
AFDELING INFORMATICA IW 36/75

P.J.W. TEN HAGEN, P. KLINT, H. NOOT & T. HAGEN

DESIGN OF AN INTERACTIVE GRAPHICS SYSTEM

2nd Printing

NOVEMBER

•

Punted at .the Mathern ·c..a.£ Ce. e,. 49, 2e BoeJthaave/4 , Am-0 :tvr..dam.

The Max.h ..__,,# cal. Ce,..,.~ e., ,6ounde.d .the. 11-.:t.h 06 Fe.bJz.uMy 1946, .ll:> a. non­
pno 6.U iM ~,, L,V\./, on cum~ng at. :the. pJz.omo.tion o 6 putLe mMhe.m · C6 and _,..,J

appuc. L/·of~. 1.,t it, -6pon.ho1'te.d by .the. Net.Ii, and-6 Gove.Jtnme.n:t .thJLough :the.
Ne.thCJ ..,.v\,ncl6 01tganiz ·on 6oJt :the. Advancement o-6 Putte. RUJe.aJtch (Z .W.0),
by :the. Mu.nJ..elp . y 06 Am#6.te.Jtdam, by .the. Un.lve.M.Uy 06 Am-0.t:eJLdam, by
.the. F1te.e. UMveMi.ty at Am-6.teJtdam, and by .,i,ndCL6 ,. eo .

ACM -Computing Reviews- Category: 8.2, 4.35.

1st printing March 1975

•

•

Design of an interactive graphics system

by

P.J.W. ten Hagen, P. Kl int, H. Noot & T. Hagen

ABSTRACT

This report contains a set of specifications for a general ptJrpose

interactive graphics satellite system. A plan is outlined for the

implementation of the system that covers the fol lowing subjects:

- The research that has to be done in order to solve the open

problems.

- The functioning of the hardware in the system.

- The choice of programming tools and the definition of the modules

of the system.

- The organisation of the work to be done, especially with respect

to the order in which the various modules wi 11 be implemented.

The practical use of the system and research that can be

undertaken with the system are outlined.

KEY WORDS & PHRASES: Interactive graphics satellite system, graphics

languages~ drawing machines, picture files.

CONTENTS

0 • I NT RO DU CT I ON

1 • INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH

1 . 1 I nte ra ct i ve graphics sys terns

1.2 Research aspects

1.2.1 Research in the design phase

1 . 2 . 1 . 1 P ro g r arnm i n g too l s

1.2.1 .2 Intermediate Language

1.2.1 .3 Primitive graphics elements and datatypes

1.2.1.4 Interaction

1. 2. 2

1.2.2.1

1.2.2.2

Research with the graphics system
I

Display of complex datastructures

Typographical aids

1.2.2.3 Classification and recognition of pictures

2. CONF I GU RAT I ON

2.1 CYBER 73-28 configuration

2.2 PDP8/I configuration

2. 2. 1 Hardware

2.2.2 Function in the IGS

2.3 PDP 11/45 configuration

2.3.1 General purpose devices

2.3.1.1 Background memory

2.3.1.2 Console

2.3.1 .3 Data communication equipment

2.3.2 Graphics devices

2.3.2.1 HRD-1 Laser Display/Plotter

2.3.2.2 GT40 display

2.3.2.3 Oigiset 40T2

0-1

1 - 1

1 - 1

1-2

1-3

1-3
1- 4

1-5

1-5

1-8

1- 8

1-9

1-9

2-1

2-2

2-2

2-2

2-3

2-4

2-4

2-4

2-4

2-5

2-6

2-6

2-7
2-8

CONTENTS

3.
3. 1

3.2

3.3
3.4

3-5

3.5.1

3.5.2
3.6

4.
4. l

4. l • 1

4. 1 • 2

4. 1 • 3

4. 1 • 4

4.2

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM

Overview

Language aspects

Principles of interaction

The picture file system

The application level

High level graphics languages

Utilities and other modules

The machine driving module

IMPLEMENTATION

The usage of the SARA-configuration

The Mode I I protocol

High level language and computation speed

SARA background storage and file system

Availability of the graphics system to SARA users

The terminal configuration

4.2.l Conversion between Intermediate Language programs

and drawing machine code programs

4. 2. 1 . 1 The GT 40

4.2.1.2 The HRD-1

4.2.1.3 The plotter

4.2.1.4 The Oigiset

4.2.2 Local high level programming language

4.2.3 Picture files

•

3-1

3-1

3-3
3-4

3-8

3-10

3-10

3-11

3-12

4-1

4-1

4-1

4-3
4-4

4-4

4-5

4-6

4-7

4-7

4-8

4-9

4-9
4-10

C(JNTENTS

5.

5. 1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

IMPLEMENTATION STAGES

Introduction

Modules

UNIX

PP-protocol

Intermediate Language (IL)

GT40

Mode I I p rotoco 1

ALGOL 68G

System programming language

5.2.8 IL file manager

5a2.9 HRD-1

5.2.10 Plotter

5. 2. 11 SCOPE

5.2. 12 Picture files

5.2.13 Editor

•

•

5 . 2 . 1 4 I n t e r a c t i on r ,-.:, n i to r an d i n t e r act i on

5 • 2 . 1 5 I / 0 i n t e rme d i ate l an g u age

5. 2. 1 6 U ti l i ti es

5.2.17 SARA operating system and reservations

5.2.18 Digiset

5.3 Stages revisited

5.3.1 Stage one

5.3.2 Stage two

5.3.3 Stage three

5.3.4 Stage four

5.3.5 Stage five

5.3.6 Stage •
SIX

6. LITERATURE

5-1

5-1

5-2

5-2

5-2
5-2

5-3

5-3
5-4

5-4

5-5

5-5

5-6

5-6

5-7

5-7

5-7
5-8

5-9

5-9
5-10

5-10

5-10

5-11

5-11

5-11

5-12

5-12

6-1

INTRODUCTION 0-1

0. INTRODUCTION

This report contains a proposal for an interactive graphics system

together with a plan to realize it.

The main difference between our proposed system and existing

systems is that our system is to be a truly general purpose graphics

system. In the first place, this means that it must be possible to

attach a wide variety of drawing-machines to the system. To this end,

the system wi 11 be completely drawing-machine independent except for a

basic layer. The basic machine dependent layer should provide a picture

file system that allows all system functions to deal with one idea1ized

hypothetical drawing-machine.

In the second place, a wide variety of applications must be

possible. The system should support a general purpose programming

language for applications and a graphics language of the same (high)

level. The graphics language must be capable of controlling the physical

machines via the hypothetical machine, provide a data structure for

drawings, and allow picture input as simple as its picture output.

Furthermore, the graphics language program must share data with the

application language program. The solution chosen is to extend a

high-level language with data structures and operations for manipulation

of pictures.

