
stichting

mathematisch

centrum

AFDELING INFORMATICA

P.M.B. VITANYI AND A. WALKER

IW 25/74

STABLE STRING LANGUAGES OF LINDENMAYER SYSTEMS

Prepub I i cation

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

8t8LIOH·lli.f.K MATHf.MATISCM ('f'NT!HIM

/\.MSTEHDA/'1 "

Punted a.t .the Ma.thematic.al. Cen;tJr.e, 49, 2e Boelr.haa.vu:br.aa.t, Arrui.teJr.dam.

The Ma.thematic.al. Cen:t/Le, 6ou.nded .the 11-.th 06 FebJc.WVLy 1946, .it, a non
pM6U i.n&.tltu;ti.on a,im,Lng a.t .the pJc.omo:Uon 06 pu!te ma.thema;tJc.6 and LU
app.U.c.a.:ti.on6. 1.t .it, .6pon&o1c.ed by .the Nethell-f.a.ncl6 GoveJc.nmen:t :th.Jc.ough .the
NetheJli.a.ncl6 0.1tgavu.zation 601c. .the Advanc.emen:t 06 PUite Ruea1c.c.h (Z.W.O),
by .the Muvu.c-i.pa.U.ty 06 Amli.teJr..dam, by .the Uvu.v<VU,Uy 06 Arrui.teJr.dam, by
.the f Jc.ee Unive!t.6Uy a.t Arrui.teJr.dam, and by- i.ndtui.tluu.

AMS (MOS) subject classification scheme (1970): 68A30 68A25 94A30 92AOS

ACM -Computer Review- category: 5.22 5.23

STABLE STRING LANGUAGES OF LINDENMA.YER SYSTEMS

by

Paul M.B. Vitanyi and Adrian Walker.

ABSTRACT

The stable string operation selects from the strings produced by a

rewriting system those strings which are invariant under the rewriting rules.

Stable string languages of Lindenmayer systems are investigated. (Lindenmayer

systems are a class of parallel rewriting systems originally introduced to

model the growth and development of filamentous organisms.) For families of

Lindenmayer systems the set of languages obtained by the stable string oper

ation are shown to coincide with the sets of languages obtained from these

systems by intersecting the languages they produce with a terminal alphabet,

except in the case of Lindenmayer systems without interactions. The equiva

lence of a biologically highly relevant notion, i.e. that of equilibrium

oriented behavior in models of morphogenesis, and the formal language con

cept of intersection with a terminal alphabet, establishes a new link be

tween formal language theory and theoretical biology. Relevance to these

two fields is briefly discussed.

KEYWORDS & PHRASES: formal language theory, Lindenmayer systems,

dynamically stable strings, nonterminals,

language families.

3

l. INTRODUCTION

Lindenmayer systems, L systems for short, are p~rallel

rewriting systems introduced by Lindenmayer [4] to model the growth

and development of filamentous biological organisms. An L system

consists of an initial string of letters, symbolizing an

initial one dimensional array of cells (a filament), and the

subsequent strings (stages of development) are obtained by

rewriting all letters of a string simultaneously at each time

step. When the rewriting of a letter may depend on the m

letters to its left and the n letters to its right we talk

about an (m, n) L system. If m = n = 0 the L system is

said to be context independent or without interactions,

if m + n > O the L system is said to be context dependent

or with interactions. Various restrictions and modificatjons

of the original systems have been proposed, with or without

biological motivation, and subsequently investigated, see

e*ge [2]@ The languages produced by L systems consist of all

strings derivable from the initial string and :thus correspond

to the set of all morphological stages the organism may attain

in its development® Herman and Walker [3], however, consider

the language consisting of all strings produced by the L system

which are necessarily rewritten as themselves. Such a language

is taken to correspond to the set of adult stages the organism

modeled by the L system might reach.

From the formal language point of view the usual way of

obtaining languages from rewriting systems, be they serial

(e.g. grammars) or parallel {e.g. L systems), is by intersection

with a terminal alphabet, i.e. by selecting from all strings

that are produced those over a terminal alphabet. The method

proposed by Herman and Walker, the stable string operation,

consists of selecting from all strings produced by a rewriting

system those strings that are invariant under the rewriting

rules. A language obtained:irt this manner is called the stable

string language of the system (or, with bimlogical connotations,

the adult language). We shall investigate the relation

between the two approaches for the various families of L systems.

