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DETERMINISTIC LINDENMAYER LANGUAGES, NONTERMINALS AND HOMOMORPHISMS 

by 

Paul M.B. Vitanyi. 

ABSTRACT 

Lindenmayer systems are a class of parallel rewriting systems origi

nally introduced to model the growth and development of filamentous organ

isms. Families of languages generated by deterministic Lindenmayer systems 

(each string has a unique successor) are investigated. In particular, the 

use of nonterminals, homomorphisms and both together are studied for deter

ministic Lindenmayer systems using one sided context (DILs) and two sided 

context (D2Ls). Languages obtained from Lindenmayer systems by the use of 

nonterminals are called extensions. Typical results are: the closure under 

letter to letter homomorphism of the family of extensions of DIL languages 

is equal to the family of recursively enumerable languages, although the 

family of extensions of DIL languages does not even contain all regular 

languages. Let P denote the restriction that the system does not rewrite a 

letter as the empty word. The family of extensions of PD2L languages is 

equal to the family of languages accepted by deterministic linear bounded 

automata. The closure under nonerasing homomorphism of the family of exten

sions of PDIL languages does not even contain languages like 

{a 1,a2, •.• ,an}*\{A}, n ~ 2. The closure of the family of PDlL languages 

under homomorphisms, which map a letter either to itself or to the empty 

word, is equal to the family of recursively enumerable languages. Strict 

inclusion results follow from necessary conditions for a language to be in 

one of the considered families. By stating the results in their strongest 

form, the paper contains a systematic classification of the effect of non

terminals, letter to letter homomorphisms, nonerasing homomorphisms and 

homomorphisms for all the basic types of deterministic Lindenmayer systems 



"' 



using context. The relevance of the used concepts in the biological setting 

is discussed. 

KEYWORDS & PHRASES: formal languages, Lindenmayer systems, monogenic 

rewriting, nonterminals, homomorphisms, Chomsky hierarchy. 
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1. INTRODUCTION 

The study of Lindenmayer languages (also called L 

languages or developmental languages) has been one of the 

major trends in automata and formal language theory during 

the past few years. L languages are generated by highly 

parallel rewriting systems introduced by Lindenmayer [12] 

to model the growth and development of filamentous biological 

organisms. These Lindenmayer systems, or L systems for short, 

have been investigated in a large number of papers both from 

the language theory and theoretical biology point of view. 

(See e.g. [9] and the references contained therein.) A 

Lindenmayer system is called deterministic if each string has 

exactly one successor under the rewriting rules. The purpose 

of this paper is to make a systematic study of languages 

generated by deterministic L systems and the effect of two 

essentially different defining mechanisms: the use of 

nonterminals and the use of homomorphic mappings of different 

kinds. Both mechanisms are frequently used in formal language 

theory [20], (19]. 

An L system consists of an initial string of letters, 

symbolizing an initial linear array of cells (a filament); and 

the subsequent strings (stages of development) are obtained 

by rewriting all letters of a string simultaneously at each 

time step. When the rewriting of a letter may depend on the 

m letters to its left and the n letters to its right we talk 



about an (m, n) L system. If m = n = 0 the L system is 

said to be context independent or without interactions, if 

m + n > O the L system is said to be context dependent or 

with interactions. Most of the literature on L systems is 

concerned with OL systems (m = n = O); lL systems (m + n = 1); 

and 2L systems (m = n = 1). 

From the point of view of developmental biology the 

language consisting of the set of all strings generated by the 

system is of primary interest. Such an L language is taken 

to correspond with the set of all developmental stages the 

organism might attain in its development. Here also 

homomorphic mappings (especially those in which a letter 

is mapped to a letter) are of considerable importance. The 

reasons for this are as follows. When we make observations 

of a particular organism, and wish to describe it by strings 

of symbols, we first associate a symbol to each particular 

cell. We divide the cells into a number of types and associate 

the same symbol to each cell of the same type. It is possible 

that the development of the organism can be described by 

an L system, but the actual system describing it uses a finer 

subdivision into types than we could observe. This is often 

experimentally unavoidable. In this case, the set of strings 

generated by a given L system is a coding of the "real" 

language of the organism which the given L system is supposed 

to describe. More formal language theory oriented investigators, 
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however, divide the set of letters the L system:uses into a 

set of terminals and nonterminals. The language obtained 

from the L system by this mechanism consists of all strings 

over terminals generated by the system. Such languages are 

called extensions of L languages. (They are obtained by taking 

the intersection of the "ordinary" L language and the set of 

all strings over the terminals, which operation extends considerably 

the generating power of the type of L system under consideration.) 

Families of extensions of L languages usually have nice mathe

matical properties like closure under certain operations etc. 

The distinction between terminals and nonterminals is well 

motivated from the linguistic point of view because nonterminals 

correspond to the syntactic classes of the language. This 

distinction is not so well motivated with respect to theories 

of development where we are interested in the set of all 

generated strings. One of the facts which have made the use 

of nonterminals interesting within the theory of developmental 

languages is that it was established in [41 and [5] that, for 

basic families of OL systems the use of nonterminals and the 

use of letter to letter homomorphisms is equivalent as far 

as the generating capacity is concerned. Thus, the trade-off 

between the two language defining mechanisms (i.e. nonterminals 

versus homomorphisms) has become a very interesting and well 

motivated problem for L.systems. Continueing this train of 

thought, trade offs between combinations of one or two sided 

context, restrictions where no letter is rewritten as the 

empty word, use of nonterminals and various kinds of 
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homomorphisms are interesting. The present paper is concerned 

with this topic where we restrict our attention to the deter

ministic L systems. 

A biological motivation for the use of a nonterminal 

mechanism may be given as follows. Suppose that under certain 

conditions an organism consisting solely of cells in certain "terminal" 

states stabilizes i.e. it reaches an "adult" stage. Such a 

condition might be -the presence or absence of chemicals, 

enzymes etc. either induced by external agents or by internal 

agents. The presence of some cells in "nonterminal" states then 

could, by changing the internal condition, prevent the organism 

to stabilize. The extension of the L language then corresponds 

to the set of all adult stages the modeled organism might 

reach in its development. Alternatively, we could select from 

all strings generated by an L system those strings that can 

only be rewritten as themselves. These languages have been 

called stable string languages (or, with a biological conno

tation,adult languages) and were introduced by Walker 

(c.f. [21] and the references contained therein). Vitanyi 

and Walker [21] established that for many classes of L 

systems, especially those using interactions, the families of 

extensions and stable string languages are equal. Hence the 

use of nonterminals for developmental systems is of interest 

in its own right and because of various trade offs which are 

possible. 
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The notion of generating languages by monogenic 

(deterministic) rewriting systems, i.e. each string has a 

unique successor, is more or less foreign to the usual 

generative grammar approach since there such a language 

would either be empty.or consist of one string only. 

Accepting languages by deterministic automata on the other 

hand, is a well investigated subject and has important 

applications in pars,ing problems for formal languages, 

[20] • (Considering all strings generated by a grammar 

rather than only strings over terminals is of central 

interest for both theories of parsing and development.) 

Nondeterminism as it appears in formal language theory 

has no counterpart in nature on the macroscopic level in which 

we are dealing with the modeling of biological development. 

The closest we can approach it in the physical reality of 

development (morphogenesis) is by a probabilism where the 

probabilities are contingent with influences of unknown factors 

internal and external to the organism. Therefore, deterministic 

L systems are particularly relevant in the biological setting 

as would also appear from the fact that most attempts to 

provide L systems modeling the,development of actual biological 

organisms use deterministic systems [1], [6], [7], [8], [9], 

[10]. The study of the change in pattern, size and weight 

of a growing organism as a function of time constitutes a 

considerable portion of the literature on developmental biology. 

Usually, genetically identical specimens of a specific 



9 

organism are investigated in a controlled environment and their 

changes in time are described. The scientific presupposition 

is that identical genetical material and identical environment 

will result in an approximately identical developmental history, 

i.e. that the experiment is repeateable. This assumes a 

deterministic (causal) underlying structure, and makes a good 

case for the biological importance of the study of deterministic 

L systems. 

