
AFDELING INFORMATICA

J • W. DE BAKKER

stichting

mathematisch

centrum

IW 29/75 JANUARI

FIXED POINT SEMANTICS AND DIJKSTRA'S FUNDAMENTAL
INVARIANCE THEOREM

Prepublication

~
MC

x t
1 · c i2e boerhaavestraat 49 amsterdam

BIBLIOHH:.EK MATHEMATiS':H 0..NTRUM
AMSff.HDAM

Ptln:ted a;t .the Ma;thema.:ti.c..ai. Cen:tJr.e, 49, 2e Bovihaaveo:tJc.aa.t, Amo.tvid.am.

The Ma;thema.:ti.c..ai. Cen:tJr.e, 6ou.nded .the 11-.th 06 Febfl..u.aJLy 1946, -lo a. non­
pll..o6U ,i.n6:tUutlon a,,im.,i.ng a;t .the pll..omo.tlon of; pUll.e ma;thema.:ti.c.6 a.nd -l:t6
a.ppU..c..a.:ti.oYlJ... I.t -lo 1.:,pon60Jr..ed by .the Ne.theJll.a.ndt, Govvinmen:t .thfl..ough .the
Ne.theJll.a.ndt, 0'1..ga.nlza.:ti.on /;oil.. .the Adva.nc..emen:t o 6 PU/l.e Reo ea.Jr..c..h (Z. W. 0) ,
by .the Mu.n,i.c..,i.pal.Uy 06 Am1.:,.tvida.m, by .the UnlveMUy of; Amo.tvid.am, by
.the FJr..ee UnlveMUy a..t Amo.tvida.m, a.nd by ,i.ndw.,:tJueo.

AMS (MOS) subject classification scheme (1970): 68A05

ACM -Computing Reviews- category: 5.24

FIXED POINT SEMANTICS AND DIJKSTRA'S FUNDAMENTAL INVARIANCE THEOREM*)

by

J.W. de Bakker

ABSTRACT

In a recent paper, DIJKSTRA introduces a view of progrannning language

semantics based on the notion of "weakest precondition". He uses this to

axiomatize certain progrannning concepts, and in the formulation of his

"Fundamental Invariance Theorem for Recursive Procedures". We shall demon­

strate how these ideas can be incorporated in the framework of Scott's

theory of mathematical semantics. For this purpose, a presentation of this

theory insofar as it is concerned with recursion, is given. We show that

Dijkstra's theorem is incorrect, and that a modified version of it is

innnediately obtained from the fixed point approach to recursion, in partic­

ular using Scott's induction rule.

KEYWORDS & PHRASES: Semantics, recursion, least fixed points, induction,

axiomatic approach, weakest precondition.

*) This paper is not for review; it is meant for publication elsewhere.

CONTENTS

1. Introduction

2. Recursive program schemes

3. Fundamental properties

4. E.W. Dijkstra on semantics

References

3

8

15

20

1

1. INTRODUCTION

In [5], DIJKSTRA introduces a view of programming language semantics

based on the notion of "weakest precondition". This concept is intended as

a tool in refining Hoare's approach to semantics, as first proposed in [6],

in which various language constructs are characterized axiomatically in

terms of the r~lationship between pre- and postconditions. First, DIJKSTRA

applies his idea to an analysis of the programming concepts of assignment,

sequential composition, and conditional statements. He then considers the

important notion of recursion, the treatment of which culminates in his

Fundamental Invariance Theorem for Recursive Procedures.

The purpose of the present paper is to give an explanation of Dijkstra's

ideas in the framework of mathematical semantics (for a general overview

see SCOTT & STRACHEY [13]), in particular using the so-called fixed point

theory. This theory, which dates back to Kleene's first recursion theorem

[7], was revived in papers by MORRIS [IO], SCOTT & DE BAKKER [12], and

PARK [11], and has since found many applications (see [1,3,4,8,9,11] and

the references given there). The two main results of the fixed point approach

are

- Each recursive procedure determines a function which is the least fixed

point of a functional associated in a natural way with the body of its

declaration. This result is proved by considering the function as the

limit of a sequence of approximations to it.

- The functional satisfies a certain continuity property.

Moreover, these two results are of importance for the justification of a

powerful proof technique, called Scott's induction rule.

It will turn out that it is n.ot difficult to explain Dijkstra's

Fundamental Theorem in the framework of the fixed point theory. We shall see

that the theorem, as given in [5], is incorrect, but that a slightly modi­

fied version of it is immediately obtained by an application of Scott's

induction.

In order to make the paper self-contained, we develop the main proper­

ties of recursive procedures in sections 2 and 3. Since the essential

results stated here are by now well-known, we have omitted some of (the ,,

2

details in) the proofs. On the other hand, we have tried to structure the

argument somewhat more carefully than elsewhere, this being motivated by

certain doubts shed on the least fixed point results in [8,9]. (Another

attempt at clarification of these matters was made in DE BAKKER [2], which,

contrary to our topic here, deals with recursive procedures with -explicit­

parameters called-by-value and/or -by-name. The present paper deals only

with recursive procedures which have the state as -implicit- parameter

which may be considered called -by-value, if one so desires.)

