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STABLE STRING LANGUAGES OF LINDENMA.YER SYSTEMS 

by 

Paul M.B. Vitanyi and Adrian Walker. 

ABSTRACT 

The stable string operation selects from the strings produced by a 

rewriting system those strings which are invariant under the rewriting rules. 

Stable string languages of Lindenmayer systems are investigated. (Lindenmayer 

systems are a class of parallel rewriting systems originally introduced to 

model the growth and development of filamentous organisms.) For families of 

Lindenmayer systems the set of languages obtained by the stable string oper

ation are shown to coincide with the sets of languages obtained from these 

systems by intersecting the languages they produce with a terminal alphabet, 

except in the case of Lindenmayer systems without interactions. The equiva

lence of a biologically highly relevant notion, i.e. that of equilibrium 

oriented behavior in models of morphogenesis, and the formal language con

cept of intersection with a terminal alphabet, establishes a new link be

tween formal language theory and theoretical biology. Relevance to these 

two fields is briefly discussed. 

KEYWORDS & PHRASES: formal language theory, Lindenmayer systems, 

dynamically stable strings, nonterminals, 

language families. 





3 

l. INTRODUCTION 

Lindenmayer systems, L systems for short, are p~rallel 

rewriting systems introduced by Lindenmayer [4] to model the growth 

and development of filamentous biological organisms. An L system 

consists of an initial string of letters, symbolizing an 

initial one dimensional array of cells (a filament), and the 

subsequent strings (stages of development) are obtained by 

rewriting all letters of a string simultaneously at each time 

step. When the rewriting of a letter may depend on the m 

letters to its left and the n letters to its right we talk 

about an (m, n) L system. If m = n = 0 the L system is 

said to be context independent or without interactions, 

if m + n > O the L system is said to be context dependent 

or with interactions. Various restrictions and modificatjons 

of the original systems have been proposed, with or without 

biological motivation, and subsequently investigated, see 

e*ge [2]@ The languages produced by L systems consist of all 

strings derivable from the initial string and :thus correspond 

to the set of all morphological stages the organism may attain 

in its development® Herman and Walker [3], however, consider 

the language consisting of all strings produced by the L system 

which are necessarily rewritten as themselves. Such a language 

is taken to correspond to the set of adult stages the organism 

modeled by the L system might reach. 



From the formal language point of view the usual way of 

obtaining languages from rewriting systems, be they serial 

(e.g. grammars) or parallel {e.g. L systems), is by intersection 

with a terminal alphabet, i.e. by selecting from all strings 

that are produced those over a terminal alphabet. The method 

proposed by Herman and Walker, the stable string operation, 

consists of selecting from all strings produced by a rewriting 

system those strings that are invariant under the rewriting 

rules. A language obtained:irt this manner is called the stable 

string language of the system (or, with bimlogical connotations, 

the adult language). We shall investigate the relation 

between the two approaches for the various families of L systems. 

In [3] it is proven that the generating power of context 

independent L systems with respect to the stable string operation 

is equal to the generating power of context free grammars 

with respect to intersection with a terminal alphabet (i.e. the 

context free languages). This rather unexpected result 

links the study of stable string languages of L systems with 

the main body of formal language theory. Since the context 

free languages are strictly contained in the set of languages 

obtained from context independent L systems by intersection 

with a terminal alphabet (see e.g. [2]), the stable string 

operation yields strictly less than the operation of 

intersection with a terminal alphabet in this case. However, 

we shall prove that the set of stable string languages of a family 

of context dependent L systems coincides with the set of languages 
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obtained from this family by intersection with a terminal 

alphabet. Moreover, analogous results hold for 
-

families of L systems using more than one set of production 

rules (i.e. table L systems), both context dependent and 

context independent. By making use of existing results on 

the in~ersections of L languages with terminal alphabets we 

are then able to derive many results concerning stable string 

languages of L systems, some of which were previously 

established in Walker [i4] by different methods. For a more 

extensive discussion of the biological motivation concerning 

L systems in general we refer to [4, 5, 2], and of stable 

string languages in particular to [3, 14] or to the last 

section of this paper. 
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2. STABLE STJUNG LANGUAGES OF CONTEXT DEPENDENT L SYSTEMS 

