
AFDELING INFORMATICA

P.M.B. VITANYI

stichting

mathematisch

centrum

IW 28/74 DECEMBER

DETERMINISTIC LINDENMAYER LANGUAGES, NONTERMINALS
AND HOMOMORPHISMS

Prepub I i cation

~
MC

2e boerhaavestraat 49 amsterdam
nrnuorH!it.::K

PJunted a.t :the Ma.:thema..ti.c.ai. Cen:tll.e, 49, 2e BoeJthaavu.tJr.a.a.t, Am.6.teJt..dam.

The Ma.thema..ti.c.ai. Ce.n:tll.e, 6ou.nded :the 11-.th o 6 Feb1tu.aJLy 1946, ,Lt, a. non
pll.o 6U in6ti.:t.r.Lt,,i,o n aiming a.t .the pll.omo:Uo n o 6 pUILe ma.thema..ti.c.6 a.nd w
a.pp.Uc.a.U.oru.. 1.t ,it, .6pon601ted by .the Ne.thelli.a.nd6 GoveJtnment .th/tough :the
Ne.thelli.a.nd6 01tga.niza..ti.on 601t :the Adva.nc.ement 06 Pu/Le 'R<Uiea.Jtc.h (Z.W.O),
by .the Mu.n,i,c.,i,pa.U.ty 06 Am6.te1tda.m, by :the UniveMUy on Am.6.teJt..dam, by
:the F1tee UniveMUy a.t Am6.te1tda.m, a.nd by indU6:tlu<Ui.

AMS (MOS) subject classification scheme (l970):·68A30 68A25 94A30 92A05

ACM -Computer Review- category: 5.22 5.23

DETERMINISTIC LINDENMAYER LANGUAGES, NONTERMINALS AND HOMOMORPHISMS

by

Paul M.B. Vitanyi.

ABSTRACT

Lindenmayer systems are a class of parallel rewriting systems origi

nally introduced to model the growth and development of filamentous organ

isms. Families of languages generated by deterministic Lindenmayer systems

(each string has a unique successor) are investigated. In particular, the

use of nonterminals, homomorphisms and both together are studied for deter

ministic Lindenmayer systems using one sided context (DILs) and two sided

context (D2Ls). Languages obtained from Lindenmayer systems by the use of

nonterminals are called extensions. Typical results are: the closure under

letter to letter homomorphism of the family of extensions of DIL languages

is equal to the family of recursively enumerable languages, although the

family of extensions of DIL languages does not even contain all regular

languages. Let P denote the restriction that the system does not rewrite a

letter as the empty word. The family of extensions of PD2L languages is

equal to the family of languages accepted by deterministic linear bounded

automata. The closure under nonerasing homomorphism of the family of exten

sions of PDIL languages does not even contain languages like

{a 1,a2, •.• ,an}*\{A}, n ~ 2. The closure of the family of PDlL languages

under homomorphisms, which map a letter either to itself or to the empty

word, is equal to the family of recursively enumerable languages. Strict

inclusion results follow from necessary conditions for a language to be in

one of the considered families. By stating the results in their strongest

form, the paper contains a systematic classification of the effect of non

terminals, letter to letter homomorphisms, nonerasing homomorphisms and

homomorphisms for all the basic types of deterministic Lindenmayer systems

"'

using context. The relevance of the used concepts in the biological setting

is discussed.

KEYWORDS & PHRASES: formal languages, Lindenmayer systems, monogenic

rewriting, nonterminals, homomorphisms, Chomsky hierarchy.

4

1. INTRODUCTION

The study of Lindenmayer languages (also called L

languages or developmental languages) has been one of the

major trends in automata and formal language theory during

the past few years. L languages are generated by highly

parallel rewriting systems introduced by Lindenmayer [12]

to model the growth and development of filamentous biological

organisms. These Lindenmayer systems, or L systems for short,

have been investigated in a large number of papers both from

the language theory and theoretical biology point of view.

(See e.g. [9] and the references contained therein.) A

Lindenmayer system is called deterministic if each string has

exactly one successor under the rewriting rules. The purpose

of this paper is to make a systematic study of languages

generated by deterministic L systems and the effect of two

essentially different defining mechanisms: the use of

nonterminals and the use of homomorphic mappings of different

kinds. Both mechanisms are frequently used in formal language

theory [20], (19].

An L system consists of an initial string of letters,

symbolizing an initial linear array of cells (a filament); and

the subsequent strings (stages of development) are obtained

by rewriting all letters of a string simultaneously at each

time step. When the rewriting of a letter may depend on the

m letters to its left and the n letters to its right we talk

about an (m, n) L system. If m = n = 0 the L system is

said to be context independent or without interactions, if

m + n > O the L system is said to be context dependent or

with interactions. Most of the literature on L systems is

concerned with OL systems (m = n = O); lL systems (m + n = 1);

and 2L systems (m = n = 1).

From the point of view of developmental biology the

language consisting of the set of all strings generated by the

system is of primary interest. Such an L language is taken

to correspond with the set of all developmental stages the

organism might attain in its development. Here also

homomorphic mappings (especially those in which a letter

is mapped to a letter) are of considerable importance. The

reasons for this are as follows. When we make observations

of a particular organism, and wish to describe it by strings

of symbols, we first associate a symbol to each particular

cell. We divide the cells into a number of types and associate

the same symbol to each cell of the same type. It is possible

that the development of the organism can be described by

an L system, but the actual system describing it uses a finer

subdivision into types than we could observe. This is often

experimentally unavoidable. In this case, the set of strings

generated by a given L system is a coding of the "real"

language of the organism which the given L system is supposed

to describe. More formal language theory oriented investigators,

6

however, divide the set of letters the L system:uses into a

set of terminals and nonterminals. The language obtained

from the L system by this mechanism consists of all strings

over terminals generated by the system. Such languages are

called extensions of L languages. (They are obtained by taking

the intersection of the "ordinary" L language and the set of

all strings over the terminals, which operation extends considerably

the generating power of the type of L system under consideration.)

Families of extensions of L languages usually have nice mathe

matical properties like closure under certain operations etc.

The distinction between terminals and nonterminals is well

motivated from the linguistic point of view because nonterminals

correspond to the syntactic classes of the language. This

distinction is not so well motivated with respect to theories

of development where we are interested in the set of all

generated strings. One of the facts which have made the use

of nonterminals interesting within the theory of developmental

languages is that it was established in [41 and [5] that, for

basic families of OL systems the use of nonterminals and the

use of letter to letter homomorphisms is equivalent as far

as the generating capacity is concerned. Thus, the trade-off

between the two language defining mechanisms (i.e. nonterminals

versus homomorphisms) has become a very interesting and well

motivated problem for L.systems. Continueing this train of

thought, trade offs between combinations of one or two sided

context, restrictions where no letter is rewritten as the

empty word, use of nonterminals and various kinds of

7

homomorphisms are interesting. The present paper is concerned

with this topic where we restrict our attention to the deter

ministic L systems.

A biological motivation for the use of a nonterminal

mechanism may be given as follows. Suppose that under certain

conditions an organism consisting solely of cells in certain "terminal"

states stabilizes i.e. it reaches an "adult" stage. Such a

condition might be -the presence or absence of chemicals,

enzymes etc. either induced by external agents or by internal

agents. The presence of some cells in "nonterminal" states then

could, by changing the internal condition, prevent the organism

to stabilize. The extension of the L language then corresponds

to the set of all adult stages the modeled organism might

reach in its development. Alternatively, we could select from

all strings generated by an L system those strings that can

only be rewritten as themselves. These languages have been

called stable string languages (or, with a biological conno

tation,adult languages) and were introduced by Walker

(c.f. [21] and the references contained therein). Vitanyi

and Walker [21] established that for many classes of L

systems, especially those using interactions, the families of

extensions and stable string languages are equal. Hence the

use of nonterminals for developmental systems is of interest

in its own right and because of various trade offs which are

possible.

8

The notion of generating languages by monogenic

(deterministic) rewriting systems, i.e. each string has a

unique successor, is more or less foreign to the usual

generative grammar approach since there such a language

would either be empty.or consist of one string only.

