stichting
mathematisch
centrum MC

AFDELING INFORMATICA IW 24/74 DECEMBER

J. VAN VAALEN

AN EXTENSION OF UNIFICATION TO SUBSTITUTIONS WITH
AN APPLICATION TO AUTOMATIC THEOREM PROVING

Prepublication

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CENMTRUM
snrmsmiress. BMSTERDAM o

Printed at the Mathematical Centre, 49, Ze Boethaavestraat, Amsterdam.

The Mathematical Centre, gounded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pwie mathematics and AL£s
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Puwre Research (Z.W.0),
by the Municipality of Amsitendam, by the University of Amsterdam, by
the Free Univernsity at Amstendam, and by industries.

AMS (MOS) subject classification scheme (1970): 68A40

ACM- Computing Reviews =-category: 5.21

An extension of unification to substitutions with an application to

automatic theorem proving.

by

J. van Vaalen *)

ABSTRACT

The notion of unifiability is extended to substitutions. Theorems con-
cerning this notion are derived together with an algorithm for computing
the most general unifier of a set of substitions. Especially fruitfull is
the application in the case of the and-or tree approach to theorem proving
where the subgoals are not independent but contain the same variables. Here
the ultimate solution is shown to be the moét general instance of the solu-
tions to the individual subproblems. Another application concerns connection
graphs where the arcs are substitution and new arecs can be generated from

old arcs.

%) i

Mathematisch Centrum, Amsterdam.

1. INTRODUCTION.

In [5] ROBINSON introduced resolution theorem proving. He defines the
notion of unifiability of expressions as follows: two ex@ressionS'afé call-
ed unifiable if we can find a substitution such that by applying that sub-
stitution to the expressions the expressions become equal. In §2 the defi-
nitions, the unification algorithm and the unification theorem afe.réviewed.
In §3 we extend the notion of unifiability to substitutions. Two substitu-
tions are called unifiable if we can find a substitution such that if we
can compute the composition of the original substitutions with this substi-
tution the resulting substitutions Become equal in the set theoretical
sense. Some theorems connecting unifiability of expressions and unifiability
of substitutions are presented. Furthermore an algorithm for computing the
unifier of substitutions is described. Applications of the notion of uni-
fiability of substitutions to resolution theorem proving problems such as
and-or tree representation, connection graphs [3,4] and the structure shar-

ing way of representing clauses [1] are dealt with in §4.

2. THE UNIFICATION OF EXPRESSIONS.

2.1 DEFINITIONS. The following definitions are taken from [5]:

A term is either a variable or a string of symbols consisting of a
function symbol of degree n 2 0 followed by n terms.

An expression is either a term or a string of symbols consisting of a
predicate symbol of degree n 2 0 followed by n terms.

A substitution component is any construct of the form v + t where v is
a variable and t is a term different from vj v is called the variable of
the substitution component v -~ t and t is callgd the term (Hence v + v is
not a substitution component for any variable v)

A substitution is a finite (possibly empty) set of substitution .compo-
nents with distinct left hand sides. Therefore in a substitution
{v,>t,, v >t

+
1712 7"2°72°°°" k
terial.- Substitutions are denoted by lower case greek letters, € is used to

s V tk} the order of the constituent components is imma-

denote the empty substitution.

In the following variables will be denoted by strings commencing with

V,WsX;¥,23 constants or nullary functions by a,b,c,d,e and strings commen-

cing with f,g,h denote n-ary functions with n 2> 1.

Let E be a finite string of symbols and 8 = {vi+ti}?¥l be a substitution.
The instantiation of E by 6 is the operation of simultaneously replacing
each occurrence of vy in E by an occurrence of the term t. for all i,

1 < i < k. The resulting string E6 is called the Znstance of E by 8. If C
is a set of strings and 6 a substitution then the instance of C by 6 is

defined by C6 = {Ef|EeC}.

k)
Let 6 = {Vi+ti}i=i and A be substitutions. The composition of 6 and A is
the substitution 8' u A' where 6' consists of the components Ve > t;A such
that tiA # Vis 1 £1i< %k and A' consists of the substitution components of

whose left~hand sides are not left-hand sides of 6.

It is easily verified that €6 = 6e = 6 for all substitutions 6. Similarly

composition of substitutions is associative, i.e. (6A)u = 6(Ap) and there-

fore we may omit the parentheses.
(Hint: for any expression E and a composition of substitutions ¢ = 6)A; Eo

is the string E6XA, that is, the instance of E8 by A).