We assume that the reader is familiar with the usual 

terminology of formal language theory as e.g. in [7]. Except 

when indicated otherwise we shall customarily use, with or 

without indices, i, j, k, h, 1, m, n to range over the set of 

natural numbers N = {O, 1, 2, •••• }; a, b, c, d to range 

* over an alphabet t: v, z, w, a, a, w to range over E 

i.e. the set of all words over I including the empty word A. 

iZ denotes the cardinality of a set Z; lg(z) denotes the 

length of a word z and lg(A) = O. 

An tm, n) L system is a triple G = <t, P, w> where 

E is a finite nonempty alphabet; P is a finite set_·of 

production rules of the form (v1 ,a,v2) + a such that 

() ti n I: j, * (v1 ,a,v2) £ X E 
X .CJO a £ 1: , and for each 

i=O J= V Li X 
jr;J, 

l:j element (v1 ,a,v2) of t X there 
i=O 

* is at least one such rule in P; w £ I:1: is called the 

* p inducas a relation -> 
G 

on 1: as follows. V => V 1 

G 

V directly produces v' in G iff V = a1a2•··ak, v' = 

and for all i, i = 1, 2, @ @ ,&I , k, 

is a rule in P, where we take a. 
J 

= A for j < l or 

* 

axiom. 

or 

al a 2• •• ak, 

j > k. 

By definition A-> 
G 

;\. As usual -=> 
G 

is the reflexive 

and transitive closure of .... ,. 
G 

and we say V produces v·• 

* in G if v G> v'. We dispense with the subscripts on the 
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relations when G is understood. The L 1anguage produced by 

* G is defined by L(G) = {w I w G> w}. At this stage we would 

like to point out that although our definition of an L system 

varies from the usual one (see e.g. [2]), in that it dispenses 

with the environmental letter g, it is exactly equivalent 

to the previous definitions. With regard to the amount 

of context used the following terminology is standard 

throughout the literature: a (O,O)L system 

is called a OL system or a context independent L system 

(without interactions); a (O,l)L system or (1,0) L system is 

called an lL system (one directional)1 a (1,l)L system is 

called a 2L system (two directional); a (m,n)L system such 

that m + n > 0 is called an IL system or context-.dependent 

L system (with interactions). 

An L system G = <I, P, w> is called propagating if no 

rule in P is of the form (v1 ,a,v2) + A; 

U
m 

deterministic if for each element of 
i=O 

it is called 

there is exactly one rule in P. These properties are indi

cated by prefixing the appropriate capitals to the type of 

L system, e.g~,PD2L system, PIL system, D(l,2)L system etc. 

A language L is obtained from L(G) by intersection with a 

* terminal a~pha.bet if L 1111 L (G) () VT where VT is a subset of 

the alpha.bet ol. G. The stable string language of an L system 

G • <t, P, w> is defined by 
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* A(G) • {w £ t I w £ L(G) and w -> z implies z = w}. 

Ou~ investigations shall be concerned with the fellowing 

families of languages. Let X be any type of L system. The 

family of L languages produced by the XL systems is denoted 

by l(XL); the family of languages obtained from l(XL) by 

intersection with a terminal alphabet is denote4 by f(XL); 

the family of stable string languages of XL systems is denoted 

by A{XL). We denote the families of regular, context free, 

indexed, context sensitive and recursively enumerable languages 

by l(REGf, l(CF), L(INDEX), L(CS) and l..(RE), respectively., 

We immediately note the following. For any L system G 

(i) A (G) ~ L (G) • 

(ii) #A(G) > 0 but tL(G) > O. 

(iii) If G is deterministic then #A(G) £ {O, l}. 

Furthermore, 

(iv) l..(XL) C f(XL). 

(A,a,>d + b, ().,b,)d + b}, 

* L(G) = {a,b}{a,b} • 

a>; i.e .. G · is a 0L system. 

* A(G) = {b}{b} .. 