The paper falls apart in roughly three main themes. In 

section 2 we formally define L systems and relate them to 

Turing ffl~ehines~ as in [3]. Sections 3 and 4 are concerned 

with "ordinary" deterministic L languages, i.e. languages 

consisting of all strings generated by the systems; in sections 

5 and 6 we deal with extensions of deterministic L languages, 

i.e. languages consisting of all strings over some terminals 

generated by the systems. 

In section 3 we are interested in Lindenmayer languages 

which are not recursive. The existence of such languages is 

a known fact [3]. We provide a more detailed construction 

for the deterministic case and develop a simulation technique 

which will prove useful in the sequel of the paper. In section 4 

we compare families of deterministic L languages with the 

Chomsky hierarchy. Here our results refine those in [3), [17] 

and [18]. In section 5 we compare families of extensions 

of deterministic L languages with the Chomsky hierarchy. 

Typical results are: the amount of context needed for rewriting 
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makes no difference for families of extensions; the only 

differences lie in no context, context on one side and context on 

both sides. Let the capital D denote the deterministic 

property. The family of extensions of D2L languages is 

equal to the family of recursively enumerable languages as is 

also the closure under letter to letter homomorphism of the 

family of extensions of DlL languages. On the other hand, 

the family of extensions of DlL languages does not ev.en 

contain all regular languages. 

In section 6 we consider extensions and homomorphisms of 

languages generated by deterministic L systems with the 

propagating property: no letter can be rewritten as the 

empty word. As is well known such a restriction usually limits 

drastically the generating capacity of a rewriting system. We 

show that the family of extensions of PD2L languages (the 

capital P stands for propagating) is equal to the family of 

languages accepted by deterministic linear bounded automata. 

The closure under nonerasing homomorphism of the family of 

extensions of PDlL languages is strictly included in the 

family of extensions of PD2L languages. Indeed, this closure 

does not ev.en contain languages like {a1 , a 2 , ••• , an}*\{A}, 

n > 2. (Contrast this with the result for the nonpropagating 

case in section 5.) On the other hand, the closure of the 

family of PDlL languages under homomorphisms which map a letter 

either to itself or to the empty word is again equal to 

the family of recursively enumerable languages. 
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Our strict inclusion results follow from necessary 

properties of the considered language families rather than 

by an exhaustive analysis of a particular example. 

Essentially, the paper analyzes the trade offs which are 

possible between combinations of one or two sided context, 

the property that no letter is rewritten as the empty word, 

use of nonterminals and various kinds of homomorphisms. By 

stating results in their strongest form, the paper contains 

a systematic classification about the effect of these mechanisms 

on the generating capacity of deterministic L systems using 

context. 

For a treatment of the effect of nonterminals, homomorphisms 

and letter to letter homomorphisms in different variations of 

OL systems the reader is referred to [14]. 
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2. LINDENMAYER SYSTEMS AND TURING MACHINES 

We assume that the reader is familiar with the usual 

terminology of formal language theory as e.g. presented in 

[11] or [19]. Except when indicated otherwise we shall 

customarily use, with or without indices, i, j, k, £, m, n, 

p, q, r, s, t to range over the set of natural numbers 

N = {O, 1, 2, ••• }; a, b, c, d, e, to range over an 

alphabet W;u,v, w, z to range over W* i.e. the set of 

all words (strings) over W including the empty word A. 

#Z denotes the cardinality of a set Z; lg(z) denotes the 

length of a word z and lg(A) = 0. 

A deterministic (m, n)L system (D(m, n)L) is a 

triple G = <W, o, w> where W is a finite nonempty 

alphabet; o 

into W*; 

m 
is a total mapping from U 

i=O 
w E WW* is called the axiom. 

. n . 
w1 x w x U wJ 

j=O 
o induces a 

total mapping 6 from W* into W* as follows: 

6(A) = A and for k > 0 holds that 6(v) = v' 

iff v = a 1a 2 ••• ak, v' = N 1 N 2 ••• Nk and for all 1.·, 1.· = 1 2 k ... "" ..... , , . . . , , 

where we take a. = 
J 

A for all j such that j < 1 or j > k. 

The composition of i copies of 6 is inductively defined by 

t1 (v) = V and 6i (v) = 6 cii-l (v)) for i > o. When no confusion 

can result we shall write o for 6. The L language produced 

or generated by G is defined as L(G) = {oi(w) I i > O}. 

At this stage we would like to point out that although our 

definitibn of an L system varies from the usual one, see e.g. 

[9], in that it dispenses with the environmental letter g, it 
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is exactly equivalent to the previous definitions. It has 

the additional advantages that proofs get shorter and the 

notation more transparent. With regard to the amount of 

context used the following terminology is standard throughout 

the literature: a D(O, O}L is called a DOL; a D(O, l}L or 

D(l, O)L is called a DlL (one sided context); a D(l, l)L is 

called a D2L (two sided context); a D(m, n)L such that 

m + n > O is called a DIL. 

It was shown by v.an Dalen [3] that for a suitable 

standard definition of Turing machines (e.g. the quintuple 

version), for every Turing machine T with symbol set S.and 

state set l/J we can effectively construct a D2L G = <W, o, w>, 

W = l/J US, which simulates it in real time, that is, the 

t th instantaneous description of T is equal to ot(w). 1 ) 

If we do away with the excess blank symbols on the ends of 

the Turing machine tape, by letting the letters corresponding 

to the blank symbols derive the empty word A in the L system 

simulation of T, then the following statement clearly holds. 

Let G = <W, 0, w> be a D2L, s and t/1 be disjoint subsets 

of w, and let hl be a homomsrphism from S*l/JS* into S* 

defined by h1 (a) = " for all a€ 1'J and h1 (a) = a for all 

a ES. The set of languages of the form h1 (L (G) /1 S*'ljJS*) 

is the family of recursively enumerable languages .. Since the 

family of recursive languages is closed under intersection 

with a regular set and k-limited erasing and since there exist 

recursively enumerable languages that are not recursive there 
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. 1 h" h t · 2 ) exist D2L anguages w ic are no recursive. (S*$S* is 

regular and h 1 is 1-limited on S*$S*.) That all L 

languages considered in this paper are recursively enumerable 

follows by the usual Turing machine simulation argument. 
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3. NONRECURSIVE L LANGUAGES 

At the end of the last section we gave the usual proof 

that there are non recursive D2L languages. By an application 

of a result due to Rabin and Wang [15] we can be slightly 

more specific and at the same time develop a simulation technique 

which will be of use in the sequel. Let the word at any 

moment t in the history of a Turing machine be the string 

consisting of the contents of the minimum block on the tape 

at t that includes all the marked squares and the square 

scanned at the initial moment (the origin). 

Theorem 1. (Rabin and Wang). For any fixed (finite) word 

at the initial moment we can find a Turing machine T such 

that the set of words P in its subsequent history is not 

recursive. 

Proof. Take a nonrecursive set A C.{l}* enumerated by a 

one-one recursive function 1:1 f: N -->A; we can recover n 

from f(n) by -1 
f . That every infinite recursively enumerable 

set can be enumerated by a one-one recursive function follows 

from Rogers [16, exercise 5.2]. We can now construct a 

Turing machine T with symbol set S = {b, 1, a}, where b 

is the blank symbol,such that T first erases the finitely 

many marks on the initial tape and returns to the origin, 

puts down the representation of O on the tape and calculates 

the value of f(O). Subsequently, T erases everything else 



except the representation of 

sentation of O from f(O) by 
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f(O), retrieves the repre

-1 f adds one to this 

representation and computes f(l), and so on. In particular 

we can do it in such a way that the specific symbol a is 

used, after the initial tape contents is erased, only to 

mark f(O), f(l), ••• ; it is erased before we calculate 

f(n + 1) from f(n). Moreover, the string consisting of 

a followed by the representation of f{n) always begins at 

the origin. Let h 2 be a homomorphism from {a}{l}* into 

{1}* defined by h 2 (a) = A and h 2 (1) = 1. Now 

* h 2 (P (\ {a}{l}*) = A where h 2 is 1-limited on {a}{l} 

and {a}{l}* is regular. Since A is nonrecursive P must 

be nonrecursive by the closure of the recursive languages 

under k-limited erasing and intersections with 

sets. ■ 

regular 

Theorem 2. Let GT be a D2L which simulates a Turing machine 

T satisfying the statement of Theorem 1 (in the §ense 

explained in section 2). Then L(GT) is nonrecursive. 