We now summarize some properties of the composition of substitutions which

we need in the sequel.

(E is an expression and o,u,A are substitutions.)

1. (Eo)X = E(o)) for all strings E and all substitutions o,A.

2. o = A iff Eo = EX for all strings E.

3. (oA)p = o(Au) for all substitutions o,A,u.

4. (AuB)A = A\ U BX for all sets of strings A,B and all substitutions A.

Note that the composition of substitutions is not commutative oA # Ao.

The disagreement set of a non-empty set of expressions A consists of the
set of well-formed subexpressions extracted from the expressions in A by

deleting the initial parts which are common to all expressions in A.

A

EXAMPLES.

1. The disagreement set of {P(x), P(a), P(y)} is the set {x,a,y}

2. The disagreement set of {R(x,y); R(g(f(x,y)), h(b)), R(a,t)} is the set
{x,g(£(x,y)),al. '

UNIFIER. Let A be a set of expressions and 8 be a substitution; 0 is said
to untfy A (or to be a unifier of A) if A6 is a singleton.

A set of expressions which has a unifier is said to be unifiable.

MOST GENERAL UNIFIER. A unifier 6 of a set of expressions A is called a
most general unifier of A if for all unifiers o of A tﬁere exists a substi-
tution A such that o = 6A. If A has a unifier then there exists always a
most general unifier 6; A8 then is called the most general instance of A.

(The most general unifier of A is unique up to isomorphisms.)

EXAMPLES.

1. {E.}?

;1i=1 = (R0, P(a), P(y)}

most general unifier ¢ = {x>a, y>al}

'{Ei0}2=l = {P(a)}

2. {E;}]; = 1QUE®),%), Qx,2), QUE(L), £(g(a)))}
most general unifier o = {x>f(g(a)), y+g(a), z>f(ga)), t >~ g(a)}

(B;0}3., = {Q(f(g(a)), £(g(a)))}

2.2 THE ALGORITHM AND THE UNIFICATION THEOREM.

The unification algorithm and theorem are quoted from ROBINSON [5].

The Unification algorithm computes the most general unifier of A, where A is
a finite non-empty set of expressions:

Step I ¢ 00== € (the empty substitution); k: = 03

Step 11 : If Aok is a singleton stop: Oy is the most general unifier of A,
Step II1: Compute the disagreement set of Ack; order this set such that the

variables are in front, the rest of the ordering being immaterial.

If vy and u, are the two earliest elements of the disagreement set and Vi

is a variable that does not occur in Uy then Opey = O {vk+uk}; k := k+1;

go to step 2 otherwise stop then A is not unifiable.

UNIFICATION THEOREM. Let A be a non-empty finite set of expressions.
If A s unifiable then there exists a most general unifier o of A which is

computed by the unification algorithm.

PROOF. Let 8 be some unifier of A. It suffices to prove that the unification
algorithm applied to A will terminate in step 2 yielding a most general uni-
fier 0 of A and that for all i > 0 the equation o;h; =8 holds for some
substitution Age

The proof proceeds by induction on i.

(a) i =0: Ag =
(b) Suppose GiAi = 0 holds in step 2 of the algorithm.

8 and 0 = €-

Either Aci is a singleton and we are done, i.e. o = o; or we proceed to
step 3 of the algorithm. Now Ai unifies Ad., A; also unifies the dis-
agreement set B, of Ac. and v.,A., = u.,A., for all v,, u, € B..

i i i%i i%i i* Vi i
From the unifiability of A it follows that at least one element in Bi is
a variable, say Vs (Vi occurs in u; € B;, vi#ui is impossible since

vili=uiki). Hence we return to step 2 of the algorithm with

Oipp =01 U {vi+ui} where u; € Bi and ug # v and Ai+l = Ai - {vi+uiki}
Ay = Ay v lvpugagd = o v, = D kg
Hence 0 = Gi+l Ai+1’

EXAMPLES.

1. A= {P(X)y P(y), P(Z)} g = {x—)-a, y>a, z+a} =)\0
{XW}MI#{ym,zm}

Q
1

Q
#

{x>z, y+z};12 = {z+a}
o, is mgu; 0212 = 0,
2. A ={P(x), P(y), P(2)} 8'= {y>x, z>x}= 1
{x+y};ki = {y»x, z*x}
{x>z, y+z};lé = {z»x}

9

)

. o T = nf
0, 1smgu; GZAZ 6.

During the computation of a deduction in automatic theorem proving a
great amount of unification computations has to be performed. The implemen-
tation of the unification algorithm can be done much more efficient than a

straightaway implementation; See [6 and 2].

