
AFDELING INFORMATICA

J. VAN VAALEN

stichting

mathematisch

centrum

IW 24/74 DECEMBER

AN EXTENSION OF UNIFICATION TO SUBSTITUTIONS WITH

AN APPLICATION TO AUTOMATIC THEOREM PROVING

Prepub I i cation

~
MC

2e boerhaavestra_at 49 amsterdam

BlBI.IOTHEEK MATHEMATISCH Cl:NTRUl1
.,_ AMSTERDAM --~~

PJun:ted a.t .the Ma.thematic.a.i. Cen:tJr.e, 49, 2e BoeJLhaa.veo.tJuta,t, Amo.teJLdam • .
The Ma.thematic.a.i. Ce.n:tJr.e, 6ou.n.ded .the 11-.th 06 FebfC.u.aJc_Y 1946, i.-6 a non
pfC.o6il ..i.no:Utu..tion cu.m..i.ng a.t .the pfC.omo:tlon 06 pWte ma.thematie6 and ..i..t6
app.U.c.a.:tlont.. I.t ,L6 .6ponoofC.ed by .the Ne.the.JLR..a.ndo GoveJl.nmen:t .thfC.ou.gh .the
Ne.the.JLR..a.ndo OfC.ganization 6ofC. .the Advane.emen:t 06 PUite ReoeafC.e.h (Z.W.O),
by .the Mu.n..i.e...i.paU.ty o0 Am-0.teJLdam, by .the UvuveJl..6ily 06 Am-0.teJl.dam, by
.the FfC.ee UvuveJl..6..i..ty a.t Amo.teJLdam, and by ..i.ndu..6:tlue.6.

AMS (MOS) subject classification scheme (1970): 68A40

ACM- Computing Reviews -category: 5.21

An extension of unification to substitutions with an application to

automatic theorem proving.

by

J. van Vaalen *)

ABSTRACT

The notion of unifiability is extended to substitutions. Theorems con

cerning this notion are derived together with an algorithm for computing

the most general unifier of a set of substitions. Especially fruitfull is

the application in the case of the and-or tree approach to theorem proving

where the subgoals are not independent but contain the same variables. Here

the ultimate solution is shown to be the most general instance of the solu

tions to the individual subproblems. Another application concerns connection

graphs where the arcs are substitution and new arcs can be generated from

old arcs.

*) Mathematisch Centrum, Amsterdam.

I. INTRODUCTION.

In [5] ROBINSON introduced resolution theorem proving. He defines the

notion of unifiability of expressions as follows: two expressions are call

ed unifiable if we can find a substitution such that by applying that sub

stitution to the_expressions the expressions become equal. In §2 the defi

nitions, the unification algorithm and the unification theorem are reviewed.

In §3 we extend the notion of unifiability to substitutions. Two substitu

tions are called unifiable if we can find a substitution such that if we

can compute the composition of the original substitutions with this substi

tution the resulting substitutions become equal in the set theoretical

sense. Some theorems connecting unifiability of expressions and unifiability

of substitutions are presented. Furthermore an algorithm for computing the

unifier of substitutions is described. Applications of the notion of uni

fiability of substitutions to resolution theorem proving problems such as

and-or tree representation, connection graphs [3,4] and the structure shar

ing way of representing clauses [I] are dealt with in §4.

2. THE UNIFICATION OF EXPRESSIONS.

2.1 DEFINITIONS. The following definitions are taken from [SJ:

A term is either a variable or a string of symbols consisting of a

function symbol of degree n ~ 0 followed by n terms.

An expression is either a term or a string of symbols consisting of a

predicate symbol of degree n ~ 0 followed by n terms.

A substitution component is any construct of the form v + t where vis

a variable and tis a term different from v; vis called the va,riabZe of

the substitution component v + t and tis called the term (Hence v ➔ vis

not a substitution component for any variable v)

A substitution is a finite (possibly empty) set of substitution.compo

nents with distinct left hand sides. Therefore in a substitution

{v
1
+t 1, v

2
+t2, ••• , vk+tk} the order of the constituent components is imma

terial.• Subs ti tut ions are denoted by lower case greek letters, £ is used to

2

denote the empty substitution.

In the following variables will be denoted by strings connnencing with

v,w,x,y,z; constants or nullary functions by a,b,c,d,e and strings connnen

cing with f,g,h denote n-ary functions with n ~ 1.

k Let Ebe a finite string of symbols and 0 = {v.➔t.}.
1

be a substitution.
l. l. 1.=

The instantiation of Eby 0 is the operation of simultaneously replacing

each occurrence of v 1 in Eby an occurrence of the term ti for all i,

1 ~ i ~ k. The resulting string E0 is called the instance of Eby 0. If C

is a set of strings and 0 a substitution then the instance of C by 0 is

defined by ca= {EelE€C}.
k

Let 0 = {v.➔t.}. 1 and A be substitutions. The composition of 0 and A is
l. l. 1.=

the substitution 0' u A1 where 01 consists of the components v. ➔ t-A such
l. l.

that t.A-:/: v., 1 ~ i ~ k andA 1 consists of the substitution components of A
l. l.

whose left-hand sides are not left-hand sides of 0.