In section 2 we introduce a formal language in which to write abstract

programs, or, to use the technical term, pro(P'am schemes. Next, it is des­

cribed how a program scheme can be interpreted yielding a state-transforming

function. In the definition of this, an important role is played by the

notion of computation sequence, which is intended to model the usual meaning

.of sequential composition, conditional statements and procedure execution

(using the "copy rule", i.e., replacing the procedure identifier by the body

of its declaration).

In section 3 we present the fundamental properties of recursive program

schemes. With each scheme a functionaZ is associated, i.e., a function which

maps state-transforming functions to state-transforming functions. It is con­

venient, for this purpose, to have available the notion of program scheme

variabZe, which is therefore incorporated in our definition of program schemes.

Next, the two fundamental results mentioned above (least fixed point property

and continuity) are derived, followed by statement and justification of

Scott's rule (in a slightly more general version than the one used e.g. in

[1,3,4]).

Section 4 contains our explanation of Dijkstra's semantics. His notion

of weakest precondition is defined in our framework, and the basic proper­

ties and rules which he postulates about this notion all turn out to be provable,

thus yielding support to our claim of having formalized his informal de­

finition. The "Fundamental Theorem" is then quoted, reformulated to fit into

our system, and shown to be incorrect in this form. Next, a modification is

suggested which leads to a new version which is, as announced before, a

simple instance of Scott's induction.

3

2 • RECURS IVE PROGRAM SCHEMES

We introduce a class of formal constructs, called program schemes,

which are, in general, intended as a tool for investigating properties of

the control structure of programs, and, in the present paper, in particular

to clarify Dijkstra's approach to semantics.

Program schemes are linguistic expressions, i.e., they are built up

from certain classes of symbols by applying a number of construction rules.

As symbol classes we have

- the class A of elementary action symbols A,A1, •••

- the class P of procedure symbols P,P 1, •••

- the class B of boolean symbols p,q, •••

For technical reasons which will become clear as we go along with the devel­

opment of the theory, we also introduce

- the class X of program scheme variables x,x1, ••• ,Y, •••

- the empty action symbol n.
We now give the syntax of program schemes in

DEFINITION 2.1 (Syntax of program schemes).

a. Each elementary action symbol, each procedure symbol, each program

scheme variable, and the empty action symbol, are program schemes.

b. If s1, s2 are program schemes, and pis a boolean symbol, then (S 1;s2)

and (if p then s1 else s2) are program schemes.

Meaning will be provided to program schemes by providing them with an

interpretation, intended to reflect the usual programming language seman­

tics insofar as concerned with the concepts of interest here - these being

sequential composition, selection and recursion. Before doing this, we

state two more definitions on the purely syntactical level.

DEFINITION 2.2 (Syntactic identity between program schemes).

"S 1 = s2" is used to denote that S 1 and s2 are identical sequences of

symbols.

DEFINITION 2.3 (Substitution in a program scheme).

Let S,T be program schemes and let X be a program scheme variable. The

4

result of substituting T for X in S, i.e., of replacing all occurrences

of X in S by T, is denoted by S[T/X] and obtained by induction on the

structure of Sas follows:

structure of S S[T/X]

A, p or Q A, P or Q

y {: (X - Y)

(XI- Y)

(Sl;S2) (S 1[T/X];S2[T/X])

(if p then s1 else S2) (if p then S1[T/X] else SzCT/X]) -- --

We now describe how to interpret a program scheme. An interpretationM

for a program scheme Sis a means for providing sufficient information to

"execute" S. If one so desires, one may view a program scheme as an abstract

program which, by making certain choices for the unspecified parts in the

scheme determines a concrete program, i.e., a specific way of computing a

state-transforming function. In this approach, an interpretation M has to

provide a number of things:

a. First of all, the domain V of states x,y, ••• has to be given. The inter­

preted program scheme will determine a state-transformation which, due

to the possibility of nq~-termination, will in general be partial.

b.

c.

d.

Let V + V be the class of all partial functions from V to V, including¢

(the empty, i.e., the nowhere defined, function). We shall also need

the class of all partial functions V + {true,false}, in order to inter­

pret boolean symbols.

Let C be a mapping from symbols to partial functions defined as follows:

- For each A E A, C(A) E V + V.

- For each p E B, C(p) E V + {true,false}.

- C(Q) = ¢.

Let Ebe a mapping from program scheme variables to partial functions:

For each XE X, E(X) E V + V.

We still have to provide a meaning to the procedure symbols. In order to

do this, we need declarations. Hence, as fourth component of M we have

V = {<P,T> I PEP}, i.e., each procedure symbol Pis provided with a

procedu:r>e body Tin the set of declarations V.