In [3] it is proven that the generating power of context

independent L systems with respect to the stable string operation

is equal to the generating power of context free grammars

with respect to intersection with a terminal alphabet (i.e. the

context free languages). This rather unexpected result

links the study of stable string languages of L systems with

the main body of formal language theory. Since the context

free languages are strictly contained in the set of languages

obtained from context independent L systems by intersection

with a terminal alphabet (see e.g. [2]), the stable string

operation yields strictly less than the operation of

intersection with a terminal alphabet in this case. However,

we shall prove that the set of stable string languages of a family

of context dependent L systems coincides with the set of languages

5

obtained from this family by intersection with a terminal

alphabet. Moreover, analogous results hold for
-

families of L systems using more than one set of production

rules (i.e. table L systems), both context dependent and

context independent. By making use of existing results on

the in~ersections of L languages with terminal alphabets we

are then able to derive many results concerning stable string

languages of L systems, some of which were previously

established in Walker [i4] by different methods. For a more

extensive discussion of the biological motivation concerning

L systems in general we refer to [4, 5, 2], and of stable

string languages in particular to [3, 14] or to the last

section of this paper.

6

2. STABLE STJUNG LANGUAGES OF CONTEXT DEPENDENT L SYSTEMS

We assume that the reader is familiar with the usual

terminology of formal language theory as e.g. in [7]. Except

when indicated otherwise we shall customarily use, with or

without indices, i, j, k, h, 1, m, n to range over the set of

natural numbers N = {O, 1, 2, •••• }; a, b, c, d to range

* over an alphabet t: v, z, w, a, a, w to range over E

i.e. the set of all words over I including the empty word A.

iZ denotes the cardinality of a set Z; lg(z) denotes the

length of a word z and lg(A) = O.

An tm, n) L system is a triple G = <t, P, w> where

E is a finite nonempty alphabet; P is a finite set_·of

production rules of the form (v1 ,a,v2) + a such that

() ti n I: j, * (v1 ,a,v2) £ X E
X .CJO a £ 1: , and for each

i=O J= V Li X
jr;J,

l:j element (v1 ,a,v2) of t X there
i=O

* is at least one such rule in P; w £ I:1: is called the

* p inducas a relation ->
G

on 1: as follows. V => V 1

G

V directly produces v' in G iff V = a1a2•··ak, v' =

and for all i, i = 1, 2, @ @ ,&I , k,

is a rule in P, where we take a.
J

= A for j < l or

*

axiom.

or

al a 2• •• ak,

j > k.

By definition A->
G

;\. As usual -=>
G

is the reflexive

and transitive closure of ,.
G

and we say V produces v·•

* in G if v G> v'. We dispense with the subscripts on the

7

relations when G is understood. The L 1anguage produced by

* G is defined by L(G) = {w I w G> w}. At this stage we would

like to point out that although our definition of an L system

varies from the usual one (see e.g. [2]), in that it dispenses

with the environmental letter g, it is exactly equivalent

to the previous definitions. With regard to the amount

of context used the following terminology is standard

throughout the literature: a (O,O)L system

is called a OL system or a context independent L system

(without interactions); a (O,l)L system or (1,0) L system is

called an lL system (one directional)1 a (1,l)L system is

called a 2L system (two directional); a (m,n)L system such

that m + n > 0 is called an IL system or context-.dependent

L system (with interactions).

An L system G = <I, P, w> is called propagating if no

rule in P is of the form (v1 ,a,v2) + A;

U
m

deterministic if for each element of
i=O

it is called

there is exactly one rule in P. These properties are indi

cated by prefixing the appropriate capitals to the type of

L system, e.g~,PD2L system, PIL system, D(l,2)L system etc.

A language L is obtained from L(G) by intersection with a

* terminal a~pha.bet if L 1111 L (G) () VT where VT is a subset of

the alpha.bet ol. G. The stable string language of an L system

G • <t, P, w> is defined by

8

* A(G) • {w £ t I w £ L(G) and w -> z implies z = w}.

Ou~ investigations shall be concerned with the fellowing

families of languages. Let X be any type of L system. The

family of L languages produced by the XL systems is denoted

by l(XL); the family of languages obtained from l(XL) by

intersection with a terminal alphabet is denote4 by f(XL);

the family of stable string languages of XL systems is denoted

by A{XL). We denote the families of regular, context free,

indexed, context sensitive and recursively enumerable languages

by l(REGf, l(CF), L(INDEX), L(CS) and l..(RE), respectively.,

We immediately note the following. For any L system G

(i) A (G) ~ L (G) •

(ii) #A(G) > 0 but tL(G) > O.