It is easily verified that £0 = 0£ = 0 for all substitutions 0. Similarly

composition of substitutions is associative, i.e. (0A)µ = 0 (Aµ) and there

fore we may omit the parentheses.

(Hint: for any expression E and a composition of substitutions cr = 0A; Ecr

is the string E0A, that is, the instance of Ee by A).

We now sunnnarize some properties of the composition of substitutions which

we need in the sequel.

(Eis an expression and cr,µ,A are substitutions.)

1. (Ecr)A = E(crA) for all strings E and all substitutions cr,A.

2. cr = A if£ Ecr = EA for all strings E.

3. (crA)µ = cr(Aµ) for all substitutions cr.A,U,

4. (AuB)A = AA u BA for all sets of strings A,B and all substitutions A.

Note that the composition of substitutions is not connnutative crA # Acr.

The disagreement set of a non-empty set of expressions A consists of the

set of well-formed subexpressions extracted from the expressions in A by

deleting the initial parts which are connnon to all expressions in A.

EXAMPLES.

I. The disagreement set of {P(x), P(a), P(y)} is the set {x,a,y}

2. The disagreement set of {R(x,y); R(g(f(x,y)), h(b)), R(a,t)} is the set

{x,g(f(x,y)),a}.

UNIFIER. Let A be a set of expressions and e be a substitution; e is said

to unify A (or to. be a unifier of A) if Ae is a singleton.

A set of expressions which has a unifier is said to be unifiable.

3

MOST GENERAL UNIFIER. A unifier e of a set of expressions A is called a

most general unifier of A if for all unifiers cr of A there exists a substi

tution A such that cr = 6A. If A has a unifier then there exists always a

most general unifier e; AS then is called the most general instance of A.

(The most general unifier of A is unique up to isomorphisms.)

EXAMPLES.

3 t. {Ei}i=l = {P(x), P(a), P(y)}

most general unifier cr = {x+a, y➔a}

3
{Eicr}i=l = {P(a)}

3 2. {Ei}i=l = {Q(f(y),x), Q(x,z), Q(f(t), f(g(a)))}

most general unifier cr = {x+f(g(a)), y+g(a), z+f(g(a)), t ➔ g(a)}

3
{Eicr}i=l = {Q(f(g(a)), f(g(a)))}

2.2 THE ALGORITHM AND THE UNIFICATION THEOREM.

The unification algorithm and theorem are quoted from ROBINSON [SJ.

The Unification algorithm computes the most general unifier of A, where A is

a finite non-empty set of expressions:

Step I a
0

: =£(the empty substitution); k: = O;

Step II If Acrk is a singleton stop: crk is the most general unifier of A.
Step III: Compute the disagreement set of Acrk; order this set such that the

variables are in front, the rest of the ordering being iimllaterial.

If vk and~ are the two earliest elements of the disagreement set and vk

4

is a variable that does not occur in ~ then ak+ 1 : = ak. { vk -+uk}; k : = k+ I ;

go to step 2· otherwise stop then A is not unifiable.

UNIFICATION THEOREM. Let A be a non-errrp-ty finite set of expressions.

If A is unifiable then there exists a most general unifier a of A which is

computed by the unification algorithm.

PROOF. Let 0 be some unifier of A. It suffices to prove that the unification

algorithm applied to A will terminate in step 2 yielding a most general uni

fier a of A and that for all i ~ 0 the equation a.A.= e holds for some
1. 1.

substitution A,.
1.

The proof proceeds by induction on i.

(a) i = 0: AO= 0 and a0 = £,

(b) Suppose a.A.= e holds in step 2 of the algorithm.
1. 1.

Either Acri is

step 3 of the

a singleton and we are done, i.e. a= cri or we proceed to

algorithm. Now A. unifies Aa., A, also unifies the dis-
1. 1. 1.

agreement set B. of Aa. and v.L = u.L for all v.,
1. 1. 1. 1. 1. 1. 1.

From the unifiability of A it follows that at least

u. E B ••
1. 1.

one _element in B. is
1.

a variable, say vi (vi occurs in ui E Bi, vi'/ui is impossible since

v.A.=u.A.). Hence we return to step 2 of the algorithm with
1. 1. 1. l.

a. I = a. u
1.+ 1.

{v.-+u.} where u. EB. and u. ~ v. and A.
1

= A. - {v.+u.;\.}
1. 1. 1. 1. 1. 1. 1.+ 1. 1. 1. 1.