The first combination of a high-level language with a graphics

language will be ALGOL 68 extended in a natural way with graphics

facilities. This language called ALGOL 68G will serve as a prototype for

similar combinations with other languages.

We have concluded from literature (R.A.GUEDJ (17], F.NAKE and

A.ROSENFELD [20]) that similar attempts in the past were not very

successful. There are several reasons, however, why we think it

appropriate to start this particular project on computer graphics now.

•
IS

INTRODUCTION 0-2

Fi rs t of al l , we have at our disposal much better .. programming

tools than were available in the past: new programming languages like

ALGOL 68 provide the control structure, data structure, and welldefined

extendability needed to realize a high-1evel graphics language.

High-level system programming languages delegate irrelevant details to

the compiler instead of to the programmer, as was the case with

assembly language programming. Moreover, the state of the art in system

design is such that considerable insight has been gained in topics

like inter-process communication and parallel execution. Present day

minicomputers and data communication equipment make it possible to

develop satellite systems for special purposes, such as graphics input

and output. These subsystems, although comparable in complexity to

operating systems for medium

interface with the operating

size computers, have a relatively simple

system as well as with the user (the

programmer or the person at the terminal). Moreover, operating systems

for these minicomputers exist that are especially well equipped for

system software development using high-level languages. Last but not

least, new drawing-machines exist that closely resemble an ideal general

purpose drawing-machine. These machines fol low the general trend in

computer hardware of becoming more and more cost effective.

The second reason is that the need for a modest general purpose

graphics system (which, according to the plan, wil 1 be realized in one

of the earlier stages) is growing quickly in the field of programming

itself. This is caused by the fact that recently developed programming

languages (general or special purpose) allow manipulation of complex

data structures. These data should be drawn rather than printed in order

to visualize them for the user. This is true for input as well as

output. The classical 1/0 devices require 1 inearization of essentially

two-dimensional data. This situation constitutes a serious drawback in

all systems that support the languages mentioned above.

INTRODUCTION 0-3

The existence of better tools does not mean that all problems are

now so 1 v e d • I n pa r t i cu 1 a r , the interactive

i s st i l l an open prob 1 em (see P.BOULLIER

use of a graphics system

[21] for an advanced general

purpose interactive system which allows local interaction only). Chapter

1 of this report describes a number of research subjects we will have to

deal with, more or less extensively, in the course of our project.

Chapter 2 describes the hardware configuration and the so-called

''hard'' software on which the system must be implemented.

Chapter 3 contains a functional description of the graphics system.

This inventor i zat ion, together with some design concepts, 1 eads

to a division of the system into modules that can be implemented

independently.

Chapter 4 is a concrete implementation proposal for the system of

chapter 3 on the hardware of chapter 2. The choice of the programming

tools and the way they are applied receives special attention.

Chapter 5, finally, contains a plan for the organisation of the

work to be done. The order in which the various modules are to be

implemented is defined. Several milestones are placed along the road

that leads to the final system. Each milestone corresponds to a new

facility that wi 11 have been added to the existing part. Together with

the description of the work required for each module, time estimates are

given based on the assumption that the work will be carried out by a

tear, consisting of the four authors of this report. It is concluded that

the complete system wi 11 require a team effort of at least four years.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-1

1. INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH

1.1 Interactive graphics systems

An interactive graphics system is defined as an operating system

that allows input and output in the form of a picture at run time.

Graphics systems can be divided into general-purpose and special­

purpose systeMs. In the second type of system, programs can only

use graphics 1/0 in a limited field of application (aerodynamic

calculations, electrical networks, etc.). One of the problems in general

purpose systems is that input to programs must be possible in a uniform

way for a wide variety of applications and all kinds of different

drawing-machines.

A second problem is the definition of an interface between a

graphics language (even if elementary) and a high-level programming

language. One way of overcoming this difficulty is to represent tl,e

graphics elements as procedures in the high-level language. This leads

to the display procedure approach, as used in various FORTRAN-based

graphics systems (see D.GROOT [15], A.D.RULLY [26]) or ALGOL-like

systems (see W.M. NEWMAN [22]). The nesting structure of the procedure

cal ls and declarations used can be a reflection of the structural

properties of a picture. This situation imposes two serious limitations

on interaction, however:

- The structure of nested procedure calls cannot be changed

interactively.

- The display files which are the output of the graphics programs are

unstructured sequential files.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-2

We intend to avoid these limitations by defining our graphics

language as an extension of ALGOL 68. In this way the interface between

graphics and nongraphics language elements is completely defined within

the ALGOL 68 framework, without the need of compiler modifications.

The data structuring possibilities of ALGOL 68 wi 11 provide the display

file structuring necessary for interaction. The ease of defining and

implementing graphics languages in ALGOL 68 makes this method attractive

even when the ultimate goal would become a graphics language implemented

on a completely different host language.

1.2 Research aspects

-
-

The research aspects of the graphics project can be divided into:

Research during the design of the system.

Research carried out with the help of the system.

Of course, the usefulness of the system can be judged from the

success of research projects of the second type. Such an evaluation may

even lead to changes in the initial system. The same remarks can be made

for research during the design phase, when al ready implemented parts of

the system are applied. Hence the two research categories mentioned, are

not really disjunct. For convenience however, we wi 11 adhere to this

distinction.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH

1 .2.1 Research in the design phase

l . 2. 1 . 1 P rog ramming too 1 s

Programming tools will be understood, in this context,

languages and language elements used for the implementation

graphics system. In this section we will discuss the programming

whose design or selection requires some further research.

1-3

to be

of the

tools

The major system programming task consists of the implementation of

an interactive graphics terminal on a satel 1 ite computer. To this end

we need an operating system that supports a system programming language.

The operating system chosen at the start will be UNIX (see D.M.RITCHIE

and K.THOMPSON [24]), which supports the high-level language C (see

D.M.RITCHIE [25]). This language does not contain primitives for

system programming however, 1 ike semaphores, critical regions etc. An

alternative might be the use of ALEPH (see D. GRUNE et al. [16]),

extended with system programming primitives. ALEPH has a drawback: no

implementation on the PDP11/45 is available.