3. AN EXTENSION OF UNIFICATION TO SUBSTITUTIONS.

3.1 DEFINITIONS.

Substitution wnifier. Let O = {ei}§=l be a set of substitutions and o a sub-
stitution; o is said to unify © or to be a unifier of © if eic = ei+10 for
all 1 € i < k. A set of substitutions which has a unifier is said to be uni-

fiable or to be compatible. (By equality of substitutions is meant the set

theoretical equality of the ordered pairs).

Instantiation. If 6, and 6, are substitutions then the composition 619, is

called an instance of el.

k
Most general unifier. A unifier o of a set of substitutions 6 = {6.};_; is
called a most general unifier if for all unifiers T of © there exists a sub-
stitution A such that T = o)X; the instance 0,0 is called the most general

instance of ©.
k

Normal form. A substitution 6 = {Vi+ti}i=1 is in normal form if for all

ij: 1 =4, j <k, v, does not occur in tj.

NOTE.

1. By definition it holds that all vi's in a substition are different.

2. The most general unifier of expressiong computed by the unification algo-
rithm as quoted in 2.2 is in normal form. Kk

3. The most general instance of aset of substitions {ei}i=l is sometimes also

denoted by 8 *O ke e kB this operation is commutative and associative.

1
A substitution component v + t is called circular if v occurs in t.
A set of substitutions 0 = {ei}?=1 is called contradictory if there are two
substitutions 61, em in © such that there is a substitution component

-+ t: in 6; and a substitution component ij-+ tjm in 6, such that

Vip T tia

v: = v: and the terms t: and t; are not unifiable.
J1 Im N Im

3.2 ALGORITHMS AND THEOREMS

We now give the algorithm to compute the most general unifier ¢ of a
set of substitutionsv{ei}i_l. We assume that in each substitution of a set
of substitutions the substitution-components are ordered according to a

fixed enumeration of all variables.

Substitution Unification Algorithm.

Step . k= 0; 0y *= e.
Step II Compute {6, o } ', delete components of the form v - v from
{6, ok} =1°
stitutions 9, 1% then there is no unifier and the algorithm halts.

1f thereis a c1rcu1ar substitution component in one of the sub-

If {9, ck}l_ is a singleton then(ﬁgis a most general unifier and the algo-
rithm halts. In all other cases goto step 3.

Step III. Take the first substitution component from all 6, 519%5 if they are
all equal then take next ones otherwise take from this set those substitu-
tion components where the variables are first in the above mentioned enu-
meration on the variables, the resulting set ig, say,‘{v+tj}§;l. We now
distinguish three cases.

Case I . m = 1. Then: k := k+lj o, = 0)_,. {v+t]}; goto step 2.

Case II. The set contains substitution components that come from some but
not all of the sets {6, ok}l_]. If the set {v*t } is contradictory then
stop: not unifiable otherwise let A be the most general unifier of {t } -1
then k := k+l3 o) = 0y _;. {v>t;} A; goto step 2.

Case I1I. The set contalns substltutlon components that come from all 9, 1%%°
If the set {v*t } =1 is contradictory then halt: not unifiable otherwise
let 2 be the most general unifier of {t } =y thenk =k + 13 Op = Op A3

goto step 2.

EXAMPLES

1. 6, = {x>t, y>a}; 8, = {x£(y), z2£(»)}; 0, = {x>z, t>z, s+b}.

Ordering: X,¥,2,t,5.

k = 0: Oy = €

k=1: x> ¢t, x> £(y), x> z.

compute m.g.u. of {t,f(y),z}: t + f(y), z + £(y)
o, = {t=£(y), z>£(y)}

6,0, = {xf(y), yra, z2£(y), t>£(y)}
6,0, = {x>f(y), z>£(y), t>f(y)}
630] = {x>f(y), z>f(y), t>£(y), s»>b}
o, = o -{y>a} = {t>f(a), z»f(a), y»a}
8,0, = 8,0, = {x>f(a), yra, z>f(a), t>f(al}
040, = {x>f(a), y>a, z>f(a), t>f(a), s>b}
0g = 02-{s+b} = {t>f(a), z>f(a), y>a, s>b}
04 is the most general unifier of {61,92,63}
2. 8, = {wy, yi@}; 8, = {x>f(a), y>£(a)}
g, = {y>f(a)} is the most general unifier.
3. 8, = {®y, y>f(a)}; 0, = {xb, y>f(a)}
61 = {y»b} is the most general unifier and 6, is the most general
instance.
4. 0, = {x>y}; 6, = {x>b, y>f(a)}
o, = {y+b} 0,0, = {x+b, y+b};620] = {x>b, y>f(a)}

because {y+b} and {y>f(a)}are contradictory, 6, and 6, are mnot unifiable.