Thus, each interpretation Mis given as a four-tuple M = <V,C,E,V>.
Next, we define how the meaning given to the various symbols is used

5

in defining the meaning of whole schemes, doing this in a way which reflects

the standard rules of program execution. Central to this definition will be

the definition of the concept of computation sequence. First, however, we

insert a remark directed to the reader who views our concrete programs as

objects which still hardly resemble actual programs as he encounters them

in practice. It may be helpful to his intuition to add one level to the

interpretation, viz., to interpret the elementary action symbols as assign­

ment statements, and to analyze the state into its components, such that in

a notation intended to be self-explanatory, e.g., x = (:::~:::1:::) is

changed by the elementary action i := i+j to state

y = (:::~:::1:::)• However, for our investigation which concentrates upon

the control structure of the program we abstract from refinements needed

for a treatment of assignment.

As another notational convention, we shall, for F any element in V + V,
sometimes use "xFy" as synonymous with "y = F(x)".

DEFINITION 2.4 (Computation sequence).

A computation sequence with respect to an interpretation M = <V,C,E,V> is

a sequence

(2. 1) x0S QX} • • • X, S . X. } S. } • • • X } S } X 1. 1. 1.+ 1.+ n- n- n

such that

1. each S. is a program scheme, i=O, ••• ,n-1. 1.
2. x. EV, i=O, •.• ,n. 1.
3. For each i=O, ••• ,n-1,

a. if S. = A or S. = X, for some A EA or XE X, then i = n-1 and 1. 1.
xn_ 1C(A)xn or xn_ 1E(X)xn, respectively.

b. If S. = P, for some PEP, then
1.

xi+l = xi'
,S. - T, where <P.T> EV • .. i+l ,

6

4.

c. If S. = (if p then S' else S") then
1 - - --

xi+ l = xi'
if C(p)(x.) = true, then S. 1 = S', else if C(p)(x.) = false, then

1 i+ 1

Si+l = S" (else, if C(p)(xi) is undefined, then (2.1) is not a com-

putation sequence).

d. If S. = (S' ;S"), then, if
1

(i) S' = A or S' = X, for some A EA or XE X, then

xiC(A)xi+I' or xiE(X)xi+I' respectively,

S. I= S". i+
(ii) S' = P, for some PEP, then

xi+l = xi,

Si+l - (T;S"), where <P,T> EV.
(ii:i) S' - (if p ~ S"' ~ S'v), then

xi+l = xi'

Si+l - (if p ~ (S"' ;S") else (S'v ;S"))

(iv) S' - (S'" ;S ,v), then

xi+l = xi,

S. I - (S"'; (S '" ;S")). i+
s E A or s EX. n n

We are now sufficiently prepared for

DEFINITION 2.5 (Semantics of program schemes).

Let S be a program scheme, and M = <V,C,E,V> an interpretation. M(S) is the

function: V + V, determined by: M(S)(x) = y iff there exists a computation

sequence xOsOx 1 ••• xn_lsn-lxn with respect to M, such that

a. x0 = x, xn = y.

b. s
0

- S.

Our first lennna lists a number of basic properties which follow fairly

directly from the definitions. Some of these properties are of the form

i.e., s 1 and s2 are "equal under the interpretation M". As alternative

notation for this we use

LEMMA 2.6. For aZZ M = <V,C,E,V>:

a. FM((SI;S2);S3) = (SI;(S2;S3)).

b. FM P = T, where <P,T> EV.

c. M(A) = C(A)

M(X) = E(X).

d. FM((if p then SI else s 2);S) = (if p then (SI;S) else (S2 ;S)).

e. M((SI;s2)) = M(SI) o M(s2)

where " 0 " denotes funationai composition (i.e., (f 0 g)(x) = f(g(x))).

PROOF. Not difficult, and left to the reader. 0

REMARK. In the sequel, we shall enhance readability by omitting outermost

parentheses around (SI;s2) or (if p then SI else s2).

The next lemma relates the operations of substitution and changing

the interpretation. First another notation.

DEFINITION 2.7.

Let M = <V,C,E,V>, and let F: V + V be any function.

M{F/X} is used to denote the new <V',C',E',V'> such that

a. V' = V, C' = C, V' = V.
b. E'(Y) = E(Y) for all Y t X,

E' (X) = F.

In words, M{F/X} is the same as M, apart from, possibly, the inter­

pretation of X, which is now set to F. Clearly, M{F/X}(X) = F.

LEMMA 2.8.

PROOF. Induction on the structure of T1• 0

7

8

3. FUNDAMENTAL PROPERTIES

First we introduce a partial ordering "c" on the elements of V ➔ V.

DEFINITION 3.1.

Let F
1
,F2 EV ➔ V. F1 S F2 holds iff, for all x,y EV, if F1(x) = y, then

F
2

(x) = y.

REMARK. F
1

s F
2

holds iff, for all x, F
1

is either undefined in x, or, if

F
1
(x) is defined, then F

2
(x) is also defined, and yields the same value as

Fl (x) •

The next definition introduces the notion of a chain of partial

functions, and of its least upper bound (lub). These notions play a part

in the first two fundamental theorems of this section.

DEFINITION 3.2 (Chains and their lubs)

a. A chain is a sequence of partial functions {F.}.
0 1

such that
l. 1.= , , •••

Fi S Fi+l' i=O,I, •••
(X)

b. For {F.}._
0 1

a chain, we define (1.• __ u
0

F1..)(x) = y iff F.(x) = y, for
l. l.- , ' • • • l.

some i.