Ai= Ai+I u {v.+u.A.} = A.+I u {v.+u.A.+I} = {v.+u.}•;\·+i•
1. 1. 1. 1. 1. 1. 1. 1. ' 1. 1.

Hence e = ai+I Ai+I"

EXAMPLES.

1. A= {P(x), P(y), P(z)} e = {x+a, y+a, z-+a} = AO.

a
1

= {x+y};A
1

= {y+a, z-+a}

a
2

= {x+z, y-+z};A 2 = {z+a}

a
2

is mgu; a
2
A

2
= 0.

2. A= {P(x), P(y), P(z)} 0' = {y+x, z+x}= AO

a
1

= {x+y};Aj = {y➔x, z+x}

a 2 = {x+z, y+z};;\2 = {z+x}

a2 ismgu; a 2A2 = e'.

5

During the computation of a deduction in automatic theorem proving a

great amount of unification computations has to be performed. The implemen

tation of the unification algorithm can be done much more efficient than a

straightaway implementation; See [6 and 2].

3. AN EXTENSION OF UNIFICATION TO SUBSTITUTIONS.

3.1 DEFINITIONS.

Suhstitution unifier. Let 0 = {ei}t=l be a set of substitutions and a a sub

stitution; a is said to unify 0 or to be a unifier of 0 if eicr = ei+lcr for

all I~ i < k. A set of substitutions which has a unifier is said to be u:ni

fiahle or to be compatible. (By equality of substitutions is meant the set

theoretical equality of the ordered pairs).

Instantiation. If e 1 and e2 are substitutions then the composition e 1e2 is

called an instance of e1•
k

Most general unifier. A unifier cr of a set of substitutions 0 = {e i}i=l is

called a most general unifier if for all unifiers T of 0 there exists a sub

stitution A such that T = crA; the instance e 1cr is called the most general

instance of 0.
k

Normal ~arm. A substitution e = {v.➔t.}. 1 is in normal form if for all J, 1 1 1=

i,j: l ~ i, j ~ k, v. does not occur int .•
1 J

NOTE.

1. By definition it holds that all vi's in a substition are different.

2. The most general unifier of expressions computed by the unification alga-

rithm as quoted in 2.2 is in normal form.
k

3. The most generalinstanceofasetofsubstitions {ei}i=l is sometimes also

denoted by e 1*e 2*•·•*8k; this operation is commutative and associative.

A substitution component v ➔ tis called circular if v occurs int.

A set of substitutions 0 =· {ei}~=l is called contradictory if there are two

substitutions e1, em in 0 such that there is a substitution component

vj
1
➔ tj,

1
in e1 and a substitution component v jm ➔ t jm in em such that

vj
1

= vjm and the terms tj
1

and tjm are not unifiable.

6

3.2 ALGORITHMS AND THEOREMS

We now give the

set of substitutions

of substitutions the

algorithm to compute the most general unifier cr of a
n

{e.}.
1

• We assume that in each substitution of a set
1 1=

substitution-components are ordered according to a

fixed enumeration of all variables.

Substitution Unification AlgoPithm.

Step I. k = O; cr0 := e.
n

Step II. Compute {Sicrk}i=i; delete components of the form v + v from
n

{eicrk}i=l. If there is a circular substitution component in one of the sub-

stitutions eicrk then there is no unifier and the algorithm halts.

If { 8 i crk}~= 1 is a singleton then crk is a most general unifier and the algo

rithm halts. In all other cases goto step 3.

Step III. Take the first substitution component from all eicrk; if they are

all equal then take next ones otherwise take from this set those substitu

tion components where the variables are first in the above mentioned enu-
m

meration on the variables, the resulting set is, say, {v+tj}j=I. We now

distinguish three cases.

Case I. m =I.Then: k := k+I; crk := crk-l" {v+t 1}; goto step 2.

Case II. The set contains substitution components that come from some but
il m

not all of the sets {e.crk}
1
._ 1 • If the set {v+t.}. 1 1 - J J=

is contradictory then

stop: not unifiable otherwise let A be the most general

then k := k+I; crk = crk-l" {v+t 1} A; goto step 2.

m unifier of {t.}.
1 J J=

Case III. The set contains substitution components that come from all eicrk.
m

If the set {v+t/j=I is contradictory then halt: not unifiable otherwise
m

let A be the most general unifier of {tj}j=l then k := k + I; crk := crk-t"A;

goto step 2.

EXAMPLES

I. e 1 = {x+t, y+a}; e2 = {x+f(y), z+f(y)}; e
3

= {x+z, t+z, s+b}.