(since b is not variable)

REMARKS.

].

The most general unifier of a set of substitutions as computed by the

above algorithm is always in normal form.

. The most general instance of a set of substitutions is not always a uni-

fier of the substitutions: example 3: 6, = {x*b, y>f(a)} is the most gen-
eral instance but 6,0, = {x>£(a), y>f(a)} # CPLP

To compute the most general unifier of expressions we can also use the algo-

rithm for computing the m.g.u. of substitutions if we consider the dis-

agreement set to be substitutions and look at more disagreement sets, in the

sense of going further right until the end of the expressions, at the same

time.,

EXAMPLE: {R(x,y), R(g(£(x,y)), h(b)), R(a,t)}
the disagreement sets are: {x,g(f(x,y)),a} and {y,h(b),t}

Algorithm 2 to make a set of substitutions out of a disagreement set of a
set of expressions if possible.

Step I: If the disagreement set does not contain any variable then halt:

there is no unifier.

Step II: Choose one of the variables from the digagreement set {e],...,e }
say e, and make the following set of (n-1) substitutions

1+1} ces {ei—>en}

If there is any substltutlon component circular in this set then halt:

{e. e } ... {e. e, _ } {e
i i

there is no unifier.

n
THEOREM 1. Let © = {ei}-1=1 be a non-empty set of substitutions. If O is
unifiable then there exists a most general unifier ¢ of 0 and ¢ is deter—

mined by the substitution unification algorithm.

PROOF. (Similar to that of the unification theorem in 2.2)Let T be aunifier
of 0. It suffices to prove that under the hypotheses of the theorem the al-
gorithm will terminate at step 2 when applied to © and for all i 2 0

OiAi = 1 holds for some Ai.

The proof proceeds by induction on i.

(a) i = 0 then 0y = € and Ag = T-

(b) i =2 0 and oA =T holds for some XA; at step 2, then either {Ojci}?=] is
a singleton and we are done or we proceed to step 3; li now unifies Gai and
we can have one of the three cases:

Case I. There is just one v - t in {ejgi}?=l so A; has to unify {e,{v>t}}
and therefore {v>t A, } € A;. Let o,
A =
and hence 1 = 0. A

i+1° Ti+l”
Case II. Similar to case I because A now has to unify {e, {v+t } -1} there-

141 = 93 (vot.d

A - {vrt Ai}, A = Ai+1 u{vrt Ai} = X U{v+t A]} = {v—>t}')\i+1

fore c. s = 950 {v+t } and 11+1 = A- u {vrt, A } and o.+] Ai+] =T,
Furthermore, A has to unify {v+t1}? | SO A4 has to unify {ti}?;] let the
most general unlfler be n then o, i+l = oi 1°" and A1+] = Ai+l - n'li+l

¥ =] = — 4 -
Al i+ A1+1 U.n Ai+ A ie1 Y n.Ai+] = n°Ai+l' which gives oi+1-ki+1 = T,

Case III. Analogous to the second part of case II. {]

AN EXAMPLE.

6, = {x>£(y), z4a};62 = {x>f(g(s)), t>b}

t = {y>g(a), z+a, t>b, urg(a), s>*a} is a unifier.

Oy =& AO =T

o, = {y+g(s)}; A ={t*b, z>a, u>g(a), s>a}

o, = {y>g(s), z+a}; A2=={t+b, urg(a), sa}

Oy = M.g.u. = {y+g(s), z+a, t>b}; A3=={u+g(a), s>a}

THEOREM 2. Given a unifiable set of substitutions {ei}?=1 such that b, s
in normal form for all i. The most general instance of {ei};;1 8 also a

2 » n
unifier of {6,}% .
PROOF. Let the most general unifier ofl{ei}?=1 be o then 6,0 = ... = éno is
the most general instance. Because of the normal form of the substitutions
ei. ei = ei holds. Because of the associativity of the composition of sub-
stitutions we have: 6.6.0 = ei(eio) and therefore 6,6,0 = 92620 = 6,0,0.

