK

BOTWINNIK's strategy, developed in his book Computers, Chess and

Long Range Planning [l], is based on two principles.

First: The goal for both sides in chess is material gain. This results in

attack ("assertion") and defence ("negation"), and in preventing the defense

("negation of negation").*)

Secondly: The problem has to be limited. Therefore, a horizon must be estab

lished, and the program will only deal with those attacks that fall within

the horizon. If there are many attacks, the horizon lies nearby. If there

are only few, the horizon recedes.

As a consequence, we may expect~ deeper and more straightforward analysis

in the endgame. Pawn promotion is of course a form of material gain. As for

elementary endings, if gain of space is progrannned as a form of material gain,
. 1 . . . **) there is no need for separate y programming this endings.

For each attack there must be an attacking piece, an object of attack

and an attacking path. Regarding the squares of this path, BOTWINNIK makes

a distinction between

1) a-squares, the squares on which the attacking pieces come to rest

and

2) a-squares, the squares over which pieces pass.

(E.g., there are no a-squares for the moves of a knight).

The attacking path must be safe, that means that a-squares have to be under

control of the attacking side. Here other pieces can give help.

In ;he sequel we shall only speak about attack.

BOTWINNIK does not directly hint at this. But he points out that
the part of the theory covering positional play is not finished
and must be refined by a good many experiments. The gain of space
may be seen as an example.

34

It is very interesting that BOTWINNIK is able to distinguish between

active and passive style within this framework. When choosing between

making unsafe the a-squares of the other side or reinforcing his own

attacking path, the passive player prefers the former approach, and the

active player the latter.

This concept may also shed light on the way BOTWINNIK plays chess.

fig. 36

fig. 36:

White plays b4 and bS, undermining black's

pawn chain, possibly followed by Rel (pattern).

Putting the bishop on the long diagonal and

striving to break open an opponent's pawn

chain at the end of the diagonal is only

a trivial example of this strategy.

The representation of pieces and generation of moves is a logical

consequence of this scheme for BOTWINNIK. For each piece a ·coding table is

constructed, containing, for every square on the board, the minima~ number

of moves in which this piece can move to that square. It goes without

saying that this technique holds a great advantage over a step generation

of moves: "It is the way the master sees the board".

It is remarkable that the strength of this approach is not fully

recognized. RUSHTON and MARSLAND even assert that this method does not

give an indication of the direction of the game and thus will fail [9],

The play for annihilation of pieces, however, is evidently a strategy. Any

move that does not contribute to this within a given horizon is rejected.

When an attack has been decided upon, pieces are coordinated for that attack.

This results in a very effective pruning of the tree. I would even venture

to say that a better indication of the direction of the game has not yet

been found.

In my opinion, pruning is still the main problem of chess programming.

Programs based on the principles of BOTWINNIK will make significant progress

in this area. But, nevertheless, master level will not be reached.

35

In this approach the danger of pruning the best move has been reduced

considerably, but not completely. A choice for the best attack will not

always be easy. What about attacking a square (instead of: a piece)?

Then, at each move again, a choice must be made between all possible attacks.

This is what is criticized as: no direction of the game. It is the weak

point of chess progrannning as a whole: In chess one has to change his lines

of attack continuously.

Learning and advice taking

The idea of self teaching programs seems very promising. Such programs

learn from their own games as well as from book games. But it must first be

programmed before the problems will turn up. How can a program decide which

was the bad move, causing the loss of the game? What are the consequences

if a self-teaching program fails to realize. that a won-position was only lost

by a blunder?

For the game of checkers classic work was done by SAMUEL [10]. The

problem of getting the program to generate its own parameters is still

unsolved. A fundamental problem is lack of time, as in nearly all aspects

of progranuning a game. A basic question, concerning both learning and

advice taking, will be discussed later on: How to apply a lesson to other

situations, as a human is able to do (not always succesfully!)?

An advice taking program has been written by ZOBRIST and CARLSON.

In the Scientific American they discuss the problem whether chess ideas can

be expressed in words, either in connnon language or in special purpose

language [12]. Until such a special purpose language will be defined, one

can but guess.

But their prospect that in their approach players like Fisher could

record their chess techniques for posterity seems to me an idea character

istic of a chess amateur. Fisher's technique is recorded in his games.

There is no better way.

36

Pattern Recognition

A new prospect is provided by pattern recognition. Certainly,

•implementation of patterns will be helpful, for example the fork of fig. 37

and the notorious mate of fig. 38.

fig. 37 fig. 38

fig. 39 fig. 40

More complex patterns reveal some problems. Every expert knows the

bishop sacrifice of fig. 39: I.Bxh7t Kxh7 2.Ng5t Kg8 3.Qh5, threatening

mate on h7. Branches are at move 2 ••• Kg6 and at move 3 ••• Rd8, but in this

case the attack is winning. A useful pattern indeed.

The primary constituants of the pattern are,

for black: the king and three pawns: Kg8, pawns f7, g7, h7;

for white: Bd3, Nf3 and Qdl. More precisely, for white a bishop aiming at

h7, a knight aiming at g5, and a queen aiming at h5 - possibly interrupted

by a knight on f3. (Again, note the relevance of the maps of B0TWINNIK).

However, replacing the pawn on c2 by a pawn on b2, makes the sacrifice

incorrect, fig. 40: 1.Bxh7t Kxh7 2.Ng5t Kg8 3.Qh5 Bd3, covering square h7.

We conclude that this type of pattern must not be used automatically. It

37

only suggests a series of moves that has to be checked separately for each

instance of the pattern.