Ordering: x,y,z,t,s.

k = 0: cr
0

= e:.

k = I: X + t, X + f(y), X + z.

compute m.g.u. of {t,f(y),z}: t + f(y), z + f(y)

cr 1 = { t+f (y)", z+f (y) }

e1cr 1 = {x+f(y), y+a, z+f(y), t+f(y)}

e2cr 1 = {x+f(y), z+f(y), t+f(y)}

e3cr 1 = {x+f(y), z+f(y), t+f(y), s+b}

cr 1•{y+a} ~ {t+f(a), z+f(a). y+a}

= e
2

cr
2

= {x+f(a), y+a, z+f(a), t+f(a)}

= {x+f(a), y+a, z+f(a), t+f(a), s+b}

a
3

= cr 2 -{s+b} = {t+f(a), z+f(a), y+a, s+b}

cr 3 is the most general unifier of {e 1,e2,e3}

2. e1 = {x+y, y+f(a)}; e2 = {x+f(a), y+f(a)}

crl = {y+f(a)} is the most general unifier.

3. 01 = {x+y, y+f(a)}; 02 = {x+b, y+f(a)}

el = {y➔ b} is the most general unifier and 02 is

instance.

4. 01 = {x+y}; 02 = {x+b, y+f(a)}

the most general

cr 1 = {y+b} e 1cr 1 = {x+b, y+b};0 2cr 1 = {x+b, y+f(a)}

7

because {y+b} and {y+f(a)lare contradictory, 01 and e2 are not unifiable.

(since bis not variable)

REMARKS.

I. The most general unifier of a set of substitutions as computed by the

above algorithm is always in normal form.

2. The most general instance of a set of substitutions is not always a uni

fier of the substitutions: example 3: 02 = {x+b, y+f(a)} is the most gen

eral instance but 0102 = {x+f(a), y+f(a)} # 0202•

To compute the most general unifier of expressions we can also use the algo

rithm for computing the m.g.u. of substitutions if we consider the dis

agreement set to be substitutions and look at more disagreement sets, in the

sense of going further right until the end of the expressions, at the same

time.

EXAMPLE: {R(x,y), R(g(f(x,y)), h(b)), R(a,t)}
' the disagreement sets are: {x,g(f(x,y)),a} and {y,h(b),t}

8

AlgoPithm 2 to make a set of substitutions out of a disagreement set of a

set of expressions if possible.

Step I: If the disagreement set does not contain any variable then halt:

there is no unifier.

Step II: Choose one of the variables from the disagreement set {e1, ••• ,en}

say e. and make the following set of (n-1) substitutions l. .
{el..+e

1
} ••• {e.➔e.

1
} {e,➔e.+ 1 } ••• {e,➔e}. 1. 1- 1. 1. 1. n

If there is any substitution component circular in this set then halt:

there is no unifier.

n
THEOREM I. Let 0 = {ei}i=l be a non-empty set of substitutions. If 0 is

unifiable then thePe exists a most genePal unifieP o of 0 and o is deteP

mined by the svhstitution unification algoPithm.

PROOF. (Similar to that of the unification theorem in 2.2)Let -r be a unifier

of 0. It suffices to prove that under the hypotheses of the theorem the al

sorithm will terminate at step 2 when applied to 0 and for all i ~ 0

o.A. = -r holds for some A .•
1 l. l.

The proof proceeds by induction on i.

(a) i = 0 then o
0

=

(b) i ~ 0 and O,A.= l. l.
a singleton and we

E: and AO= -r.

-r holds for some A, at step 2, then
1

are done or we proceed to step 3; A.
l.

we can have one of the three cases:

either {e.o.}~
1

is
J l. J=

now unifies 0o. and l.

Case I. There is 3·ust one v ➔ tin {e.cr.}~ 1 so A1.• has to unify {e,{v+t}}
J' l. J=

and therefore {v+t A.} EA .• Let o.+l = cr .• {v+t.}
1 l. l. l. l.

L l = L - { v+t A . } ; L = L I u { v+t L } = L l u { v+t A 1.· + l } = { v➔t} • A 1.· + l 1.+ l. l. l. 1.+ l. 1.+
and hence -r = cri+t• Ai+t•

Case II. Similar to case I because A. now has to unify {E,{v+t.}~_ 1} there-
1 l.].-

fore cri+l = oi. {v➔t 1 } and Ai+l =Aiu {v+t, Ai} and oi+l" Ai+l = -r.

Furthermore, A. has to unify {v➔t.}~ 1 so A• has to unify {t1..}m1.·--t let the l. l. l.= . l.
most general unifier be n then oi+l = criTt•n and Ai+l = Ai+l - n•Ai+l

Ai+l = Ai+l u.n Ai+I = Ai+l u n.Ai+l = n.Ai+t• which gives cri+l•Ai+l = -r.

Case III. Analogous to the second part of case II. D

AN EXAMPLE.