In the sequel the lemmas are our main results .. They serve 

as technical tools to derive theorems and corollaries concerning 

the inclusion relations between the above families of languages. 



Lemma l. Let G • <E, P, w> be any type of (m,n)L system 

such that. m + n > 0 and let VT be a subset of E. There 

exists an algorithm.which, given G and VT, produces a 

(m,n)L system G' = <E' , P' , w'> of the same type (but for 

determinism and the cardinality of the alphabet), a subset 

• VT of 1: 1 and an isomorphism h such 

* that h ( L ( G) f'l VT) :2 A ( G ' ) • 

Proof. We shall prove the Lemma in three stages: 

* * 
( i) L ( G ' ) n VT • :WG) /1 VT , 

* * 
(ii) L(G') n VT • h(L(G') /) VT) , 

* (iii) L (G.) /) VT II.I: A {G.) • 

Consider the system G' = <E', P', w'> which is constructed 

as follows. 

t' • t U VT u {F,s}, 

where E, Vf and {F,s} are disjoint, iVT = #VT and h 

* * is any isomorphism from VT onto VT. w' = s and the set 

of production rules P' is defined by 

(1) (v1 ,s,v2 ) + w 

(2) 

(4) 

(5) 

(6) 

+ FF 

for 

if 

if 

if 

a e: 

for 

for 

all vl" v2 

* w e: VT. 

(vl ,a.,v2) + 

(v
1 

,a,v2) + 

* VT. 

all v1av2 

all v1av2 

* in l: ' . 

a e: P. 

a e: p and 

t * vTv;. 
,* 

E VTVT • 

(i) Since P ~ P' and P' - P does not produce words 

over VT (except possibly w) we have 

* * L{G') n VT 1!111 L(G) n VT., 
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* * (ii) Suppose s -> z => V and V E VT. By (2) and 

* (4) we then have also s -> z => h(v) .. Therefore 

* * h(L(G 8
) /) VT) Si L(G') 11 v• .. 

T 
* * Suppose s -> 8 ,...> V and V E V' T .. 

Case 1. z = s .. z -> h -l (v) = (A) by (2) and (1) • 

Case 2. z 'F s. and z 'F v. By (4) and (3) z => -1 h (v). 

Case l .. z r s and z = v,. 

Since cases 1-3 exhaust all possibilities of producing words 

* over VT we have 

and therefore 

(iii) Let and v -> z. The only rules applicable 

to v are those of (6) and therefore z = v and 

* L (G') n Vi, S A (G') • 

* Suppose V -> V and V 'VT .. By (5) then also V ==> v1FFv2 
* for some words vl, v2 in l:' so V j A(G') .. Therefore 

* A(G 8
) t; L(G') n VT .. 

Hence 

Lemma 2. Let G = <t, P, w> be a (deterministic) 

P(m,n)L system. There is an algorithm which, given G, 

produces a (deterministic) P(m,n)L system 

G' = <t', P', w'> , a subset and an 
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* * isomorphism h from VT onto E such that 

* h(L(G') /1 VT) = A(G) .. 

Proof. Construct G' = <E', P', w'> as follows. 

l: 1 =Ex {O,l}; w' = (a1 ,0) (a2 ,0) .... (ak,O} for w = a 1a 2 ••• ak. 

* Let g be a letter to letter homomorphism from E' onto 

* E defined by g{(a,i)) = a for i £ {0,1},and define P', iE{O,l}, by 

(1) {v
1

, (a,i), v
2

) + (a
1

,0) (a
2

,0) ••• (a
1

,0) if 

(g{v1 ),a,g(v2 )) + a 1a 2 ••• a1 E P and 

there is a rule (g(v1 ) ,a,g(v2 )) + a 

in P such that a r a. 

(2) + (a,1) otherwise. 

* * Let VT = { (a, 1) I a E 1: } 

h((a,1)) = a. 

and define h: VT+ E by 

* Suppose VE A(G); i.e. if W => V => Z G G then z = v. 