Some associated projects are selection of programming primitives

and extension of either ALEPH or C. Primitive actions wil 1 be

designed with the help of simulation in the candidate languages. In the

experimental stage they can be changed without the necessity for regular

compiler modifications. Noninterpretive implementation can follow

afterwards.
•

The host language used for

high-level graphics language w i l 1

the

be

first implementation of

ALGOL 68. Therefore

the

the

constructions in this language are potential programming tools in the

sense used here. The choice of language elements to be used for the

implementation of the graphics extension constitutes another design

problem. For example, unlike the proposal of DEHNERT ao.[7], the Mode

''flexible row of ... '' wi 11 not be used to implement the union operator,

to avoid unnecessary copying operations.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-4

1.2.1.2 Intermediate language

The IL (Intermediate Language) wil 1 be discussed in detail in

section 3.3. For the moment, it suffices to know that the IL is an

intermediate level language between high-level graphics languages and

the machine languages of graphics 1/0 devices. It is a language for the

definition of pictures. In our system, a high-level graphics language

that generates a picture wil 1 do this in the form of an IL program. This

program can be stored in a picture library or translated to the machine

code of an actual graphics device. When pictures are read in from a

graphics device, the reverse steps are taken. This results in an IL

picture description that can be mapped into a data structure available

to the high-level graphics program. In our view, the design and

implementation of the Intermediate Language presents the following

research problems:

-

-

-

-

To design IL primitives for storage and retrieval operations in

picture libraries. These primitives must enable the description of

pictures containing references to library subpictures.

To find a level of complexity between the high-level graphics

languages and the dra,1ing-machine languages that allows efficient

conversion in both directions.

Efficient conversions to and from the Intermediate Language are

of particular importance: on the one hand, they influence the

execution speed of complex library manipulations and on the other

hand, they influence the execution speed of all transports between

program and device.

The constrtJction of an abstract machine

definition of the semantics of the IL.

to be used for the

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-5

1 .2.1 .3 Primitive graphics elements and data types

An important subject for research is the design of a graphics

language. First of all a set of graphics primitives has to be defined,

i.e. primitive data types and primitive operations. Next, constructions

for composition of complex data types and operations on complex data

have to be built. These language elements can then be used to give

together with their associated structured descriptions of pictures

nongraphic information. An example

the ALGOL 68 extension discussed in

of such a language is the design of

section 3.3 and TEN HAGEN[29].

The importance of this aspect of the design of the interactive

graphics system is self-evident. The appearance of the system as seen

by the user is strongly determined by the facilities offered in the

high-level language. All facilities provided should be available through

the high-level language.

1.2.1.4 Interaction

The study of interaction mechanisms is another important research

project during the design of our graphics system. It is known in

principle how to construct or modify complicated drawings on a display

with the aid of light pens etc. The problem of supplying those drawings

as input to a program has not been solved satisfactorily. In fact, this

would require a form of pattern recognition which enables the generation

of a data structure of a type known to the program, on which tt1e drawing

can be mapped.

Interaction with programs in present day general purpose graphics

systems proceeds, as far as we knON, in the following two steps:

- Parts of the drawing that must be detectable by a light pen, have

to be identified as such statically.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-6

- After a light pen hit on such a part, a simple action 1 ike

deletion, replacement or transformation, is undertaken. This action

is either predetermined or selected from a li~ited set with the

help of, for example function buttons.

In this type of interaction, the data structure representing the

picture can be changed only by inserting or replacing subpictures known

in advance. The input of arbitrary pictures, constructed at a display,

is very difficult. The situation in three dimensional computer graphics

seems at first sight somewhat different due to the existence of

transformations such as hidden line algorithms, which drastically change

the picture displayed. There are two data structures involved here:

one representing the three-dimensional picture, the other representing

a two-dimensional projection of the same picture. The former is not

changed by hidden line algorithms and the like. In general it cannot be

changed interactively from a display because of the irreversibility of

projection transformations. Furthermore, there are to our knowledge

no general purpose graphics systems in which the two-dimensional

projections can be used as program input. This problem is of the same

complexity as the input of arbitrary pictures.

We will start with the investigation of an interaction mechanism

that is characterized by the fol lowing properties: picture elements are

light-pen detectable if and only if they are declared to be so called

''basic''- or ''structured'' symbols. In general, any (sub)picture can be

declared to be a basic symbol or a structured symbol. Basic symbols

are, apart from graphics primitives like lines, points, etc.,

picture elements whose internal structure is reduced to the simplest

for~ possible, namely a list of primitives. The data structure of a

structured symbol remains identical to that of the picture. Symbols can

be defined both statically and dynamically. Because of the fact that

symbols are the only picture elements that can be referred to during

be composed from symbols interaction, those defined dynamically

already existent. In this way, the data

must

structure representing a drawing

INTERACTIVE CiRAPHICS SYSTEMS AND RESEARCH l-7

can be altered drastically, for instance, by replacing an old symbol

with a newly defined one. Conflicts between interpretations of light pen

h i t s \v i 1 l be res o 1 v e d by supp 1 y i n g t he type o f t he s t r u ct u red s ym b o l

pointed at. An important aspect of symbols will be the possibility

of defining them as pictures with associated nongraphic data. This

wi 11 increase the usefulness of picture input to programs. How this

association wi 11 be accomplished still has to be investigated.

A further aspect of our interaction mechanism will be the

implementation of a specially designed flO\v of control language that is

part of the conversation between the user and a running program.

A few words about a possible realization may be appropriate here:

the places in a program where interaction has to take place could be

indicated b~, calling a procedure ''interaction''. This procedure could

be the standard one or may be user-defined with the help of primitives

provided by the system. It can process the input generated at a display

and produce the necessary changes in the data structure of the picture.

All information passed between the high-level langua9e program and a

display is converted to an IL program (see 1.2.2.2). This introduces

the problem how a symbol identified at a display can be found in the IL

program and in the high-level data structure. These problems strongly

resemble each other. We suggest two solutions. We will use the

abbreviations DM and HL for drawing-machine language and high-level

language in this discussion.

- There exists a table of pointers to all symbols in the picture data

structure. This table is produced during the conversion between

either IL and DM or between HL and IL, and is added to the target

language file. The procedure ''interaction'' and its analog from 0~1

to IL use these pointers to locate a symbol in the data structure.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-8

- Some infor~ation on the position of the symbol in the picture is

transmitted to the interaction mechanism which searches the symbol

in the HL or IL data structure by scanning it, directed by this

information.

The mechanisms just described are mentioned only to show, that our

interaction proposals can be i~plemented. The actual mechanism we wi 11

use remains to be investigated in detail.

1.2.2 Research with the graphics system

1.2.2.1 Display of complex information structures

Complicated structured information can best be visualized in the

form of pictures, when it has to be used by human beings. This fact

suggests using a graphics system as a programming aid by having it draw

data structures and flow charts. In particular, we might think of the

following examples, each of which could be a more or less extensive

research project:

-

-

The data structures that exist during the execution of an ALGOL 68

program can be represented in the form of a directed graph. Such

graphs could constitute important diagnostic information.

Monitoring and displaying the flow of control in programs at run

time. -rhis could be used both as a debugging aid and as a design

aid, in particular in the study of complicated programs like

operating systems.