(iii) If G is deterministic then #A(G) £ {O, l}.

Furthermore,

(iv) l..(XL) C f(XL).

(A,a,>d + b, ().,b,)d + b},

* L(G) = {a,b}{a,b} •

a>; i.e .. G · is a 0L system.

* A(G) = {b}{b} ..

In the sequel the lemmas are our main results .. They serve

as technical tools to derive theorems and corollaries concerning

the inclusion relations between the above families of languages.

Lemma l. Let G • <E, P, w> be any type of (m,n)L system

such that. m + n > 0 and let VT be a subset of E. There

exists an algorithm.which, given G and VT, produces a

(m,n)L system G' = <E' , P' , w'> of the same type (but for

determinism and the cardinality of the alphabet), a subset

• VT of 1: 1 and an isomorphism h such

* that h (L (G) f'l VT) :2 A (G ') •

Proof. We shall prove the Lemma in three stages:

* *
(i) L (G ') n VT • :WG) /1 VT ,

* *
(ii) L(G') n VT • h(L(G') /) VT) ,

* (iii) L (G.) /) VT II.I: A {G.) •

Consider the system G' = <E', P', w'> which is constructed

as follows.

t' • t U VT u {F,s},

where E, Vf and {F,s} are disjoint, iVT = #VT and h

* * is any isomorphism from VT onto VT. w' = s and the set

of production rules P' is defined by

(1) (v1 ,s,v2) + w

(2)

(4)

(5)

(6)

+ FF

for

if

if

if

a e:

for

for

all vl" v2

* w e: VT.

(vl ,a.,v2) +

(v
1

,a,v2) +

* VT.

all v1av2

all v1av2

* in l: ' .

a e: P.

a e: p and

t * vTv;.
,*

E VTVT •

(i) Since P ~ P' and P' - P does not produce words

over VT (except possibly w) we have

* * L{G') n VT 1!111 L(G) n VT.,

10

* * (ii) Suppose s -> z => V and V E VT. By (2) and

* (4) we then have also s -> z => h(v) .. Therefore

* * h(L(G 8
) /) VT) Si L(G') 11 v• ..

T
* * Suppose s -> 8 ,...> V and V E V' T ..

Case 1. z = s .. z -> h -l (v) = (A) by (2) and (1) •

Case 2. z 'F s. and z 'F v. By (4) and (3) z => -1 h (v).

Case l .. z r s and z = v,.

Since cases 1-3 exhaust all possibilities of producing words

* over VT we have

and therefore

(iii) Let and v -> z. The only rules applicable

to v are those of (6) and therefore z = v and

* L (G') n Vi, S A (G') •

* Suppose V -> V and V 'VT .. By (5) then also V ==> v1FFv2
* for some words vl, v2 in l:' so V j A(G') .. Therefore

* A(G 8
) t; L(G') n VT ..

Hence

Lemma 2. Let G = <t, P, w> be a (deterministic)

P(m,n)L system. There is an algorithm which, given G,

produces a (deterministic) P(m,n)L system

G' = <t', P', w'> , a subset and an

11

* * isomorphism h from VT onto E such that

* h(L(G') /1 VT) = A(G) ..

Proof. Construct G' = <E', P', w'> as follows.

l: 1 =Ex {O,l}; w' = (a1 ,0) (a2 ,0) (ak,O} for w = a 1a 2 ••• ak.

* Let g be a letter to letter homomorphism from E' onto

* E defined by g{(a,i)) = a for i £ {0,1},and define P', iE{O,l}, by

(1) {v
1

, (a,i), v
2

) + (a
1

,0) (a
2

,0) ••• (a
1

,0) if

(g{v1),a,g(v2)) + a 1a 2 ••• a1 E P and

there is a rule (g(v1) ,a,g(v2)) + a

in P such that a r a.

(2) + (a,1) otherwise.

* * Let VT = { (a, 1) I a E 1: }

h((a,1)) = a.

and define h: VT+ E by

* Suppose VE A(G); i.e. if W => V => Z G G then z = v.