Proof. Let h 3 be a homomorphism on L(GT) defined by 

h 3 (s) = s and h 3 (q) = A for alls ES and all q E $, 

where S and $ are the symbol set and the state set of 

T, respectively. Since L(GT) C.. S*$S* h 3 is 1-limited on 

L(GT). h 3 (L(GT)) = P and since P is nonrecursive, L(GT) 

is nonrecursive. ■ 



We use GT to construct a nonrecursive D(O, l)L 

language. 

Lemma 1. Let G = <W, a, w> be any D2L. There is an 
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algorithm which, given G, produces a D(O, l)L G' = <W', a', w'> 

such that for all t, o' 2 t(¢w) = ¢ot(w) and a• 2 t+l(¢w) = 

¢ i ( a 1 , a 2 ) ( a 2 , a 3 ) • • • ( ak , A ) if where 

¢ and ¢' are letters not in W. 

Proof. Construct G' = <W', a', w'> as follows. 

w u = w u (W X (W V {A})) u { ¢, ¢'}, 

where¢ and ¢ 1 are letters not in W. 

QI (A, a, c) = (a, c) , 

o 1 (A, ¢, c) = ¢ I f 

o 1 (A, ¢ I I A) = ¢, 

QI (A, (a, b), (b,c)) = o(a, b, c) , 

QI (A, ¢ I f (a, c)) = ¢0 (A, a, C) , 

o 1 (A, (a, A) , A) = A, 

for all a, b £ w and all C £ w U O.L (The arguments for 

which QI is not defined shall not occur in our operation 

of G 1 
• ) 

For all words v = a1 a 2 ••• ak £ W* holds: 

- 2 k > 1: 0 1 (¢a1a 2 •.. ak) = 6 1 (¢ 1 (a1 , a 2 )(a2 , a 3 ) ••• (ak, >..)) 

= ¢o(A, a 1 , a 2 )o(a1 , a 2 , a 3 ) ••• o(ak_1 ,ak, A 

= ¢6(a1a 2 ••• ak). 
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k = 1: 5 12 (¢a1 ) = 5'(¢• (a1 , A))= ¢o(A, a 1 , A)= ¢5(a1 ); 

k = 0: 6 12 (¢) = 5' (¢') = ¢ = ¢5(A). 

- 2t -t Therefore, for all t, o' (¢w) = ¢0 (w) and 

6 • 2 t+ 1 ( ¢w) = ¢ ' (al, a2) ( a2 , a3). •• ( ak, A) 

if 

The following two corollaries illustrate the relation 

between DlL and D2L languages. 

Corollary 1. Let G = <W, o, w> be a D2L. There is an 

algorithm which, given G, produces a D(O, l)L G' (resp. 

a D(l, O)L G") and a letter to letter homomorphism h 4 

such that h 4 (L(G')) = {¢}L(G) (resp. h 4 (L(G")) = L(G){¢}) .. 

(Hint: Let h 4 be a letter to letter homomorphism defined 

by h 4 (a) = a for all a E WU{¢}, h 4 (¢') = ¢, and 

h 4 ((a, b)) = a for all (a, b) e:-W x (WU {A}).) 

Corollary 2. Let G = <W, o, w> be any D2L. There is an 

algorithm which, given G, produces a D(O, l)L G' (resp. 

D(l, O)L G") and a homomorphism h
5

, which maps a letter 

either to itself or to A, such that 



19 

(Hint: h 5 is defined by h 5 (a) = a for all a E W and 

h5 (¢) = A. h 5 is 1-limited on {¢}W* and W*{¢}.) 

Theorem 3. We can construct DlLs whose associated languages 

are not recursive. 

Proof. Let GT= <WT, oT, wT> be a D2L as in Theorem 2. 

By Corollary 2 we can construct a D(O, l)L G' such that 

h 5 (L(G') /\ {¢}WT) = L(GT). Since {¢}WT is regular, h 5 

is a 1-limited homomorphism on {¢}WT, and L{GT) is not 

recursive, it follows that L(G') is not recursive. I 
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4. DETERMINISTIC L LANGUAGES AND THE CHOMSKY HIERARCHY 

A natural subclass of the L systems is formed by the 

propagating L systems. A deterministic L system G = <W, o, W> 

is propagating if for all arguments the value of o is not 

equal to A• We indicate this property by prefixing the 

capital 

PDILs. 

P to the type of L system, e!g. PD(m, n)Ls, PDOLs, 

From the work of van Dalen [3], Rozenberg [17] and 

Rozenberg and Lee [18] on nondeterministic L systems we can 

readily deduce several facts about the place in the Chomsky 

hierarchy of the deterministic L languages: e.g. the PDIL 

languages are strictly included in the context sensitive 

languages, the DIL languages are strictly included in the 

recursively enumerable languages. By the use of direct 

arguments concerning the deterministic nature of the systems 

under consideration we shall refine these results implicit in 

the above references and fix completely the place of the 

D(m, n)L and PD(m, n)L languages with respect to the four 

main classes of the Chomsky hierarchy. 

Lemma 2. There are regular languages over a one letter alphabet 

which are not DIL languages. 

Proof. L = {aaa)*(a Uaa) is such a language. To prove this 

we make use of the following: 
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Claim. If G = <W, o, w> is a unary D(m, n)L (i.e. #W = 1) 

which generates an infinite language then there exist positive 

integers t 0 , p and x such that for all t ~ t 0 the following 

equation holds: 

(1) lg(6t+l(w)) = p(lg(5t(w)) - m - n) + x. 

Proof of Claim. Let ~cam a an)= aP u , , and let 

m-1 
x = 2 lg(o(ai, a, an))+ 

i=0 

If L(G) is infinite then there 
--t 
- 0 2(m + n) 1. lg(o (w)) > + X + 

1. 0. -t Case p = lg (o (w)) < y -
{ - k y = max lg(o(a )) I k < m + n}: 

n-1 
I lg(o(am, a, aj)). 

j=0 

exists a to such that 

for all t > 0 where 

contrary to the assumption. 

Case 2. p > 0. Clearly (1) holds. 

By observing that L = {ai it 0 mod 3} we see that for 

every positive integer k such that k = 0 .mod 3 holds that 

k-l k+l k+ 2 L and k J L H 'f L(G) L a , a , a E a ,., . ence , 1. = 

it follows that p = 1 in (1). But then the lengths of 

the subsequent words in L(G), ordered by increasing length, 

differ by a constant amount x - m - n and hence L(G) ~ L. ■ 

Let X be any of the restrictions on L systems 

discussed above. Then L(XL) denotes the family of XL languages, 

e.g. L (D(m, n)L), L (DIL), L (D0L). Let L (REG), L (CF), L (CS} 

and L(RE) denote the families of the regular, context free, 

context sensitive and recursively enumerable languages, respectively. 
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Theorem 4. (i) For all m, n > O the intersection of 

L(PD(m, n)L) with L(REG), L(CF) - L(REG) and L(CS) - L(CF} 

are nonempty; there are languages in L(REG), L(CF) - L(REG) 

and L (CS) - L (CF) which are not in L (PDIL) ; L (PDIL) ~ L (CS). 

(Fig. 1) • 

(ii) For all m, n > O, such that m + n > 0, the inter

sections of L(D(m, n)L) with L(REG), L(CF) - L(REG), 

L(CS) - L(CF} and L(RE) - L(CS) are nonempty; there are 

languages in L(REG), L(CF} - L(REG), L(CS) - L(CF) and 

L(RE) - L(CS} which are not in L(DIL); L(DIL) ~L(RE). 