Since G is propagating every letter in v must necessarily 

produce itself and for v = a1a 2 ••• a 1 we therefore have 

* w' c;1' (a1 ,i
1
)(a

2
,i

2
) ..... (a1 ,i1 ) G? (a1 ,l)(a2 ,l)ee .. (a1 ,1) 

where ij E {O,l}, l < j < t. Since 

we have 

* A(G) ~ h(L(G') AVT). 

* * * Suppose v E VT and w' G~ BG? v. Then also w G> g{z) 

=> g(v) 
G 

and because of (2) g(z) = g(v) and g(z) t> x for 

X r g(v). Therefore 

* h (L (G') n VT) ~ A (G) 

and the lemma follows. 8 



Theorem 1. (i) Let m,n be nonnegative integers such 

that m + n > 0 and let X be any property of L systems 

which is preserved under the construction in the proof of 

Lemma 1 (e.g. propagating). Then f(X(m,n)L) £ A(X(m,n)L). 

(ii) Let m,n be nonnegative integers and let X be 

any property of L systems which is preserved under the 

construction in the proof of Lemma 2 (e.g. determinism, 

lengths of right hand sides of production rules). Then 

A(XP(m,n)L) ~ f(XP(m,n)L). 

Proof. (i) Let G be an X(m,n)L system and let VT 

be a subset of the alphabet of G. By Lemma 1 there is an 

algorithm which, given G and VT' produces an X(m,n)L 

* system G' such that A(G') is isomorphic with L{G) n VT. 

Since families of languages are invariant under isomorphism 

(i) holds. 

(ii) Let G be a propagating X(m,n)L system. By 

Lemma 2 there is an algorithm which, given G, produces a 

propagating X(m,n)L system G' and a subset VT of the 

* alphabet of G' such that L (G •) I'\ VT is isomorphic with 

A(G). Since families of languages are invariant under 

isomorphism (ii) holds. ■ 

Corollary 1. A(P(m,n)L) = E(P(m,n)L) for m + n > 0. 

12 



Since it follows from van Dalen [l) that E(lL) = L(RE) 

we have by Theorem l(i) 

Corollary 2. A(lL) = E(lL) = L(RE) = E(IL) = A(IL). 

Another result of van Dalen [1] is that E(P2L) = L(CS). 

Since it is easy to give a linear bounded automaton construction 

(see e.g. [7]) to show that each intersection of a P(m,n)L 

language with a terminal alphabet is a context sensitive 

language we have by Corollary 1: 

Corollary 3. A(P2L) = E(P2L) = L(CS) = E(PIL) = A(PIL). 

Furthermore, 

Corollary 4. A(PlL) = E(PlL) C L(CS). 

We might observe that if G is deterministic then A(G) 

consists of either one word or the empty set. It follows 

from the argument used in Vitanyi [10] to show the undecida

bility of the question whether or not the lengths of strings 

in PDlL systems grow unboundedly, that the following theorem 

Theorem 2. It is undecidable for an arbitrary 

PDlL system G whether or not A(G) = ~-
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Although it is obviously not the case that A(PDlL) = E(PDlL) 

we obtain from Theorem l(ii) and Theorem 2 the additional 

result: 

Corollary 5. It is undecidable for an arbitrary PDlL 

system G and a subset VT of the alphabet of G whether 

* Or not L ( G) () VT = $ • 

For stable string languages of DOL systems, however, the 

emptyness problem is solvable. In Vitanyi [11] it is proven 

that for a DOL system G =<E, P, w> it is decidable whether 

or not L(G) is finite, and that if L(G) is finite then 

#L(G) ~ f(G) where the value of f for each G is easily 

computed. Therefore A(G) F $ iff L(G) is not infinite 

and w => 

In fact, for our current concerns, w => w0 => w1 = > ••• => 

w#r-l => w#r = w#E-l suffices according to [11]. 



3. STABLE STRING LANGUAGES OF L SYSTEMS USING TABLES 

A X(m,n)L system using tables, XT(m,n)L system, is 

like a X(m,n)L system except that the set of production 

rules is replaced by a finite set of such sets: a set of 

tables. Table L.systems were introduced by Rozenberg [6] 

where also a biological motivation can be found. 