Since G is propagating every letter in v must necessarily

produce itself and for v = a1a 2 ••• a 1 we therefore have

* w' c;1' (a1 ,i
1
)(a

2
,i

2
) (a1 ,i1) G? (a1 ,l)(a2 ,l)ee .. (a1 ,1)

where ij E {O,l}, l < j < t. Since

we have

* A(G) ~ h(L(G') AVT).

* * * Suppose v E VT and w' G~ BG? v. Then also w G> g{z)

=> g(v)
G

and because of (2) g(z) = g(v) and g(z) t> x for

X r g(v). Therefore

* h (L (G') n VT) ~ A (G)

and the lemma follows. 8

Theorem 1. (i) Let m,n be nonnegative integers such

that m + n > 0 and let X be any property of L systems

which is preserved under the construction in the proof of

Lemma 1 (e.g. propagating). Then f(X(m,n)L) £ A(X(m,n)L).

(ii) Let m,n be nonnegative integers and let X be

any property of L systems which is preserved under the

construction in the proof of Lemma 2 (e.g. determinism,

lengths of right hand sides of production rules). Then

A(XP(m,n)L) ~ f(XP(m,n)L).

Proof. (i) Let G be an X(m,n)L system and let VT

be a subset of the alphabet of G. By Lemma 1 there is an

algorithm which, given G and VT' produces an X(m,n)L

* system G' such that A(G') is isomorphic with L{G) n VT.

Since families of languages are invariant under isomorphism

(i) holds.

(ii) Let G be a propagating X(m,n)L system. By

Lemma 2 there is an algorithm which, given G, produces a

propagating X(m,n)L system G' and a subset VT of the

* alphabet of G' such that L (G •) I'\ VT is isomorphic with

A(G). Since families of languages are invariant under

isomorphism (ii) holds. ■

Corollary 1. A(P(m,n)L) = E(P(m,n)L) for m + n > 0.

12

Since it follows from van Dalen [l) that E(lL) = L(RE)

we have by Theorem l(i)

Corollary 2. A(lL) = E(lL) = L(RE) = E(IL) = A(IL).

Another result of van Dalen [1] is that E(P2L) = L(CS).

Since it is easy to give a linear bounded automaton construction

(see e.g. [7]) to show that each intersection of a P(m,n)L

language with a terminal alphabet is a context sensitive

language we have by Corollary 1:

Corollary 3. A(P2L) = E(P2L) = L(CS) = E(PIL) = A(PIL).

Furthermore,

Corollary 4. A(PlL) = E(PlL) C L(CS).

We might observe that if G is deterministic then A(G)

consists of either one word or the empty set. It follows

from the argument used in Vitanyi [10] to show the undecida

bility of the question whether or not the lengths of strings

in PDlL systems grow unboundedly, that the following theorem

Theorem 2. It is undecidable for an arbitrary

PDlL system G whether or not A(G) = ~-

14

Although it is obviously not the case that A(PDlL) = E(PDlL)

we obtain from Theorem l(ii) and Theorem 2 the additional

result:

Corollary 5. It is undecidable for an arbitrary PDlL

system G and a subset VT of the alphabet of G whether

* Or not L (G) () VT = $ •

For stable string languages of DOL systems, however, the

emptyness problem is solvable. In Vitanyi [11] it is proven

that for a DOL system G =<E, P, w> it is decidable whether

or not L(G) is finite, and that if L(G) is finite then

#L(G) ~ f(G) where the value of f for each G is easily

computed. Therefore A(G) F $ iff L(G) is not infinite

and w =>

In fact, for our current concerns, w => w0 => w1 = > ••• =>

w#r-l => w#r = w#E-l suffices according to [11].

3. STABLE STRING LANGUAGES OF L SYSTEMS USING TABLES

A X(m,n)L system using tables, XT(m,n)L system, is

like a X(m,n)L system except that the set of production

rules is replaced by a finite set of such sets: a set of

tables. Table L.systems were introduced by Rozenberg [6]

where also a biological motivation can be found.

A XT(m,n)L system is a triple G = <I:, P, w> where

such that G. = <I:, P., w>
l. l.

is an

15

X(m,n}L system for i •l, 2, ••• , k. P induces an equivalence

* relation G> on E

some i, 1 < i < k.

i E {l, 2, ••• , k}.

transitive closure of

defined by V => V 1

G

For v => v 1 we also G.
l. *

As usual => is the
G

if v => v' for G.
l.

write v P~ v',
J.

reflexive and

G> • We dispense with the subscripts

on the relation if G is understood. The language produced

by a table L system G = <I:, P, w> is defined by

L(G) = {w * w => w}.. The stable string language of G is

* I A(G) = {w E I: W E L(G) and w => z implies z = w}. The

constructions in Lemmas 1 and 2 show immediately that the

analog of Theorem 1 holds for table L systems in general

and for table L systems using k tables (i.e. TkL systems)

in particular. Hence we have the following additional

corollaries from Theorem 1.