Hence 610 is a unifier. [

THEOREM 3. For a given set of expressions which is unifiable we can compute
the most general unifier also by applying the substitution unification al-
gorithm on the set of substitutions formed by algorithm 2 from the disagree-
ment sets. Then the m.g.u. of the expressiong ig the most general instance
of these substitutions,

PROOF. (Substitutions from the second algorithm are in normal form since

every substitution consistg of but one substitution component)

The proof is in two steps: first we prove that unifiability occurs in the
same circumstances, secondly we prove that we get the same unifier up to

isomorphisms.

cps g e k . . .
Unifiability. Let D; be the disagreement set which we encounter in the al-
gorithm computing the most general unifier of expressions and Oy the sub-

stitution lastly made in the algorithm. Let Dg be the corresponding dis-

agreement set, which we encounter in algorithm 2, previous to the applica-

k k

tion of o , then we have for all k: Dy =Dy .0

k’ k’
Now we can distinguish the different situations where the set D% is not

unifiable: D& contains no variables or D% contains a variable x and a

10

term containing x. If Dg does not contain variables or contains x and t(x)
then algorithm 2 gives already the non-unifiability.

Otherwise either Dg contains variables and 0, does substitute non-variables
which means that algorithm 2 delivers two contradictor& substitutions which
leads to non-unifiability, or Dg contains two variables and Oy does sub-
stitute a termNWhich contains x for the other variable which means that al-
gorithm 2 delivers two substitutiong like {x»>y} {y>t(x)} which leads also

to non-unifiability.

Unifier. For the simple case that there is just one disagreement set we ob-
tain the same unifier since we unify the set of (n-1) terms and add x>tjo
to get the most general ingtance of the substitutions which is the m.g.u.

of the set of expressions; generalization is straightforward. []

AN EXAMPLE. Are P(y,f(2),z) and P(x,x,t) unifiable ?

Disagreement sets: {y,x}, {£(z),x} {z,t}; corresponding set of substitutions
0 = {{y>x},{x>£(2)}, {z>tl}}.

Ordering of variables: x,y,z,t.

o, = {x£(2)}; 60, = {{uf(2),y*£(2)}, {x>£(2)},{x+E(z),z>t}}.

{x>£(2), y*f(z)}

m.g.u. = {x>f(t), y>r£(t), z>tl}. 004 = {{x>£f(t), y>f(t), z>t}}.

1

)

3

]

o}

3.3. SOME THEOREMS RELATING THE DIFFERENT UNIFICATIONS.

THEOREM 1. Given a set of expressions {Ei}?=] with a moet general unifier
8 then for a set of n substitutions {ei}g;l the following holds. The set of
instances {E;0,}5 | is unifiable if the set of substitutions 6 u {612 s
unifiable. The most general unifier o of 6 U {ei}§=l 18 also a unifier of

n
{E;6.}._,-

PROOF. If 6 U {Qi}2=1 is unifiable then there exists a substitution ¢ the

most general unifier, such that 90==610 = L., ® enc ; 0 is the most general
s n

unifier of {Ei}i=1 $0 E40 = ... = E 0 also E;60 = .,, = E 605 replacing 60

by respectively 910, cee p enq gives Elelc = L., = Enenc which means that

g

0 is & unifier of the set {E.9.12 ..
1 i1=1

11

REMARK.,

The computed unifier is not necessarily the most general one because vari-
ables which occur in E, can be deleted by substitution ei; therefore they
don't occur in the computed unifier. This is one of the reasons that the

converse of the theorem does not hold in general.

COUNTEREXAMPLES.

1. {P(x), P(a)} unifiable 6 = {x>al}. Let 6, =€ and 6,

{Ei ei}§=1 = {P(x), P(a)} unifiable but 0ys ez.and 8 are not unifiable.

= {x>b} then

2. {P(x,y), P(y,t)} unifiable 0 = {x>t, y>t}. Let 0, = {y+a} and 62=={y+c}

then {Eiei}ril=1 = {P(x,a), P(c,t)} unifiable but 6,5 8, and 6 are not

2
unifiable.

However, the converse theorem holds if we restrict the gubstitutions ei to

variables that occur in Ei and if the expressions E. don't have any vari-

ables in common.

THEOREM 2. Let {Ei}2=1 be a set of expressions which have no variables in
common and are unifiable with a most general unifier o. Let {ei}2¥l be a
set of substitutions such that a variable occuring in 0, does not oceur in
ej, 1<i, j<nands; has as left-hand sides of its components only vari-
ables occuring in E;. If the set of expressions {Eiei}2=] 18 unifiable then

the set of substitutions {c} U {91}2;1 18 unifiable.