01 = {x+f(y), z+a};0
2

= {x+f(g(s)), t+b}

, = {y+g(a), z+a, t+b, u+g(a), s+a} is a unifier.

cro = £; Ao = L

cr 1 = {y+g(s)}; :\ 1 ={t+b, z+a, u+g(a), s+a}

cr2 = {y➔g(s), z+a!; :\
2

={t+b, u+g(a), s+a}

cr3 = m.g.u. = {y+g(s), z+a, t+b}; ;\
3

= {u+g(a), s+a}

THEOREM 2. Given a unifiable set of substitutions {0i}:=l such that 0i is

in normal form for all i. The most general instance of {0i}i=l is also a

unifier of { 0 i }i= 1 •

9

PROOF. Let the most general unifier of {0.}~
1

be cr then 01cr = ••• = 0 cr is
l. l= n

the most general instance. Because of the normal form of the substitutions

0 .• 0. = 0. holds. Because of the associativity of the composition of sub-
1.]. l.

stitutions we have: 0i0icr = 0i(0icr) and therefore 0101cr = 0202cr = 0201cr.

Hence 01cr is a unifier. D

THEOREM 3. For a given set of expressions which is unifiable iue can compute

the most general unifier also by applying the substitution unification al

gorithm on the set of substitutions fomed by algorithm 2 from the disagree

ment sets. Then the m.g.u. of the expressions is the most general instance

of these substitutions.

PROOF. (Substitutions from the second algorithm are in normal form since

every substitution consists of but one substitution component)

The proof is in two steps: first we prove that unifiability occurs in the

same circumstances, secondly we prove that we get the same unifier up to

isomorphisms.

Unifiability. Let D~ be the disagreement set which we encounter in the al

gorithm computing the most general unifier of expressions and crk the sub

stitution lastly made in the algorithm. Let D~ be the corresponding dis

agreement set, which we encounter in algorithm 2, previous to the applica

tion of crk, then we have for all k: D~ = D~. crk.

Now we ~an distinguish the different situations where the set D~ is not

unifiable: Dk contains no variables or Dk contains a variable x and a 1 1

JO

k
term containing x. If D0 does not contain variables or contains x and t(x)

then algorithm 2 gives already the non-unifiability.
k

Otherwise either D0 contains variables and ok does substitute non-variables

which means that algorithm 2 delivers two contradictory substitutions which

leads to non-unifiability, or D~ contains two variables and ok does sub

stitute a term which contains x for the other variable which means that al

gorithm 2 delivers two substitutions like {x+y} {y+t(x)} which leads also

to non-unifiability.

Unifier. For the simple case that there is just one disagreement set we ob

tain the same unifier since we unify the set of (n-1) terms and add x+t10

to get the most general instance of the substitutions which is the m.g.u.

of the set of expressions; generalization is straightforward. D

AN EXAMPLE. Are P(y,f(z),z) and P(x,x,t) unifiable?

Disagreement sets: {y,x}, {f(z),x} {z,t}; corresponding set of substitutions

0 = {{y+x},{x+f(z)}, {z+t}}.

Ordering of variables: x,y,z,t.

a
1

= {x+f(z)}; 00 1 ={{u+f(z),y+f(z)}, {x+f(z)},{x+f(z),z+t}}.

a
2

= {x+f(z), y+f(z)}

a
3

= m.g.u. = {x+f(t), y+f(t), z+t}. 00 3 = {{x+f(t), y+f(t), z+t}}.

3.3. SOME THEOREMS RELATING THE DIFFERENT UNIFICATIONS.

THEOREM 1. Given a set of e:x:pressions {Ei}~=l with a moat general unifier

0 then for a set of n substitutions {0i}1=l the following holds. The set of
instances {E.0.}~ 1 is unifiable if the set of substitutions e u {0.}~ 1 is

1 1. 1= 1 1=

unifiable. The most general unifier a of 0 u {0i}~=l is also a unifier of
n

{E.0. }. l.
1 1 1=

PROOF. If 0 u {0i}~=l is unifiable then there exists a substitution a the

most general unifier, such that So= e
1
a = ••• = 8no ; 8 is the most general

unifier of {Ei}~=l so E1e = ••• = En8 also E18o = ••• = En8o; replacing ea
by respectively e1a, ••• , 8no gives E1e1a = ••• = En8no which means that

a is a, unifier of the set {E. 8. }~ • D
1 1 1=]

I I

REMARK.

The computed unifier is not necessarily the most general one because vari

ables which occur in E. can be deleted by substitution 0.; therefore they
l. l.

don't occur in the computed unifier. This is one of the reasons that the

converse of the theorem does not hold in general.

COUNTEREXAMPLES.

I. {P(x), P(a)} unifiable 0 = {x+a}. Let 01 = e and 02 = {x+b} then

{Ei 0i}~=l = {P(x), P(a)} unifiable but 01, 02 .and 0 are not unifiable.