16

Corollary 6. A{PTk(m,n)L) = E(PTk(m,n)L) for all

nonnegative integers m, n, k such that m + n > O and k > O.

By the usual linear bounded automaton argument, c.f.

section 2, it is easy to show that the intersections of propa

gating TIL languages with a terminal alphabet are context

sensitive. Therefore we obtain by corollaries 3 and 6

Corollary 7. A(PT1 2L) = A(P2L) = L(CS) = A(PTIL).

Moreover, we have from Theorem 1

Corollary 8. A(PTklL) ~ E(PTklL) c L(CS), for all k > 0.

'
(ii) A(PDTk(m,n)L) ~ E(PDTk(m,n)L), for all k > 0.

Corollary 10. A(T11L) = A(lL) = L(RE) = A(TIL).

Lemma 3. Let G = <E, P, w> be any TOL system. There

exists an algorithm which, given G, produces a TOL system

G' = <E', P', w'> and a subset VT of E' such that

* A(G) = L(G') () V •
T

Proof,. It is easy to
k *

A(G) = n {w £ 1:
i=l

see that

w => z implies z = w} /1 L(G).
pi

17

From Herman and Walker (3, lemma 3] it follows that there exists an

algorithm which, given <E, Pi>, i = 1,2, ••• ,k, produces a finite

* • * I set w. f; I: such that w. = {w £ E w => z implies z = w}. 1 l. P. k
* 1

Therefore, A(G) = n W. () L(G). From Herman and Rozenberg . l 1 1=
[2, Theorem 9.3 (iv) 1 it follows that there exists an algorithm

which, given a TOL system G and a regular expression R,

produces a TOL system G' = <I:', P', w'> and a subset VT

* of LI such that L (GI) Ii VT = L (G) n R. •

Lemma 4. Let G • <I:, P, w> be any type of TOL system,

e.g. propagating, deterministic or both, such that #P > 1. There

exists an algorithm which, given G and a subset VT of E,

produces a TOL system G • = <E 1 ,P • ,w' >, of the same type, '#P 1 = #P,

such that

* *
(i) L(G) ()VT= L(G 1

) ()VT

* (ii) A(G') = L{G') n VT.

Proof. Let G = <E, P, w> where P = {P1 , P2 , ••• , Pk}.

Construct G 1 = <I:', P', w'> as follows.

E' = vTU er x {l, 2, ••• , k} x {o, l}) u {F, a}

where F, s ¢ 1:. w' = s.

J. B

where P!, 1 < i < k, is defined by
l.

(1) s + (a1 ,l,l) (a2 ,1,l) ••• (an,l,l) if w = a
1

a
2

.... an.

(2) (a,j,O) + (a
1
,i,l)(a

2
,i,l) ••• (an,i,l) for all j e: {l, ••• ,k} and

a+ a1a2···an e: p .•
l.

(3) (a,i,l) + (a,i,O) for all a e: 1:.

(4) (a,j,l) + a for all a e: VT and all j f: i.

(5) (a,j,l) + FF for all a e: 1: - VT and

all j 'I i.

(6) F + FF

(7) a+ a

* * (i) Suppose w G> v and v e: VT. Then there are words

* VO = w, vl ,v2, ,vh = V in 1: and tables P. ,P. , ••• ,P.
1 1 1 2 1 h

in p such that VO -=> vl => v2 => . . . => vh. Let P. P. P. P.
l.l l.2 l. 3 ih

* Hence v e: L (G 1
) () VT and therefore

* * L(G) nvT f:L(G')/1 VT.

* * * Suppose s =1' V and V E VT. Since s ¢ VT we have
G

(for w = a1a2···an)

* s ==t G
(a

1
,1,1) (a2 ,l,1) ••• (an,1,1) ==1' G z -=I' G v = b 1b 2 •• ~bm.