Accepting languages by deterministic automata on the other

hand, is a well investigated subject and has important

applications in pars,ing problems for formal languages,

[20] • (Considering all strings generated by a grammar

rather than only strings over terminals is of central

interest for both theories of parsing and development.)

Nondeterminism as it appears in formal language theory

has no counterpart in nature on the macroscopic level in which

we are dealing with the modeling of biological development.

The closest we can approach it in the physical reality of

development (morphogenesis) is by a probabilism where the

probabilities are contingent with influences of unknown factors

internal and external to the organism. Therefore, deterministic

L systems are particularly relevant in the biological setting

as would also appear from the fact that most attempts to

provide L systems modeling the,development of actual biological

organisms use deterministic systems [1], [6], [7], [8], [9],

[10]. The study of the change in pattern, size and weight

of a growing organism as a function of time constitutes a

considerable portion of the literature on developmental biology.

Usually, genetically identical specimens of a specific

9

organism are investigated in a controlled environment and their

changes in time are described. The scientific presupposition

is that identical genetical material and identical environment

will result in an approximately identical developmental history,

i.e. that the experiment is repeateable. This assumes a

deterministic (causal) underlying structure, and makes a good

case for the biological importance of the study of deterministic

L systems.

The paper falls apart in roughly three main themes. In

section 2 we formally define L systems and relate them to

Turing ffl~ehines~ as in [3]. Sections 3 and 4 are concerned

with "ordinary" deterministic L languages, i.e. languages

consisting of all strings generated by the systems; in sections

5 and 6 we deal with extensions of deterministic L languages,

i.e. languages consisting of all strings over some terminals

generated by the systems.

In section 3 we are interested in Lindenmayer languages

which are not recursive. The existence of such languages is

a known fact [3]. We provide a more detailed construction

for the deterministic case and develop a simulation technique

which will prove useful in the sequel of the paper. In section 4

we compare families of deterministic L languages with the

Chomsky hierarchy. Here our results refine those in [3), [17]

and [18]. In section 5 we compare families of extensions

of deterministic L languages with the Chomsky hierarchy.

Typical results are: the amount of context needed for rewriting

10

makes no difference for families of extensions; the only

differences lie in no context, context on one side and context on

both sides. Let the capital D denote the deterministic

property. The family of extensions of D2L languages is

equal to the family of recursively enumerable languages as is

also the closure under letter to letter homomorphism of the

family of extensions of DlL languages. On the other hand,

the family of extensions of DlL languages does not ev.en

contain all regular languages.

In section 6 we consider extensions and homomorphisms of

languages generated by deterministic L systems with the

propagating property: no letter can be rewritten as the

empty word. As is well known such a restriction usually limits

drastically the generating capacity of a rewriting system. We

show that the family of extensions of PD2L languages (the

capital P stands for propagating) is equal to the family of

languages accepted by deterministic linear bounded automata.

The closure under nonerasing homomorphism of the family of

extensions of PDlL languages is strictly included in the

family of extensions of PD2L languages. Indeed, this closure

does not ev.en contain languages like {a1 , a 2 , ••• , an}*\{A},

n > 2. (Contrast this with the result for the nonpropagating

case in section 5.) On the other hand, the closure of the

family of PDlL languages under homomorphisms which map a letter

either to itself or to the empty word is again equal to

the family of recursively enumerable languages.

11

Our strict inclusion results follow from necessary

properties of the considered language families rather than

by an exhaustive analysis of a particular example.

Essentially, the paper analyzes the trade offs which are

possible between combinations of one or two sided context,

the property that no letter is rewritten as the empty word,

use of nonterminals and various kinds of homomorphisms. By

stating results in their strongest form, the paper contains

a systematic classification about the effect of these mechanisms

on the generating capacity of deterministic L systems using

context.

For a treatment of the effect of nonterminals, homomorphisms

and letter to letter homomorphisms in different variations of

OL systems the reader is referred to [14].

12

2. LINDENMAYER SYSTEMS AND TURING MACHINES

We assume that the reader is familiar with the usual

terminology of formal language theory as e.g. presented in

[11] or [19]. Except when indicated otherwise we shall

customarily use, with or without indices, i, j, k, £, m, n,

p, q, r, s, t to range over the set of natural numbers

N = {O, 1, 2, ••• }; a, b, c, d, e, to range over an

alphabet W;u,v, w, z to range over W* i.e. the set of

all words (strings) over W including the empty word A.

#Z denotes the cardinality of a set Z; lg(z) denotes the

length of a word z and lg(A) = 0.

A deterministic (m, n)L system (D(m, n)L) is a

triple G = <W, o, w> where W is a finite nonempty

alphabet; o

into W*;

m
is a total mapping from U

i=O
w E WW* is called the axiom.

. n .
w1 x w x U wJ

j=O
o induces a

total mapping 6 from W* into W* as follows:

6(A) = A and for k > 0 holds that 6(v) = v'

iff v = a 1a 2 ••• ak, v' = N 1 N 2 ••• Nk and for all 1.·, 1.· = 1 2 k ... "" , , . . . , ,

where we take a. =
J

A for all j such that j < 1 or j > k.

The composition of i copies of 6 is inductively defined by

t1 (v) = V and 6i (v) = 6 cii-l (v)) for i > o. When no confusion

can result we shall write o for 6. The L language produced

or generated by G is defined as L(G) = {oi(w) I i > O}.

At this stage we would like to point out that although our

definitibn of an L system varies from the usual one, see e.g.

[9], in that it dispenses with the environmental letter g, it

13

is exactly equivalent to the previous definitions. It has

the additional advantages that proofs get shorter and the

notation more transparent. With regard to the amount of

context used the following terminology is standard throughout

the literature: a D(O, O}L is called a DOL; a D(O, l}L or

D(l, O)L is called a DlL (one sided context); a D(l, l)L is

called a D2L (two sided context); a D(m, n)L such that

m + n > O is called a DIL.

It was shown by v.an Dalen [3] that for a suitable

standard definition of Turing machines (e.g. the quintuple

version), for every Turing machine T with symbol set S.and

state set l/J we can effectively construct a D2L G = <W, o, w>,

W = l/J US, which simulates it in real time, that is, the

t th instantaneous description of T is equal to ot(w). 1)

If we do away with the excess blank symbols on the ends of

the Turing machine tape, by letting the letters corresponding

to the blank symbols derive the empty word A in the L system

simulation of T, then the following statement clearly holds.

Let G = <W, 0, w> be a D2L, s and t/1 be disjoint subsets

of w, and let hl be a homomsrphism from S*l/JS* into S*

defined by h1 (a) = " for all a€ 1'J and h1 (a) = a for all

a ES. The set of languages of the form h1 (L (G) /1 S*'ljJS*)

is the family of recursively enumerable languages .. Since the

family of recursive languages is closed under intersection

with a regular set and k-limited erasing and since there exist

recursively enumerable languages that are not recursive there

14

. 1 h" h t · 2) exist D2L anguages w ic are no recursive. (S*$S* is

regular and h 1 is 1-limited on S*$S*.) That all L

languages considered in this paper are recursively enumerable

follows by the usual Turing machine simulation argument.

15

3. NONRECURSIVE L LANGUAGES

At the end of the last section we gave the usual proof

that there are non recursive D2L languages. By an application

of a result due to Rabin and Wang [15] we can be slightly

more specific and at the same time develop a simulation technique

which will be of use in the sequel. Let the word at any

moment t in the history of a Turing machine be the string

consisting of the contents of the minimum block on the tape

at t that includes all the marked squares and the square

scanned at the initial moment (the origin).

Theorem 1. (Rabin and Wang). For any fixed (finite) word

at the initial moment we can find a Turing machine T such

that the set of words P in its subsequent history is not

recursive.