PROOF. Assume that {og} v {ei}?=l is not unifiable. Since no variables from
ei occurs in ej, 1 <1, j £ n the set {ei};__1 is unifiable. Therefore there
must be a ej such that ej and ¢ are not unifiable. Now the substitution
unification algorithm applied on (ej,c) halts either in step 2 or in step 3.
Step II. If we stop at step IT then there is a substitution component x>y
in ejor(Jresp. and a substitution component v+t(x) in Uk.(thesubstitution in
the algorithm) then either y»>t(x) is already in o or Gj respectively.

If we consider {Eiei}?=1 then the disagreement set consists of {y,x} and in
the next step of the unification algorithm for expressions the disagreement
set consists of {t(x), x} so {Eiei}2=1 is not unifiable: or there is a‘sub—
stitution component z-+x in o; if we consider {Eiei}?¥l then the disagreement
set congists of {y,z} and in the next step {z,t(z)} so {Eiei}?=1 is not

unifiable.

12

Step III. If we stop at step III then there are substitution components
x+t] in ej and xrt, in ¢ with t and t, not unifiable. If we consider the
disagreement sets we get t sty somewhere as disagreement set in the unifi-
cation algorithm for expressions on>{Eiei}?=l, so‘{Eiei}?;] is not unifi-

able. [

EXAMPLE.

Given E] = P(y,£(z),2z) and E2 = P(x,%,t) then the most general unifier of

E, and E, is 0 = {x>f(t), y>f(t), z>t}. '

If we now apply the substitution T = {x>f(a)} to E, we can ask if P(y,f(z),z)
and P(x,x,t). T = P(£f(a), £(a),t) are still unifiable.

This implies the question: are the substitution ¢ and T unifiable.

= m.g.u. (£(t),£(a)) = {t>a}

, = {tra, y>f(a)}

the most general unifier = {t+a, y>f(a), z>a}

Q
I

Q
L]

Q
it

and this is also the most general unifier of P(y,f(z),z) and P(x,x,t).T =
P(f(a), f(a),t). '

4, APPLICATION OF SUBSTITUTION UNIFICATION TO THEOREM PROVING.

For readers unfamiliar with the notions used in resolution theorem
proving we give the necessary definitions in the appendix.
The application of our approach is strongly connected with on the one
hand the way the resolution principle is used and on the other hand with the
representation of clauses in the computer memory. If the clauses are repre-
sented in the usual way as lists, there is no profit in using the algorithms
stated in §3. The improvement in efficiency comes in when we represent
clauses by two pointers pointing to the parent clauses and by a pointer to
the substitution applied in this resolution step [1]. For this latter rep-
resentation, using the unification algorithm for expressions requires a
search through the tree of pointers to make the actual clause since we want
to know whether the literals are unifiable with the literals in some other
clause. The advantage of using the substitution unification algorithm here

can be seen right away.

13

We first compute the so-called classification matrix for the input-
clauses [4]. The literals in the input clauses are numbered, let us say,
from 1 to m and the matrix consists of substitutions.The (l,k)th entry is O
if the 1th literal is not unifiable with the k th literal; the entry is the

most general unifier of the 1th and kth literal otherwise.

We can state the following corollary of theorem 1 and 2 from 3.3. (unifi-

cation for a resolution step).

If L and K are unifiable literals with m.g.u. o (L and K don't have any
variables in common) then L8, and K6, are unifiable iff 6,5 0, and o
are unifiable; the most general unifier of {91, 6,5 o} Zs also a unifier
of L8, and Kb,. (In 8y, 8, ocour only variables occuring in L and K re-
spectively and 0., 6, don't have variables in common)

Implementing this we have to take care of the conditions stated in
parentheses; we will see how in an example stated below.,

In case of factoring the situation is a bit different because there
the substitutions 8, and 8, have variables in common therefore we have to
treat factoring separately. The following situation occurs. Two literals
L and K are unifiable with m.g.u. 0; K and L don't have any variables in
common because they come from different clauses. Substitutions 61 and 62
are applied to K and L respectively and then the clauses containing Kel
and Lez are resolved on literals different from K6, and Lez, involving uni-
fier A. The question to be answered now is: are KHIA and Lezl still unifi

able given L and K are unifiable with m.g.u. 0.

THEOREM 1. K6, X and L8,\ are unifiable in the above stated case iff 0,6,,8,
and A are unifiable. The m.g.u. of {c,el,ez,x} i8 a unifier of Ko, A and

LGZA.