(Fig. 2). 

(iii) The intersections of L(DOL) with L(REG}, 

L(CF} - L(REG) and L(CS) - L(CF) are nonempty; there are 

languages in L(REG), L(CF) - L(REG) and L(CS) - L(CF) 

which are not in L(DOL); L(DOL) ~ L(CS). (Fig. 3). 

(iv). For all m, n > O, L(PD(m, n)L) ~ L(D(m, n)L); 

L(PDIL) ~ L(DIL). 

Proof. (i) and (ii). Let G1 , G2 and G3 be PDOLs defined 

by: 

G1 = <{a}, {o()., a, A)= a}, a>, 

G2 = <{a, b, c}, {o(>., a, A)= a, o(A, b, ).) = b, 

o(l, c, A) = acb}, c> 

G3 =<{a}, {o ()., a, ).) = aa}, a>. 

{ n n } L(G1 ) = {a}, L(G2 ) = a cb n > 0 
2n 

and L(G3) = {a I n ~ O}. 

L(G1 ) £ L(REG); it is well known that L (G2 ) £ L (CF) ... L (REG); 

L (G 3) £ l., (CS) by the working space theta.rem or the usual linear 
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bounded automaton argument and L(G
3

) ¢ L(CF) by the uvwxy 

lemma. 3> This proves that all considered families of languages 

have nonempty intersections with L(REG), L(CF) - L(REG) and 

L(CS) - L(CF). By Theorem 3 there is a DlL language L(G) 

such that L(G) £ L(RE) - L(CS). The language L of Lemma 2 

belongs to L(REG) but not to L(DIL). L VL(G2 ) £ L(CF) - L(REG) 

and it is easy to show that L UL (G
2

) ¢ L (DIL). L 1 = 

(2 t) 

{a2 I t ~ O} does not belong to l(DIL) because of 

equation (1) but L' £ L(CS) - L(CF) by the working space 

theorem and the uvwxy lemma. The language A £, { l} * of 

Theorem 1 belongs to L(RE) - L(CS) and A¢ l(DIL) by 

equation (1). Hence there are languages in L(REG), L(CF) - L(REG), 

L(CS) - L(CF) and L(RE) - L(CS) which are not in L(DIL). 

From this it follows that the inclusions of l(PDIL) in l(CS) 

and of L(DIL) in l(RE) are strict. 

(iii) Follows from the proof of (i) and (ii) and the 

observation that L(DOL) £ L(CS), Salomaa [19, p. 245]. 

(iv) L(PD(m, n)L) S:. L(D(m, n),) holds by definition. 

Strict inclusion follows from the fact that if A EL and 

L £ L(D(m, n)L) then L ¢ L(PD(m, n)L)~ (It is easy to give 

nontrivial counterexamples of DOL languages which are not 

PDOL languages; for m + n > 0 there are nonrecursive 

D(m, n)L languages by Theorem 3 and all PD(m, n)L languages 

are context sensitive by (i)). Similarly we prove L (PDIL) ;,; L (DIL). I 
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From equation (1) it follows immediately that 

L(D(m, n)L) ~ L(D(m', n')L) for m < m' and n = n' or 

m = m' and n < n'. In particular L(DOL) ~ L(DlL) ~ L(D2L). 

Analogously this holds with the propagating restriction added. 

For a further discussion of the inclusion relations between 

families of L languages using different amounts of context 

see D.7] and 0.8]. 

From Lemma 1 we also have the following useful information 

concerning the difference between L(D2L) and L(DlL). 

If Le L(D2L) then there is an L' E L{D(O, l)L 

(':resp.L" E L(D(l, O)L)) such that {w I ¢w E L 1
} = L 

(resp. {w I w¢ EL"}= L). 
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5. EXTENSIONS OF DETERMINISTIC L LANGUAGES 

The usual device in formal language theory for extracting 

languages from rewriting systems is the use of nonterminals, 

i.e. by selecting from the set of produced words all words 

over a terminal alphabet. This operation is called inter

section with a terminal alphabet. Such an operation 

considerably contributes to the generating power and therefore 

a language E(G, VT)= L(G) f1 v; is called an extension of 

an L language. where G is an L system: and VT is some 

alphabet. We denote the family of extensions of XL languages 

by E(XL) where X is one of our usual restrictions. 

Considering nondeterministic L systems, van Dalen [3] proved 

that E(lL) = L(RE), and E(P2L) = L(CS). 

Furthermore, E(0L) f L(CS), see e.g. Herman and Rozenberg [9]. 

For deterministic L systems it therefore follows that 

E (DlL) ~ E (D2L) c L (RE); E (PDlL) S E (PD2L) f:... L (CS) (and in 

general by the working space theorem E(PDIL) C L(CS)); and 

E(D0L) ¥ L(CS). From the definitions it is immediate that 

L(XL) c E(XL) for all classes of XL systems. 

Theorem 5. E(D2L) = L(RE). 

Proof. Let A be any recursively enumerable language over 

some alphabet 

function f: 

which is enumerated by a 

n is recovered from 

1:1 

f(n) 

recursive 

by 
-1 f • 

That every infinite recursively enumerable language can be 

enumerated by a one-one recursive function follows from 
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Rogers [16, exercise 5.2); for finite languages clearly an 

appropriate version of our proof suffices. Let T be a 

Turing machine with symbol set s = VT U {a, b} where a, b t VT 

and b is the blank symbol. At time t = 0 T is presented 

with a finitely inscribed tape of which the origin contains a. 

We assume that the tape is halfway infinite, i.e. the reading 

head of T never scans a square left of the origin. That 

this is no restriction on the power of a Turing machine is 

well known. T starts with erasing the finitely many marks on 

its tape except the symbol a at the origin, returns to the 

origin, writes the representation of O on the tape and 

calculates the value of f(O}. Subsequently, T erases 

everything else except the representation of f(O), retrieves 

the representation of 0 from f (0) by -1 f , adds one to 

this representation and computes f(l), and so on. In 

particular we can do this in such a way that the specific 

symbol a is used only to mark the origin and is erased only to 

indicate f(O), f(l), ••• ; it is printed again before we 

calculate f(n + 1) from f(n). If P is the set of all words 

in the history of T then P /) {b}VT = {b}A. Let GT = 

<WT' oT, wT> be a D2L which simulates T in the sense of 

Theorem 2. Since T uses a halfway infinite tape the strings 

of GT always have a letter a at the left end except when 

f (n) has been computed for,·some n in which case the string has 

a letter q. (indicating the state of the simulated Turing 
1.n 

machine) at the left end. That is, for each n EN there is 

a and a state (where is the state set of T) 
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We can construct T with two 

distinguished states q 1 
, q" in l/J such that for all n: 

t +2 
oT n (wT) = aq"f (n) , and q 1

, q" 

never occur in n e: N. Now 

we modify GT to G = <WT, o, wT> where o is exactly like 

oT but for the productions o(A, q, a)= A 

and o(A, c, d) = aq" for all letters c e: VT and de: VTU {A}. 
t +l 

It is easily seen that on (wT) = f(n) for all n and 

t t e: W*l/JW* for all t such that t 'f + 1, o (wT) = oT(wT) t T T n 

n e: N. Hence LCG> n v~ = A. (To capture the case where 

A e: A we could define 6(A) = aq".) • 
Theorem 6. The closure of E(D(O, l)L) (or E(D(l, 0)L)) 

under letter to letter homomorphism is equal to L(RE). 

Proof. We prove the theorem for D(0, l)Ls. The case for 

D(l, 0)Ls is completely analogous. Let G = <W, o, w> 

be a D2L constructed as in Theorem 5. 

be a D(0, l)L defined as follows. 

W' = W U (W x (W U { 0, 1, A})) U { ¢} 

where 0, 1, ¢ are letters not in W. 