The differences rather than the similarities count in a third form of

patterns. Suppose a player is confronted with a new move in a well-known

opening, a so called novelty. How does he proceed?

There is a well-known pattern on the board, viz. the position deriving from

the usual move except at most two pieces occupying different squares. Suppose

the direction of play and the features of the old position are known. Then

our player has to look for the differences in the two positions, trying to

indicate a drawback of the new move. Therefore, a combination of knowledge,

experience and creativity is required. Omitting the subjects knowledge and

creativity, we come to our final topic.

Experience

Suppose two players are analysing a chess position, discussing moves,

counter moves, starting again etc. At some moment the more experienced

player bruskly interrupts his younger colleague, puts the king on g2 and

declares: "In this sort of positions the king should stand on g2, not on

g 1 ". He cannot exp lain why. He is also not ab le to sketch what is meant by

"this sort of positions". There is no typical pattern. He is even not wil

ling to discuss it: He knOuJs.

In the best case the younger player has some chance to grasp his meaning.

Perhaps he believes it is true, He applies it in some games, say one time

not in the right situation, the other times with more success. Now he knOuJs

too. But, this sort of positions not turning up frequently, some years have

passed.

I cannot imagine this younger player being a computer.

Look ahead

Measured by the world champion, current chess programs have to go

a long, long way. Issues like strategy, learning, pattern recognition and

experience are scarcely well-thought out. The ideas of BOTWINNIK may

improve standard of play, but the theory is not finished and the whole ,,

38

system is waiting embarrassingly for implementation. In this situation the

question arises: Can a Computer, Beat Bobby Fisher,?

Prof. MITTMAN states: Many computer, scientists would answer, this question

with: "May be". However,., not many of them aPe wiZZing to answer, the next

ZogicaZ question: "When"? [8].

In may opinion, FISHER and KARPOV (curiously enough a disciple of this

same BOTWINNIK) never will have to fear any real danger from the side .of

chess programs during their lives. A significant step would be made if the

level of an expert would be achieved in the next ten years.

7. THE PROGRAM

The program for the rook endgame has been written in ALGOL 60.

A justification of this choice goes by saying that clarity of program was

far more important than efficiency.

The program has been designed for a display terminal of a CYBER

machine of Control Data. The I-0 procedures of Control Data-ALGOL are

based on the Knuth-proposal. I-0 is not used before line 310. Input is

39

given over channel 60, the standard input channel, which should be connected

with the terminal. Output is given over channel 61 and channel 1. Channel 61

is the standard output channel, which should also be connected with the

terminal. Channel 1 is connected with a file that the user has to define.

This file will contain a listing of the games played.

To facilitate the understanding of the program, the symbolic program schemes

of chapter 4 are repeated. First the program scheme:

begin initialization;

start: input position or opponents move;

make your move;

goto start

end

input position or opponents move (symbolic for lines 361-387) is complicated

by the necessity for dealing with moves or positions that are not correct.

According to the preceding input-situation, the program has to branch to

next move or to next game (see procedure amiss, line 349).

In the scheme for make your move here below, each line is provided with at

most four numbers, which connect a symbolic line with the affected program

lines.

40

begin transposition;

end

if. not irronediate move then

begin prune;

end;

whiZe not Zast move do

begin generate next move;

aaZauZate room;

aorrrpare with aandioote

end: ---
get aandidate

inverse transposition;

output

201-206, 14-23

208-258

259-279

282,283

284-289, 43-62

290, 63-199

291-301

302

303-308

309, 14-29

310-322

323

41

ALGOL-60 VERSION 4.0 LEVEL 0013

1 ROOK ENDING, VERSION 2 • COEN ZUIDEMA. 1
2 "BEGIN" .. INTEGER .. KWV,KWH,RV,RH,KBV,KBH,KBMINKV,KBHINKH, 2
3 KBMINRV,KBMINRH,KWHINRV,KWMINRH,MEASURE,A,B,C,D,KBV1,KBH1, 3
4 COUNT,POS,PRESENT; 4
5 °'INTEGER'" .. ARRAV"" HISTC 1: 50 J; 5
o .. BOOLEAN'°COUNTERM, MATE, MA TE2, DANGER, STRONG, CHECK; 6
7 7
8 "PROCEDURE'" l'iAKE YOUR MOVE; 8
g "BEGIN" "INTEGER" KWV1,KWH1,RV1,RH1,AXIS,FIELO,TYPE,FIELDH,TYPE11,HAX1, g