* * If z e: VT then by (7) V = z. Assume z t VT. It is

easy to check by inspecting the production rules that no symbol

of VT occurs in z.

for some i. e: {l, 2,
J

Hence there are tables

By (4) z = (b1 ,i. ,ll (b
2
,i. ,1) .•• (b ,i. ,1)

J J m J

•.. , k}, and z => v for h ~ iJ .•
Ph

in P and words

V. = V in
J

O < i < j, such that

(al1:1'il,O)

P~ (ajl'ij,l)(aj 2 ,ij,l) ••• (ajn.'ij,1) P~ ajlaj 2 ••• ajnJ. = v, h ':) ij
l.j J

But then also

w =

* i.e. w G> v and therefore

* *
L(G') ()VT£ I,(G) n VT.

Hence

* (ii) Suppose s =1' v and
G

and therefore

...

By (7)

> P.
l. .

J

aj1 a. 2 ••• a.
J Jn.

J

Ve: A{G')

= v,

* Suppose S =:t V G
By the inherent synchronism

of the production rules in P' we have, for v ~ A,

* * V e; {s} U ((VT U {F}) -V)U {L X {1,2, ••• ,i} X -{ 0})
T
* (L X {1,2, .. .,,k} x {l}) .

It is easily seen that for each of the possibilities

v t A (G') and therefore

Hence

* A(G') = L(G') (1 VT. II

* u

20

Theorem 3. Let G be an XTkOL system, X = {A, P, PD}

k > 1. There exists algorithms which given G and a subset

VT of the alphabet of G, produce XTkOL systems G 1 , G" and

a subset V'
T

of the alphabet of G' such that

(i) A(G) = L(G') (l

(ii) A(G") = L(G) /)

Proof. (i) The construction in Lemma 2 leaves the

propagating and deterministic property intact and goes through

analogously for TOL systems without changing the number of

tables (c.f. Corollary 9 (i) and (ii)). The general case is

covered by Lemma 3 and adds one table. Since from Herman and

Rozenberg [2] it follows that there is an algorithm which, given

a TkOL system G' •' and a subset V'f • ' of the alphabet of G 1 1
',

produces a T2 0L system G' and a subset V'
T

of the alphabet

21

* * of G' such that L (G') 11 VT = L (G'' ') () V,i.'' , this proves (i).

(ii) By Lemma 4. ■

Corollary 11.

(i) A(TkOL) = E(TkOL) ,k > 1.

{ii) A(PTkOL) = E(PTkOL) ,k > 1.

(iii) A{PDTkOL) = E(PDTkOL),k > 1.

Since the construction in the proof of Lemma 4 also

leaves determinism intact in the general case we have furthermore,

We now need the following results, (see e.g. [2,

chapters 7 and 10]), to round off the picture.

Theorem 4.

(i) If L e: E(OL) then L - Od e: E(POL)

(ii) If 11. e: E(TkOL) then L - LU e: E(PTk+lOL)

(iii) E(T20L) = E(TOL)

(iv) f(PT 20L) = f{PTOL)

(v) L (CF) ~ E (Tl OL) ~ E (T20L) E L(INDEX)

And from Herman and Walker [3]

Theorem 5. A(OL) = A(T1 0L) = L(CF).

Let us summarize the results so far. We have

established the following relations between the families

of languages we have discussed.

1. L (RE) = A(lL) = f (lL) = A(TlL): Corollaries 2,10.

2. L (CS} = A(P2L) = f (P2L) = A(PIL) = E{PIL) = A(PT2L) = A(PTIL):

Corollaries 3,7.

3. · L(CS) 1 L(RE) is well known, see e.g. Salomaa [7].

4. f (PlL) = A(PlL): Corollary 4.

5. E (PlL) £ E (P2L) : by definition.

6. L(INDEX); L(CS) is well known, see e.g. Salomaa [7].

7. f(TOL) = E(T20L) = A(T20L) = A(TOL): Theorem 4 (iii) and

Corollary ll(i).

8. A(T10L) = A(OL) = L(CF): Theorem 5.

9. L(CF) ; E(OL) = E(TlOL) ~ f(TOL) E L(INDEX): Theorem 4 (v).

10. f(PTOL) = f(PT
2

0L) = A(PT20L) = A(PTOL): Corollary,11 (ii)

and Theorem 4 (iv).

11. E(PTOL) = {L j L = L - {A}

Theorem 4 (ii)-(iv).

and LE f(TOL)}.

Hence f(PTOL) ~ f(TOL).