A XT(m,n)L system is a triple G = <I:, P, w> where 

such that G. = <I:, P., w> 
l. l. 

is an 
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X(m,n}L system for i •l, 2, ••• , k. P induces an equivalence 

* relation G> on E 

some i, 1 < i < k. 

i E {l, 2, ••• , k}. 

transitive closure of 

defined by V => V 1 

G 

For v => v 1 we also G. 
l. * 

As usual => is the 
G 

if v => v' for G. 
l. 

write v P~ v', 
J. 

reflexive and 

G> • We dispense with the subscripts 

on the relation if G is understood. The language produced 

by a table L system G = <I:, P, w> is defined by 

L(G) = {w * w => w}.. The stable string language of G is 

* I A(G) = {w E I: W E L(G) and w => z implies z = w}. The 

constructions in Lemmas 1 and 2 show immediately that the 

analog of Theorem 1 holds for table L systems in general 

and for table L systems using k tables (i.e. TkL systems) 

in particular. Hence we have the following additional 

corollaries from Theorem 1. 
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Corollary 6. A{PTk(m,n)L) = E(PTk(m,n)L) for all 

nonnegative integers m, n, k such that m + n > O and k > O. 

By the usual linear bounded automaton argument, c.f. 

section 2, it is easy to show that the intersections of propa

gating TIL languages with a terminal alphabet are context 

sensitive. Therefore we obtain by corollaries 3 and 6 

Corollary 7. A(PT1 2L) = A(P2L) = L(CS) = A(PTIL). 

Moreover, we have from Theorem 1 

Corollary 8. A(PTklL) ~ E(PTklL) c L(CS), for all k > 0. 

' 
(ii) A(PDTk(m,n)L) ~ E(PDTk(m,n)L), for all k > 0. 

Corollary 10. A(T11L) = A(lL) = L(RE) = A(TIL). 

Lemma 3. Let G = <E, P, w> be any TOL system. There 

exists an algorithm which, given G, produces a TOL system 

G' = <E', P', w'> and a subset VT of E' such that 

* A(G) = L(G') () V • 
T 

Proof,. It is easy to 
k * 

A(G) = n {w £ 1: 
i=l 

see that 

w => z implies z = w} /1 L(G). 
pi 
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From Herman and Walker (3, lemma 3] it follows that there exists an 

algorithm which, given <E, Pi>, i = 1,2, ••• ,k, produces a finite 

* • * I set w. f; I: such that w. = {w £ E w => z implies z = w}. 1 l. P. k 
* 1 

Therefore, A(G) = n W. () L(G). From Herman and Rozenberg . l 1 1= 
[ 2, Theorem 9.3 (iv) 1 it follows that there exists an algorithm 

which, given a TOL system G and a regular expression R, 

produces a TOL system G' = <I:', P', w'> and a subset VT 

* of LI such that L (GI) Ii VT = L (G) n R. • 

Lemma 4. Let G • <I:, P, w> be any type of TOL system, 

e.g. propagating, deterministic or both, such that #P > 1. There 

exists an algorithm which, given G and a subset VT of E, 

produces a TOL system G • = <E 1 ,P • ,w' >, of the same type, '#P 1 = #P, 

such that 

* * 
(i) L(G) ()VT= L(G 1

) ()VT 

* (ii) A(G') = L{G') n VT. 

Proof. Let G = <E, P, w> where P = {P1 , P2 , ••• , Pk}. 

Construct G 1 = <I:', P', w'> as follows. 



E' = vTU er x {l, 2, ••• , k} x {o, l}) u {F, a} 

where F, s ¢ 1:. w' = s. 

J. B 

where P!, 1 < i < k, is defined by 
l. 

(1) s + (a1 ,l,l) (a2 ,1,l) ••• (an,l,l) if w = a
1

a
2 

.... an. 

(2) (a,j,O) + (a
1
,i,l)(a

2
,i,l) ••• (an,i,l) for all j e: {l, ••• ,k} and 

a+ a1a2···an e: p .• 
l. 

(3) (a,i,l) + (a,i,O) for all a e: 1:. 