Proof. Take a nonrecursive set A C.{l}* enumerated by a

one-one recursive function 1:1 f: N -->A; we can recover n

from f(n) by -1
f . That every infinite recursively enumerable

set can be enumerated by a one-one recursive function follows

from Rogers [16, exercise 5.2]. We can now construct a

Turing machine T with symbol set S = {b, 1, a}, where b

is the blank symbol,such that T first erases the finitely

many marks on the initial tape and returns to the origin,

puts down the representation of O on the tape and calculates

the value of f(O). Subsequently, T erases everything else

except the representation of

sentation of O from f(O) by

16

f(O), retrieves the repre

-1 f adds one to this

representation and computes f(l), and so on. In particular

we can do it in such a way that the specific symbol a is

used, after the initial tape contents is erased, only to

mark f(O), f(l), ••• ; it is erased before we calculate

f(n + 1) from f(n). Moreover, the string consisting of

a followed by the representation of f{n) always begins at

the origin. Let h 2 be a homomorphism from {a}{l}* into

{1}* defined by h 2 (a) = A and h 2 (1) = 1. Now

* h 2 (P (\ {a}{l}*) = A where h 2 is 1-limited on {a}{l}

and {a}{l}* is regular. Since A is nonrecursive P must

be nonrecursive by the closure of the recursive languages

under k-limited erasing and intersections with

sets. ■

regular

Theorem 2. Let GT be a D2L which simulates a Turing machine

T satisfying the statement of Theorem 1 (in the §ense

explained in section 2). Then L(GT) is nonrecursive.

Proof. Let h 3 be a homomorphism on L(GT) defined by

h 3 (s) = s and h 3 (q) = A for alls ES and all q E $,

where S and $ are the symbol set and the state set of

T, respectively. Since L(GT) C.. S*$S* h 3 is 1-limited on

L(GT). h 3 (L(GT)) = P and since P is nonrecursive, L(GT)

is nonrecursive. ■

We use GT to construct a nonrecursive D(O, l)L

language.

Lemma 1. Let G = <W, a, w> be any D2L. There is an

17

algorithm which, given G, produces a D(O, l)L G' = <W', a', w'>

such that for all t, o' 2 t(¢w) = ¢ot(w) and a• 2 t+l(¢w) =

¢ i (a 1 , a 2) (a 2 , a 3) • • • (ak , A) if where

¢ and ¢' are letters not in W.

Proof. Construct G' = <W', a', w'> as follows.

w u = w u (W X (W V {A})) u { ¢, ¢'},

where¢ and ¢ 1 are letters not in W.

QI (A, a, c) = (a, c) ,

o 1 (A, ¢, c) = ¢ I f

o 1 (A, ¢ I I A) = ¢,

QI (A, (a, b), (b,c)) = o(a, b, c) ,

QI (A, ¢ I f (a, c)) = ¢0 (A, a, C) ,

o 1 (A, (a, A) , A) = A,

for all a, b £ w and all C £ w U O.L (The arguments for

which QI is not defined shall not occur in our operation

of G 1
•)

For all words v = a1 a 2 ••• ak £ W* holds:

- 2 k > 1: 0 1 (¢a1a 2 •.. ak) = 6 1 (¢ 1 (a1 , a 2)(a2 , a 3) ••• (ak, >..))

= ¢o(A, a 1 , a 2)o(a1 , a 2 , a 3) ••• o(ak_1 ,ak, A

= ¢6(a1a 2 ••• ak).

18

k = 1: 5 12 (¢a1) = 5'(¢• (a1 , A))= ¢o(A, a 1 , A)= ¢5(a1);

k = 0: 6 12 (¢) = 5' (¢') = ¢ = ¢5(A).

- 2t -t Therefore, for all t, o' (¢w) = ¢0 (w) and

6 • 2 t+ 1 (¢w) = ¢ ' (al, a2) (a2 , a3). •• (ak, A)

if

The following two corollaries illustrate the relation

between DlL and D2L languages.

Corollary 1. Let G = <W, o, w> be a D2L. There is an

algorithm which, given G, produces a D(O, l)L G' (resp.

a D(l, O)L G") and a letter to letter homomorphism h 4

such that h 4 (L(G')) = {¢}L(G) (resp. h 4 (L(G")) = L(G){¢}) ..

(Hint: Let h 4 be a letter to letter homomorphism defined

by h 4 (a) = a for all a E WU{¢}, h 4 (¢') = ¢, and

h 4 ((a, b)) = a for all (a, b) e:-W x (WU {A}).)

Corollary 2. Let G = <W, o, w> be any D2L. There is an

algorithm which, given G, produces a D(O, l)L G' (resp.

D(l, O)L G") and a homomorphism h
5

, which maps a letter

either to itself or to A, such that

19

(Hint: h 5 is defined by h 5 (a) = a for all a E W and

h5 (¢) = A. h 5 is 1-limited on {¢}W* and W*{¢}.)

Theorem 3. We can construct DlLs whose associated languages

are not recursive.

Proof. Let GT= <WT, oT, wT> be a D2L as in Theorem 2.

By Corollary 2 we can construct a D(O, l)L G' such that

h 5 (L(G') /\ {¢}WT) = L(GT). Since {¢}WT is regular, h 5

is a 1-limited homomorphism on {¢}WT, and L{GT) is not

recursive, it follows that L(G') is not recursive. I

20

4. DETERMINISTIC L LANGUAGES AND THE CHOMSKY HIERARCHY

A natural subclass of the L systems is formed by the

propagating L systems. A deterministic L system G = <W, o, W>

is propagating if for all arguments the value of o is not

equal to A• We indicate this property by prefixing the

capital

PDILs.

P to the type of L system, e!g. PD(m, n)Ls, PDOLs,

From the work of van Dalen [3], Rozenberg [17] and

Rozenberg and Lee [18] on nondeterministic L systems we can

readily deduce several facts about the place in the Chomsky

hierarchy of the deterministic L languages: e.g. the PDIL

languages are strictly included in the context sensitive

languages, the DIL languages are strictly included in the

recursively enumerable languages. By the use of direct

arguments concerning the deterministic nature of the systems

under consideration we shall refine these results implicit in

the above references and fix completely the place of the

D(m, n)L and PD(m, n)L languages with respect to the four

main classes of the Chomsky hierarchy.

Lemma 2. There are regular languages over a one letter alphabet

which are not DIL languages.

Proof. L = {aaa)*(a Uaa) is such a language. To prove this

we make use of the following:

21

Claim. If G = <W, o, w> is a unary D(m, n)L (i.e. #W = 1)

which generates an infinite language then there exist positive

integers t 0 , p and x such that for all t ~ t 0 the following

equation holds:

(1) lg(6t+l(w)) = p(lg(5t(w)) - m - n) + x.

Proof of Claim. Let ~cam a an)= aP u , , and let

m-1
x = 2 lg(o(ai, a, an))+

i=0

If L(G) is infinite then there
--t
- 0 2(m + n) 1. lg(o (w)) > + X +

1. 0. -t Case p = lg (o (w)) < y -
{ - k y = max lg(o(a)) I k < m + n}:

n-1
I lg(o(am, a, aj)).

j=0

exists a to such that

for all t > 0 where

contrary to the assumption.

Case 2. p > 0. Clearly (1) holds.

By observing that L = {ai it 0 mod 3} we see that for

every positive integer k such that k = 0 .mod 3 holds that

k-l k+l k+ 2 L and k J L H 'f L(G) L a , a , a E a ,., . ence , 1. =

it follows that p = 1 in (1). But then the lengths of

the subsequent words in L(G), ordered by increasing length,

differ by a constant amount x - m - n and hence L(G) ~ L. ■

Let X be any of the restrictions on L systems

discussed above. Then L(XL) denotes the family of XL languages,

e.g. L (D(m, n)L), L (DIL), L (D0L). Let L (REG), L (CF), L (CS}

and L(RE) denote the families of the regular, context free,

context sensitive and recursively enumerable languages, respectively.

22

Theorem 4. (i) For all m, n > O the intersection of

L(PD(m, n)L) with L(REG), L(CF) - L(REG) and L(CS) - L(CF}

are nonempty; there are languages in L(REG), L(CF) - L(REG)

and L (CS) - L (CF) which are not in L (PDIL) ; L (PDIL) ~ L (CS).

(Fig. 1) •

(ii) For all m, n > O, such that m + n > 0, the inter

sections of L(D(m, n)L) with L(REG), L(CF) - L(REG),

L(CS) - L(CF} and L(RE) - L(CS) are nonempty; there are

languages in L(REG), L(CF} - L(REG), L(CS) - L(CF) and

L(RE) - L(CS} which are not in L(DIL); L(DIL) ~L(RE).

(Fig. 2).