- The visualization of statistical information about the • runtime

behaviour of programs,

resource usage, et cetera.

like calling-frequencies of subprograms,

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-9

- Control of input to programs at a visual display, in those cases

where the correctness of the input can best be verified by ~eans of

a picture.

1.2.2.2 Typographical aids

At the Mathematical Centre, a lot of work has already been

done on the development of various programs that perform typographical

functions.

TEN HAGEN

For further information see the 1 ist of references

[30]. With an interactive graphics system, research

• 1n
• ,n

computer typesetting can be continued. We merely list here some of the

poss i b i l i t i es :

-

-

-
-
-

Interactive programs for the determination of the layout of

complicated mixtures of text and illustrations.

Interactive text editors that can cooperate with the layout

programs.

Interactive programs for generating special characters.

Programs for generating tables.

Specialized programs like music editors.

1.2.2.3 Classification and recognition of pictures

An important classifier • 1n information storage and retrieval

systems for two-dimensional information is al inear key appended to each

picture. This key is a linear character string, which can be used as an

index. The program can interpret the key as a schema for the picture.

This si~pl ified picture can be presented to the user as a notation for

the key. An example of such keys is the Wiswesser line formula chemical

notation (see E.G.SMITH [27]). This notation is strictly based upon

the topological properties of chemical structure formulas. This kind of

classification can be used in question-answering systems for pictures

that deal with both their topological properties as \~ell as properties

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-10

specified by associated data.

The first step in picture recognition is to define the notion of

recognition. Such a notion can be obtained by specifying all (possibly

not disjoint) sets that a picture might belong to. When classifications

with the help of linear keys (see above) are available, research can be

done in the development of algorithms that produce these keys from input

dra,~ings.

Another picture classification that seems worthwile to investigate

is based on the data structure that represents the picture. In this way,

pictures processed or produced by a program can be classified at the

same time.

CONFIGURATION 2-1

2 • CO N F I G U RA -r I O N

The Interactive Graphics System (further referred to as IGS) will

be implemented on a network of three computer configurations, namely:

a CYBER73-28 (CDC), a PDP11 /45 {DEC) and a PDP8/ I (DEC). The PDP11 /45

will function as a graphics satellite of the CYBER73-28. The CYBER will

execute the graphics application programs. All interactive graphics

devices are connected to the PDP11/45. The PDP8/I will function as a

data concentrator for the PDPll/45. Thus, logically, all peripherals can

be considered as connected to the PDPll/45.

For users of the CYBER73-28 it will be possible to produce files

containing graphics information. These files can be put in the output

queue for the hardcopy graphics devices of the satellite. In a later

stage this facility will be extended to enable the (interactive)

production of picture files at the graphics terminal for input to

application programs running on the CYBER73-28.

Our main programming task consists of the design and impleMentation -- -----·-·---· --
of the complete software package for the PDP11/45 graphics sate11ite.

The description of the hardware configuration in this chapter

serves two purposes:

• - A hardware overview in order to illuminate its usage in graphics

-
applications.

Specification

1 eve l .

The discussion

with the satellite.

given i n fig 2 . 1 •

of the programming of this hardware on

of the CYBER73-28 is restricted to the interface

A survey of the PDP11/45 - PDP8/I configuration •
IS

CONFIGURATION 2-2

(Just prior to the publication of this report v,e decided to use a

16K PDP8/E instead of an 8K extension of the PDPB/1. The RK08 disk unit

is connected to the PDP8/E. The PDP8/E is connected to the PDP11/45

in an identical way as the PDP/I. The PDP8/I and the PDP8/E are also

connected by means of an interface designed by P. BEERTEMA. This change

in configuration does not affect any conclusion in the report.)

2.1 CYBER73-28 co~fi9uration

The CYBER73-28 computer (2 processors) at SARA provides on-line

terminals and batch terminals. In the network the CYBER73-28 wil 1 treat

the PDPll/45 as a remote batch terminal. The operating system SCOPE (4]
provides features which are necessary

languages and file support. Furthermore

have the opportunity to display picture

the PDPll/45.

in our IGS, such as high-level

the users of the CYBER73-28 will

files on the graphics devices of

Initially the communication will conform to the SARA-implementation

of the Mode I I protocol [3], which supports streams only for card

readers, card punches,

graphics devices will

printer and an operator console. Conversion for

have to be done at the satellite. Installation

of an interactive stream will require an extension of SCOPE in order to

support interactive streams in the Mode I I protocol.

2.2 PDP8/I configuration

2.2.1 Hardware

The PDP8/I computer is equipped with 24K words of core and a memory

protection unit. It has to be seen as a data concentrator for the

PDP11/45. The 1/0 devices of the PDP8/I are:

CONFIGURATION 2-3

-

-

-

-
-

-

Background memory:

cartridge unit.

a dual dectape • unat, a disk unit, and a disk

Graphics devices: a storage display unit ,~ith a joystick and a

small Calcomp plotter.

Terminal devices: a console teletype

multiplexed to the PDP8/I.
and two 01 ivetti terminals

Converters: three D/A converters.

Interface device: an interface for the connection with the

PDP11/45, designed at the Mathematical Centre by P. BEERTEt~.

Miscellaneous devices: two paper tape readers, two paper tape

punches, a line printer, and a braille printer.

For specific details about the devices see table 2.1.

2.2.2 Function in the IGS

The purpose of the PDP8/I configuration with respect to the IGS is

as follows:

- Support of programming tasks on the PDPll/45: the background memory

for file storage (permanent storage on DECtape and paper tape, and

temporary storage on disks), and the line printer for assembly

1 istings and editing facilities.

- Servicing the 1/0 devices under the Mode I I protocol.

- Integration of the KV08 display and the Calcomp plotter in the IGS.

The existing programs on the

performing most of these tasks under

and UTOR. The remaining tasks will be

PDP8/J are already capable of

the operating systems TRACK, 0S8

carried out as part of a different

programming project. For completeness we 1 ist here the programming tasks

in this project which are required for the JGS:

CONFIGURATION

- Implementation on the PDP8/I of the communication protocol

HAGEN [18]) between the PDP11/45 and the PDP8/I.

-
-

Extension of the single user editor to a multi user editor.

Some conversion routines to and from Mode I I format.

2-4

(see

- Integration within the tGS of the plotter and the KV08 display (it

has not yet been decided whether this will be carried out by us or

others).

2.3 P~P11/45 configurati?n

The PDP11/45 computer will initially be provided with 48K words of

core, a memory management unit and a floating point processor. See the

DEC handbooks [10] and [11].

2.3.1 General purpose devices

2.3.1.1 Background memory

There are two disk cartridge units, one for system working space,

and the other for graphics data files.