10 MAX2,KBl1INKV1,KBMINKH1,KBMINRV1,KBMINRH1,KWHINRV1,KHMINRH1,HEASURE1, 10
11 DISTANCE, MIN; 11
12 "BOOLEAN" '"ARRAY" MOI/ECU3,U6J; 12
13 13
14 .. PROCEOURE'"TRANSPOSE (AXIS> ;••VALUE'" AXIS; .. INTEGER"" AXIS; 14
15 "BEGIN" "SWITCH" S&= HOR,VERT,OIAG; 15
16 '"GOTO'" SCAXISJ; 16
17 HOR 1 KWH 3=9-KHH; KBH 1=9-KBH ;RH I =9-RH; .. GOTO"' ENO; 17
18 VERHKWl/1=3-KHV; KBV1=3-KBV;RV1=9-RV; .. GOTO .. ENO; 16
19 DIAGUl=KWH; KWH&=Kwv; KW\ta=A; 19
20 AZ=KBH; KBHl=KBV; KBVS=A; 20
21 Al=RH; RH1= RV; RV t=A; 21
22 ENOa 22
23 "ENO .. ; 23
24 24
25 "PROCEDURE" REVERSE; 25
26 "BEGIN" 0 IF•AXIS>3 •THEN••aEGIN•AXISl=AXIS-4;TRANSPOSE(3)"ENO"; 26
27 "IF•AXIS>l "THEN""BEGIN•AXISl=AXIS-2;TRANSPOSE(2)"ENO•; 27
28 "IF•AXIS>O "THEN" TRANSPOSE(1) 26
29 "ENO"; 29
30 30
31 "BOOLEAN- "PROCEDURE" IRREGULAR; -31
32 IRREGULARZ=MEASURE<4 32
33 .. OR'" KWl1INRH=O '"ANO .. KWH INRV=O 33
34 '"OR'"K BHI NRV =O *'ANO" .. 'NO , .. (KWMINRV=O 0'AN0°0 SI GN (KBMINKH > =SIGN (KHl1 INRH)) 34
35 ··0R0°KBMINRH=C "0 AN0°···NoT·· « KWHINRH=O .. AN0'0 SIGtHKBl1INKV) =SIGN (l<Hl1 IN'RV)) ; 35
36 36
37 "BOOLEAN" •PROCEDURE" QUESTION (CHECK>; "BOOLEAN"CHECK; 37
38 QUESTION 3= CHECK&= KBMINRV1=0 •ANO""NOT• CKWMINRV1=0 ~ANO" 33
39 SIGN(KBHINKH1)=SIGN(KWHINRH1J) 39
40 '"OR"" KBHINRH1=0 .. AND'""NOT .. CKWMINRH1=0 .. ANO.. 40
41 SIGNCKBMINKV1>=SIGN«KWHINRV1J>; 41
42 42
43 "PROCEDURE'" GENERA TE; lt3
44 ·BEGIN" KHV18=Kwv; KWHiZ=KwH; RV11=Rv; RHil=RH; 44
45 '"IF'0 TYPE=3 ""THEN'" 45
46 "BEGIN• 46
47 "IF"FIELD=1"0R.FIEL0=3•oR"FIEL0=6•THEN• KWV1S=KWV+1 "ELSE• 47
48 "'IF .. FIEl0=4'"0R'"FIEL0=5"'0R""FIEL0=6""THEN .. KWVU=KWV-H 46
49 "IF"FIELOcJ"OR"FIELD=4 •THEN• KWH1S=KHH+1 -ELSE" 49
50 "IF"FIEL0>5 ·rHEN- KwH1a=1<WH-1; 50
51 KBMINKV11=KBV-KWV1; KBMINKHiZ=KBH-KWH1; 51
52 MEASURE1 :::: KBMINKV1••2 + KBMINKH1••2; 52
53 KBMINRV13= KBMINRV; KBMINRH18= KBMINRH 53
54 "ENO" TYPE=3 •ELSE• 54
55 "BEGIN" "IF• TYPE=1"THEN"RH13=FIELO "ELSE•RV13=FIELO; 55
56 KBMINKV13=KBMINKVl KBHINKH12=KBMINKH; 56
57 MEASURE18=MEASURE; 57
58 KBMINRV1S=KBV-RV1;KBMINRH11=KBH-RH1 56
59 "ENO" TYPE; 59
60 KWMINRV1Z=KWV1-RV1; KWMINRH1&=KWH1-RH1 60
61 "ENO" GENERATE; 61
62 62

, 63 ·:rnrEG£R" "PROCEDURE" ROOM; 63

42

6ft
65
66
67
68
69
70
71
72
73
74
75
76
77
78
H
60
81
62
83
8ft
85
86
67
88
89
90
91
92
33
94
35
96
97
98
99

100
101
102
103
104
105
10&
107
106
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
12&

ALGOL-6J VERSION 4.J LEVEL 0013

"BEGIN" "INTEGER" ~ANGEV,RANGEH,TAX; "BOOLEAN.VERT;

"PROCEDURE" Ai;"COHHENT" CHECK& IS ONLY GOOO, IF KB HUST GIVE UP
A ROW;

"IF" KBHINRV1=0 "THEN"
"BEGIN" "IF" HEASURE1=4 "ANO• KBHINKH1=0

"OR• MEASURE1=5 "ANO• KBH=6"AN□- KBHINKH1=1 "THEN"
.. BEGIN .. RANGEII B= .. IF'"KBMINK\11>0 .. THEN .. 8-R\11 '"ELSE""RV1-1;

'0IF .. RANGEH>S ""THEW" TAXl=RANGEH-5
'"ENO .. ••ELSE"" TAX := - 20

•END" VERTICAL CHECK "ELSE"
"IF• HEASURE1=4 "ANO" KBHINK\11=0 "THEN"
.. BEGIN'" RANGEHl= 0'IF""KBHINKH1>0"THEN .. 8-RH1 ··ELSE'"RH1-1;

'"IF .. RANGEV>5 '"THEN'" RANGE\'3=5
"ENO" "ELSE• TAX I= - 20;

-PROCEDURE" A2;"COHHENT" KW IN THE HIOOLE,IN BOTH DIRECTIONS.
ROOK IS STRONG;
TAXS=(ABS(KWMINR\11)+1) • (ABSCKWHINRH1)+1);

.. PROCEDURE .. A3;""COH11ENT .. KW VERT.IN THE MIDDLE, HOR,EQUAL WITH R •
EXCLUDE THE CASE THAT KB WALKS BEHIND KW& ABS(KBHINR\1)=1;
TAX : ='"IF"" ABS (KBHINRHU =1 ""THEN .. -20''ELSE0"ABS (KWHINR\IU +i; C

"PROCEDURE" At+;·coHHENT- COHPLEHENT OF A3 ■ A SPECIAL CASE IS
KG6,R ON G-FILE,KH8 ;
TAX S= "IF" ABS(KBMINRV1>=1 "THEN"

("IF"KBV=8"AND"KWH1=6"THEN" RANGEH-2 •ELSE• -20)
"ELSE" ABS(KWMINRH1>+1; .