(4) (a,j,l) + a for all a e: VT and all j f: i. 

(5) (a,j,l) + FF for all a e: 1: - VT and 

all j 'I i. 

(6) F + FF 

(7) a+ a 

* * (i) Suppose w G> v and v e: VT. Then there are words 

* VO = w, vl ,v2, .... ,vh = V in 1: and tables P. ,P. , ••• ,P. 
1 1 1 2 1 h 

in p such that VO -=> vl => v2 => . . . => vh. Let P. P. P. P. 
l.l l.2 l. 3 ih 

* Hence v e: L (G 1
) () VT and therefore 

* * L(G) nvT f:L(G')/1 VT. 



* * * Suppose s =1' V and V E VT. Since s ¢ VT we have 
G 

(for w = a1a2···an) 

* s ==t G 
(a

1 
,1,1) (a2 ,l,1) ••• (an,1,1) ==1' G z -=I' G v = b 1b 2 •• ~bm. 

* * If z e: VT then by (7) V = z. Assume z t VT. It is 

easy to check by inspecting the production rules that no symbol 

of VT occurs in z. 

for some i. e: {l, 2, 
J 

Hence there are tables 

By (4) z = (b1 ,i. ,ll (b
2
,i. ,1) .•• (b ,i. ,1) 

J J m J 

•.. , k}, and z => v for h ~ iJ .• 
Ph 

in P and words 

V. = V in 
J 

O < i < j, such that 

(al1:1'il,O) 

P~ (ajl'ij,l)(aj 2 ,ij,l) ••• (ajn.'ij,1) P~ ajlaj 2 ••• ajnJ. = v, h ':) ij 
l.j J 

But then also 

w = 

* i.e. w G> v and therefore 

* * 
L(G') ()VT£ I,(G) n VT. 

Hence 

* (ii) Suppose s =1' v and 
G 

and therefore 

... 

By (7) 

> P. 
l. . 

J 

aj1 a. 2 ••• a. 
J Jn. 

J 

Ve: A{G') 

= v, 



* Suppose S =:t V G 
By the inherent synchronism 

of the production rules in P' we have, for v ~ A, 

* * V e; {s} U ( (VT U {F}) -V)U {L X {1,2, ••• ,i} X -{ 0}) 
T 
* (L X {1,2, .. .,,k} x {l}) . 

It is easily seen that for each of the possibilities 

v t A (G') and therefore 

Hence 

* A(G') = L(G') (1 VT. II 

* u 

20 

Theorem 3. Let G be an XTkOL system, X = {A, P, PD} 

k > 1. There exists algorithms which given G and a subset 

VT of the alphabet of G, produce XTkOL systems G 1 , G" and 

a subset V' 
T 

of the alphabet of G' such that 

(i) A(G) = L(G') (l 

(ii) A(G") = L(G) /) 

Proof. (i) The construction in Lemma 2 leaves the 

propagating and deterministic property intact and goes through 

analogously for TOL systems without changing the number of 

tables (c.f. Corollary 9 (i) and (ii)). The general case is 

covered by Lemma 3 and adds one table. Since from Herman and 

Rozenberg [2] it follows that there is an algorithm which, given 

a TkOL system G' •' and a subset V'f • ' of the alphabet of G 1 1
', 

produces a T2 0L system G' and a subset V' 
T 

of the alphabet 
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* * of G' such that L (G') 11 VT = L (G'' ') () V,i.'' , this proves (i). 

(ii) By Lemma 4. ■ 

Corollary 11. 

(i) A(TkOL) = E(TkOL) ,k > 1. 

{ii) A(PTkOL) = E(PTkOL) ,k > 1. 

(iii) A{PDTkOL) = E(PDTkOL),k > 1. 

Since the construction in the proof of Lemma 4 also 

leaves determinism intact in the general case we have furthermore, 

We now need the following results, (see e.g. [2, 

chapters 7 and 10]), to round off the picture. 

Theorem 4. 