2. {P(x,y), P(y,t)} unifiable 0 = {x+t, y+t}. Let 0
1

= {y➔a} and 0
2

= {y➔c}

then {Ei0i}~=I = {P(x,a), P(c,t)} unifiable but 0
1

, 0
2

and 0 are not

unifiable.

However, the converse theorem holds if we restrict the substitutions 0. to
l.

variables that occur in E. and if the expressions E. don't have any vari-
1. l.

ables in connnon.

THEOREM 2. Let {Ei}~=I be a set of expressions which have no variables in

common and are unifiable with a most general unifier a. Let {0.}~_ 1 be a
l. 1.-

set of substitutions such that a variable occuring in 0. does not occur in
l.

0., I~ i, j ~ n and 0. has as left-hand sides of its components only vari-
J l.

ables occuring in E •• If the set of expressions {E.0.}~ 1 is unifiable then
l. l. l. 1.=

the set of substitutions {cr} u {0i}~=I is unifiable.

PROOF. Assume that {cr} u {0.}~ 1 is not unifiable. Since no variables from
l. 1.=

0. occurs in 0., I
l. J

~ i. J. ~ n the set {0.}~ 1 is unifiable. Therefore there
• l. 1.=

must be a 0. such that 0. and cr are not unifiable. Now the substitution
J J

unification algorithm applied on (0.,cr) halts either in step 2 or in step 3.
J

Step II. If we stop at step II then there is a substitution component x+y

in 0. or cr resp. and a substitution
J

the algorithm) then either y➔t(x)

If we consider {Ei0i}~=l then the

component y+t (x) in crk (the substitution in

is already in cr or 0. respectively.
J

disagreement set consists of {y,x} and in

the next step of the unification algorithm for expressions the disagreement

set consists of {t(x), x} so {E.0.}~ 1 is not unifiable; or there is a sub-
1. l. 1.=

stitution component z+x in cr; if we consider {E.0.}~ 1 then the disagreement
l. l. 1.=

set congists of {y,z} and in the next step {z,t(z)} so {Ei0i}~=l is not

unifiable.

12

Step III, If we stop at step III then there are substitution components

x+t1 in ej and x+t2 in cr with t 1 and t 2 not unifiable. If we consider the

disagreement sets we get t 1 , t
2

somewhere as disagreement set in the unifi

cation algorithm for expressions on {E.0.}~
1

, so {E.0~}~
1

is not unifi-
1 1 i= 1 1 i=

able. 0

EXAMPLE.

Given E1 = P(y,f(z),z) and E2 = P(x,x,t) then the most general unifier of

E1 and E2 is cr = {x+f(t), y+f(t), z+t}.

If we now apply the substitution T = {x+f(a)} to E2 we can ask if P(y,f(z),z)

and P(x,x,t). T = P(f(a), f(a),t) are still unifiable.

This implies the question: are the substitution cr and T unifiable.

cr 1 = m.g.u. (f(t),f(a)) = {t+a}

cr 2 = {t+a, y+f(a)}

cr 3 = the most general unifier= {t+a, y+f(a), z+a}

and this is also the most general unifier of P(y,f(z),z) and P(x,x,t).T =

P(f(a), f(a),t).

4. APPLICATION OF SUBSTITUTION UNIFICATION TO THEOREM PROVING.

For readers unfamiliar with the notions used in resolution theorem

proving we give the necessary definitions in the appendix.

The application of our approach is strongly connected with on the one

hand the way the resolution principle is used and on the other hand with the

representation of clauses in the computer memory. If the clauses are repre

sented in the usual way as lists, there is no profit in using the algorithms

stated in §3. The improvement in efficiency comes in when we represent

clauses by two pointers pointing to the parent clauses and by a pointer to

the substitution applied in this resolution step [1]. For this latter rep

resentation, using the unification algorithm for expressions requires a

search through the tree of pointers to make the actual clause since we want

to know whether the literals are unifiable with the literals in some other

clause. The advantage of using the substitution unification algorithm here

can be seen right away.

13

We first compute the so-called classification matrix for the input

clauses [4]. The literals in the input clauses are numbered, let us say,

from 1 tom and the matrix consists of substitutions.The (l,k)th entry is 0

if the 1th literal is not unifiable with the kth literal; the entry is the

most general unifier of the 1 th and k th literal otherwise.

We can state the ·following corollary of theorem 1 and 2 from 3.3. (unifi

cation for a resolution step).

If Land Kare unifiable literals with m.g.u. cr (Land K d.on't have any

variables in common) then L e 1 and K e 2 are unifiable i ff e
1

, e_
2

and a

are unifiable; the most general unifier of {e
1

, e
2

, cr} is also a unifier

of L e1 and Ke 2 • (In e_ 1 , e2 occur only variables occuring in L and K re

spectively and e
1

, e2 don't have variables in common)

Implementing this we have to take care of the conditions stated in

parentheses; we will see how in an example stated below.