WI = (bl, 1) (b2 , , 0) ••• (bn, 0) if w 

o 1 (A, a, b) = (b, 0) , 

o 1 (A, ¢, a) = (a, 1) , 

o 1 (A , ¢, A) = () I (A f a, A) = o'<>.., (a, 

, 

Let GI = <WI , 0 I , w I> 

= blb2 ••• bn. 

A) , A) = >.., 
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o' (A, (a, 0) , (b, 0)) = (a, b), 

o 1 (A, (a, 1) , (b, 0)) = ¢(a, b) , 

o ' (A, (a, 0) , A) = (a, A) , 

o • (A, (a, 1) , A) = ¢(a, A) , 

o ' (A, (a, b), (b' c)) = o (a, b, c) , 

o' (A, ¢, {a, c)) = ¢o(A, a, c) , 

for all a, b E W and all c E WU {A}. {The arguments for 

which 0 1 

of G'.) 

is not defined shall not occur in our operation 

Assume that At L(G). 

We see that for all t holds that h (0 13t(w')) = 6 

where h6 is a letter to letter homomorphism from {W 

onto W* defined by h 6 ((a, 0)) = h 6 ((a,. 1)) = a for 

a E W. Since by the synchronicity of the productions 

0 1t (w 1
) E {¢}W'* for all t % O mod 3 we have 

o t (w) 

X {l, 

all 

O})* 

h 6 (L(G')I) (W x {O, l})*) = L(G) and therefore h 6 (L,~G') /1 (VT x 

{O, l})*) = L(G) n v;. (To capture the case where A E L(G) 

-we could define o' (A) = ¢0 (A~,, and the proof proceeds analogously.) ■ 

Theorem 7. If LE E(D2L), or equivalently LE L(RE), then 

{¢}LE f(D(O, l)L (similarly L{¢} E f(D(l, O)L)) where ¢ 

is a letter not occuring in a word in L. 

Proof. Follows immediately from Lemma 1. 

We shall now prove some properties of DOL and DlL 

languages which give us criteria to show that certain languages 
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cannot be DOL or DlL languages or their intersections with a 

terminal alphabet. 

We call a language permutation free if no word in the 

language is a permutation of any other word in the language. 

Lemma 3 ... Let G = <W, o, w> be a DOL. If L(G) is infinite 

then L(G) is permutation free. 

Proof. Suppose L(G) is infinite, v, v' E L (G) , VF v', 

v' is a permutation of v. Let ok (v) = v' for some k > 

Since v' is a permutation of v we have for each n > 0: 

onk(v) is a permutation of v. There are only a finite 

number of words in W* which are a permutation of v and 
n k 

> n1 > 0 such that o 1 (v) = 

for some and therefore 

and 

o. 

so L(G) is finite: contradicting 

the assumption. I 

The converse of the lemma holds in the following sense. 

Let G = <W, o, w> be a DOL. L(G) is infinite iff for no 

integers i and j, i # j, holds that oi(w) is a 

permutation of oj(w). (We consider A to be a permutation 

of A.) • 

Corollary 3 •. Let G = <W, o, w> be a DOL and VT a subset 

of W. If E(G, VT} is infinite then E(G, VT) is permu

tation free, i.e. all infinite languages in E(DOL) are 

permutation free. 
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We call a word v' a prefix (postfix) of a word v 

if v = v 1 z (v = zv') for some word z. We call v' a 

proper prefix (proper postfix) of a word v if v' is a 

prefix (postfix) of v and v' # v. 

Lemma 4. Let G = <W, o, w> be a D(l, 0)L (D (0, 1) L). 

(i) L(G) is finite iff o t(w) = Qt I (W) for some t, t' such 

that t # t I• 

(ii) Let L(G) be infinite. If v, v• £ L(G) 

and v' is a prefix (postfix) of v then, with finitely 

many exceptions, for each word u·in L(G) there is a word u' 

in L(G) such that u' is a proper prefix (postfix) of u. 

Proof. (i) Obvious by the deterministic property of G. 

(ii) We prove (ii) only for D(l, 0)Ls and prefixes. The 

proof is completely analogous for D(0, l)Ls and postfixes. 

Since L(G) is infinite v # v' by (i). 

Case 1. 6t(w) = v' and ok(v') = v = v'z for some 

t > 0 and some k > 0. For each j ~ 0 there is a z' £ W* 

such that ot+k+j(w) = oj(v) = oj(v'z) = oj(v')z' = ot+j(w)z 1 , 

and by (i) z' # >... 

2. o t (w) = v'z and k = v' for some Case = V o (v I z) 

t > 0 and some k > o. ok(v 1 z) = ok(v')z' = v• for some 

z' £ W* and by (i) Z I # >... Therefore, lg(ok(v 1 )) < lg(v'). 

By iterating this argument lg(v 1
) + 1 times we obtain either 

lg(ok(lg(v')+l) (v')) < lg(v') - lg(v 1 ) which is impossible or 

0klg(v') (v') = ok(lg(v')+l) (v'). In the latter case L(G) 

is finite: contradictory to the assumption. I 
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(If we allow 6(A) ~ A then Lemma 4(ii) holds under 

the additional restriction: not both A E L(G) and 

Corollary 4. Let G = <W, o, w> be a D(l, O)~ (D(O, l)L) 

such that E(G, VT) is infinite for some VT (and not 

both A E L(G) and 6(A) ~ A). If v, v' E E(G, VT) such 

that v 1 is a prefix of v (v' is a postfix of v) then;; 

with finitely many exceptions, for each word u in E(G, VT) 

there is a word u' on E(G, VT) such that u = u'z 

(u = zu') for some z £ vTv;. 

Clearly, Lemma 4 and Corollary 4 hold for D(m, -O)Ls 

with respect to prefixes and for D(O, m}Ls with respect 

to postfixes, m > O. 

Theorem 8. (i) The intersection of E(PDlL) with L(REG), 

L(CF) - L(REG) and L(CS) - L(CF) are nonempty. There are 

languages in L(REG), L(CF) - L(REG) and L{CS) 

which are not in E(PDlL). E(PDlL) ~ L(CS). 

L(CF) 

(ii) The intersections of E(DlL) with L(REG), 

L(CF) - L(REG}, L(CS} - L(CF) and L(RE) - L(CS) are non

empty. There are languages in L(REG), L(CF) - L(REG), 

L(CS) - L(CF) and L(RE) - L(CS) which are not in E(DlL). 

E (DlL) 1- L (RE) • 
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(iii) The intersections of E(DOL) with L{REG), 

L(CF) - L(REG) and L(CS) - L(CF) are nonempty. There are 

languages in L(REG), L(CF) - L(REG) and L(CS) - L(CF) 

which are not in E(DOL). E(DOL) ~ L(CS). 

Proof. Since L(DXL) C E(DXL) the first sentences of the 

statements (i) - (iii) are correct by Theorem 4. Let 

Ll • { a, aa} U{b}{c}*{b}, L2 = { a, aa} lJ{anbcn I n > O} , 

L3 = { a, aa} U {bncndn I n > O} and L4 = {a, aa} V {a}A{a} 

where A _£ {l}* is uhe nonrecursive language from Theorem 1. 

By Corollary 4 Ll, L2, L3 and L4 do not belong to E (DlL) , 

but Ll e: L (REG) , L2 e: L(CF) - L(REG) as is well known, 

L3 e: L(CS) - L(CF) as is well known and L4 e: L (RE) - L(CS). 

The inclusion in the last sentences of the statements of <i> 

and (iii) follows by the usual working space theorem and 

strict inclusion by the foregoing. The inclusion in the last 

sentence of the statement of (ii) is true by the usual 

Turing machine simulation argument and strict inclusion follows 

by the foregoing. ■ 

We might note that the existence of languages in L(REG), 

L(CF) - L(REG} and L(CS) - L(CF) which are not in E(DOL) 

could also have been proven using Corollary 3. 

That with respect to families of extensions of L languages 

differences can only lie in no context, one directional context 
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and two directional context, but not in the amount of 

context, is shown by the next theorem. 

Theorem 9. 

(i) E(D2L) = E(DIL). 