LEMMA 3.3. Let {F.}._o l
l.].- ' , e fl O

(X)

be a chain. Then .u F. is a function such that
1.=O l.

(X)

a. F. c U F.,
1. - i=O 1.

b. If, for' some

i=O,l, •••
(X)

G, Fl.. S G, for i=O,l, ••• , then U F. S G,
i=O 1.

i.e.,
(X) •

U F. ·~s the Zeast upper bound of the chain.
i=O 1.

PROOF. Straightforward from the definitions. 0

We now extend our notation FM s1 = s2, as introduced in the previous

section.

DEFINITION 3.4.

a. An atomic foPmuZa is an expression of the form s1 s s2 or s1 = s
2

• An

atomic formula is satisfied by an interpretation M if M(s 1) s M(s
2
), or

M(s 1) = M(s2), respectively, holds.

9

b. A formuZa (denoted by ~,w, ...) is a set of zero or more atomic formulae.

A formula is satisfied by an interpretation M if each of its elements is

satisfied by M.

c. ~ FM W holds iff the implication "if~ satisfies M, then W satisfies M"

holds.

d. Empty~ are omitted, as are brackets around sets of atomic formulae.

(E.g., for¢ FM {S1ss2,s2ss1} we write FM SIS s2, s2 S s1 (which, clear­

ly, holds iff FM s 1 = s2 holds).)

LEMMA 3.5 (Monotonicity). For each M

a. If F1 S F2 then, for aZZ S, M{F 1/X}(S) S M{F2/X}(S).

b. T1 S T2 FM T[T 1/X] S T[T2/X].

PROOF,

a. Formula induction on S.

b. By definition 3.4, part c, we have to show:

if M(T 1) s M(T2), then M(T[T1/X]) S M(T[T2/x]). By lennna 2.8, M(T[Ti/XJ) =

= M{M(T.)/X}(T), i=l,2.
l.

The result now follows by part a. 0

The next step in our development is to associate with each program

scheme Sand interpretation Ma functional oM, defined as follows:

DEFINITION 3.6. Let S be a program scheme, X a program scheme variable,

and Man interpretation. The associated functional oM,X (or oM, if Xis

understood), is defined as

oM,x =AF. M{F/X}(S).

In words, oM,X is a mapping from V ➔ V to V ➔ V defined as follows:

Each FE V ➔ Vis mapped to the function which is obtained by applying the

interpretation M{F/X} to s, i.e., oM X(F) = M{F/X}(S), for each FE V ➔ V.
'

We now present two lemma's which together establish that, for given

M = <V,C,E,V>, if <P,T> EV, then M(P) is the least fixed point of the

functional which is associated with T as described in definition 3.6, after

IO

one precaution is taken, as described in definition 3.7. (This precaution

is necessary to ensure the availability of a variable in T. Since Pis not

itself a variable, one cannot directly use definition 3.6.)

DEFINITION 3.7. Let S be a program scheme, Pa procedure symbol, and X a

program scheme variable not occUPPing in S • S[P+X] denotes the result of

replacing all occurrences of Pin S by X, and is obtained by induction on

the structure of S:

Structure of S' S[P+X]

A, Y, or Q A, Y or Q

p X

P' (tP) P'

SI ;S2 SI [P+X]; s2 [P+X]

if p ~ SI else s2 if p ~ S
1
[P-+XJ ~ SzCP-+X]

Clearly, S[P+X][P/X] = S.

DEFINITION 3.8. Let M be an interpretation, let T be a program scheme,

Pa procedure symbol, and X a program scheme variable (not occurring in T).

We define TM (or TM P' if Xis understood) as ,P,X ,

T = AF O M{F/X}(T[P+X]). M,P,X

i • 0 i+I LEMMA 3. 9. Let., for any functional, a., a be def,z,ned by a (F) = F, a (F) =

= cr(cri(F)). Let M = <V,C,E,V> be an interpretation, and iet P be a procedUl'e

syrribol, with <P,T> EV. Then

i PROOF. It is sufficient to show that TM,P(¢) .s M(P), for all i.

a. i = O. ¢ .s M(P), by definition of ¢ and ".s".
i i+l

b. A~sume TM,P(¢) .s_M(P). We show that, then, TM,P(¢) .s M(P):

TM
1
+!(¢) = TM p(TM p(¢)) .s (induction hypothesis and monotonicity)
, ' ,

TM,P(M(P))=(df. TM,P) M{M(P)/X}(T[P+X]) = ((lemma 2.8) M(T[P+X][P/X]) =
= (remark after def. 3.7) M(T) = ((lemma 2.6, part b) M(P). D

I I

LEMMA 3.10. Let M, P, T and TM P be as above. Then ,

M(P)

PROOF. We prove a more general assertion: Let S be any program scheme, and

let crM,P be as in definition 3.8. Then

It is sufficient to show: For each x,y EV, if

for some i. Assume x M(S)y. By definition 2.5,

sequence with respect to M

(3. I)