"PROCEDURE" A5;"COMHENT" KW VERT. IN THE MIDDLE (OR EQUAL WITH ROOK) 9

HOR.EQUAL WITH KB.ROOK IS STRONG;
RANGE\ll=RANGEV - ABS(KHHINRV1) - 1;

.. PROCEDURE··· A0;••co1111ENT"° COMPLEMENT OF AS ;
RANGEH a= RANGEH - ABS(KWMINRH1> - 1;

"PROCEDURE" A7;"COl111ENT" KW VERT.IN THE HIDOLE,KB HOR ■ ROOK HAY
BE NOT STRONG. IF KW CAN BE CUT OF,TAX IS ZERO.tHE IDEAL
SITUATIONS KB IS ON KNIGHT JUHP DISTANCE FROH KW ANO HAS TO
GIVE UP A LINE, GETS EXTRA TAX. A GENERAL CASE REMAINS ;
"IF" MEASURE1 = 5 •THEN"
""BEGIN'" ••IF'" ""NOT'"VERT ""AND."KBMINKHi=-2 .. THEN"" TAX3=0 '"ELSE'"

.. IF•• ABSCKWMINRH1>=2 .. THEN'" TAXl=A8SCKBHINRVU•RANGEH-2
'"ELSE•• A7A6

.. ENO"" ,.ELSE"' A7A8;
""PROCEDURE'· A 7 A 8; "'IF"'VERT""THEN""RANGEH a=

«•IF•KBMINKHl<D.THEN•KwH1-1•ELSE•8-KWH1>
+ ("IF•ABS«KBMINKH1)=1•THEN"1"ELSE"O)

"ELSE•RANGEV3=("IF•KBMINKV1<0•THEN•KWV1-1"ELSE•8-KWV1)
+ «-IF"ABSCKBHINKV1)=1"THEN"1,.ELSE"O) ;

"PROCEDURE" A8;"COMHENT" COMPLEMENT OF A7;
""IF•• 11EASURE1=5 "'THEN'"
"BEGIN"" .. IF"' VERT ' 0 ANO .. KBHINKV1=-2 "THEN .. TAXS=O ••ELSE ..

"IF• ABS(KWHINRV1>=2 •THEN• TAXt=ABS(KBMINRH1)•RANGEV-2
"ELSE"' A7A8

.. END" "ELSE• A7A8 ;
.. PROCEDURE" A<H °'COMMENT°' KB IN BOTH DIRECTIONS IN THE MIDDLE U

COMBINATION OF A7 ANO AB.ROOK NOT STRONG.TAKE APART TWO CASES;
'"IF"" MEASURE 1=5 "THEN'"
"BEGIN'" '"IF.. ('0 I F .. VERT'"THEN""KBMI NKV1=-2°0 ELSE'"KBMINKH1=-2 >

"THEN• TAX S= 0 •ELSE•
•rF• ABS(KWMINRH1)=2"THEN"
"BEGIN" RANGEVZ="IF-KBMINKV1<0 ·THEN" KWV1-3 "ELSE" 6-Kwv1;

TAX t = - 2
"ENO" "ELSE" "tF" ABS(KWMJNRV1)=2 "THEN•
••BEGIN" RANGEHS=""IF .. KBMINKH1<0 '"THEN"" KWH1-3 ""ELSE"" 6-KWH1;

TAX t= - 2
"'ENO" "ELSE'" A7A8

64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
64
85
86
87
88
69
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