(ii) E(PD2L) = E(PDIL). 

(iii) E(DlL) = U (E(D(i, O)L) UE(D(O, i)L)). 
iEN 

(iv) E (PDlL) = LJ (E (PD (i, O} L) L.) E (PD (0, i) L)). 
ie:N 

Proof. We give the outline of a simulation technique to 

prove (i). (ii) - (iv) are completely analogous. ( (i) 

follows also from Theorem 5 but the present proof is 

direct.) 

Let G = <W, o, w> be a D(m, n)L and let r be the 

greatest one of m and n. We construct a D2L G' = <W', o', w'> 
m . n . 

as follows .. , w 1 = W U ( U w1 
x w x U wJ) and w 1 = w. The 

i=O j=O 

p:-oduction rules o' are defined in such a way that, for 

each production of G, G' executes r productions. The 

first r - 1 of these r productions serve to gather the 

necessary context for each letter in the string and the 

th r production produces the string produced by G • 
. ' 

E.g. If o(a1 a 2 ••• ak) = a 1a 2 ••• ak then 

r r-1 o' (a1a 2 ••• ak) = 0 1 (().,a1 ,a2)(a1 ,a2 ,a3 ) ••• (ak-l'ak,A)) 

r-2 = o' ((A,a1 ,a2a
3

Xa1 ,a2 ,a3a 4 ) ••• 

(ak-2ak-l 'ak,A)) 
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••• (¾-~+lak-m+2··•¾-1 1 ak, A)) 

= 01cx2···cxk. 

for all t F O mod r. Hence, for each subset VT 

L c G • > () v; = L ( G > 11 v; . II 

of W, 

Similarly we can prove the analog of Theorem 9 for the 

general case of nondeterministic L systems. 

In the next section we study E(PD2L) and show, among 

other things, that the closure of E(PDlL) under nonerasing 

homomorphism is strictly contained in E(PD2L). 
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6. EXTENSIONS OF PROPAGATING DETERMINISTIC L LANGUAGES 

A linear bounded automaton M is a Turing machine with, 

say, symbol set s, state set~ and start state q
0 

E ~ 

such that M accepts a word v over a subset VT of S 

using at most c lg(v) tapesquares during its computation, 

where c is a fixed constant. It is well known that the family 

of languages accepted by linear bounded automata is equal 

to L(CS),(11] or [19]. A deterministic linear bounded 

automaton (DLBA) is a linear bounded automaton such that 

each instantaneous description has exactly one successor. 

We shall show that f(PD2L) equals the family of 

languages accepted by DLBA's, i.e. L(DLBA). Thus the 

question of whether or not the inclusion of f(PD2L) 

in f(P2L) is strict is shown to be equivalent with one 

of the more famous open problems in formal language theory, 

i.e. whether or not the inclusion of L(DLBA) in L(CS) is 

strict,[11] or [19]. That E(PDlL) ~ f(PD2L) follows 

already from the fact that it is easy to construct a PD2L 

G such that L(G) = {a, aa} U {b}{c}*{b} which language is not in 

E(PDlL) by Corollary 4. However, we shall prove the much 

stronger result that the closure of E(PDlL) under nonerasing 

homomorphisms is strictly contained in E(PD2L). 
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Theorem 10. E(PD2L) = L(DLBA). 

Vroof. We give an outline since the details would be tedious. 

Let G = <W, o, w> be a PD2L and VT a subset of W. 

Construct a deterministic linear bounded automaton M as 

follows. M uses an amount of tape equal to 4 times the 

length of its input word plus 1, divided in 4 sections I, II, 

III, IV of equal length. The input word v is written on 

I; section II contains the axiom w, section III is blank 

and section IV contains the representation of O in the 

#W-ary number system. M compares oi(w) with v, i > 0, 

and accepts v if oi(w) = v. Otherwise, scuttling back 

and forth between sections II and III, M produces oi+l(w) 

from oi(w) such that oi+l(w} is written on III if oi(w) 

(If lg(oi+l(w)) > -
Subsequently, M 

is written on II and vice versa. 

lg(v) + 1 then M rejects v.) 

increments the number written on 

a number equal to #Wlg(v)+l - 1 

IV by 1. If IV contains 

then M rejects v. 

Otherwise, M compares oi+l(w) with v, and so on. 

V E L (G) iff i V = o (W) for some i < #Wlg(v)+l - 1 

see that L(M) = L(G), where L(M) is the language 

accepted by M. Now construct M' from M where M' 

Since 

we 

is exactly like M except that M' first ascertains that 

v E VT and rejects v if VJ{. VT. Then L(M') = L(G) /1 VT, 

Let M be a DLBA, which accepts L(M) over S, using 

no more than en tapesquares fwr an input word of length n. 

Now construct a DLBA M' such that M1 generates all words 

v0 ,v1 , ••• over S in lexicographical order and accepts or 

rejects them by simulating M. In particular we can do it 
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such that M', started in state q0 on a word vi, i ~ O, 

written from left to right from the origin with the remaining 

(c - l)lg(vi) tape squares containing blank symbols, computes 

the next word vi+l written from left to right from the 

origin with the remaining tapesquares containing blank symbols. 

Subsequently, M' proceeds to the origin,enters the start 

state qo of M and simulates M. After rejection or accep-

tance M erases everything but vi+l from the tape and 

starts in q' 
0 

at the origin, i.e. scanning the left most 

letter of vi+l' and so on. 

Let V be the set of symbols of M', b the blank symbol, 

and iµ the state set of M'. Construct G = <W, o, w> as 

follows. 

w = V U (Ve x ( iµ tJ { A } ) x { 0 , 1 , 2 , ••• , c} ) , 

w = (a, b , b, ••• , b, qo, 1) , 

where 

order. 

a 

G 

is the first word of SS* 

simulates M' as follows: 

in the lexicographical 

l..f ~tc > v w = a 1 a 2 ••• a , 
- - -n 

~1~2 --·~n E {Vex {A} x {O})*(Vc xiµ x{l,2, ••• ,c}) 

(Vex {A} x {O}i* 

then the j th element of a 1 , 1 ~- j ~ c and 1 < i < n, 

corresponds with the i + (j l)nth tape square of M', 

the c + 1th element of a. indicates the present state of 
~l. 

M' if one of the tapesquares coded in a. 
- l. 

is under scan 

(and is A otherwise) and the c + 2th element tells which 

(and is O otherwise). In particular we can construct G 

such that if M' enters an accepting state the accepted word 
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v. over s is "read out" from right to left, and subsequently 
l. 

is restored (from left to right) to the form (a1 ,b,b, ••• ,b,q0,1) 

(a2 ,b,b, ..• ,b,A,0) ••• {an,b,b, ••• ,b,A,0) for vi= a 1 a 2 ••• an. 

Hence L (G) /1 S* = L (M) • ■ 

We now proceed to show that the closure of E(PDlL) 

under nonerasing homomorphism does not contain L(REG). 

Lemma 5. Let G = <W, o, w> be a PD(l, O)L such that 

L(G) is infinite. Let r = #W. For each t > r there is a 

lg(v) > .Llog ((r - l)t + r)J , and r 

a constant k, 0 < k < lg(v) r , such that V is a prefix of 

ot+nk(w) for all n. For PD(O, l)Ls this holds with respect 

to postfixes. 