(. \
x M(S)y, then x crM,P TM,P(¢) JY,
there exists a computation

such that x = xO, y = xn, and S = sO• We prove the assertion by induction

on the entity (n,y), where n is the number of applications of clause 2.4.3b

or 2.4.3.d(ii) in the construction of the computation sequence (3.1) (i.e.,

the number of times that body replacement of T for P has taken place), and

y is the syntactic complexity of sO (a precise definition of which is left

to the reader). As ordering on the (n,y) we define (n 1,y
1

) < (n2,r2) iff

n
1

< n
2

, or n
1

= n2, and y 1 < y
2

• We have the following cases:

- S = A EA, or P'(tP) E P, or XE X.
Then we may take i = O. Indeed, we have that M(S) s crM,P(¢), since

crM,P(¢) = [AF 0 M{F/X}(S[P+X])J(¢)

= M{¢/X}(S[P+X])

= M(S),

where the last equality holds since P does not occur in S, and, therefore.

X not in S[P+X].

- S = P. Let x = xO, y = xn, and let the computation sequence

x
O

Px1T ••• x 1s 1x have complexity (n,y). By definition 2.4, part 3b, n- n- n
x1 = xO• Moreover, the computation sequence x1T ••• xn_lsn-Ixn has com-

plexity (n-1,y') < (n,y), where y' is the syntactic complexity of T.

By the induction hypothesis, applied with S = T, and, hence, aM p=TM P' , ,

12

i 0 i
0

+1
we have that x TM,P(crM,P(</>))y holds for some i 0 • Thus x TM,P (</>)y holds, and

we see that we can take for the i corresponding to S = P, i = i
0
+1.

- S = s
1
;s

2
• Let x M(S)y, with a computation sequence with complexity (n,y).

Since M(S) = M(S 1) 0 M(s
2
), there exists z such that x M(s

1
)z, and z M(S

2
)y,

with complexity (n
1
,y

1
) and (n

2
,y

2
), respectively. Clearly, n

1
~ n, y

1
< y,

n
2

~n, y
2

~Y• Hence, by the indu<;:tion hypothesis, for some i
1
,i2 ,

x a 1M p(TM
1

1p(</>))z, and z cr2M p(TM
12

p(</>))y hold. Let i = max(i 1,i2). Then,
',. ', i .

by monotonic~ty (lemma 3.5), x cr 1M,P(TM,P(~))z, and z cr2M,P~TM,P(</>))y hold,

and x crij,P(TM,P(</>))y follows, since crM,P(TM,P(</>)) = crIM,P(TM,P(</>)) 0

cr 2M, P (TM, P (</>)) •

S = if p then s
1

else s
2

• Similar to the previous case, and left to the

reader.
00 i

Thus, we have shown that M(S) s Ui=O crM,P(TM,P(</>)) holds for each S. Taking
00 i

S = T, and applying lennna 2.6, part b, we obtain that M(P) s Ui=O TM,P(</>),

as was to be shown. D

THEOREM 3.11. Let PEP, M = <V,C,E,V> with <P,T> EV, and Zet TM,P be as

in d,efinition 3. 8. Then

M(P)

PROOF. Lemma's 3.9 and 3.10. □

COROLLARY 3.12 (The least fixed point result).

Let M, P, T, TM,P be as before. Then M(P) is the least fixed point of TM,P·

PROOF. By lennna 2.6, part b, M(P) is a fixed point of TM p· Now let F be any ,
function such that TM,P(F) = F. _we show that then M(P) s F. By theorem 3.11,

it is sufficient to.show that TM,P(</>) s F,_for each i. The case i = 0 is
1 1

clear. Now assume TM,P(</>) s F. Then TM,P(TM,P(</>)) c TM,P(F) = F, by mono-

tonicity and the assumption on F. D

The next step is the introduction of the important notion of continuity.

This concept, which plays an important role in the more advanced parts of

the theory of mathematical semantics, is encountered here as a property of

the functionals crM or crM,P' as defined in definitions 3.6 and 3.8.

13

DEFINITION 3.13. Let V be any domain, and let cr be a monotonic functional

over V (i.e., a E (V ➔ V) ➔ (V ➔ V), and cr(F) s cr(G) whenever F s G). a is
00

called continuous if, for each chain {F.}._O 1 , with lub U._
O

F.,
l. l.- , , • • • l.- l.

we have that

00

cr(U
i=O

00

F •) = U cr (F •) •
1 i=O 1

REMARK. The lub in the right-hand side is well-defined, since, by mono-

tonicity of cr, cr(F.) s cr(F.
1
), i=O,I, ••• ; hence, {cr(F.)}._

0 1
is

l. l.+ l. l.-, , •••

indeed a chain.

THEOREM 3, 14. Let S be a program scheme, M an intel"f)retation, and aM or

a M, P as in definitions 3. 6 and 3. 8. T'hen a M and a M, P are continuous

functionals.