43

ALGOL-60 VERSION 4.0 LEVEL O 013

127 "ENO" "ELSE" A7A8; 127
128 .. PROCEDURE'" A1C ; .. COMMENT'" KB VERT .IN THE 11IOOLE ,HOR.EQUAL WITH KW.ROOK 128
129 NOT STRONG. NOTE THAT KBH>4C BY TRANSPOSITION»; 129
130 "IF" VERT "THEN" RANGEHl=KBH "ELSE" 130
131 RANGEV : = •• I F .. KBHINKV1>0 '"THEN .. 7-KWV1 ""ELSE"'KWV1-2; 131
132 ''PROCEDURE .. A1U "COMMENT." COMPLEMENT OF A!O; 132
133 .. IF'" .. NOT'" VERT .. THEN .. RANGEV != KBH ""ELSE"" 133
134 RANGEH a= "IF" KBMINKH1>0 "THEN"7-KWHi"ELSE"KWH1-2; 134
135 "PROCEDURE" A12;-coMMENT" KB VERT.IN THE HIOOLE,HOR ■ KW ANO R EQUAL. 135
136 APART OF THE IDEAL POSITION THE SITUATION IS A7A8; 136
137 ""IF"" HEASURE1=5 .. ANO"" A8S(KWMINRVU=2 '"THEN'" TAXl=24 RANGEV-2 137
138 "ELSE" A7A8; 138
139 '"PROCEDURE .. A13; .. coHHENT .. COMPLEMENT OF A12; 139
140 "IF" MEASURE1=5 "AND" ABS(KWHINRH1)=2 •THEN" TAXl=24 RANGEH-2 140
141 "ELSE" A7A8; 141
142 .. PROCEDURE" A11d"COHHENT" ROOK VERT.IN THE MIDDLE. KB NOT ON THE EDGE, 142
143 NO TAX, DUMMY STATEMENT; ; 143
144 "PROCEDURE" A15;"COHMENT" ROOK HOR■ IN THE MIDDLE ■ TAX IF KB ON THE 144
145 EDGE AND R STANDS WELL. ROOM HAY NOT BE 1 (STALEMATE! >; 145
146 .. IF.. KBH= 8 "'THEN°' 14&
147 "'BEGIN'" "IF .. KWH1=6 '"AND"SIGN<KBHINKVU =SIGN«KWHINRVU 147
148 "THEN" TAXI= ABS(KWMINRV1); 148
149 •• IF .. KBV= 8'"THE N"""BEGIN°••·I F""HEA SURE1=5 .. THEN""TA XI =TAX-1 .. END"" 149
150 ··mo .. ; 150
151 151
152 Al=ABS(KBHINRV1>;Ba=ABS(KBMINRH1»;DISTANCES=A 442tB••2; 152
153 •IF" A<B "THEN" Al=B; 153
154 Cl=ABS(KWHINRV1>;0a=ABS(KWHINRH1); "IF· C<O -THEN" ca=o; 154
155 "IF"-A=1"AND"C>1 "THEN~ ROOH a= 50 "ELSE" 155
156 ·BEGIN" RANGEVI= "IF" KBHINRV1>0 ·THEN·8-RV1"ELSE·Rv1-1; 156
157 RANGEHI= "If"KBHINRH1>0"THEN•8-RH1"ELSE"RH1-1; 157
158 STRONG a= "FALSE"; i58
15~ "IF" A>= C "THEN" 159
160 "BEGIN""IF""NOT•(SIGNCKBMINKV1)=-SIGNCKBHINRV1>"AND• 160
161 ABS (KBHINKHU <2 t .. THEN'" 161
162 "BEGIN""IF""NOT"(SIGN(KB11INKH1>=-SIGN(KBHINRH1> "AND" 1&2
163 ABS«KBHINKV1)<2) •THEN" STRONGl="TRUE" 163
164 "ENO•• 164
165 •END•; 165
166 VERT 3= RANGEV <= RANGEH; TAX I= o; 16&
167 "IF" "NOT" STRONG "THEN• 167
1&8 "BEGIN" •IF• VERT •THEN" RANGEHt=7 •ELSE" RANGEV1=7 "ENo•; 168
169 169
170 "COMMENT• NOW A CALL IS HADE TO ONE OUT OF SEVERAL PROCEDURES, 170
171 BASED ON THE POSITION OF KW, KB AND R WITH RESPECT TO ONE 171
172 ANOTHER.IN THE PROCEDURE THE VALUES OF TAX,AXISV AND AXISH 172
173 ARE COMPUTED; 173
174 "IF" QUESTION(CHECK> "THEN" Al "ELSE• 174
175 '"IF'" SIGN (KBHI NRV1) =-SIGN (KWHINRV1> .. THEN"" A14 .. ELSE 0

• 175
176 "IF" SIGN(KBMINRH1J =-SIGNH<lrH1INRH1> '0 THEN .. A15 ,.ELSE.. 17&
177 .. IF" SIGN(KBHlNKVH= SIGN(KWMINRV1> 177
178 "AN0° SIGN<KBHINKH13=SIGNCKWHINRH1) "THEN• A2 "ELSE" 178
179 "IF• SIGN(KBMINKV1>=-SIGN(KBHINRV1) 179
180 .. AND"SIGNCKBMINKH1>=-SIGIHKBHINRHU "'THEN"" A9 "ELSE'" 180
181 "IF• SIGNCKBMINKV1)=SIGN(KWMINRV1) •THEN- 161
182 "BEGIN"•IF" KWMINRH1=0 "THEN" AJ •ELSE• 182
183 "IF" KBMINKH1=0 •THEN" A5 •ELSE" A7 183
184 '"ENO'" 0 'EL SE•• 184
185 "IF• SIGN(KBMINKH1)=SIGN(KWMINRH1) •JHEN" 185
18& '"BEGIN° .. "IF" KIHH_NRV1=0 .. THEW" Alt '"ELSE" 186
187 •IF" KBMINKV1=G "THEN• A6 "ELSE• A8 167
188 "END'" "'ELSE'• 188
189 "IF" SIGN(KBMINKV1>=-SIGN(KBMINRV1> "THEN" 189

44

190
1:11
192
U3
194
195
136
137
198
1H
200
2t1
202
203
204
2ii5
206
207
21i8
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
21+7
248
249
250
251
252

ALGOL-6C VERSION 4.r, LEVEL 0013

"BEGIN" .. IF" KBMINKH1=C '"THEN .. A10 '"ELSE" A12 ""ENO ELSE'"
"IF" SIGN(KBMINKH1>=-SIGN(KBMINRH1) "THEN•
"BEGIN" .. 'IF" KBMINKV1=0 .. THEN'" A11 '"ELSE•• A13 .. ENO"" .. ELSE'"
,.IF .. KBMINKH1=ii "THEN" AS "'ELSE .. A6 ;

"IF""NOT" STRONG "THEN" TAX I= TAX - 1;
ROOM I= RANGEV • RANGEH - TAX

.. END'"
.. END .. ROOH

AXIS 1=0;
"IF" KBH<5 "THEN" "BEGIN" TRANSPOSE(1);AXIS1=AXIS+1•ENO";
"IF" KBV<5 .. THEN°" "BEGIN'" TRANSPOSEC2) ;AXISt=AXIS+2,.END";
'"IF .. KBH<KBV
"OR .. KBH=·KBV "'ANO .. (KWV<KWH "'OR., KWV= KWH .. ANO .. RH< RV)