2.3.1.2 Console

The DECwriter will be the standard operator console. The GT40 can

also be used for this purpose if a GT40 console driver is written.

CONF I GU RAT I ON 2-5

2.3.1.3 Data communication equipment

- CYBER73-28 connection. The PDP11/45

CYBER with a 9600 BD synchronous

replaced by a 50 KBD videol ine. The

is initially connected to the

telephone 1 ine, later to be

PDP11/45 equipment consists of

a DQ 11-AE [8] with hardware cyclic redundancy check, programmable

character recognition and direct memory access. Communication has

to be maintained according to the so ca 11 ed Mode I I protoco 1 [3].

This fixes the way the OQ 11-AE has to be programmed. The program

for the protocol on the level above the DQ 11 driver, wil 1 be

taken from the DEC COMTEX Mode I I I SR/TAB [12]. The exchange of

information with the protocol will be on a file by file basis. This

will imply file conversion in most cases.

- PDP8/I connection. A DR 11-C unit provides a full duplex

-

16-bit-parallel data transport. The DR 11 handler takes care of the

data transport according to the PP protocol (18]. The communication

with the PDP8/I is on a file by file base. There is no

master-slave relation, both participants •
In the • • commun1cat1on

behave symmetrically.

GT40 connection. DL 11-E modules (see [11]) take care of a full

duplex 9600 BO serial data transport between the PDP11/45 and the

PDPll/05, which is part of the GT40. The GT40 has no storage

capacity for complete files. Information must be exchanged below

the file level. The co~munication protocol still has to be

designed.

CONFIGURATION 2-6

2.3.2 Graphics devices

2.3.2.1 HRD-1 Laser Display/Plotter

The HRD-1 of Laser Scan Ltd. (see [1 9 J) i s a h i g h res o l u t i on f i l m

recording and i~age display system. The HRD-1 can be used for drawing in

three ways:

1. High quality hardcopy output on diazofilm.

2. mode. The storage mode •
IS Output to

obtained

a large screen in storage

by recording the picture • on semi permament photochromic

film, which is projected on the screen.

3. Output in refresh-~ode directly on the screen.

The refresh-mode picture is superimposed on the storage-mode

projection. Storage of the refresh mode picture is avoided by selecting

a different address area. This constitutes the only difference between

storage rrode and refresh mode. The writing beam (from an argon ion

laser) is successively controlled by the following four components: a

modulator, a secondary deflection system, a dynamic focussing lens

and the main deflection system. The accuracy and high resolution are

obtained by an autonomous interferometric control in the main deflection

system. An auxiliary laser supplies light for the interferometer.

Program control of the writing beam is obtained by feeding the four

components through the HRD-1 computer interface. Sixteen function

buttons, a tracker ball and a keyboard provide the HRD-1 with

interaction facilities.

Computer control

Sixteen PDP11/45 memory

of the HRD-1 is provided through an interface.

registers are reserved for the control functions

and the status and data information. The control functions are:

CONFIGURATION 2-7

-
-
-

-
-
-
-
-

Global and local moves.

Mode-setting and focussing of the beam.

F i 1 m cont ro l .

Status and data information specify:

Machine status, interrupt flags and error conditions.

Position of the beam.

Fun ct i on b tJ t tons •

Key boa rd codes.

Position of the tracker bal 1.

The HRD-1 will be used for hard copy output on film of batched

picture and text files, with the emphasis on • pictures, and for

interactive graphics terminal sessions.

2.3.2.2 GT40 display

The GT40 interactive graphics display consists of a PDP11/05

processor with BK memory and a display unit. For interaction the GT40

has a keyboard and a light pen. The screen, a cathode ray tube, is only

1 7 . 1 by 2 2 . 8 cm • I t 'vv i l 1 be us e d f o r t he f o 1 l O\•.J i n g p u r pose s :

-
-
-

-

-

Inspection of picture files.

Si~ulation of other graphics devices.

Interactive experiMents. The GT40 is relatively easy to program,

and therefore well suited for graphics experiments.

The development of special character sets for specific applications

and special hard-copy output devices, 1 ike the Digiset and the

H RD-1 .

To display information generated

programs (see 1.2.2.1).

by tracers that monitor (system)

CONFIGURATION 2-8

- To use the GT40 as a character display.

All the software for the GT40 has to be developed. At the basic

1 eve l i t pe r f o rm s the f o l 1 O\-J i n g t as ks :

- The interface with the PDP11/45: design and implementation of a

communications protocol.

- The extension of the display-processor language with virtual

instructions in order to obtain a more manageable display.

2.3.2.3 The Digiset 40T2

A 1 though

possibility

our
.. ex Is ts

con f i g u rat i on

to use one.

does not

Connection

contain a Digiset,

with this Digiset can

the

be

established through a telephone line or via a magnetic tape unit. The

Digiset 40T2 (14] is a photo-typesetter that can be computer-controlled.

The photo-typesetter produces hard-copy output on film or paper. Input

consists of 8-bit transparant code supplied through a paper tape reader,

a magnetic tape unit or an on-1 ine computer connection.

The Digiset can operate in two modes, namely, the character

definition mode and the typesetting mode. Switching between the two

modes is under input-code control and can be done at any moment during

operation. Special properties of the Digiset with respect to character

definition and positioning al low application as a drawing-machine of

high precision (0.01 rtu!1) and acceptable speed (100 times faster than a

plotter).

The best results of the drawing capacity can be expected for

pictures that combine drawings and texts, with emphasis on texts. The

text-oriented design results in a considerable better performance when

the overall movement of the beam is left to right.

CONFIGURATION 2-9

The application as a line-drawing-machine requires considerable

programming effort in addition to the substantial effort to use it as

a text-composer (see H.NOOT and P.J.W.TEN HAGEN [23], P.J.W.TEN HAGEN

(30]).
The Digiset can use only program-defined characters of arbitrary

shape. These character sets are organised in type founts and stored

fountwise on disk. By (re)defining characters dynamically as needed,

an in principle unlimited character set for texts, line drawings and

grey-scale pictures is available.

CONFIGURATION 2-10

PUP8/I configuration tabel 2.1

device description number name or ser.nr. manufacturer remarks

dual dectape unit 1 TU 55 DEC

disk unit 1 RS08 DEC 256 K words

disk cartridge unit 1 RK08 DEC 1 • 2 M words

storage display 1 KV08 DEC

Calcomp plotter 1 565 Calcomp 300 st/s,30 cm

console teletype 1 Teletype Corp. 10ch/s

0 1 i vet t i term i n a l 2 TE 318 0 l i vet ti 110bd Soc/line

D/A converter 3 AA-01 DEC

PDP11/45 interface 1 D1 811/1 MC

paper tape rd/punch 1 PC 04 DEC 300 c/s,30 c/s

paper tape reader 1 EL 100 0 Electrologica 1000 c/s

paper tape punch 1 Fae it 1 Facit 150 c/s

1 ine printer 1 Anelex Anelex Corp. 20 l ines/s

braille outputdevice 1 7c/s

CONFIGURATION 2-11

PDPll/45 configuration tabel 2.2

device description number name manu- remarks

fact.

intern extern ref.

ref.