Proof. Denote the i th letter of a string oj(w), i, j EN, 

by a ..• 
l. J 

Since L(G) is infinite, the slowest rate of growth 

G can achieve is by generating all words over W in le~ico

graphical order, i.e. lg(ot(w)) > llog ( (r - l)t + r)j.., 
- r 

Therefore, a .. is indeed a letter in W for all j such 
i-1 1 J 

that j > I ri. Since there are only r different letters 
i=l 

in w, there are natural numbers j 1 and k1 , j 1 , k1 < r 

and k 1 > 0 such that Since G is a 

PD(l, O)L, for all n. Therefore, a letter 

in the second position has as its left neighbor at all 
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times, jl + nk1 , n EN. There is surely a letter in the 

second position for all times t > r. Therefore, there are 

positive natural numbers 

for some nl, n2 E N and 

of this argument, for each 

natural numbers js and 

s 

a . 
2:12 

= 

s = 1, 

ks, j > 
s -

a2j2+k2 

2, . . . 
s-1 
I r 

i=l 

. 

i 

j2 + k2 = jl + n2kl 

By iteration 

there are positive 

s 
, ks ~ r and 

< I 
i=l 

.. i r , such that 

for all n. Since G is a PD(l, O)L, 

asj +nk ' 
s s 

= alj +t+nk l2j +t+nk 
s s s s 

asj +t+nk 
s s 

for all t and n. Therefore, for all s and all t such that 

.S 

I 
s-1 
I i r , there is a prefix V of t o (w) , 

i=l i=l 

lg(v) ~ Llogr((r - l)t + rl.1 = s, and a positive constant 
t+nk 

k < rs such that v is a prefix of o s(w) for all n. s-

Hence the lemma. • 

Contrasting Lemma 5 with Lemma 4 gives a nice insight in 

the influence of the propagating restriction with respect to 
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the necessary behavior of pre- and postfixes of the sequence 

of words generated by DlLs. 

Theorem 11. Let V be any alphabet containing at least two 

letters. No language containing W* belongs to the closure 

under nonerasing homomorphism of E(PDlL). 

Proof. Assume that {a, b} CV, and consider the subset 
n 

L = {(anbn)n n > l} 

for some PD(l, O)L G 

homomorphism h from 

of V*. 

= <W, 0 , 

V* T into 

Suppose that 

w>, a set VT 

V*. Define 

L < h (L (G) I) VT) 

and a nonerasing 

t by n 

As is easily seen, 

and 

lg(ot(w)) ~ mtlg(w) where m is 
n 

the maximum length of a value of o. 

mtnlg(w)c where c = max{lg(h(a)) I 
Therefore, (2n) n < 

a E Or, t > n -

for all n > n 0 where n 0 is 
t 

some fixed natural number. For each n>n
0 

o n(w) has a prefix 

such that lg(vn) ~ llogr(tn(r-1) + r)j ~ n logrn, r = iW, and vn occurs 

infinitely often with a constant period k by Lemma 5. 
t n 

Since for each n the prefix vn of o n(w) is mapped 

under h to a~z, z E {a, b}*, vn 
t I 

of on (w) for n # n' and n, n• > 

contradiction by showing that the kn = 
Since G is propagating and the prefix 

with a constant period k there is a 
j n 

o n(v ) '= V Z for some Z E W*. But 
no n 

cannot be a prefix 

We now derive a 

k 
no 

for all n > no· 

V n (n ~ n 0 ) occurs 

jn such that 

then 



j 
o n(v z) 

no p 

j 
= o n(v )z' = v zz' n

0 
p n p 
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for 

all p and some z, z p' z' e: W*. I.e. from time t + . 
Jn p no 

the prefix vn occurs with period k and k = k 
no n no 

(or k divides k n ) for all n > no. Hence 
n 0 

n 
h(L(G) /) v;) n { (anbn)n I n > l} < kn 

0 

and 

(Since VV* = (VV*)R, i.e. the language consisting of all 

words from VV* reversed, the above proof holds also for 

PD ( 0, 1) Ls.) . ■ 

We see that any language which contains a langu~ge 
·, 

n > l} cannot be the image under nonerasing 

homomorphism of a language in E(PDlL). Hence also e.g. 

({a}{a}*{b}{b}*)*. The idea behind the proof of Theorem 11 

is roughly the following. If a language L contains a large 

enough subset L' where · each pair of words in L 1 
, say 

v and v•, are distinguishable by their resp. prefixes 

(postfixes) u and u' such that lg(u) = O(log log(lg(v))) 
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and lg(u') = O(log log(lg(v'))) then L cannot be in the 

closure under nonerasing homomorphism of E(PD(l, O)L) 

(E(PD(O, l)L). For example {b}{b}*{a}*{b}{b}* contains 
n 

{bn(an)n bn In> l} d th f · · an. ere ore is not contained in a 

nonerasing homomorphic image of a lanquaqe in E(PDlL). 

Let us denote the closure-of a language family X under 

nonerasing homomorpftism by hAX and under letter to letter 

homomorphism by h 1 : 1x. 

Theorem 12. (i) E(PDlL) ~ hl:lE(PDlL) C hAE(PDlL) ~ 

E(PD2L) = L(DLBA) = h~E(PD2L). 

(ii) For each x £ {A, hl:l' hA} the language family 

xE(PDlL) has nonempty intersection with L(REG), L(CF) - L(REG) 

and L(CS) - L(CF); there are languages in L(REG), L(CF) - L(REG) 

and L (CS) - L (CF) which are not in xE (PDlL) ;hA-E (:?DlL) f L (DLBA) • 

Proof • ( i ) Let G = < { a 1 , a 2 , a 3 , b , c} , { o ( A , a 1 , A ) = a 2 a 3 , 

o(A, a 2 , A)= o(a2 , a 3 , A)= o(A, b, A)= b, o(b, b, A)= 

o(c, b, A)= cb, o(b, c, A)= c}, al> be a PD(l, O)L. Let 

h be a letter to letter homomorphism defined by h(a.) = a 
]. 

for i = 1, 2, 3 and h(b) .= b, h(c) = c. h(L(G)) = {a, aa} 

V {b}{c}*{b} and by Corollary 4 h(L(G)) / E (PDlL). Therefore, 

E(PDlL) j hl:lE(PDlL). hl:lE(PDlL) £. hAE(PDlL) holds by 

definition. It is easy to show that L(DLBA) = hAL(DLBA); 

together with Theorem 10 this gives E(PD2L) = hAE(PD2L) = L(DLBA). 

Since E(PDlL) .£ E(PD2L), we have hAE(PDlL) £ E(PD2L). 

l(CF) 1 t(DLBA) [11, exercise 3.3], and therefore 

{a, bl{a, b}* £ E(PD2L) and by Theorem 11 {a, b}{a, b}* t hlE(PDlL). 

Hence hlE(PDlL), E(PD2L). 
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(ii). Since L(PDlL) .£xE(PDlL) the first sentence follows 

from Theorem 4. The second sentence follows by taking languages 

from L(REG), L(CF) ~ L(REG), L(CS) - L(CF) forming their 

union with {a, b}{a, b}* and applying Theorem 11. The last 

sentence follows from (i). N 

In the foregoing we hawe seen that with deterministic 

propagating one directional L systems, together with nonterminal 

mechanisms and nonerasing homomorphisms, we stay within the 

range of the DLBA languages and cannot even obtain all regular 

languages. We conclude by proving that the closure of L(PDlL} 

under homomorphisms, which map a letter either to itself or to 

A, is equal to the family of recursively enumerable languages. 

The proof method was suggested by a proof of Ehrenfeucht 

and Rozenberg [5] for the equality of L(RE) and the closure 

of L(D2L) under weak coding. The difficulty lies in the 

fact that we have to "read out" the whole word in the language 

in one production since otherwise also subwords of the desired words 

appear under the homomorphism. The solution makes essential 

use of the parallelism in L systems by a firing squad simulation. 

The firing squad synchronization problem, see e.g. Minsky [13], 

can be stated as follows. Suppose we want to synchronize an 

arbitrary long finite chaim of interacting identical finite 

state automata. All finite state automata are initially in 

the same state m and stay in that state if both neighbors 

are in state m. The automata on the ends of the chain are 

allowed~to be different since they sense that they lack one 
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neighbor. Synchronization is achieved if all automata enter 

the firing state f at the same time and no automaton in 

the chain is in state f before that time. In the terminology 

of L systems a firing squad is a PD2L F = <WF, oF, mk> 

such that oF(m, m, m) = op(m, m, A) = m. F satisfies the 

following requirement: there is a function t: N -i- N such 

that for each k e: N holds that o; (k) (mk) = fk and 

o!<mk) ¢ W*{f}W* F F for all i, 0 < i < t (k) • Balzer [2] proved 

that there. is such an F with #W = F 8 and t(k) = 2k - 2. 