12. E(PT10L) = E(POL) ~ E(PTOL): Theorem 4.

13. E(POL) ={LIL= L - {A} and LE E(OL)),

Theorem 4 (i).

Hence f(POL) ~ E(OL).

14. A(POL) ~ A(OL) by definition. Strict inclusion since

L\J E L (CF) - A (POL).

15. A(POL) C E(POL)

follows since

by Theorem 1 (ii) and strict inclusion
2n

e. g ® { a I n > 1} E E (POL) - L (CF) .

The results are shown diagramatically in Figure 1.

,,,,,,,
,,.,,,,

..,.,.'E(PlL) = A(PlL)

L(RE) = A(lL) = E(lL) = A(TlL)

= A(P2L) = E(P2L) = A(PIL) = E(PIL)

Fig. 1

= f(PTIL) = A(PTIL)

L(INDEX)

= E(T 2 0L) = A(T2 0L)

A(TOL)

E(PTOL) = E(PT
2

0L) =
= A(PT

2
0L) = A(PTOL)

= f(POL)

24

In the Figure, when two families are connected by a

solid line the lower family is strictly included in the

upper one; when they are connected by a dotted line the

lower family is ineluded in the upper one but it is not

known yet whether inclusion is strict; no connection means

that neither language family is included in the other,

i.e. the two families are incomparable.

The incomparabilities between the families in the

lower right hand side of Figure 1 follow from Theorem 4

and the fact that languages obtained from propagating L

systems do not contain A. The relation between E(PlL)

and families of languages obtained from propagating table

L systems is unknown.

4. STABLE STRINGS OF DETERMINISTIC L SYSTEMS USING TABLES

The concept of languages produced by monogenic rewriting
-

systems is altogether foreign to the usual generative grammar

approach since there these languages would either be empty or

contain but one element. The same holds for stable string

languages of the ordinary deterministic L systems. However,

stable string languages of deterministic L systems using more

than one table, or deterministic L languages and their

intersection with a terminal alphabet are proper language

families. We shall now assess the implications of our previous

results for the stable string languages of deterministic L

systems using more than one table.

(4.1) A(PDTk0L) = f(PDTk0L) for k > 1. (Corollary ll(iii)).

(4.2) f(DTk0L) !;; A(DTk0L) for k > 1. (Corollary 12).

Since the proof technique of Lemma 4 works also in the case of

deterministic context dependent L systems using tables we have:

(4.3) f(DTk(m,n)L) ~ A(DTk(m,n)L) furk > 1.

(4.4) E(PDTk(rn,n)L) ~ A(PDTk(m,n)L) for k > 1.

(4.4) together with Corollary 9 (ii) gives us:

Corollary 13. A(PDTk(m,n)L) = E(PDTk(m,n)L) C L(CS) for

k > 1. (The latter inclusion follows by the usual linear

bounded automaton argument.)

In [12] it is proven that:

(4 .5) E (D2L) = l (RE),

(4.6) E(DlL) ~ l(RE),

and,

(4.7) the closure of E(DlL) under letter to letter homomorphism

is equal to l(RE).

using one table to achieve the letter to letter homomorphism

it is easy to show that:

(4 .8) E (DT
2

1L) = l (RE).

Together with (4.5), (4.6) and (4.7) therefore:

Corollary 14. E(DlL) f E(DT
2

1L) = L(RE) = A(DT 21L) = E(D2L) =

A (lL) .

(4 .1) (4. 2) and Corollary 13 give rise to infinite

chains of deterministically produced table L languages where

strict inclusion with respect to the number of tables or the
s

amount of context used ifi unknown as yet. These families of

languages tie in with Fig. 1 according to the definitions.

Finally, we would like to point out that much more is

proven than claimed by means of corollaries. The lemmas

and theorems hold for any family of L systems which is

preserved under the construction. If e.g. in Lemma 4 we

change the production F + FF into F + F' and F' + F

then the growth ranges stay identical i.e.

{i e: NI i = lg(v) * and v e: L (G) n v T} = { i e: N I i = 1 g (v)

and Ve: A(G')}.

Also in Lemma 2:

{i e: N i = lg(v) and v e: A(G)} = {i e: N I i = lg(v) and

27

5. RELEVANCE TO THEORETICAL BIOLOGY AND FORMAL LANGUAGE THEORY

The problem of equilibrium oriented behavior in biological

morphogenesis has attracted considerable attention. For

instance Turing [9] has analyzed the way in which patterns

may form in a ring of cells which is initially in chemical

equilibrium but is displaced from it by a small amount.