POPll/45 processor

floatingpoint

processor

clock

16K core

16K core

memory manager

bootstrap loader

DEC writer

interface to DEC

writer

interface to CYBER

interface to PDP8/I

1 KB11-A DEC

1 FB11-B DEC

1 KW11-L DEC

2 MF11-UP DEC

1 MM11-UP DEC

1 KTl 1-B DEC

1 MR11-BB DEC

1 LA30-CD DEC

1 DL 1 1-A DEC

1 DQll-EA DEC

1 DR11-C DEC

2.3 proc.handb.

2.3 proc.handb.

chapter 7

timeslices 2.3 per.handb.

of 20 msec 2.3 page 4-197

with a 2.3 per.handb.

page 4-245
per.handb.

page 4-245

proc.handb.

chapter 6

cont ro 1 le r

console

writer

300 BD

50 K BD,

eye l i c

redundancy

check char.
• • recogn I t I on

16 bit

para 11 el ,

250KBD

2.3

2.3

2.3

2.3. 1.2 per.handb.

page 4-201

2.3.1.2 per.handb.

page 4-124

2.3.1.3 DQ11 NPR

synchronous

line interf.

(preliminary)

1974

2.3.1.3 per.handb.

page 4-165

CO N F I G URA T I ON

interface to GT40 1

nu 1 l modem 1

di s k control 1 er 1

disk cartridge drive 2

DL11-E DEC

H312 A DEC

RK11-D DEC

RK05-BB DEC

9600B0 ser. 2.3.1.3

asynch.

for interf. 2.3.1.3

to GT40

cont ro 1 1 er 2. 3. 1 • 1

(two dis ks)

1.228 m 2.3.1.1

words

proc.handb. = processors handbook

per.handb. = peripherals handbook

PDP11/45, 1974-75, DEC

PDP11 , 1973-74, DEC

2-12

per.handb.

page 4-124

per.handb.

page 4-185

per.handb.

page 4-282

per.handb.

page 4-282

CONFIGURATION

GT40 configuration

device description number name manu- remarks

fact.

PDP11/05 processor

keyboard

interface to 11/45

8K core

GT40 display and

1

1

1

1

1

KD11-B DEC

LK 40 DEC

DL11-E DEC

MMl 1-L DEC

DEC

9600 BD

serial

2-13

tabel 2.3

intern extern ref.

ref.

2.3.2.2 proc.handb.

2.3.2.2 GT40 users

guide page 6

2.3.2.2 per.handb.

page 4-124

2.3.3.3 per.handb.

page 4-245

2.3.2.2 GT40 users

processor guide

proc.handb. = processors handbook PDPll/05, 1973, DEC

per. handb. = peripherals handbook PDP11, 1973-74, DEC

...

•

chapter 4

,f.:&ii~~f~\ /_'. r,,_:,~· -0 ,. · :t:- ·:.1: _ ---'-·"•· .. ,. r.- ·.,_, .. ,, .. ~. --'- ... ,, _ .. ,_-~,·

,,__ ,._.

U ll·A

procas•or

floating p.

clock

DQ 11-KA

CRC

ptO(.

char. req.

50 X 8D

48K eore

• .,ry aanager

UNIBUS

I I DL 11-E

I I serial
a.synch

9600 BD

U.05 disk

RK05 disk -- """"_.....,..
RICI} contr

11 / 45

•

Hkfi...l

laser

display/plotter

--------,

DL 11-A
I I DR I l-C -------

LA JO-CD I l parallel
DEC writer interface
)00 BD

I I DR 11-C

I I parallel

I I interface

110dem
ll312A

modem
················~·'·······-···~·-~-~~~-~••··· .. ·······~-·-···~-~~·····~-~-·~-----·•~···~·- .. •··

C"l&ER

73-28

'
•

,.. ,., ··········~······ ~ ~ .. ~ • • • • • • • •
l
•
i GT40 ' • : • • • I

DL 11-E
• •

•
' ' • • • • •
! : • • • • •

serial

asynch

9600 BD

LK 40

Keyboard

' • • • • I • • •
' • • • • • • • • • • • • l • •

I • ' . • • • • f • • • • • I I
• •
l • • • . -------------------------- ·------------------------- _________________________ .., .
~ UNIBUS 11 /05 !
I ,-----------,---.. • I t • • • • t •
. ---------- ·---------· 1,---------- ---------- ---------- ---------- . • • I • • • • • ' . • • ; GT40 :
: KO l 1-B 1ti I 1-L : • • : dpu :
: processor BK core : • • • : dLsplay :
' . • • • • • • • • . ._________________ ----------------- ----------------- . • • • • • • • • I • • • • • •···-·· .. ~

•
•
•
•
• •
•
•
•
•
•
•
• •
•
•

' ' •

►

DE 811

interface

KL 8-JA

interface

9600 BD

- ••• ~ • - - - - - • - • - - - ~ •••• " - ~. - ~ •~ - ~ - • - ••• - •• - •••• ~ •• " * ••• ~ - • " " - • ' •

Anelex

lineprinter

DEC paper tape

reader/punch

300 ch/a 30 ch/s

EL 1000

paper tape

reader

1000 ch/s

Facit

paper tape

punch

150 ch/s

DI 8 I I

interface

braille
• printer

7 ch/s

fig. 2.1. A survey of the PDPll/45, PDP8/I and PDP8/E configuration

16K

l6K

PDP8/E

ext. arithmetic

prog. clock

DB 8-E

interface

DI 88

interface

PDPS/1

Teletype

console-
• vr1ter

KL 8-E

tty

interface

DEC tape

dual unit

multiplexer

Olivetti Olivetti

terminal terminal

IX05

disk uait: ---------
m:.Rl contr

RS 08

di&k unit
-·-----

RF08 contr

3 D/A

converters

KV 08

display

joystick

Calcomp

plotter

300 st/s

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-1

3. PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM

3.1 Overview

In this overview we will split up the overall function of the IGS

in three basic functions. Each graphics program will require execution

of all basic functions.

The

programs.

The effect

first basic function is to execute graphics application

To this end the IGS supports high-level graphics languages.

of a graphics application program is to read and to produce

zero or more picture files.

The second basic function is to drive all physical drawing

machines. The drawing-machines either produce pictures in hardcopy

(paper, film) or on a screen, or they produce picture input in the form

of a picture file.