PROOF. If {0,61,62,1} unifiable then Ko,A and LE,) are unifiable., (follows
directly from theoreml,3.3). If {c,el,ez,x} are not unifiable then because
61,92 and A are unifiable, 0 is not unifiable with either 87,8 or A
Case I. x » bty €05 X+ t, € 6] V62 Vi with x e L u K.

If x ¢ L then t1 € K, in LBZA x is replaced by t, so K and LGZA are not

unifiable S0 Kell and LGZA not unifiable.

14

Case II. x>y e 03 v > f(x) € 6, VO, VA, xel, yeK
y > £(x) ¢el v 62 =y > f(x) € A; so y in K is replaced by f(x) and K\ and L

not unifiable; if %, y € L the same follows: y » f(x) ¢ 6, V A ete. O

All together we can see that we are not especially interested in most
general unifiers but we are interested in what happens to all variables in
the input clauses during the deduction and that is what we have to keep

track of. (see examples.)

Another application strikes the eye when we look at the theorem proving
problem in a problem solving way: we start with some topclause denoting the
disjunction of its literals, the goal we have to reach is to resolve away
all literals (subgoals) (and - branches), each of which can be resolved in
different ways (or- branches). What makes things complicated is that the
subgoals are not independent [3,4]. Firstly we can assume that all new
variables introduced in different branches are different from each other so
that the only link between subgoals is the variables they have in common,
This means that we have only to keep track of substitution components that
effect those variables.

We want to prove that the most general instance of 61,...,6n is the
ultimate solution to problem L;...L if 8ys++.,0 are solutions to
Ll”"’Ln respectively. The fact that literal I (subgoal) is solvable with.
substitution 6 (variables of left sides of the components all occur in L)
means that there exists a refutation of L say C0 =L, Cl""’Cm = [0
where C, is the resolvent of Cig with a clause D: (not necessarily a
input-clause) furthermore Dy has to contain a literal K opposite in sign to
L with {K| and |L| unifiable.

From this refutation we can find a derivation of an expression E = Ko
with |E| and L unifiable with unifier 6 : C; = D, Cé,...,0; = Ko.

THEOREM 2. If there exists a refutation of literal L (unrestricted resolu-—
tion) tmvolving substitution © on L, then there exists a deduction of a

literal K which has sign opposite to L and where |K| and |L| are unifiable.

PROOF. Refutation of L is a sequence CO’ C]"“"Cm where C0 =L, C, is

. i
resolvent of clause C. | with some clause D;ylsi<mandcC =10.

15

This means that in Dy there is a literal K' which is opposite in sign to L
and where !K'| and |L| are unifiable involving substitution o.

Now we can make a derivation of K'A = K C;,...,Ci,...,ci = K'A. with C; = D,
and Cic - KA'G==Ci. All the resolution steps go through because Ci is an
instance of c;.

We know that K and L have opposite sign and have to prove that |K| and |L]
are unifiable. ‘

In case of a top—clause with two literals L; Ly we have (solvable with

el,ez). L.L

We know ILZI and IEZI are unifiable with m.g.u.6 |L26]| and IE2| now are

unifiable iff 8, and 6, are unifiable. The most zeneral instance of 85 65
now is the solution of L, L,. _

This is again a corrollary of theorem 1 and 2 section 3.3, because L,, E,
don't have variables in common and 6, does not contain any variable from

E2. D

EXAMPLE.

Problem input clauses:

1. P(g(x,¥),X,y) 'VxVydz: z¥x=y,

2. P(x,h(x,y),y) 'VxVydz: xxz=y.

3.7P(x,y,2)P(y,u,y) P(z,u,z) "VxVyVxVulxxy=zAy*u=y=zru=z]
4,7P(j(x),%,j(x)) "negation of the theorem: Iy¥x: x*y=x.

We number the literals in the problem 1 to 6.(clause 3 containing lit 3,4

and 5)

16

We first compute the classiffication matrix:

1 2 3 ’ 4 ' 5 6
1 0 0 013 0 0 0
2 0 0 023 024 0 0
3 R %23 0 0 o 0
35
4 0 994 0 0 O4s5 0
5 0) 0 035 045 0 056
6
0 0 0 0 | 056 0

0 means not resolvable (identical to: opposite in sign and the absolute
values are not unifiable).