(iii) The intersections of L(DOL) with L(REG},

L(CF} - L(REG) and L(CS) - L(CF) are nonempty; there are

languages in L(REG), L(CF) - L(REG) and L(CS) - L(CF)

which are not in L(DOL); L(DOL) ~ L(CS). (Fig. 3).

(iv). For all m, n > O, L(PD(m, n)L) ~ L(D(m, n)L);

L(PDIL) ~ L(DIL).

Proof. (i) and (ii). Let G1 , G2 and G3 be PDOLs defined

by:

G1 = <{a}, {o()., a, A)= a}, a>,

G2 = <{a, b, c}, {o(>., a, A)= a, o(A, b,).) = b,

o(l, c, A) = acb}, c>

G3 =<{a}, {o ()., a,).) = aa}, a>.

{ n n } L(G1) = {a}, L(G2) = a cb n > 0
2n

and L(G3) = {a I n ~ O}.

L(G1) £ L(REG); it is well known that L (G2) £ L (CF) ... L (REG);

L (G 3) £ l., (CS) by the working space theta.rem or the usual linear

23

bounded automaton argument and L(G
3

) ¢ L(CF) by the uvwxy

lemma. 3> This proves that all considered families of languages

have nonempty intersections with L(REG), L(CF) - L(REG) and

L(CS) - L(CF). By Theorem 3 there is a DlL language L(G)

such that L(G) £ L(RE) - L(CS). The language L of Lemma 2

belongs to L(REG) but not to L(DIL). L VL(G2) £ L(CF) - L(REG)

and it is easy to show that L UL (G
2

) ¢ L (DIL). L 1 =

(2 t)

{a2 I t ~ O} does not belong to l(DIL) because of

equation (1) but L' £ L(CS) - L(CF) by the working space

theorem and the uvwxy lemma. The language A £, { l} * of

Theorem 1 belongs to L(RE) - L(CS) and A¢ l(DIL) by

equation (1). Hence there are languages in L(REG), L(CF) - L(REG),

L(CS) - L(CF) and L(RE) - L(CS) which are not in L(DIL).

From this it follows that the inclusions of l(PDIL) in l(CS)

and of L(DIL) in l(RE) are strict.

(iii) Follows from the proof of (i) and (ii) and the

observation that L(DOL) £ L(CS), Salomaa [19, p. 245].

(iv) L(PD(m, n)L) S:. L(D(m, n),) holds by definition.

Strict inclusion follows from the fact that if A EL and

L £ L(D(m, n)L) then L ¢ L(PD(m, n)L)~ (It is easy to give

nontrivial counterexamples of DOL languages which are not

PDOL languages; for m + n > 0 there are nonrecursive

D(m, n)L languages by Theorem 3 and all PD(m, n)L languages

are context sensitive by (i)). Similarly we prove L (PDIL) ;,; L (DIL). I

24

From equation (1) it follows immediately that

L(D(m, n)L) ~ L(D(m', n')L) for m < m' and n = n' or

m = m' and n < n'. In particular L(DOL) ~ L(DlL) ~ L(D2L).

Analogously this holds with the propagating restriction added.

For a further discussion of the inclusion relations between

families of L languages using different amounts of context

see D.7] and 0.8].

From Lemma 1 we also have the following useful information

concerning the difference between L(D2L) and L(DlL).

If Le L(D2L) then there is an L' E L{D(O, l)L

(':resp.L" E L(D(l, O)L)) such that {w I ¢w E L 1
} = L

(resp. {w I w¢ EL"}= L).

25

5. EXTENSIONS OF DETERMINISTIC L LANGUAGES

The usual device in formal language theory for extracting

languages from rewriting systems is the use of nonterminals,

i.e. by selecting from the set of produced words all words

over a terminal alphabet. This operation is called inter

section with a terminal alphabet. Such an operation

considerably contributes to the generating power and therefore

a language E(G, VT)= L(G) f1 v; is called an extension of

an L language. where G is an L system: and VT is some

alphabet. We denote the family of extensions of XL languages

by E(XL) where X is one of our usual restrictions.

Considering nondeterministic L systems, van Dalen [3] proved

that E(lL) = L(RE), and E(P2L) = L(CS).

Furthermore, E(0L) f L(CS), see e.g. Herman and Rozenberg [9].

For deterministic L systems it therefore follows that

E (DlL) ~ E (D2L) c L (RE); E (PDlL) S E (PD2L) f:... L (CS) (and in

general by the working space theorem E(PDIL) C L(CS)); and

E(D0L) ¥ L(CS). From the definitions it is immediate that

L(XL) c E(XL) for all classes of XL systems.

Theorem 5. E(D2L) = L(RE).

Proof. Let A be any recursively enumerable language over

some alphabet

function f:

which is enumerated by a

n is recovered from

1:1

f(n)

recursive

by
-1 f •

That every infinite recursively enumerable language can be

enumerated by a one-one recursive function follows from

26

Rogers [16, exercise 5.2); for finite languages clearly an

appropriate version of our proof suffices. Let T be a

Turing machine with symbol set s = VT U {a, b} where a, b t VT

and b is the blank symbol. At time t = 0 T is presented

with a finitely inscribed tape of which the origin contains a.

We assume that the tape is halfway infinite, i.e. the reading

head of T never scans a square left of the origin. That

this is no restriction on the power of a Turing machine is

well known. T starts with erasing the finitely many marks on

its tape except the symbol a at the origin, returns to the

origin, writes the representation of O on the tape and

calculates the value of f(O}. Subsequently, T erases

everything else except the representation of f(O), retrieves

the representation of 0 from f (0) by -1 f , adds one to

this representation and computes f(l), and so on. In

particular we can do this in such a way that the specific

symbol a is used only to mark the origin and is erased only to

indicate f(O), f(l), ••• ; it is printed again before we

calculate f(n + 1) from f(n). If P is the set of all words

in the history of T then P /) {b}VT = {b}A. Let GT =

<WT' oT, wT> be a D2L which simulates T in the sense of

Theorem 2. Since T uses a halfway infinite tape the strings

of GT always have a letter a at the left end except when

f (n) has been computed for,·some n in which case the string has

a letter q. (indicating the state of the simulated Turing
1.n

machine) at the left end. That is, for each n EN there is

a and a state (where is the state set of T)

such that q. af (n) ..
].

n

27

We can construct T with two

distinguished states q 1
, q" in l/J such that for all n:

t +2
oT n (wT) = aq"f (n) , and q 1

, q"

never occur in n e: N. Now

we modify GT to G = <WT, o, wT> where o is exactly like

oT but for the productions o(A, q, a)= A

and o(A, c, d) = aq" for all letters c e: VT and de: VTU {A}.
t +l

It is easily seen that on (wT) = f(n) for all n and

t t e: W*l/JW* for all t such that t 'f + 1, o (wT) = oT(wT) t T T n

n e: N. Hence LCG> n v~ = A. (To capture the case where

A e: A we could define 6(A) = aq".) •
Theorem 6. The closure of E(D(O, l)L) (or E(D(l, 0)L))

under letter to letter homomorphism is equal to L(RE).

Proof. We prove the theorem for D(0, l)Ls. The case for

D(l, 0)Ls is completely analogous. Let G = <W, o, w>

be a D2L constructed as in Theorem 5.

be a D(0, l)L defined as follows.

W' = W U (W x (W U { 0, 1, A})) U { ¢}

where 0, 1, ¢ are letters not in W.

WI = (bl, 1) (b2 , , 0) ••• (bn, 0) if w

o 1 (A, a, b) = (b, 0) ,

o 1 (A, ¢, a) = (a, 1) ,

o 1 (A , ¢, A) = () I (A f a, A) = o'<>.., (a,

,

Let GI = <WI , 0 I , w I>

= blb2 ••• bn.

A) , A) = >..,

28

o' (A, (a, 0) , (b, 0)) = (a, b),

o 1 (A, (a, 1) , (b, 0)) = ¢(a, b) ,

o ' (A, (a, 0) , A) = (a, A) ,

o • (A, (a, 1) , A) = ¢(a, A) ,

o ' (A, (a, b), (b' c)) = o (a, b, c) ,

o' (A, ¢, {a, c)) = ¢o(A, a, c) ,

for all a, b E W and all c E WU {A}. {The arguments for

which 0 1

of G'.)

is not defined shall not occur in our operation

Assume that At L(G).