· The third basic function is to provide a link between the two

previous tasks. This linking function is realized in the form of a

picture file system. All picture files contain pictures in a standard

i n t e r n a l rep resent a t i on , the so- ca 1 l e d I n t e r med i ate Language (I L) .

-

-

A typical graphics session encompasses the following steps:

A graphics language program is compiled and brought into execution

(function 1).

The prograM opens a number of picture files. Open files can also be

linked to a drawing-machine, for input as well as output (function

3) .

- The user starts the drawing-machines. Al l input is put in to f i 1 es

that will be consumed by the application program. All output

files for a drawing-machine are converted and consumed by the

machine-driving program (function 2).

•

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-2

level • overview fig. 3.1

application program level: ALGOL 68G FORTRAN EXTENDED HIGH-LEVEL

GRAPHICS PROGRAM

intermediate level: Intermediate Language

level of drawing-machines: PLOTTER DISPLAYl DISPLAY2 DISPLAY3

The proposal in this chapter will be formulated by describing the

three basic functions in more detail. The main strategy is to split

up the functions into subfunctions that can be realized (implemented)

as more or less autonomous subsystems (modules). Each module is

characterized by its functions, its relations with other modules and its

internal structure. Before describing the modules a few design decisions

that apply to all functions are outlined .
•

The most important decision is to formulate the various functions

with the help of special languages. These languages will either be

implemented directly (e.g. the high-level programming languages) or will

be used only to guide the implementation (e.g. the IL).

A second decision deals with the information flow between the

various functions. The main goal here is to achieve efficiency by

finding a uniform way of exchanging information.

The third decision concerns the definition and realization of

interaction. It will turn out that a two-level interaction mechanism is

required •

•

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-3

3.2 Language Aspects

In each of the three basic function modules one or more programming

languages can be distinguished.

In the application module there exist several high-level graphics

languages. Each general purpose programming language (e.g. ALGOL,

PASCAL, FORTRAN) can be extended to a graphics programming language, in

a more or a less convenient way.

In the drawing-machine module there exist various dra\ving-machine

languages (machine instruction repertoires).

The linking function contains only one language, the so-cal led

Intermediate Language (IL). This minimizes the number of conversion

routines needed for translation between high-level graphics languages

and physical machines: one for each language and one for each machine

(see fig 3.1). The IL can also be used for conversion between pictures

from one drawing-~achine to another (e.g. screen to plotter).

The IL is a language designed only for internal representation of

pictures. Its semantics can be described with the help of a abstract

drawing-machine. The graphics 1/0 of the high-level graphics program

consists of IL programs. The high-level program must be able to

generate and read IL-programs. The graphics 1/0-instructions consist

of conversions between IL-programs and their representation in the

high-level graphics program. This conversion can be made efficient by

embedding the II_ in the high-level language. This also provides the

programmer with one conceptually simple drawing-machine (that is if we

can invent a simple IL). In fact we intend to realize all high-level

graphics languages by embedding the IL in an existing general purpose

programming language.

For both input and output we want to use the same IL. This

guarantees complete symmetry between input and output at the application

level, which again wi 11 proMote simplicity.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-4

In order to obtain a flexible transfer system between IL files

and the various drawing-machines, it may be appropriate to proceed in

steps. This means that a drawing-machine is transformed into an extended

machine by adding instructions. The extended machine should resemble the

IL machine more closely in order to simplify conversion. The process can

be repeated as often as needed.

This strategy is indispensable for the realization of

drawing-machines for input. The distance between a 1 ight pen hit and any

IL primitive is much greater than the distance between a vector function

on a screen and a line in the IL. It is at this point, rather than at

the application level, that the problems involved in obtaining symmetry

between input and output must be solved.

3.3 Principles of Interaction

Interaction is a special combination of input and output. Input

provided by a user goes directly to a program that is in some form of

waiting state. Output goes directly to the user at the terminal. Input

and output are exchanged on a question and answer basis.

Graphics interaction means that both input and output are pictures.

All input originates from a picture produced at a screen (visual

display). Output pictures are drawn on the same screen.

From this description, it fol lows that the interactive part of a

graphics system performs four subfunctions:

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-5

-

-
-
-

Picture inrut.

Picture output.

A question and answer mechanism.

An arbitration function for sharing the screen.

In general, after a question by the program, the user needs the

complete drawing-machine for co~position of the ricture that constitutes

the answer. He also needs to reinspect the question picture from time to

time. Hence the question must be redisplayed and therefore remembered

by the system. This can be accomplished in two ways. The user can ask

the application program to repeat the question, or the question can

be redrawn from local storage. The latter solution requires a local

file capacity. We nevertheless prefer this solution because it strongly

reduces overhead and local file capacity wi 11 be necessary anyway.

For composition of a picture on a screen one can again choose

between two alternatives. In the first approach, user actions can be

recorded in a sequential file and be sent to the program. The program

mus t i n p e r p re t th i s raw ma t e r i a 1 i n o rd e r to ext r act the i n t ended

picture. It would be wise to display this picture at the screen and

allow some additional composition in order to ensure a correct answer.

Most existing graphics systems apply this raw picture input, usually

without the correction cycle. We strongly prefer a different approach

for the fol lowing reasons:

- Raw input violates the concept of symmetry between input and

output, since the primitive actions at the screen are more

primiti,1e than the primitives in the IL. (for instance, a light pen

hit or a function button push is not a point or a line, at best a

point or ~ 1 ine can be the result (composed) of a sequence of hits

and pushes).

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-6

- Verification of the right input should be possible through a local

drawing- and editing system. The activation of a big application

program for input that will instantly be rejected, causes an

unacceptable overhead.

The second approach uses a local picture editing system. A picture

editor is a much more complicated program than a text editor. A text is

a linear string of characters that is built up on a line by line basis.

As a consequence only the current line is subject to changes. Therefore

in most text input systems a local mode is used only to prepare a line

of text, which ,~ill be handled over as one information item. As compared

to texts, pictures require at least one more level of interaction. The

current picture input devices require a series of input actions in

order to specify one input primitive. Such a series can be compared in

length and complexity with one line of text. Pictures, however, have

a tree-like information structure. This means that such a primitive

must be linked to several points in the already existing picture. This

1 inking (composing, associating, constraint building, etc.) wi 11 require

a new series of input actions that may again be subject to local mode

editing. Furthermore, the complete picture must remain available in

order to specify the linking points.

The corrections in the picture must be possible in terms of

primitives (deletion, replacement) and by relinking these corrections

to the original picture. This editing on the level of primitives and

links is what we call the local interaction mode. The more primitive

interactive mode of building picture primitives and link specifiers is

not considered as an extra interactive level (al though it is). We expect

no more difficulties with it then we would encounter while collecting

1 ines of text.