0y means literal 1 and literal 3 are resolvable involving substitution 93
where variables occurring, in literal 1 are indexed by 1 and variables
occurring in literal 3 by 3 so making the standardizing apart quite easily.
The following substitutions are involved in the matrix:

)

13 © {x3+g(xlsyl)a YB")'Xl’ z3—>y1}
023 = {X3 > XZ’ Y3 g h(XZ’YZ), Z3 - YZ}
Oo4 = {y3 > X, Y X, Uy > h(x],x])}

(¢

i
——
el

w
4
N
wt
g
w
+
[+
v

35 © 23 > 25}
045 = 134 > 255 vy > ugl
56 = 125 > J(xg)» ug > xg}

Now we try and find a refutation using SLN resolution [3] with as
search strategy diagonal search where f is the level and g is the number of
literalsg; literal 6 is the top clause. Each literal will be represented by

its number and its variables with or without substitutions.

17

6(xo) 5(z5,u5) 4(y5,u5) 3(x5,y5,z)

5

{u5-+x6, z5-+3(x6)}

1(xp0y,) 3(x5575,2573 (%)) 4(y5,u57%0)
{x5>g(x,57,), Y5 ¥ s 25>y, }

Perhaps we are interested in 'the answer', what is substituted for X!
+ L]

Xe h(xz,xz)

Notice that using this set of clauses and diagonal search no more clauses

are generated.

Now we have the same example using connection graphs [4]. If we use
connection graphs it is almost necessary to use the substitution unification
algorithm because the arcs between the clauses (literals) are in fact uni-
fiers and new arcs can be computed from old arcs using this algorithm.

The initial graph is made from the classification matrix:

18

g
ag
Z}Ci//é;; \056
2 6

B~
—-—lp
(%]
£~
Q
It -
(=)}
il

unifier o

|
Q

56° 913 T %56

0‘ [= » 3 =

23 ' S04 unifier 9942 %13 = 994
24
,
delete link 056
935
3///1””———‘"::;:l\

45 n 1 =

24 24° 956 = %24

5 o = unifier o!

4
[e)
23 g
24 \\656

6

N

0"4

2

\ —— g
11"

4 delete 024

Note that 02& = 0oy because we are only interested in those substitutions

concerning variables in 1lit 2 and lit 4,5.

ACKNOWLEDGEMENT.

Much of the novel ideas in the paper developed from discussions with
members of the Computational ngic Department of the University of Edinburgh
during a stay of the author. In particular I am indebted to R. KOWALSKI who

also gave very useful comments on a first draft,

19

APPENDIX. Some definitiong in theorem proving [5].

A literal is a predicate letter (of order n) followed by n terms and
possibly preceded by a negation sign. Ex. P(x);1Q(a,f(g(x;h(y,a)))).

A clause is a set of literals denoting the disjunction of those liter-
als. .

For convenience the empty set of literals (denoted by [J)considered to be a
(special case of a) clause called the empty clause and having the truth
value false.

The goal of the resolution theorem proving algorithm is to derive the
empty clause (contradiction) from a given set of clauses (consisting of the
axioms of the theory and the negation of the theorem we want to prove).

The set of clauses denotes the conjunction of those clauses and is a
straightforward translation of the problem stated in first order predicate
logic to the clausal form [5].

The order in which the new clauses are formed depends on the so-called
search strategy.

The inference rule used is the resolution rule.

Two clauses A and B are resolvable if A contains a literal L and B contains
a literal K such that K and L are opposite in sign and there exists a sub-
stitution ¢ such that |K|o = |L|o (|K| denotes the literal K regardless of
the negation symbol) the new clause is called the resolvent of A and B:
(A-1) o u (B~K) o.

REFERENCES.

1. BOYER,B. & J. MOORE, The sharing of structure in theorem proving programs,
Machine Intelligence 7, pp.101-116 (eds. Metzer B., Michie D.),
Edinburgh University Press, 1972,

2, KOK, G. & J. VAN VAALEN, 4An automatic theorem prover, Mathematisch Cen-
trum report NR 22,1971. '

3. KOWALSKI,R. & D. KUEHNER, Linear resolution with selection function,
Artificial Intelligence 2, pp. 227-260, 1971.

20

4, KOWALSI, R., 4 proof procedure using comnection graphs, Memo 74 Dept. of
Computational Logic, University of Edinburh, 1974.

5. ROBINSON, J.A., A machine oriented logic based on the resolution prin-—
ciple, JACM 12, pp. 23-41, 1965,

6. ROBINSON, J.A., Computational logic: the unification algorithm, Machine
Intelligence 6, pp. 63-72 (eds. Meltzer B., Michie D.), Edinburgh

University Press, 1971.