Waddington [ll] has given a model, called the epigenetic

landscape, for the way in which development is influenced both

by the genetic material and by external disturbances. Thom

[8] has shown how a topological approach may be used to identify

regions of sudden and drastic spontaneous change in a system.

These investigations have been concerned with continuous space

time, except in the case of Turing, who has considered discrete

space. As is well~nown, the discretization of space and time

can yield considerable advantages, i.e. problems become amenable

to solution which could not be tackled before. In fact, for

the problem of biological development it seems natural to

discretize space (in cells) and time (in discrete time obser

vations) as has been forcefully argued by Lindenmayer [S]G

Stable string languages of Lindenmayer systems seem a fruitful

approach in the context of equilibrium oriented behavior in

biological morphogenesis, although obviously some grave simplifi

cations take place@

We would like to think of Turing's approach as the most

detailed, Waddington's epigenetic landscape a more general

28

concept, and Thom's theory as the most abstract of the three.

In this scheme we would tentatively place the present paper

as a new approach, by discretization of space-time, at an

intermediate level. We have shown that, by allowing different

kinds of rules for cellular behavior, we obtain different

classes of stable multicellular patterns.

From the formal language point of view we have investi

gated the generating power of the stable string operation

for Lindenmayer systems, and we have shown that it is equal

to the generating power of the operation of intersection with

a terminal alphabet, except in the case of context independent

L systems. Furthermore, our results show that several

of the langauge families iri the Chomsky hierarchy

can be characterized by classes of highly parallel rewriting

systems together with an unusual operation for obtaining

languages. Thus we have given a characterization which is

structurally completely different from that by the generative

grammars.

Acknowledgements. The authors would like to thank the organizers

of the January 1974 Workshop on L Systems held at Aarhus,

Denmark, and in particular Professor A. Salomaa, for providing

a stimulating environment in which this research was begun.

We would also like to thank Professors G. T. Herman and

J. van Leeuwen for helpful discussions.

REFERENCES

1. D. van Dalen, A Note on some systems of Lindenmayer,

Mathematical Systems Theory, 1971, v. 5, 128-140.

29

2. G. T. Herman and G. Rozenberg, Developmental Systems and

Languages, to be published by North-Holland, Amsterdam.

3. G. T. Herman and A. D. Walker, Context Free Languages in

Biological Systems, Int. Jour. Computer Mathematics, to appear.

4. A. Lindenmayer, Mathematical Models for Cellular

Interactions in Development, Parts I and II, Jour. Theor.

Biology, 1968, v. 18, 280-315.

5. A. Lindenmayer, Cellular Automata,Formal Languages and

Developmental Systems, in Logic, Methodology and Philosophy

of Science IV,' edited by P. Suppes et al, North-Holland,

Amsterdam, 1973.

6. G. Rozenberg, TOL Systems and Languages, Information and

Control, 1973, v. 23, 357-381.

7. A. Salomaa, Formal Languages, Academic Press, 1973.

8. R. Thom, Stabilite Structurelle et Morphogenese, Benjamin,

Reading, Mass., 1972.

9. A. 'M. Turing, The Chemical Basis of Morphogenesis, Phil.

Trans. Royal Society, v. 237, Aug. 1952, 37-72.

10. P. M. B. Vitanyi, Growth of Strings in Context Dependent

L Systems, in Topics in L Systems, G. Rozenberg and A.

Salomaa, edsp, Springer Verlag, Berlin, to appear.

30

11. P. M. B. Vitanyi, On the Size of D0L Languages, in Topics

in L Systems, G. Rozenberg and A. Salomaa, eds., Springer

Verlag, Berlin, to appear.

12. P. M. B. Vitanyi, Deterministic Lindenmayer Languages,

in preparation.

13. C.H. Waddington, The Strategy of the Genes, Allen and

Unwin, London, 1957.

14. A. Walker, Formal Grammars and the Stability of Biological

Organisms, Ph.D. Thesis, Department of Computer Science,

State University of-New York at Buffalo, 1974.

15. A. Walker, Adult Languages of L Systems and 'ehe Chomsky

Hierarchy, in Topics in L Systems, G. Rozenberg and A.

Salomaa, eds., Springer Verlag, Berlin, to appear.