We see that for all t holds that h (0 13t(w')) = 6

where h6 is a letter to letter homomorphism from {W

onto W* defined by h 6 ((a, 0)) = h 6 ((a,. 1)) = a for

a E W. Since by the synchronicity of the productions

0 1t (w 1
) E {¢}W'* for all t % O mod 3 we have

o t (w)

X {l,

all

O})*

h 6 (L(G')I) (W x {O, l})*) = L(G) and therefore h 6 (L,~G') /1 (VT x

{O, l})*) = L(G) n v;. (To capture the case where A E L(G)

-we could define o' (A) = ¢0 (A~,, and the proof proceeds analogously.) ■

Theorem 7. If LE E(D2L), or equivalently LE L(RE), then

{¢}LE f(D(O, l)L (similarly L{¢} E f(D(l, O)L)) where ¢

is a letter not occuring in a word in L.

Proof. Follows immediately from Lemma 1.

We shall now prove some properties of DOL and DlL

languages which give us criteria to show that certain languages

29

cannot be DOL or DlL languages or their intersections with a

terminal alphabet.

We call a language permutation free if no word in the

language is a permutation of any other word in the language.

Lemma 3 ... Let G = <W, o, w> be a DOL. If L(G) is infinite

then L(G) is permutation free.

Proof. Suppose L(G) is infinite, v, v' E L (G) , VF v',

v' is a permutation of v. Let ok (v) = v' for some k >

Since v' is a permutation of v we have for each n > 0:

onk(v) is a permutation of v. There are only a finite

number of words in W* which are a permutation of v and
n k

> n1 > 0 such that o 1 (v) =

for some and therefore

and

o.

so L(G) is finite: contradicting

the assumption. I

The converse of the lemma holds in the following sense.

Let G = <W, o, w> be a DOL. L(G) is infinite iff for no

integers i and j, i # j, holds that oi(w) is a

permutation of oj(w). (We consider A to be a permutation

of A.) •

Corollary 3 •. Let G = <W, o, w> be a DOL and VT a subset

of W. If E(G, VT} is infinite then E(G, VT) is permu

tation free, i.e. all infinite languages in E(DOL) are

permutation free.

30

We call a word v' a prefix (postfix) of a word v

if v = v 1 z (v = zv') for some word z. We call v' a

proper prefix (proper postfix) of a word v if v' is a

prefix (postfix) of v and v' # v.

Lemma 4. Let G = <W, o, w> be a D(l, 0)L (D (0, 1) L).

(i) L(G) is finite iff o t(w) = Qt I (W) for some t, t' such

that t # t I•

(ii) Let L(G) be infinite. If v, v• £ L(G)

and v' is a prefix (postfix) of v then, with finitely

many exceptions, for each word u·in L(G) there is a word u'

in L(G) such that u' is a proper prefix (postfix) of u.

Proof. (i) Obvious by the deterministic property of G.

(ii) We prove (ii) only for D(l, 0)Ls and prefixes. The

proof is completely analogous for D(0, l)Ls and postfixes.

Since L(G) is infinite v # v' by (i).

Case 1. 6t(w) = v' and ok(v') = v = v'z for some

t > 0 and some k > 0. For each j ~ 0 there is a z' £ W*

such that ot+k+j(w) = oj(v) = oj(v'z) = oj(v')z' = ot+j(w)z 1 ,

and by (i) z' # >...

2. o t (w) = v'z and k = v' for some Case = V o (v I z)

t > 0 and some k > o. ok(v 1 z) = ok(v')z' = v• for some

z' £ W* and by (i) Z I # >... Therefore, lg(ok(v 1)) < lg(v').

By iterating this argument lg(v 1
) + 1 times we obtain either

lg(ok(lg(v')+l) (v')) < lg(v') - lg(v 1) which is impossible or

0klg(v') (v') = ok(lg(v')+l) (v'). In the latter case L(G)

is finite: contradictory to the assumption. I

31

(If we allow 6(A) ~ A then Lemma 4(ii) holds under

the additional restriction: not both A E L(G) and

Corollary 4. Let G = <W, o, w> be a D(l, O)~ (D(O, l)L)

such that E(G, VT) is infinite for some VT (and not

both A E L(G) and 6(A) ~ A). If v, v' E E(G, VT) such

that v 1 is a prefix of v (v' is a postfix of v) then;;

with finitely many exceptions, for each word u in E(G, VT)

there is a word u' on E(G, VT) such that u = u'z

(u = zu') for some z £ vTv;.

Clearly, Lemma 4 and Corollary 4 hold for D(m, -O)Ls

with respect to prefixes and for D(O, m}Ls with respect

to postfixes, m > O.

Theorem 8. (i) The intersection of E(PDlL) with L(REG),

L(CF) - L(REG) and L(CS) - L(CF) are nonempty. There are

languages in L(REG), L(CF) - L(REG) and L{CS)

which are not in E(PDlL). E(PDlL) ~ L(CS).

L(CF)

(ii) The intersections of E(DlL) with L(REG),

L(CF) - L(REG}, L(CS} - L(CF) and L(RE) - L(CS) are non

empty. There are languages in L(REG), L(CF) - L(REG),

L(CS) - L(CF) and L(RE) - L(CS) which are not in E(DlL).

E (DlL) 1- L (RE) •

32

(iii) The intersections of E(DOL) with L{REG),

L(CF) - L(REG) and L(CS) - L(CF) are nonempty. There are

languages in L(REG), L(CF) - L(REG) and L(CS) - L(CF)

which are not in E(DOL). E(DOL) ~ L(CS).

Proof. Since L(DXL) C E(DXL) the first sentences of the

statements (i) - (iii) are correct by Theorem 4. Let

Ll • { a, aa} U{b}{c}*{b}, L2 = { a, aa} lJ{anbcn I n > O} ,

L3 = { a, aa} U {bncndn I n > O} and L4 = {a, aa} V {a}A{a}

where A _£ {l}* is uhe nonrecursive language from Theorem 1.

By Corollary 4 Ll, L2, L3 and L4 do not belong to E (DlL) ,

but Ll e: L (REG) , L2 e: L(CF) - L(REG) as is well known,

L3 e: L(CS) - L(CF) as is well known and L4 e: L (RE) - L(CS).

The inclusion in the last sentences of the statements of <i>

and (iii) follows by the usual working space theorem and

strict inclusion by the foregoing. The inclusion in the last

sentence of the statement of (ii) is true by the usual

Turing machine simulation argument and strict inclusion follows

by the foregoing. ■

We might note that the existence of languages in L(REG),

L(CF) - L(REG} and L(CS) - L(CF) which are not in E(DOL)

could also have been proven using Corollary 3.

That with respect to families of extensions of L languages

differences can only lie in no context, one directional context

33

and two directional context, but not in the amount of

context, is shown by the next theorem.

Theorem 9.

(i) E(D2L) = E(DIL).

(ii) E(PD2L) = E(PDIL).

(iii) E(DlL) = U (E(D(i, O)L) UE(D(O, i)L)).
iEN

(iv) E (PDlL) = LJ (E (PD (i, O} L) L.) E (PD (0, i) L)).
ie:N

Proof. We give the outline of a simulation technique to

prove (i). (ii) - (iv) are completely analogous. ((i)

follows also from Theorem 5 but the present proof is

direct.)

Let G = <W, o, w> be a D(m, n)L and let r be the

greatest one of m and n. We construct a D2L G' = <W', o', w'>
m . n .

as follows .. , w 1 = W U (U w1
x w x U wJ) and w 1 = w. The

i=O j=O

p:-oduction rules o' are defined in such a way that, for

each production of G, G' executes r productions. The

first r - 1 of these r productions serve to gather the

necessary context for each letter in the string and the

th r production produces the string produced by G •
. '

E.g. If o(a1 a 2 ••• ak) = a 1a 2 ••• ak then

r r-1 o' (a1a 2 ••• ak) = 0 1 (().,a1 ,a2)(a1 ,a2 ,a3) ••• (ak-l'ak,A))

r-2 = o' ((A,a1 ,a2a
3

Xa1 ,a2 ,a3a 4) •••

(ak-2ak-l 'ak,A))

34

••• (¾-~+lak-m+2··•¾-1 1 ak, A))

= 01cx2···cxk.

for all t F O mod r. Hence, for each subset VT

L c G • > () v; = L (G > 11 v; . II

of W,

Similarly we can prove the analog of Theorem 9 for the

general case of nondeterministic L systems.