PROOF. The proof, which proceeds by formula induction on Sis omitted. (It

is presented e.g. in [I].) D

We are now sufficiently prepared for the important proof rule, due

to SCOTT [12], which will be our main tool in the next section. For numerous

other applications of the rule see e.g. [1,3,4,8,9]. The formulation given

here is slightly more general than the one of [I,3,4].

One more notational convention is needed. Let~= {s
1
ss

2
,T

1
=T

2
, ••• } be

a formula as defined in definition 3.4. Then ~[T/X] =

{S
1
[T/X] S s

2
[T/X], T

1
[T/X] = T

2
[T/X], ••• }.

THEOREM 3.15 (Scott's induction rule).

Let M = <V,C,E,V> be an intel"f)retation, <P,T> EV, and let~ be any formula.

T'hen, if

(3.2)

and, for aU F,

(3.3) ~ FM{F/X}~[T[P➔X]/XJ

then

(3.4) FM ~[P/XJ.

14

PROOF. Clearly, it is sufficient to show the assertion for the case that~

consists of only one atomic formula, T1 .s T2, say. Choose any M. We must

show that from the assumptions it can be inferred that M(T
1
[P/X]) .s

M(T2[P/X]). By lemma 2.8, this is equivalent to showing that M{M(P)/X}(T1) .s
M{M(P)/X}(T2). Let us put (cf. definitions 3.6 and 3.8) Tl= TIM,X'

T2 = TzM X' T = TM P x· Using this notation, what ~e have to show.reads:
> S J 00]. 00].

T1(M(P)) .s T2 (M(P)?, or, by :heorem 3.11, T1(Ui=OT (<P)) ,ST2 (Ui=OT (<P)), or,

by continuity, th~t u:=OTl(Tl.~c/J)) .s u:=OT2 (Ti(cp)). Thus, it is sufficient
l. l. to show that Tl (T (c/J)) .s T

2
(T (c/J)), for each i=O,J, ••• This is done by

induction on i.

a. i = O. Proof of T1(<P) .S T2 (<P).

By assumption, ~MTl[Q/X] .s T
2

[Q/X], i.e., M(T
1
[Q/X]) .s M(T

2
[Q/X]), or

M{M(Q)/X}(T
1

) .s M{M(Q)/X}(T
2
), or M{c/J/X}(T

1
) .s M{c/J/X}(T

2
), i.e.,

TI (c/J) .S T 2 (~) • •

b. Ass~me T
1
(Tl.(c/J)) .s T2 (Tl.(<P)). Then, by definition of T

1
,T

2
:

l. . .
M{T. (<P)/X}(T1) .s M{Tl.(cp)/X}(T2~. By (3.3), with F = Tl.(c/J), we infer

M{T~(c/J)/X}(T 1[7[P+X]/X]) .S M{Tl.(cp)/X}(T2[T~P+X]/X]), ?r, by lemma 2.8,

M{Ti(c/J)/X}{M{Tl.(c/J)/X}(T[P+X~)/X}(T1) .s_M{Ti(c/J)/X}{M{Tl.(cp)/X}(T[P+X])/X}(T
2
),

or, _by definit~on of T, M{Tl.(<P)/X}{T(Tl.(<P))/X}(T1) .s

M{Ti(<P)/X}{T(Ti(c/J))/X}(T2), or, since M{G/X}{F/X} = M{F/X},
i+I i+I . i+I i+l M{T (<P)/X}(T1) .s M{T (<P)/X}(T2), i.e., T1(T (c/J)) .s T2(T (<P)),

which settles the induction step.

Hence, the justification of Scott's rule is complete. 0

REMARK. Our present formulation of Scott's rule is more general than the

one of [1,3,4], since it is of the form VM[A(M) A B(M) + C(M)J, whereas

the one used before was of the form VM[A(M)J A VM[B(M)J + VM[C(M)J.

15

4. E.W. DIJKSTRA ON SEMANTICS

We apply the theory developed in sections 2 and 3 to provide a frame­

work in which we hope to explain Dijkstra's approach to semantics. As

starting point, he takes Hoare's approach, which deals with program cor­

rectness formulated in terms of expressions of the form {p} S {q}, which

are to be read as: For all states x and y, if x satisfies property p, and

program S changes x toy, then y satisfies q. In our formalism, we would

like to state this as follows: Let S be a program scheme, p,q two boolean

symbols, and Man interpretation. Then the correctness statement becomes:

(4. 1) FM Vx,y[p(x) A xSy + q(y)J.

There is a slight technical problem here, in that we have not formally

defined the ·••FM••• notation for this case. (Remember that, sofar, we

used this only with~ FM f, with ~,f formulas, as in definition 3.4.)

However, it is straightforward to extend our definition to deal with such

mixture of the program scheme language and the language of predicate

calculus, and we shall assume this done from now on. With (4.1) we have

formulated what is usually called partial aorreatness of S with respect

top and q (in M). In Dijkstra's approach, it is not so much partial, but

total correctness which is used: Sis totally correct with respect to

p and q (in M), if

(4.2) FM Vx[p(x) + 3y[xSy A q(y)JJ,

i.e., total correctness implies, besides partial correctness, also

terrrrination. In order to explain the way in which the notion of total

correctness is used in [5], we give the following quotation: "We consider

the semantics of a program S fully determined when we can derive for any

postcondition q satisfied by the final state, the weakest precondition

that for this purpose should be satisfied by the initial state. We regard

this weakest precondition as a function of the postcondition q, and denote

it by "fS(q)". Here we regard the fS as a "predicate transformer", as a

16

rule for deriving the weakest precondition from the postcondition to which

it corresponds".