In case of factoring the situation is a bit different because there

the substitutions e 1 and e2 have variables in common therefore we have to

treat factoring separately. The following situation occurs. Two literals

Land Kare unifiable with m.g.u. cr; Kand L don't have any variables in

common because they come from different clauses. Substitutions e
1

and e
2

are applied to Kand L respectively and then the clauses containing Ke
1

and Le 2 are resolved on literals different from Ke 1 and Le 2, involving uni

fier 11.. The question to be answered now is: are KA
1

). and Le 211. still unif:i.

able given Land Kare unifiable with m.g.u. cr.

THEOREM 1. Ke
1

11. and Le 211. are unifiable in the above stated case iff cr,e 1,e 2
and 11. are unifiable. The m.g.u. of {cr,e 1,e 2 ,11.} is a unifier of Ke 111. and

Le 211..

PROOF. If {cr,e
1
,e2,11.} unifiable then K0 111. and L~ 211. are unifiable. (follows

directly from theoreml,3.3). If {cr,e
1
,e 2,11.} are not unifiable then because

e 1,e 2 and A are unifiable, cr is not unifiable with either e 1,e2 or 11..

Case I. x + t 1 E cr; x + t 2 E e 1 ve 2 v11. with x EL u K.

If x EL then t 1 EK, in L0 211. xis replaced by t 2 so Kand L0 211. are not

unifiable so K0
1

11. and Le 211. not unifiable.

14

Case II. x + y E cr; y + f(x) E 81 V 82 VA, x EL, y E K

y + f(x) r/. 8
1

V 82 ~ y + f(x) EA; so y in K is replaced by f(x) and KA and L

not unifiable; if x, y EL the same follows: y + f(x) E 82 v A etc. □

All together we can see that we are not especially interested in most

general unifiers but we are interested in what happens to all variables in

the input clauses during the•deduction and that is what we have to keep

track of. (see examples.)

Another application strikes the eye when we look at the theorem proving

problem in a problem solving way: we start with some topclause denoting the

disjunction of its literals, the goal we have to reach is to resolve away

all literals (subgoals) (and - branches), each of which can be resolved in

different ways (or- branches). What makes things complicated is that the

subgoals are not independent [3,4]. Firstly we can assume that all new

variables introduced in different branches are different from each other so

that the only link between subgoals is the variables they have in common.

This means that we have only to keep track of substitution components that

effect those variables.

We want to prove that the most general instance of 0
1

, ••• ,8n is the

ultimate solution to problem L1 ••• Ln if 0 1 , ••• ,8n are solutions to

L1, ••• ,Ln respectively. The fact that literal L (subgoal) is solvable with

substitution 8 (variables of left sides of the components all occur in L)

means that there exists a refutation of L say c
0

= L, c
1

, ••• ,Cm = D

where c. is the resolvent of C.
1

with a clause D.
1

(not necessarily a
i i- i-

input-clause) furthermore D0 has to contain a literal K opposite in sign to

L with !Kl and ILi unifiable.

From this refutation we can find a derivation of an expression E = Kcr

with JEI and L unifiable with unifier 8 : cj = D0, c2, c~ = Kcr.

THEOREM 2. If there exists a refutation of literal L (unrestricted resolu

tion) involving substitution 8 on 4 then there exists a deduction of a

literal K which has sign opposite to Land where IKI and ILi are unifiable.

PROOF:. Refutation of L is a sequence cO, c 1, ••• ,cm where cO = L, Ci is

resolvent of clause C. 1 with some clause D, 1 I 5; i < m and C = D
i- i- m ·

15

This means that in D0 there is a literal K' which is opposite in sign to L

and where IK' I ·and ILi are unifiable involving substitution cr.

Now we can make a derivation of K'A = K c
1
', ••• ,c!, ... ,c' = K'A.

1 m
and C~cr - K.:\'cr =C .• All the resolution steps go through because

1 1

instance of c ..
1

with Ci= Do
C. is an

1

We know that Kand L have opposite sign and have to prove that IKI and ILi

are unifiable.

In case of a top-clause with two literals L1 L2 we have (solvable with

We know IL2 1 and IE2 1 are unifiable with m.g.u.e
2

• IL2e1 I and IE2 1 now are

unifiable if£ e1 and e2 are unifiable. The most general instance of e 1, e2
now is the solution of L1 L

2
•

This is again a corrollary of theorem 1 and 2 section 3.3, because L2 , E2
don't have variables in common and e 1 does not contain any variable from

E2• □

EXAMPLE.

Problem input clauses:

1. P(g(x,y),x,y) 'VxVy3z: z*x=y.

2. P.(x,h(x,y),y) 'VxVy3z: x*z=y.

3.,P(x,y,z)7P(y,u,y) P(z,u,z) 'VxVyVxVu[x*y=2Ay*u=y=>z*u=z]

4.,P(j(x),x,j(x)) 'negation of the theorem: 3yVx: x*y=x.