After these preliminaries we state the theorem. 

Theorem 13. The closure of L(PDlL) under homomorphisms, 

which map a letter either to itself or to A, is equal to L(RE). 

Proof. Since by now these kinds of proofs are familiar we 

give only an outline~ Let A be any recursively enumerable 

language enumerated by a 1:1.recursive function f: N .!..:.} A; 

n is recovered from f(n) by -1 f • (The case where A is 

finite follows by a similar method.) Let T be a Turing 

machine which starts with the representation of O on its 

tape, say a 1a 2 .•. an
0

, computes f(O), replaces everything 

except f(O) on its tape by the blank symbol b and returns 

to the left most symbol of f(O). Subsequently T retrieves 

0 from f(O) -1 by f , increments O with 1, and computes 

f(l), and so on. In particular we can do this in such a way 

that after the computation of f(n) the instantaneous 

description of T is b1q•f(n)br for some i, re: N and 

a distinguished state q' of T. The next instantaneous 
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description of T is bR.q"f(n)br for another distinguished 

state q" of T. Scanning the leftmost symbol of f (n), 

T starts retrieving n from f (n) by f-l in ~tate q 11
• 

We simulate T by a PD2L G = <W, o, w>; hence the blank 

symbols will not disappear. G is defined as follows: 

W = (°lj; X S U (S - {b})) x WF U S., . 

where~ is the state set of T, S is the symbol set of 

T and b is the blank symbol, and WF is the alphabet of 

the firing squad F. 

w = (qO, a 1 , m) (a2 , m) •.• (a , m) , 
no 

where q O is the start state of T, a1a 2 •.. an
O 

is the 

representation of O and m is the initial state of the 

firing squad F. G simulates T until the situation 
to R. 

o (w) = b (q', c 1 , m) (c2 , m) ••• (cR. , m)br occurs where 
0 

c 1c 2 ••• c 1 is f(O). Subsequently, the substring between 
0 

the b 1 s executes a firing squad and, when the squad fires 

bR,f(O)br. 

c e: S - {b} is rewritten 

as (c, m), except when it h~s b or A as left neighbor 

in which case it is rewritten as (q 11
, c, m). Therefore, 

to+2to R. r 
o (w) = b (q", c 1 , m) (c2 , m) ••• (cR. , m) b , and G 

0 
continues simulating T, retrieves O adds one and computes 

the representation of f(l), and so on. Hence h(L(G)) = A 

where~ h is a homomorphism defined by h(a) = a if a e: S - {b} 

and h(a) = A otherwise. 
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We now simulate G by a PDlL G' = ,<W', o 1 , w' > which 

is defined exactly as the D(O, l)L in Lemma l except that 

o' (:\, (a, A), A) = b for all a f W. Then h' (L(G')) = A 

where h' is a homomorphism defined by h 1 (a) = a if 

a e: S - {b} and h 1 (a) = A otherwise. ■ 

We see that the most simple form of erasing homomorphism, 

i.e. all letters which are not mapped to A are mapped to 

themselves, adds tremendously to the generating power of 

PDlL systems. 

We summarize the more important results of sections 5 and 

6 in Fig. 4. Connection by a solid line means that the upper 

language family strictly contains the lower one; connection 

by a dotted line means that the upper language family contains 

the lower one and it is not known yet whether the inclusion 

is strict; if two language families are not connected at 

all this means that their intersection is nonempty but 

neither contains the other, i.e. they are incomparable. 

We denote the closure of L(PDlL) under homomorphisms 

which map a letter either to itself or to A, by hwL(PDlL). 

(These homomorphisms are a restricted type of weak codings.) 

1. L(RE) = E(D2L) = hl:lE(DlL) = hw(PDlL): Theorems 5, 6, 13. 

2. E[DlL) 1- L(RE) and E(DlL) incomparable with L(CS), 

L(DLBA), L(CF) and L(REG): Theorem 8. 

3. E(DlL) incomparable with hl:lE(PDlL) and hAE(PDlL). 

This needs a brief explanation. Let L = {a, aa} U {b}{c}*{b}. 
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L £ hl:lE(PDlL) .f_hAE(PDlL) by the proof of Theorem 12 (i), 

and Lt E(DlL) by the proof of Theorem 8. Therefore 

(a) hl:lE(PDlL) .f:, E(DlL) and hAE(PDlL) f E(DlL). 

Since E(DlL) contains languages in L(RE) - L(CS) by 

Theorem 8 (ii) and hl: l E (PDlL) £. hA E (PDlL) !j L (CS) by 

Theorem 12 (i) we have 
I 
I· 

(b) E(DlL) / hl:l(PDlL) and E(DlL) ~ hAE(PDlL). 

Furthermore, by definition: 

(c) E (PDlL) ~ E (DlL) and E (PDlL) C. h1 : 1E (PDlL) C hA E (PDlL). 

From (a) (b) and (c) it follows that f(DlL) is incomparable 

with both hl:lE(PDlL) and hAE(PDlL). 

4. L(CS) = E(P2L): van Dalen [3]. 

5. L(DLBA) = E(PD2L) = hAf(PDIL): Theorems 10 and 9. 

6. E (PDlL) f_ h 1 : l E (PDlL) ~ hA E (PDlL) 7' L (DLBA) : Theorem 12 (i) • 

7. E(PDlL) .f. E(DlL) by definition. Strict inclusion since 

E(PDlL) 1° L(CS) by Theorem 12 (i) and 

E(DlL) I) (L(RE) - L(CS)) ~ 1 by Theorem 8 (ii). 

8. E(PDlL) is incomparable with both L(CF) and L(REG) 

by Theorem 8 (i). 

9. (a) l (REG) f; hA E (PDlL) by Theorem 11.. 

(b) E(PDlL) $ hl:lE(PDlL) ~ h1E(PD1L) by Theorem 12 (i) 

(c) E(PDlL) is incomparable with L(REG) and L(CF) 

by Theorem 8 (i). 

From (a), (b) and (c) follows that both hl:lE(PDlL) and 

hAE(PDlL) are incomparable with l(REG) and L(CF) 

respectively. 

Acknowledgemento I thank Professor A. Salornaa for constructive 

criticism on an early draft of this paper. 
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FOOTNOTES 

1) See e.g. Minsky [13] for terminology and results on 

Turing machines. 

2) A family of languages is said to be closed under 

k-limited erasing if, for any language L of the class and any 

homomorphism h with the property that h never maps more than 

k consecutive symbols of any sentence x in L to A, 

h(L) is in the class. We shall furthermore be concerned with 

nonerasing homomorphisms, i.e. homomorphisms which map no 

letter to the empty word A; letter to letter homomorphisms 

(also called codings), i.e. homomorphisms which map letters 

to letters, and homomorphisms which map a letter either to 

itself or to the empty word A. (These homomorphisms are a 

subclass of the weak codings where a letter is mapped either 

to a letter Ol!' to A.) For further details concerning 

homomorphisms and other operations on languages and closure 

under these operations see [11] or [19]. 

3) For the working space theorem see [19, p. 93]. The 

working space theorem is a variant of the linear bounded 

automaton theorem which tells that the family of languages 

accepted by linear bounded automata is equal to L(CS). 

For a definition of linear bounded automata see section 6, 

[11] or [19]. For the uvwxy lemma (or Bar Hillel's lemma) 

see [19, p. 56]. 
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L(CS) 

L(CF) 

L (REG 

Figure 1 
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L (RE) 

l(CS) 

L (CF) 

L (REG 

Figure 2 



54 

L(CS) 

L(CF) 

L (RE 

Figure 3 



E(DlL) 

E (PDlL) 

Figure 4 
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L(RE) = E(D2L) = hl:lE(OlL) 

= hwl (PDlL) 

L(CS) = E(P2L) 

L(DLBA) = E(PD2L) = hAE(PDIL) 

L(CF) 

L(REG) 
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