(i) If L e: E(OL) then L - Od e: E(POL) 

(ii) If 11. e: E(TkOL) then L - LU e: E(PTk+lOL) 

(iii) E(T20L) = E(TOL) 

(iv) f(PT 20L) = f{PTOL) 

(v) L (CF) ~ E (Tl OL) ~ E (T20L) E L(INDEX) 

And from Herman and Walker [3] 

Theorem 5. A(OL) = A(T1 0L) = L(CF). 



Let us summarize the results so far. We have 

established the following relations between the families 

of languages we have discussed. 

1. L (RE) = A(lL) = f (lL) = A(TlL): Corollaries 2,10. 

2. L (CS} = A(P2L) = f (P2L) = A(PIL) = E{PIL) = A(PT2L) = A(PTIL): 

Corollaries 3,7. 

3. · L(CS) 1 L(RE) is well known, see e.g. Salomaa [7]. 

4. f (PlL) = A(PlL): Corollary 4. 

5. E (PlL) £ E (P2L) : by definition. 

6. L(INDEX); L(CS) is well known, see e.g. Salomaa [7]. 

7. f(TOL) = E(T20L) = A(T20L) = A(TOL): Theorem 4 (iii) and 

Corollary ll(i). 

8. A(T10L) = A(OL) = L(CF): Theorem 5. 

9. L(CF) ; E(OL) = E(TlOL) ~ f(TOL) E L(INDEX): Theorem 4 (v). 

10. f(PTOL) = f(PT
2

0L) = A(PT20L) = A(PTOL): Corollary,11 (ii) 

and Theorem 4 (iv). 

11. E(PTOL) = {L j L = L - {A} 

Theorem 4 (ii)-(iv). 

and LE f(TOL)}. 

Hence f(PTOL) ~ f(TOL). 

12. E(PT10L) = E(POL) ~ E(PTOL): Theorem 4. 

13. E(POL) ={LIL= L - {A} and LE E(OL) ), 

Theorem 4 (i). 

Hence f(POL) ~ E(OL). 

14. A(POL) ~ A(OL) by definition. Strict inclusion since 

L\J E L (CF) - A (POL). 

15. A(POL) C E(POL) 

follows since 

by Theorem 1 (ii) and strict inclusion 
2n 

e. g ® { a I n > 1} E E (POL) - L (CF) . 

The results are shown diagramatically in Figure 1. 



,,,,,,,
,,.,,,, 

..,.,.'E(PlL) = A(PlL) 

L(RE) = A(lL) = E(lL) = A(TlL) 

= A(P2L) = E(P2L) = A(PIL) = E(PIL) 

Fig. 1 

= f(PTIL) = A(PTIL) 

L(INDEX) 

= E(T 2 0L) = A(T2 0L) 

A(TOL) 

E(PTOL) = E(PT
2

0L) = 
= A(PT

2
0L) = A(PTOL) 

= f(POL) 
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In the Figure, when two families are connected by a 

solid line the lower family is strictly included in the 

upper one; when they are connected by a dotted line the 

lower family is ineluded in the upper one but it is not 

known yet whether inclusion is strict; no connection means 

that neither language family is included in the other, 

i.e. the two families are incomparable. 

The incomparabilities between the families in the 

lower right hand side of Figure 1 follow from Theorem 4 

and the fact that languages obtained from propagating L 

systems do not contain A. The relation between E(PlL) 

and families of languages obtained from propagating table 

L systems is unknown. 



4. STABLE STRINGS OF DETERMINISTIC L SYSTEMS USING TABLES 

The concept of languages produced by monogenic rewriting 
-

systems is altogether foreign to the usual generative grammar 

approach since there these languages would either be empty or 

contain but one element. The same holds for stable string 

languages of the ordinary deterministic L systems. However, 

stable string languages of deterministic L systems using more 

than one table, or deterministic L languages and their 

intersection with a terminal alphabet are proper language 

families. We shall now assess the implications of our previous 

results for the stable string languages of deterministic L 

systems using more than one table. 

(4.1) A(PDTk0L) = f(PDTk0L) for k > 1. (Corollary ll(iii)). 

(4.2) f(DTk0L) !;; A(DTk0L) for k > 1. (Corollary 12). 