"THEN• "BEGIN" TRANSPOSE(J); AXISt=AXIS+4 "ENO";

KBHINKV a= KBV-KHV; KBHINKH a=KBH-KWH;
KBMINRV I= KBV- RV; KBHINRH I= KBH-RH;
KWHINRV a= KWV -RV; KWHINRH I= KWH-RH;
MEASURE &= KBMINKV••2 + KBMINKH••2;
"IF" IRREGULAR "THEN"
"'BEGIN'" REVERSE;

'"IF,. COUNTERH "THEN'""'BEGIN'" KBVl=C; KBH t=O"ENO .. ;
AMISS

"ENO"" IRREGULAR;

"COMMENT" NOH MATING POSITIONS ARE CHECKED;
"IF" HEASURE=4 "OR" MEASURE=5"AND"KBV=8 "THEN"
.. BEGIN'' .. IF. .. KBH=8 .. THEN""

"BEGIN" "IF" KWH=6 "THEN"
"'BEGIN'" ""IF"" ABS (KBHINRV) >1 '"THEN"

"BEGIN• HATE&= "TRUE"; RHl=8; TVPE&=1 "ENO" •ELSE"
"IF" KBV=8 •THEN"
·BEGIN· RV•=&; TYPE1=2 "END- "ELSE·
"IF" KBMINRV=D "THEN"
'"BEGIN .. RV I= RV-H MATE2S= .. TRUE••; TVPE3=2 .. END" ""ELSE"
'"IF•• RH=7 "THEN"
.. BEGIN'" RHl=U TYPEt=U HATE2&='0 TRUE'" .. END"" "'ELSE"
"BEGIN" KWVB= KWV+ SIGN(KHHINRV); -coHMENT" MATE IN l ;

TVPE&=3
'"END"';
""GOTO.. RE A DY2

"'ENO""
'"ENO ..

"ENO'";

"IF· HATE2 ·THENH
"BEGIN" A I= KBV + SIGN(KBHINKV);

'"IF'"RV=A ""THEN" RH t= .. IF""RH=1""THEN""2""ELSE"'1
.. ELSE" '(V a= A;

"COMMENT• MOVE FIXED, MATE IN 1;
MATE2 &= "FALSE"; TYPES=!; •GOTO" REAOV2

.,ENO"" MATE2;

-coMMENT" IF HEASURE>15 A KING MOVE IS HADE IMHEOIATEOLY,
UNLESS R CAN BE CAPTURED (OANGERl;

DANGER B= KBHINRHH2f-KBMINRV44 2 <3 "'ANO"" KWHINRVH2+KWHINRH••2 >H
"IF .. '"NOT .. DANGER "ANO .. MEASURE > 15 '"THEN""
"BEGIN'" U=KWV +SIGN CKBMINKV); Bt=KWH f-SIGN(KBMINKH);

"IF" A=RV "ANO" B=RH -THEN"
"BEGIN" "IF'" ABS(KBHINKV» > ABS(KBHINKH) "THEN'"

190
191
192
193
194
195
196
197
198
199
200
201.
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
22tl
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
21+1
242
243
24ft
245
246
247
21t6
243
250
251
252