In the next section we study E(PD2L) and show, among

other things, that the closure of E(PDlL) under nonerasing

homomorphism is strictly contained in E(PD2L).

35

6. EXTENSIONS OF PROPAGATING DETERMINISTIC L LANGUAGES

A linear bounded automaton M is a Turing machine with,

say, symbol set s, state set~ and start state q
0

E ~

such that M accepts a word v over a subset VT of S

using at most c lg(v) tapesquares during its computation,

where c is a fixed constant. It is well known that the family

of languages accepted by linear bounded automata is equal

to L(CS),(11] or [19]. A deterministic linear bounded

automaton (DLBA) is a linear bounded automaton such that

each instantaneous description has exactly one successor.

We shall show that f(PD2L) equals the family of

languages accepted by DLBA's, i.e. L(DLBA). Thus the

question of whether or not the inclusion of f(PD2L)

in f(P2L) is strict is shown to be equivalent with one

of the more famous open problems in formal language theory,

i.e. whether or not the inclusion of L(DLBA) in L(CS) is

strict,[11] or [19]. That E(PDlL) ~ f(PD2L) follows

already from the fact that it is easy to construct a PD2L

G such that L(G) = {a, aa} U {b}{c}*{b} which language is not in

E(PDlL) by Corollary 4. However, we shall prove the much

stronger result that the closure of E(PDlL) under nonerasing

homomorphisms is strictly contained in E(PD2L).

36

Theorem 10. E(PD2L) = L(DLBA).

Vroof. We give an outline since the details would be tedious.

Let G = <W, o, w> be a PD2L and VT a subset of W.

Construct a deterministic linear bounded automaton M as

follows. M uses an amount of tape equal to 4 times the

length of its input word plus 1, divided in 4 sections I, II,

III, IV of equal length. The input word v is written on

I; section II contains the axiom w, section III is blank

and section IV contains the representation of O in the

#W-ary number system. M compares oi(w) with v, i > 0,

and accepts v if oi(w) = v. Otherwise, scuttling back

and forth between sections II and III, M produces oi+l(w)

from oi(w) such that oi+l(w} is written on III if oi(w)

(If lg(oi+l(w)) > -
Subsequently, M

is written on II and vice versa.

lg(v) + 1 then M rejects v.)

increments the number written on

a number equal to #Wlg(v)+l - 1

IV by 1. If IV contains

then M rejects v.

Otherwise, M compares oi+l(w) with v, and so on.

V E L (G) iff i V = o (W) for some i < #Wlg(v)+l - 1

see that L(M) = L(G), where L(M) is the language

accepted by M. Now construct M' from M where M'

Since

we

is exactly like M except that M' first ascertains that

v E VT and rejects v if VJ{. VT. Then L(M') = L(G) /1 VT,

Let M be a DLBA, which accepts L(M) over S, using

no more than en tapesquares fwr an input word of length n.

Now construct a DLBA M' such that M1 generates all words

v0 ,v1 , ••• over S in lexicographical order and accepts or

rejects them by simulating M. In particular we can do it

37

such that M', started in state q0 on a word vi, i ~ O,

written from left to right from the origin with the remaining

(c - l)lg(vi) tape squares containing blank symbols, computes

the next word vi+l written from left to right from the

origin with the remaining tapesquares containing blank symbols.

Subsequently, M' proceeds to the origin,enters the start

state qo of M and simulates M. After rejection or accep-

tance M erases everything but vi+l from the tape and

starts in q'
0

at the origin, i.e. scanning the left most

letter of vi+l' and so on.

Let V be the set of symbols of M', b the blank symbol,

and iµ the state set of M'. Construct G = <W, o, w> as

follows.

w = V U (Ve x (iµ tJ { A }) x { 0 , 1 , 2 , ••• , c}) ,

w = (a, b , b, ••• , b, qo, 1) ,

where

order.

a

G

is the first word of SS*

simulates M' as follows:

in the lexicographical

l..f ~tc > v w = a 1 a 2 ••• a ,
- - -n

~1~2 --·~n E {Vex {A} x {O})*(Vc xiµ x{l,2, ••• ,c})

(Vex {A} x {O}i*

then the j th element of a 1 , 1 ~- j ~ c and 1 < i < n,

corresponds with the i + (j l)nth tape square of M',

the c + 1th element of a. indicates the present state of
~l.

M' if one of the tapesquares coded in a.
- l.

is under scan

(and is A otherwise) and the c + 2th element tells which

(and is O otherwise). In particular we can construct G

such that if M' enters an accepting state the accepted word

38

v. over s is "read out" from right to left, and subsequently
l.

is restored (from left to right) to the form (a1 ,b,b, ••• ,b,q0,1)

(a2 ,b,b, ..• ,b,A,0) ••• {an,b,b, ••• ,b,A,0) for vi= a 1 a 2 ••• an.

Hence L (G) /1 S* = L (M) • ■

We now proceed to show that the closure of E(PDlL)

under nonerasing homomorphism does not contain L(REG).

Lemma 5. Let G = <W, o, w> be a PD(l, O)L such that

L(G) is infinite. Let r = #W. For each t > r there is a

lg(v) > .Llog ((r - l)t + r)J , and r

a constant k, 0 < k < lg(v) r , such that V is a prefix of

ot+nk(w) for all n. For PD(O, l)Ls this holds with respect

to postfixes.

Proof. Denote the i th letter of a string oj(w), i, j EN,

by a ..•
l. J

Since L(G) is infinite, the slowest rate of growth

G can achieve is by generating all words over W in le~ico

graphical order, i.e. lg(ot(w)) > llog ((r - l)t + r)j..,
- r

Therefore, a .. is indeed a letter in W for all j such
i-1 1 J

that j > I ri. Since there are only r different letters
i=l

in w, there are natural numbers j 1 and k1 , j 1 , k1 < r

and k 1 > 0 such that Since G is a

PD(l, O)L, for all n. Therefore, a letter

in the second position has as its left neighbor at all

39

times, jl + nk1 , n EN. There is surely a letter in the

second position for all times t > r. Therefore, there are

positive natural numbers

for some nl, n2 E N and

of this argument, for each

natural numbers js and

s

a .
2:12

=

s = 1,

ks, j >
s -

a2j2+k2

2, . . .
s-1
I r

i=l

.

i

j2 + k2 = jl + n2kl

By iteration

there are positive

s
, ks ~ r and

< I
i=l

.. i r , such that

for all n. Since G is a PD(l, O)L,

asj +nk '
s s

= alj +t+nk l2j +t+nk
s s s s

asj +t+nk
s s

for all t and n. Therefore, for all s and all t such that

.S

I
s-1
I i r , there is a prefix V of t o (w) ,

i=l i=l

lg(v) ~ Llogr((r - l)t + rl.1 = s, and a positive constant
t+nk

k < rs such that v is a prefix of o s(w) for all n. s-

Hence the lemma. •

Contrasting Lemma 5 with Lemma 4 gives a nice insight in

the influence of the propagating restriction with respect to

40

the necessary behavior of pre- and postfixes of the sequence

of words generated by DlLs.

Theorem 11. Let V be any alphabet containing at least two

letters. No language containing W* belongs to the closure

under nonerasing homomorphism of E(PDlL).

Proof. Assume that {a, b} CV, and consider the subset
n

L = {(anbn)n n > l}

for some PD(l, O)L G

homomorphism h from

of V*.