We number the literals in the problem 1 to 6.(clause 3 containing lit 3,4

and 5)

16

We first compute the classiffication matrix:

2 3 4 5 6

0 0 0 13 0 0 0

2 0 0 0 23 0 24 0 0

3 0"13 0 23 0 0 0 35 0

4 0 0 24 0 0 0 45 0

5 0 0 0 35 0 45 0 cr56

6 0 0 0 0 0 s6 0

0 means not resolvable (identical to: opposite in sign and the absolute

values are not unifiable).

cr 13 means literal 1 and literal 3 are resolvable involving substitution cr
13

where variables occurring, in literal 1 are indexed by 1 and variables

occurring in literal 3 by 3 so making the standardizing apart quite easily.

The following substitutions are involved in the matrix:

0 13 = {x3 ➔ g{x1,Y1), Y3 ➔ xl, Z3 ➔ Yt}

0 23 = {x3 ➔ Xz, Y3 ➔ h(xz,Yz), z3 ➔ Yzl

0 24 = {y3 ➔ XI, Yt ➔ XI' u3 ➔ h(x1,x1)}

0 35 = {x3 ➔ ZS' Y3 ➔ us, Z3 ➔ z5}

0 45 = {y4 ➔ Z5, U4 ➔ US}

Now we try and find a refutation using SLN resolution [3] with as

search strategy diagonal search where f is the level and g is the number of

literals; literal 6 is the top clause. Each literal will be represented by

its number and its variables with or without substitutions.

17

□

Perhaps we are interested in 'the answer', what is substituted for x
6

:

x6 + h(xz,Xz).

Notice that using this set of clauses and diagonal search no more clauses

are generated.

Now we have the same example using connection graphs [4]. If we use

connection graphs it is almost necessary to use the substitution unification

algorithm because the arcs between the clauses (literals) are in fact uni

fiers and new arcs can be computed from old arcs using this algorithm.

The initial graph is made from the classification matrix:

18

delete link 0 56

delete o"
24

□

0 56 = unifier 0 56 , 0 13 = 0 56

0 24 = unifier 0
24

, 0
13

= 0 24

o"
24 = unifier 0 24 , 0 56 = 0 24

Note that 0 24 = 0 24 because we are only interested in those substitutions

concerning variables in lit 2 and lit 4,5.

ACKNOWLEDGEMENT.

Much of the novel ideas in the paper developed from discussions with

members of the Computational Logic Department of the University of Edinburgh

during a stay of the author. In particular I am indebted to R. KOWALSKI who

also gave very useful comments on a first draft.

APPENDIX. Some definitions in theorem proving [5].

A literal is a predicate letter (of order n) followed by n terms and

possibly preceded by a negation sign. Ex. P(x);,Q(a,f(g(x,h(y,a)))).

19

A clause is a set of literals denoting the disjunction of those liter

als.

For convenience the empty set of literals (denoted by □)considered to be a

(special case of a) clause called the empty clause and having the truth

value false.

The goal of the resolution theorem proving algorithm is to derive the

empty clause (contradiction) from a given set of clauses (consisting of the

axioms of the theory and the negation of the theorem we want to prove),

The set of clauses denotes the conjunction of those clauses and is a

straightforward translation of the problem stated in first order predicate

logic to the clausal form [5].

The order in which the new clauses are formed depends on the so-called

search strategy.

The inference rule used is the resolution rule.

Two clauses A and Bare resolvcible if A contains a literal Land B contains

a literal K such that Kand Lare opposite in sign and there exists a sub

stitution cr such that !Kia= !Lia (IKI denotes the literal K regardless of

the negation symbol) the new clause is called the resolvent of A and B:

(A-L) cr u (B-K) cr.

REFERENCES.

1. BOYER,B. & J. MOORE, The shctl'ing of structure in theorem proving programs,

Machine Intelligence ~pp.101-116 (eds. Metzer B., Michie D.),

Edinburgh University Press, 1972.

2. KOK, G. & J. VAN VAALEN, An automatic theorem prover, Mathematisch Cen

trum report NR 22,1971.

3. KOWALSKI,R. & D. KUEHNER, Linear resolution with selection function,

~ Artificial Intelligence 2, pp. 227-260, 1971.

20

4. KOWALSI, R., A proof proaedUPe using aonneation graphs, Memo 74 Dept. of

Computational Logic, University of Edinburh, 1974.

5. ROBINSON, J.A., A maahine oriented logia based on the resolution prin

aipZe, JACM 12, pp. 23-41, 1965.

6. ROBINSON, J .A., Computational logia: the unifiaation algorithm, Machine

Intelligence 6, pp. 63-72 (eds. Meltzer B., Michie D.), Edinburgh

University Press, 1971.