Since the proof technique of Lemma 4 works also in the case of 

deterministic context dependent L systems using tables we have: 

(4.3) f(DTk(m,n)L) ~ A(DTk(m,n)L) furk > 1. 

(4.4) E(PDTk(rn,n)L) ~ A(PDTk(m,n)L) for k > 1. 

(4.4) together with Corollary 9 (ii) gives us: 

Corollary 13. A(PDTk(m,n)L) = E(PDTk(m,n)L) C L(CS) for 

k > 1. (The latter inclusion follows by the usual linear 

bounded automaton argument.) 



In [12] it is proven that: 

(4 .5) E (D2L) = l (RE), 

(4.6) E(DlL) ~ l(RE), 

and, 

(4.7) the closure of E(DlL) under letter to letter homomorphism 

is equal to l(RE). 

using one table to achieve the letter to letter homomorphism 

it is easy to show that: 

(4 .8) E (DT
2

1L) = l (RE). 

Together with (4.5), (4.6) and (4.7) therefore: 

Corollary 14. E(DlL) f E(DT
2

1L) = L(RE) = A(DT 21L) = E(D2L) = 

A (lL) . 

( 4 .1) (4. 2) and Corollary 13 give rise to infinite 

chains of deterministically produced table L languages where 

strict inclusion with respect to the number of tables or the 
s 

amount of context used ifi unknown as yet. These families of 

languages tie in with Fig. 1 according to the definitions. 

Finally, we would like to point out that much more is 

proven than claimed by means of corollaries. The lemmas 

and theorems hold for any family of L systems which is 

preserved under the construction. If e.g. in Lemma 4 we 

change the production F + FF into F + F' and F' + F 

then the growth ranges stay identical i.e. 

{i e: NI i = lg(v) * and v e: L ( G) n v T} = { i e: N I i = 1 g ( v) 

and Ve: A(G')}. 

Also in Lemma 2: 

{i e: N i = lg(v) and v e: A(G)} = {i e: N I i = lg(v) and 
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5. RELEVANCE TO THEORETICAL BIOLOGY AND FORMAL LANGUAGE THEORY 

The problem of equilibrium oriented behavior in biological 

morphogenesis has attracted considerable attention. For 

instance Turing [9] has analyzed the way in which patterns 

may form in a ring of cells which is initially in chemical 

equilibrium but is displaced from it by a small amount. 

Waddington [ll] has given a model, called the epigenetic 

landscape, for the way in which development is influenced both 

by the genetic material and by external disturbances. Thom 

[8] has shown how a topological approach may be used to identify 

regions of sudden and drastic spontaneous change in a system. 

These investigations have been concerned with continuous space

time, except in the case of Turing, who has considered discrete 

space. As is well~nown, the discretization of space and time 

can yield considerable advantages, i.e. problems become amenable 

to solution which could not be tackled before. In fact, for 

the problem of biological development it seems natural to 

discretize space (in cells) and time (in discrete time obser

vations) as has been forcefully argued by Lindenmayer [S]G 

Stable string languages of Lindenmayer systems seem a fruitful 

approach in the context of equilibrium oriented behavior in 

biological morphogenesis, although obviously some grave simplifi

cations take place@ 

We would like to think of Turing's approach as the most 

detailed, Waddington's epigenetic landscape a more general 
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concept, and Thom's theory as the most abstract of the three. 

In this scheme we would tentatively place the present paper 

as a new approach, by discretization of space-time, at an 

intermediate level. We have shown that, by allowing different 

kinds of rules for cellular behavior, we obtain different 

classes of stable multicellular patterns. 

From the formal language point of view we have investi

gated the generating power of the stable string operation 

for Lindenmayer systems, and we have shown that it is equal 

to the generating power of the operation of intersection with 

a terminal alphabet, except in the case of context independent 

L systems. Furthermore, our results show that several 

of the langauge families iri the Chomsky hierarchy 

can be characterized by classes of highly parallel rewriting 

systems together with an unusual operation for obtaining 

languages. Thus we have given a characterization which is 

structurally completely different from that by the generative 

grammars. 
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