= <W, 0 ,

V* T into

Suppose that

w>, a set VT

V*. Define

L < h (L (G) I) VT)

and a nonerasing

t by n

As is easily seen,

and

lg(ot(w)) ~ mtlg(w) where m is
n

the maximum length of a value of o.

mtnlg(w)c where c = max{lg(h(a)) I
Therefore, (2n) n <

a E Or, t > n -

for all n > n 0 where n 0 is
t

some fixed natural number. For each n>n
0

o n(w) has a prefix

such that lg(vn) ~ llogr(tn(r-1) + r)j ~ n logrn, r = iW, and vn occurs

infinitely often with a constant period k by Lemma 5.
t n

Since for each n the prefix vn of o n(w) is mapped

under h to a~z, z E {a, b}*, vn
t I

of on (w) for n # n' and n, n• >

contradiction by showing that the kn =
Since G is propagating and the prefix

with a constant period k there is a
j n

o n(v) '= V Z for some Z E W*. But
no n

cannot be a prefix

We now derive a

k
no

for all n > no·

V n (n ~ n 0) occurs

jn such that

then

j
o n(v z)

no p

j
= o n(v)z' = v zz' n

0
p n p

41

for

all p and some z, z p' z' e: W*. I.e. from time t + .
Jn p no

the prefix vn occurs with period k and k = k
no n no

(or k divides k n) for all n > no. Hence
n 0

n
h(L(G) /) v;) n { (anbn)n I n > l} < kn

0

and

(Since VV* = (VV*)R, i.e. the language consisting of all

words from VV* reversed, the above proof holds also for

PD (0, 1) Ls.) . ■

We see that any language which contains a langu~ge
·,

n > l} cannot be the image under nonerasing

homomorphism of a language in E(PDlL). Hence also e.g.

({a}{a}*{b}{b}*)*. The idea behind the proof of Theorem 11

is roughly the following. If a language L contains a large

enough subset L' where · each pair of words in L 1
, say

v and v•, are distinguishable by their resp. prefixes

(postfixes) u and u' such that lg(u) = O(log log(lg(v)))

42

and lg(u') = O(log log(lg(v'))) then L cannot be in the

closure under nonerasing homomorphism of E(PD(l, O)L)

(E(PD(O, l)L). For example {b}{b}*{a}*{b}{b}* contains
n

{bn(an)n bn In> l} d th f · · an. ere ore is not contained in a

nonerasing homomorphic image of a lanquaqe in E(PDlL).

Let us denote the closure-of a language family X under

nonerasing homomorpftism by hAX and under letter to letter

homomorphism by h 1 : 1x.

Theorem 12. (i) E(PDlL) ~ hl:lE(PDlL) C hAE(PDlL) ~

E(PD2L) = L(DLBA) = h~E(PD2L).

(ii) For each x £ {A, hl:l' hA} the language family

xE(PDlL) has nonempty intersection with L(REG), L(CF) - L(REG)

and L(CS) - L(CF); there are languages in L(REG), L(CF) - L(REG)

and L (CS) - L (CF) which are not in xE (PDlL) ;hA-E (:?DlL) f L (DLBA) •

Proof • (i) Let G = < { a 1 , a 2 , a 3 , b , c} , { o (A , a 1 , A) = a 2 a 3 ,

o(A, a 2 , A)= o(a2 , a 3 , A)= o(A, b, A)= b, o(b, b, A)=

o(c, b, A)= cb, o(b, c, A)= c}, al> be a PD(l, O)L. Let

h be a letter to letter homomorphism defined by h(a.) = a
].

for i = 1, 2, 3 and h(b) .= b, h(c) = c. h(L(G)) = {a, aa}

V {b}{c}*{b} and by Corollary 4 h(L(G)) / E (PDlL). Therefore,

E(PDlL) j hl:lE(PDlL). hl:lE(PDlL) £. hAE(PDlL) holds by

definition. It is easy to show that L(DLBA) = hAL(DLBA);

together with Theorem 10 this gives E(PD2L) = hAE(PD2L) = L(DLBA).

Since E(PDlL) .£ E(PD2L), we have hAE(PDlL) £ E(PD2L).

l(CF) 1 t(DLBA) [11, exercise 3.3], and therefore

{a, bl{a, b}* £ E(PD2L) and by Theorem 11 {a, b}{a, b}* t hlE(PDlL).

Hence hlE(PDlL), E(PD2L).

43

(ii). Since L(PDlL) .£xE(PDlL) the first sentence follows

from Theorem 4. The second sentence follows by taking languages

from L(REG), L(CF) ~ L(REG), L(CS) - L(CF) forming their

union with {a, b}{a, b}* and applying Theorem 11. The last

sentence follows from (i). N

In the foregoing we hawe seen that with deterministic

propagating one directional L systems, together with nonterminal

mechanisms and nonerasing homomorphisms, we stay within the

range of the DLBA languages and cannot even obtain all regular

languages. We conclude by proving that the closure of L(PDlL}

under homomorphisms, which map a letter either to itself or to

A, is equal to the family of recursively enumerable languages.

The proof method was suggested by a proof of Ehrenfeucht

and Rozenberg [5] for the equality of L(RE) and the closure

of L(D2L) under weak coding. The difficulty lies in the

fact that we have to "read out" the whole word in the language

in one production since otherwise also subwords of the desired words

appear under the homomorphism. The solution makes essential

use of the parallelism in L systems by a firing squad simulation.

The firing squad synchronization problem, see e.g. Minsky [13],

can be stated as follows. Suppose we want to synchronize an

arbitrary long finite chaim of interacting identical finite

state automata. All finite state automata are initially in

the same state m and stay in that state if both neighbors

are in state m. The automata on the ends of the chain are

allowed~to be different since they sense that they lack one

44

neighbor. Synchronization is achieved if all automata enter

the firing state f at the same time and no automaton in

the chain is in state f before that time. In the terminology

of L systems a firing squad is a PD2L F = <WF, oF, mk>

such that oF(m, m, m) = op(m, m, A) = m. F satisfies the

following requirement: there is a function t: N -i- N such

that for each k e: N holds that o; (k) (mk) = fk and

o!<mk) ¢ W*{f}W* F F for all i, 0 < i < t (k) • Balzer [2] proved

that there. is such an F with #W = F 8 and t(k) = 2k - 2.

After these preliminaries we state the theorem.

Theorem 13. The closure of L(PDlL) under homomorphisms,

which map a letter either to itself or to A, is equal to L(RE).

Proof. Since by now these kinds of proofs are familiar we

give only an outline~ Let A be any recursively enumerable

language enumerated by a 1:1.recursive function f: N .!..:.} A;

n is recovered from f(n) by -1 f • (The case where A is

finite follows by a similar method.) Let T be a Turing

machine which starts with the representation of O on its

tape, say a 1a 2 .•. an
0

, computes f(O), replaces everything

except f(O) on its tape by the blank symbol b and returns

to the left most symbol of f(O). Subsequently T retrieves

0 from f(O) -1 by f , increments O with 1, and computes

f(l), and so on. In particular we can do this in such a way

that after the computation of f(n) the instantaneous

description of T is b1q•f(n)br for some i, re: N and

a distinguished state q' of T. The next instantaneous

45

description of T is bR.q"f(n)br for another distinguished

state q" of T. Scanning the leftmost symbol of f (n),

T starts retrieving n from f (n) by f-l in ~tate q 11
•

We simulate T by a PD2L G = <W, o, w>; hence the blank

symbols will not disappear. G is defined as follows:

W = (°lj; X S U (S - {b})) x WF U S., .

where~ is the state set of T, S is the symbol set of

T and b is the blank symbol, and WF is the alphabet of

the firing squad F.

w = (qO, a 1 , m) (a2 , m) •.• (a , m) ,
no

where q O is the start state of T, a1a 2 •.. an
O

is the

representation of O and m is the initial state of the

firing squad F. G simulates T until the situation
to R.

o (w) = b (q', c 1 , m) (c2 , m) ••• (cR. , m)br occurs where
0

c 1c 2 ••• c 1 is f(O). Subsequently, the substring between
0

the b 1 s executes a firing squad and, when the squad fires

bR,f(O)br.

c e: S - {b} is rewritten

as (c, m), except when it h~s b or A as left neighbor

in which case it is rewritten as (q 11
, c, m). Therefore,

to+2to R. r
o (w) = b (q", c 1 , m) (c2 , m) ••• (cR. , m) b , and G

0
continues simulating T, retrieves O adds one and computes

the representation of f(l), and so on. Hence h(L(G)) = A

where~ h is a homomorphism defined by h(a) = a if a e: S - {b}

and h(a) = A otherwise.