We grant the suspicious reader that it is not stated explicitly here

that the precondition should guarantee termination. However, we do not

see how to explain the properties of fS mentioned below (in particular n2)

if termination were not implied.

Now what is the weakest precondition for given Sand q? From (4.2) we

see that for each precondition p which guarantees total correctness, we

have that p(x) + 3y[xSy A q(y)]. Hence, whatever precondition p we choose,

we always have that, if p(x), then 3y[xSy A q(y)] holds. This suggests to

us that the weakest precondition, in each x, is nothing but 3y[xSy A q(y)J.

This explanation finds support in

- All postulates and rules of [5] become provable.

- A modified version of the Fundamental Theorem of [5] is also provable.

First we consider the four "basic properties" which are attributed to fS

in [SJ.

D
1

: 11p = q implies fS(p) = fS(q)".

In our notation, this is nothing but the obvious implication:

For each M

l=M Vx[p(x) -tt- q(x)J + Vx[3y[xSy A p(y) -tt- 3y[xSy A q(y)JJ.

n2: Let f,t be two special predicates which are false and true, respectively,

in all possible states, i.e., let, for each M = <V,C,E,D>, M(f)(x) =false,

M(t)(x) = true, for each x EV. n
2

now reads

"fS(f) = f",

or, in our notation,

For all M,

l=M Vx[3y[xSy A f(y)J -i+ f(x)],

which is easily seen to be true.

D3: "fS(pAq) = fS(p) A fS(q)", or,

For all M,

l=M Vx[3y[xSy A p(y) A q(y)J-#- 3y[xSy A p(y)J A 3y[xSy A q(y)JJ.

Since we have restricted our M to yield functions only, we easily

establish D3• (Note that for 'non-deterministic" programs, with M(S)

a re~ation instead of a function, n
3

fails.)

D
4

: "fS(pvq) = fS(p) v fS(q)".

Left to the reader.

After these basic properties, several additional properties and

rules are postulated or derived in [SJ. We list only a selection:

Ds: "p => q implies fS (p) => fS (q) II.

17

This is again very clear. (Not clear is, to us, why DS is considered

less basic than n1.)

n
6

: 11f(S 1;s2)(p) = fS 1(fS2 (p))", or

For all M,
FM Vx[3y[xs

1
;s2y A p(y)J* 3y[xS 1y A 3z[yS2z A p(z)JJJ.

This is established as follows:

3y[xS I y A 3 z[yS
2

z A p (z) J] *

3y,z[xS1y A yS2z A p(z)J *

3z[3y[xs 1y A yS2zJ A p(z)J- (lemma 2.6e)

3z[xs 1;s2z A p(z)J.

n
7

: "f(if p then s 1 else s2)(q) = p A fS 1 (q) v

This is also left to the reader.

Hint: Note that, for all M,
FM Vx,y[x if.p then s 1 else s2 Y* p(x) A xS 1y v -,p(x) A xS2yJ.

We now turn to the main theorem of [SJ, the so-called Fundamental

Invariance Theorem for Recursive Procedures. We quote from [SJ: "Consider

a text, called H", of the form H": ••• H' ••• H' ••• H' ••• , to which corresponds

a predicate transformer fH", such that for a specific pair of predicates q

and r, the assumption q => fH'(r) is a sufficient assumption about the

healthy fH' for proving q => fH"(r). In that case, the recursive procedure

H defined by proc H: ••• H ••• H ••• H ••• corp (where we get this text by re­

moving the dashes and enclosing the resulting text between the brackets

proc and corp) enjoys the property that q A fH(t) => fH(r)".

The first step in our analysis of this theorem is to rewrite, for some

given M, q A fH(t) => fH(r), as follows:

FM Vx[q(x) A fH(t)(x) + fH(r)(x)J, or

FM Vx[q(x) A 3y[xHy A t(y)J + 3y[xHy A r(y)JJ.

18

By the definition oft, and the restriction to functions, this is equivalent

to

(4.3) FM Vx,y[q(x) A xHy + r(y)J.

Therefore, we can rewrite the theorem in our notation as: Let H, H', H" be

as above, let T - ••• H ••• H •.• H ••• , and let M = <V,C,E,V> be any interpreta­

tion with <H,T> E p. (We assume that HEP.)

If

(4.4) Vx[q(x) + fH' (r)(x)J FM Vx[q(x) + fH"(r) (x)]

then

(4.5) FM Vx,y[q(x) A xHy + r(y)J.