45

ALGOL-oO VERSION 4.0 LEVEL 0013

253 KWV := A "ELSE" KWH t= B 253
254 "ENO" "ELSE" 254
255 •BEGIN" KWV:=A; KWHl=B "ENO-; 255
256 TYPES=J; •GOTO" REAOY2 256
257 "ENO" MEASURE> 15 ; 257
258 258
259 "COMMENT" INITIALISATIO~ ■ ILLEGAL MOVES ANO SOHE OBVIOUSLY BAO 259
260 MOVES ARE SET FALSE; 260
261 MAX1Z=MAX2t=100; 261
262 "FOR"' TVPE1=1, 2, J''DO .. "FOR""FIEL0&=1'"STEP""1 .. UNTIL"'8""00.. 262
263 MOVE [TYPE,FIELDJ l= -TRUE"; 263
264 MOVEC2,RVJl=MOVEC1,RHJl=MOVEC2,3J8=HOVE£1,3Jl=HOVEC1,4lt="FALSE•; 264
265 •IF" "NOT" RV= 1 "THEN" HOVEC2,2J:= "FALSE"; 265
266 "IF" •NOT" RH= 1 "THEN" MOVEC1,2JI= "FALSE"; 266
267 "IF" RV= KWV "THEN• 267
268 "BEGIN .. HIF .. KWH>RH .. THEN'" 268
269 ., BEG IN""""FOR 0 'FIELO: =KWH .. S TEP""1 "'UNTIL ··a .. oo--11011E C 1, FIELD J s ="FAL SE .. "ENO"" 269
270 •ELSE" "FOR"FIELOl=1"STEP"1.,UNTIL"KWH"OO"HOVEC1,FIELDJ&="FALSE" 270
271 "'END'" "ELSE'" 271
272 "IF" RH= KWH "THEN" 272
273 "BEGIN" "IF" KWV>RV "THEN" 273
274 "'BEG IN'"'"FOR '"FI ELD S =KWV""STEP "1 "'UNTIL .. 8 .. 00'"HOVEC 2, FIELD la = .. FAL SE" .. "ENO" 274
275 "ELSE" "FOR"FIELD3=1"STEP"1"UNTIL"KWV"DO"HOVEC2,FIELD11="FALSE" 275
276 "ENO''; 276
277 "IF" KHH=8 "THEN" MOVEC3,1]3=HOVEC3,2Jl=HOVEC3,4Jt= "FALSE"; 277
278 "IF" KWV=8 "THEN .. MOVEC3,1Ja=MOVEC3~3Jl=MOVEC3,6ll= "FALSE"; 278
279 279
280 "COMMENT" MOVES ARE GENERATED ■ SOHE BAO MOVES ARE REJECTED. THEN ROOM 280
281 AND MEASURE ARE COMPUTED. THE BEST HOVE BECOMES CANDIDATE; 281
282 ••FOR. "TYPES= 1, 2, 3••00•• "FOR .. FI ELD I= 1 "'STEP.,1 .. UNTIL .. 8 .. 0 0.. 2 82
283 "IF"MOVECTYPE,FIELDJ "THEN" 283
284 "'BE.GIN'" GENERATE ; 284
285 "IF• HEASURE1-HEASURE>1 "OR" HEASURE1<3 285
286 '"OR" KWHINR\11=0"'ANO""KWMINRH1=0 '"THEN"' '"GOTO'" REJECT; 286
287 POSS= ((((KBV•8+KBH)•8+RV1>•8+RH1>•8+KWV1>•8+KWH1; 287
288 "FORH A B= 1"STEP"1"UNTIL" COUNT - 1 "DO" 288
289 "IF" POS = HISTCAJ "THEN" "GOTO• REJECT; 289
290 BS= ROOM; 290
291 ·coMHENT" 4 CRITERIA: MINIHALIZE ROOH,THEN HEASUREi, 291
232 MAXIMALIZE DISTANCE, NOW THE ORDER OF MOVES IS DECISIVE. 292
293 HEASURE1 OF 4 AND 5 ARE EQUIVALENT; 293
294 ~IF• MEASUREi=S "THEN"HEASURE1t=4; 294
235 As= "IF" B = 1 "THEN" C "ELSE" 295
296 SIGN(MAX1-B»•4 +SIGN(MAX2-MEASURE1>•2 -SIGNCHIN-DISTANCE); 296
297 "IF"A<=O "THEN" -GOTO" REJECT; 237
238 CANDIDATE& 298
299 TYPEH&=TYPE; FIELDMZ=FIELD; PRESENTS=POS; 239
300 MAX1S=B; MAX2t=MEASURE1; MINl=OISTANCE; 300
301 REJECTZ 301
3:;2 "END FOR" TYPE ; 302

·30 3 303
3w4 TYPE t= TVPEM; FIELD:= FIELD~; 304
3L5 -coMMENT" THE MOVE HAS BEEN COMPUTED ANO IS NOW MADE; 305
306 306
307 REAOVI GENERATE; KWVl=KWV1;KWHt=KWH1;Rvt=Rv1;RHl=RH1; 307
3C8 QUESTION (CHECK); HISTCCOUNTJZ=PRESENT; 308
309 REAOY2Z REVERSE; 303
310 "IF"TYPE = 3 -THEN" 310
311 "'BEGIN,. OUTPUTS("("ZO .. (". K0 •>• ... > .. ,COUNT1; 311
312 OUTSYHBOL(K~V); 312
313 OUTPUTS("("05B")",KWH) 313
314 "ENO"""!::LSE" 314
315 "BEGIN" OUTPUTS< "("ZD" , ... R") "'') '',COUNT); 315

316
317
318
319
320
321
322
323
324
325
32£,
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
3«.3
344
345
346
3«.7
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
3&6
367
368
369
370
371
372
373
374
375
376
377
378

46

ALGOL-60 VERSION 4 .G

OUTSYMBOL(RV>;
OUTPUTS("("O"J•,RH);

LEVEL OC13

"IF" MATE "THEN" OUTPUTS(•(•"(" MATE•)"Z//")",O> "ELSE"
"IF'" CHECK .. THEN .. OUTPUTS(•• , , .. ,,. •• , .. 382 ..) ··, 0)

"ELSE" OUTPUTS("("4BZ•>",OJ
"ENO" TYPE ;
OUTPUTS("("Z/")",0)

"ENO" MAKE YOUR MOVE;

"'PROCEDURE" OUT PU TS (S, EL> ; ''II AL UE'"EL; "I NT EGER''EL; "'STRING .. S;
0 'BEGIN,. OUTPUT<61yS, EL>;

OUTPUT< 1, S, ELJ
'"ENO"";

"PROCEDURE" OUTSYMBOL(NR); "VALUE"NR;"INTEGER"NR;
"BEGIN" OUTCHARACTERC61 9 "("ABCOEFGH")",NR>;

OUTCHARACTER< 1,"("ABCOEFGH"l",NR>
"ENO .. ;

"PROCEDURE" LETTER(CHAR>;•INTEGER"CHAR;
"BEGIN'" 0 'BOOLEAN" FIRST; FIRSTa ='"TRUE"";
REA02INCHARACTER(60 ,"("ABCOEFGHO ">",CHAR>;

"IF" CHAR=-1 "THEN" "GOTO" READ;
••IF'" FIRST ""THEN" "BEGIN" .. IF'• CHAR=10 '"THEN'" '"GOTO .. READ;

FIRST I= •FALSE•;
"IF" CHAR=O"THEN""GOTO"REAO

""ENO'";
"IF" CHAR=3 "THEN" "GOTO" "IF"COUNTERH"THEN"RESIGNS"ELSE"STOP;
"IF"CHAR=O "OR" CHAR=10 "THEN" AMISS

"ENo••;
.. PROCEDURE" DIGIT CNR>; "INTEGER'.NR;