46

We now simulate G by a PDlL G' = ,<W', o 1 , w' > which

is defined exactly as the D(O, l)L in Lemma l except that

o' (:\, (a, A), A) = b for all a f W. Then h' (L(G')) = A

where h' is a homomorphism defined by h 1 (a) = a if

a e: S - {b} and h 1 (a) = A otherwise. ■

We see that the most simple form of erasing homomorphism,

i.e. all letters which are not mapped to A are mapped to

themselves, adds tremendously to the generating power of

PDlL systems.

We summarize the more important results of sections 5 and

6 in Fig. 4. Connection by a solid line means that the upper

language family strictly contains the lower one; connection

by a dotted line means that the upper language family contains

the lower one and it is not known yet whether the inclusion

is strict; if two language families are not connected at

all this means that their intersection is nonempty but

neither contains the other, i.e. they are incomparable.

We denote the closure of L(PDlL) under homomorphisms

which map a letter either to itself or to A, by hwL(PDlL).

(These homomorphisms are a restricted type of weak codings.)

1. L(RE) = E(D2L) = hl:lE(DlL) = hw(PDlL): Theorems 5, 6, 13.

2. E[DlL) 1- L(RE) and E(DlL) incomparable with L(CS),

L(DLBA), L(CF) and L(REG): Theorem 8.

3. E(DlL) incomparable with hl:lE(PDlL) and hAE(PDlL).

This needs a brief explanation. Let L = {a, aa} U {b}{c}*{b}.

47

L £ hl:lE(PDlL) .f_hAE(PDlL) by the proof of Theorem 12 (i),

and Lt E(DlL) by the proof of Theorem 8. Therefore

(a) hl:lE(PDlL) .f:, E(DlL) and hAE(PDlL) f E(DlL).

Since E(DlL) contains languages in L(RE) - L(CS) by

Theorem 8 (ii) and hl: l E (PDlL) £. hA E (PDlL) !j L (CS) by

Theorem 12 (i) we have
I
I·

(b) E(DlL) / hl:l(PDlL) and E(DlL) ~ hAE(PDlL).

Furthermore, by definition:

(c) E (PDlL) ~ E (DlL) and E (PDlL) C. h1 : 1E (PDlL) C hA E (PDlL).

From (a) (b) and (c) it follows that f(DlL) is incomparable

with both hl:lE(PDlL) and hAE(PDlL).

4. L(CS) = E(P2L): van Dalen [3].

5. L(DLBA) = E(PD2L) = hAf(PDIL): Theorems 10 and 9.

6. E (PDlL) f_ h 1 : l E (PDlL) ~ hA E (PDlL) 7' L (DLBA) : Theorem 12 (i) •

7. E(PDlL) .f. E(DlL) by definition. Strict inclusion since

E(PDlL) 1° L(CS) by Theorem 12 (i) and

E(DlL) I) (L(RE) - L(CS)) ~ 1 by Theorem 8 (ii).

8. E(PDlL) is incomparable with both L(CF) and L(REG)

by Theorem 8 (i).

9. (a) l (REG) f; hA E (PDlL) by Theorem 11..

(b) E(PDlL) $ hl:lE(PDlL) ~ h1E(PD1L) by Theorem 12 (i)

(c) E(PDlL) is incomparable with L(REG) and L(CF)

by Theorem 8 (i).

From (a), (b) and (c) follows that both hl:lE(PDlL) and

hAE(PDlL) are incomparable with l(REG) and L(CF)

respectively.

Acknowledgemento I thank Professor A. Salornaa for constructive

criticism on an early draft of this paper.

48

REFERENCES

1. R. Baker and G. T. Herman, Simulation of organisms using

a developmental model, I: Basic description; II: The

heterocyst formation problem in blue-green algae,

Int. J. Bio-Med~ Comput., ~ (1972), 201 and 251.

2. R. Balzer,An 8 state minimal solution to the firing squad

synchronization problem, Inf. Contr.10 (1967), 22-42.

3. D. van Dalen, A note on some iystems of Lindenmayer,

Math Systems Theory~ (1971), 128-140.

4. A. Ehrenfeucht and G. Rozenberg, The equality of E0L

languages and codings of 0L languages, Int. J. of Comp.

Math., (to appear).

5. A. Ehrenfeucht and G. Rozenberg, Trade off between the

use of nonterminals. codings and homomorphisms in

defining languages for some classes of rewriting systems,

In: Automata, Languages and Programming,(J. Loeckx ed.),

Lecture Notes in Comp. Sci. Vol. 14, Springer, (1974), 473-480.

6. D. Frijters and A. Lindenmayer, A model for the growth

and flowering of Aster-Angliae on the basis of table

(1, 0) L systems. In: L Systems (G. Rozenberg and A. Salomaa,

eds.), Lecture Notes in Comp. Sci. Vol. 15, Springer, (1974).

7. G. T. Herman and W. H. Liu, The daughter of CELIA, the

french flag and the firing squad, Simulation 21 (1973), 33.

8. G. T. Herman, W. H. Liu, s. Rowland and A. Walker,

Synchronization of growing cellular arrays, Inf. Contr.

(to appear).

49

9. G. T. Herman and G. Rozenberg, Developmental Systems

and Languages, North Holland, Amsterdam (1974), to appear.

10. G. T. Herman and G. L. Schiff, Simulation of organisms

based on L systems, SUNY at Buffalo, Dept. Comp. Sci.

Tech. Rept. #75 (1974).

11. J.E. Hopcroft and J. D. Ullman, Formal Languages and

their Relation to Automata, Addison-Wesley (1969).

12. A. Lindenmayer, Mathematical models for cellular interactions

in development I and II, J. Theoret. Biol. 18 (1968),

280-315.

13. M. Minsky, Computation: Finite and Infinite Machines,

Prentice Hall (1967).

14. M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum,

Nonterminals, homomorphisms and codings in different

variations of 0L systems, Univ. of Aarhus, Dept. Comp.

Sci. Tech. Rept. PB-21 (1974).

15. M. o. Rabin and H. Wang, Words in the history of a

Turing machine with fixed input, J. ACM 10 (1963), 526-527.

16. H. Rodgers, Theory of Recursive Functions and Effective

Computability, McGraw-Hill (1967).

17. G. Rozenberg, L systems with interactions: the hierarchy,

SUNY at Buffalo, Dept. Comp. Sci. Tech. Rept. # 28 (1972).

18. G. Rozenberg and K. P. Lee, Some properties of the class of

L langua.ges with interactions, SUNY at Buffalo, Dept.

Comp. Sci. Tech. Rept. #43 (1972).

19. A. Salomaa, Formal Languages, Academic Press (1973).

50

20. A. Salomaa, On sentential forms of context free grammars,

Acta Informatica 2 (1973), 40-49.

21. P. Vitanyi and A. Walker, Stable string languages of

Lindenmayer systems, (1974) (submitted to a technical

journal.)

51

FOOTNOTES

1) See e.g. Minsky [13] for terminology and results on

Turing machines.

2) A family of languages is said to be closed under

k-limited erasing if, for any language L of the class and any

homomorphism h with the property that h never maps more than

k consecutive symbols of any sentence x in L to A,

h(L) is in the class. We shall furthermore be concerned with

nonerasing homomorphisms, i.e. homomorphisms which map no

letter to the empty word A; letter to letter homomorphisms

(also called codings), i.e. homomorphisms which map letters

to letters, and homomorphisms which map a letter either to

itself or to the empty word A. (These homomorphisms are a

subclass of the weak codings where a letter is mapped either

to a letter Ol!' to A.) For further details concerning

homomorphisms and other operations on languages and closure

under these operations see [11] or [19].

3) For the working space theorem see [19, p. 93]. The

working space theorem is a variant of the linear bounded

automaton theorem which tells that the family of languages

accepted by linear bounded automata is equal to L(CS).

For a definition of linear bounded automata see section 6,

[11] or [19]. For the uvwxy lemma (or Bar Hillel's lemma)

see [19, p. 56].

52

L(CS)

L(CF)

L (REG

Figure 1

53

L (RE)

l(CS)

L (CF)

L (REG

Figure 2

54

L(CS)

L(CF)

L (RE

Figure 3

E(DlL)

E (PDlL)

Figure 4

55

L(RE) = E(D2L) = hl:lE(OlL)

= hwl (PDlL)

L(CS) = E(P2L)

L(DLBA) = E(PD2L) = hAE(PDIL)

L(CF)

L(REG)

,,