Choosing for Man interpretation such that, for all x, M(q)(x) = true and

M(r)(x) = false, we easily see (using D2) that such M satisfies (4.4). In

fact, (4.4) reduces in this case to: If, for all x EV, true implies false,

then, for all x EV, true implies false, This is clearly satisfied, and we

may therefore infer that (4.5) for this M also holds, i.e., that, for all

x, y E V, (true and xM(H)y) implies false. This is equivalent to asserting

that, for no x,y EV, xM(H)y holds, and this is a contradiction: It amounts

to asserting that, for each procedure H, H does not terminate for any input

state (whatever choice we make for its body T).

The final stage in our analysis is the derivation of the corrected

version of the theorem. We first state the new version in Dijkstra's notation:

"If q A fH' (t) _,. fH' (r) is a sufficient assumption to prove q A fH" (t) ~

fH"(r), then q A fH(t) ~ fH(r) holds". We shall provide this statement with

an explanation which leads to a true assertion in our framework. The first

(not yet satisfactory) attempt to translate this in our notation, using the

reduction (4.3), yields: For all M, if

Vx,y[q(x) A xH'y + r(y)J FM Vx,y[q(x) A xH"y + r(y)]

then

FM Vx,y[q(x) A xHy + r(y)J.

19

In order to make this more manageable, we start with the introduction

of a new notation, which allows us to rewrite the above in a simpler form.
~ Let, for each boolean symbol p, p be an elementary action symbol, with the

convention that, for all M, M(p)(x) = x, whenever M(p)(x) = true, and

M(p)(x) is undefined, for all other x. We then obtain as next version of

the theorem: For all M, if

then

This is not yet what we want, since we still have to clarify the role

of H' and H". Remember that H" was the name of the piece of program text

••• H' ••• H' ••• H' •••• The quotation from [5] above does not specify what H'

stands for. It seems natural, however, to see it as a program scheme variable,

which has to be "quantified" in the sense made more precise in our next stage:

For all M, if, for all F,

~q,·H' H'. ~ I= ~q·,H" C H",·;
S 'r M{F/H'}

then

~ ~ FM q;H .s H;r.

This is the decisive step, which achieves what we want. Summarizing,

we put

- H into the class of procedure symbols,

- H' into the class of program scheme variables,

- T = •.. H .•. H •.. H ••. , and, hence,

T[H-+H'] = ••• H ' ••• H' ••• H ' ••• , i . e • , T[H+H ' J -

and obtain: For all M, if, for all F,

H" ,

20

~q·H' c H'•; t= ~q·H'[T[H+H']/H-'] _c H'[T[H+H']/H'],·;,
' - ' M{F/H'} '

then

Observing that, trivially,

we finally see that the theorem becomes: For all M, if

and, for all F,

q ; H' c-H'•~ - ' FM{F/H'} q;H'[T[H+H']/H'] S H'[T[H+H']/H'J;;,

then

t=M q;H'[H/H'] S H'[H/H'];;,

and this is nothing but an instance of Scott's induction rule, with

~ = {q;H' SH';;}. 0

REFERENCES

[I] DE BAKKER, J.W., Fixed points in prograrrming theory, in: Foundations of

Computer Science (J.W. de Bakker, ed.), p.1-49, Mathematical

Centre Tracts 63, Mathematisch Centrum, 1975.

[2] DE BAKKER, J.W., Least fixed points revisited, to appear in

Theoretical Computer Science.

[3] DE BAKKER, J.W. & L.G.L.T. MEERTENS, On the completeness of the

inductive assertion method, to appear in J. of Comp. Syst.

Sciences.

21

[4 J DE BAKKER, J. W. & W. P. DE ROEVER, A ea Zaulus for reaursi ve program

schemes, in: Automata, Languages and Programming (M. Nivat, ed.),

p.167-196, North-Holland, Amsterdam, 1973.

[5] DIJKSTRA, E.W., A simpZe a.xiomatia basis for programming language

aonstructs, Indagationes Mathematicae, 36 (1974) 1-15.

[6] HOARE, C.A.R., An axiomatic basis for computer programming, C.ACM,

~ (1969), 576-580.

[7] KLEENE, s.c., Introduction to Metamathematias, North-Holland,

Amsterdam, 1952.

[8] MANNA, Z., S. NESS & J. VUILLEMIN, Inductive methods for proving

properties of programs, C.ACM, !§. (1973) 491-502.

[9] MANNA, z. & J. VUILLEMIN, Fia:point approach to the theory of computation,

C.ACM, _!1 (1972) 528-536.

[IO] MORRIS, J.H., Lambda-aalaulus models of programming languages, Ph.D Thesis,

M. I. T. , I 968.

[II] PARK, D., Fia:point induction and proof of program semantics, in:

Machine Intelligence, Vol. 5 (B. Meltzer & D. Michie, eds.),

p.59-78, Edinbugh University Press, 1970.

[12] SCOTT, D. & J.W. DE BAKKER, A theory of programs, unpublished notes,

IBM Seminar, Vienna, 1969.

[13] SCOTT, D. & C. STRACHEY, Towards a mathematical semantics for computer

languages, in: Proc. of the Symposium on Computers and Automata

(J. Fox, ed.), p.19-46, Polytechnic Inst. of Brooklyn, 1971.

,