"BEGIN'". INCHARACTER (60 ,•«'"12345678"") .. ,NRJ;
"IF" NR=O "THEN" AMISS

"ENO'";
"PROCEDURE" AMISS;

.. BEGIN" OUTPUTS('°('" 00
('

0 NOT CORRECT. TRY AGAIN ..)"Z/00 > .. , C);
I N PUT (6 0 , .. (•• / •• > •• > ;

"
0 GOTo·· "IF .. COUNTERM .. THEN .. NEXT HOVE '"ELSE'" TYPE IN

"ENo••;

OUTPUH61,'"("//,'"("'PLEASE GIVE THE POSITION IN ALGEBRAIC NOTATION.EACH
")"/,"("PIECE BENEATH THE CORRESPONDING COLUMNIWHITE KING, ROOK, BLACK
")"/,"(•KING. FOR EXAHPLE3 KA1 RH1 KD5
")"/,"("YOU ARE PLAYING WITH BLACK.TYPE YOUR HOVE WHEN WHITES HOVE IS
")"/,"("GIVEN. TYPING ZERO HEANS RESIGNATION•)"//,

"("KING ROOK KING ">•t•>•>;
It

STARTt COUNT s= 1; COUNTERM :="FALSE•;
MATES=MATE2a=•FALSE";
"FOR"" At=1'"STEP .. 1'"UNTIL"50'"00'" HISHAH= o;

TYPE IN& LETTER (KWV); DIGIHKWH>;
LETTER(RV); DIGIT< RH);
LETTER(KBV); DIGIT(KBH);

"FOR" A 1=1,61 ··oo··
OUTPUT(A,•c•//"("POSITIONS K">•A,D,5B"€"R")-A,0,5B•(•K•J•A,O/•)•,

KWV•2••42,KWH,RV•2••42,RH,KBV•2••42,KBH);

PLAYS ~AKE YOUR MOVE;

"IF'"HATE .. THEN" "GOTO" NEXT GAME;
COUNTa=COUNT+1: COllNTERtU="TRUE'": INPUH&O."("/"") ..):

NEXT MOVEZ L£TTER<KBV11; OIGIT(KBH1);
"IF" ABS(KBV1-KBV)>1 "OR" ABS(KBH1-KBHJ>1

316
317
318
319
320
321
322
323
324
325
326
327
328
329
33tJ
331
332
333
334
335
336
337
338
339
340
341
342
343
344
31t5
346
-347
348
349
350
351
352
353
354
355
356
351
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

47

ALGOL-60 VERSION 4.0 LEVEL 0013

379 "OR" KBV1=KBV "AND" KBH1=KBH "THEN" AMISS; 379
380 Ct=KBV; Oi=KBH; KBVl=KBV1; KBHl=KBHi; 380
381 OUTPUT(1,"(""("K")"A,D/")",KBV•Z••4z,KBH); 381
382 "GOTo·· PLAY; 382
383 383
384 RESIGNSB OUTPUTU,"(""0 (,.BLACK RESIGNS ..),. 00>00 »; 384
385 NEXT GAHESOUTPUTC61, .. (00

// .. l"0 ANOTHER GAME? THEN GIVE POSITION, ELSE TYPE 385
386 ")","("ZERO ")",//,"("KING ROOK KING•)•,/")"); 386
387 INPUH60, 00 (*0 /'•)"'J; 387
388 '"GOTO"" START; 388
389 STOPS 389
BO "ENO"' 390

48

REFERENCES

[1 J M.M. BOTWINNIK, Computers, Chess a:nd Long Ra:nge Pla:nning,

Springer Verlag, 1970.

[2 J A. CHE RON, Lehr- und Handhuch der Ein<ispie le, Tei l II,

Engelhardt Verlag, Berlin (in German).

[3] M. EUWE & J. DEN HERTOG, Praktische Schaaklessen I en II,

Van Goor, The Hague (in Dutch).

[4] R. FINE, Basic Chess Endings, David McKay Cie, New York.

[5] J.J. GILLOGLY, The Technology Chess Program, Nov. 1971, Rep.,

CMU-CS-17-109, Dep. of Computer Sc., Carnegie Mellon Univer

sity.

[6] BARBARA J. HUBERMAN, A Program to Pla:y.Chess End Games, Tech. Rep. CS-106,

August 1968, Comp. Sc. Dep., Stanford University.

[7] D.N. LEVY, Computer Chess, A Case Study on the CDC 6600,

Machine Intelligence, vol. 6, 1971, page 151.-163.

[8] B. MITTMAN, Ca:n a Computer Beat Bobby Fisher, Datamation, June 1973,

page 84-87.

[9] P.G. RUSHTON & T.A. MARSLAND, CUPrent Chess Programs, A Sunnnary of

their Potential and Limitations, INFOR, vol. 11 no 1,

Febr. 1973, page 13-20.

[10] A.L. SAMUEL, Some Studies in Machine LeaPning Using the Game of

Checkers, IBM, J,Res.Dev., July 1959, page 210-229 and

November 1967, page 601-617.

[11 J S. T. TAN, Representation of know ledge for very simple pawn endings

in Chess, MIP-R-98, November 1972; Kings, Pawn and Bishop,

MIP-R-108, May 1974, School of Artificial Intelligence,

University of Edinburgh.

[12] A.L. ZOBRIST & F.R. CARLSON JR., An Advice Taking Chess Computer,

Scientific American, June 1973, page 92-105.