PROf'OSAL FOR A~J I ~Jl-ERACT I VE GRAPHICS SYSTEM

Complete pictures thus constructed constitute the input to the

interactive application program. This high-level interaction or global

interaction introduces two new problems in an IGS. Both have been

discussed already in chapter 1 as research subjects. We do not want to

rep ea t th a t d i s c tJ s s i on he re , but i n s tea d t r y to def i n e fun c t i on s of t h e

system that would be able to solve these problems.

The carefu 1 reader wi 11 have noticed that \-Je let the program

ask the questions, and the user provide the answers. This is because
• • ans,-Jer1ng requires much more intelligence than asking. When asking a

question the program must also specify the form of the answer with

respect to:

-

-

The 1 eve 1 of de ta i l of the answer. In the exchange of tree- 1 i ke

information it is generally convenient for the user to see as much

of the tree as possible, although only part of the tree is subject

to discussion. A special selection module should he1r to extract

the subpicture that constitutes a permissible answer out of the

picture supplied by the user.

The topological (grammatical) properties of the tree as a graph.

There must be a function module that wi 11 reject all picture trees

of the wrong type. In this way the program can protect itself

against dangerous input (for instance, it can specify the branching

depth).

The first function can be characterized as defining dynamically

the perfl'lissable actions. It is invoked prior to ans\-vering. The second

function can be characterized as checkino the permissable structure of

the answer, and is invoked after the user has declared that the answer

is read)'·

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-8

for the conversation dialogue. It decides whose turn it is and at which

mome n t tu rn s ch an g e • I t sh o u 1 d p r o v i de both u s e r a n d a pp 1 i cat i on P r o g ram

with simple rules for conversation. All violations of these rules

should be caught by this mechanism. As a result, the module manages the

dra\~ing-machine as a resource shared between user and program.

3.4 The picture file system

The picture file system performs the linking function between the

application level and the device level.

The interfaces with the other two basic modules consist only of

conversion routines to and from the Intermediate Language representation

of picture files and file operations.

The information exchange in the graphics system basically consists

of picture files. To this end al 1 communication links must be able to

transport complete files. The basic layer that creates this facility

wi 11 not be discussed here. We merely assume that a file transporting

sys tern ex i s ts • For the realization of this layer we refer to the

paragraphs on protocols in chapter 2 and 4 of this report. The file

operations we have in mind are the well known file handling operations

present in most operating systems (e.g. open, close, read, write etc.).

It follows that all information which has to be passed between the

application level and the drawing-machines must be expressed in the IL.

This information deals with the following subjects:

1. The application program must have complete control over all

drawing-machines.

2. A tree structure must be present in the IL in order to preserve the

re 1 at ions between subp i ctu res.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-9

3. The IL must be able to specify interaction patterns.

4. A pointer 1nechanism or another selection mechanism must be provided

that identifies a particular piece of a data structure representing

a picture in the application program. The user makes his selection

based on the picture displayed on the screen.

5. Restrictions on the form of IL programs must be expressible with

the help of other IL statements in order to protect an application

program from wrongly structured input (e.g., grammatically wrong IL

programs or too deeply nested subtrees).

6. Library functions must be provided for selection of pictures and

sublibraries, and for building up libraries of characters and

pictures.

At this stage, a draft proposal for

TEN HAGEN [29J) that covers the subjects

an IL exists (see P.J.W.

1 and 2 with respect to

line-drawing-machines. In chapter one of this report it is pointed out

that mechanisms exist for subjects 4 and 5. The interaction and library

functions still have to be designed.

The linking module sees every drawing-machine as an IL machine.

Conversion routines exist between each physical device and an IL file. A

one-to-one mapping of such files on devices is possib]e. The conversion

routines are considered part of the machine-driving module. The

user-program can manipulate devices as if they were files. The same

reasoning holds for the sharing of a device between user and program

during interaction. This monitoring function will be carried out by the

so-called Interaction Monitor.

A second important function_ of the linking

editor (IL file editor) for picture preparation

module is the local

and correction. This

editor has a number of internal links to the Interaction Monitor:

- It depends on the Interaction Monitor for the switching from active

to passive state during interactive sessions.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-10

- All access to s ,,mbo l tables and picture libraries goes via the

-

-

I

Interaction Monitor.

The Interaction Monitor can initiate a new edit cycle when the

form of the input violates the restricions defined in the previous
• questions.

All file management

Interaction Monitor.

is passed to the file manager th rough the

3.5 The application level

In the application level we find all facilities that are coMmon to

general purpose operating systems. We will consider only those aspects

that are typical for a graphics system.

3.5.1 High level graphics languages

As can be concluded from the description of the linking function,

especially from the role of the Intermediate Language, all facilities

of the graphics system can be controlled via the IL. The most important

design decision

by embedding the

we have made is to provide these facilities to the user

IL in a high-level programming language.

This approach has in our opinion a number of advantages, which are

stated elsewhere in the report in different contexts. We repeat them

here for completeness:

-

-

It m1n1m1zes

ap p l i ca t i on

machine).

the

level

nurnber

deals

of

with

primitive concepts,

only one drawing-machine

Existing high-level languages provide lots of features

useful for a graphics language.

• since

(the

that

the

IL

are

PROPOSAi_ FOR AN INTERACTIVE GRAPHICS SYSTEM 3-1 1

-

-

-

The application program as a whole and the graphics

it share the same data structure (of the high-level

language).

pa rt of

graphics

Recently developed general purpose programming langua9es claim to

al low this kind of embedding (for instance ALGOL 68). We intend to

take this gauntlet thrrn~n down by ALGOL 68.

A well defined high-level language is a prerequisite and a starting

point for a well defined graphics language.

In TEN HAGEN [29] a proposal is given how to embed the IL in

ALGOL 68. The extendabi 1 ity of ALGOL 68 allows this type of embedding

witt1out any modifications of the ALGOL 68 compiler.

The type of language obtained has an important property namely, it

can be devided in several levels of complexity. Each level together with

the underlying levels constitutes a complete graphics language. This is

true in particular for the lowest level, the so-called primitive layer.

This layer provides a simple, efficient and easy to learn language for

modest graphics applications.

3.5.2 Utilities and other modules

In the application module a library organization must be provided

for complete application programs as well as procedures that can be

used by any other program. This module also should contain all utility

functions for the graphics system that are programmed in the high-level

language (like hidden line algorith~s).

A special part of this library that wi 11 be used by all arplication

programs, contains the grarhics 1/0 routines that perform conversion to

and from IL.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-12

There will also exist an administrative module with its m✓ n links

to the (picture) file system that will enable the user to reserve

drawing-machines before • • • an 1nteract1ve session, realize a batch for
• picture output, et cetera. This module will provide all kinds of

information on a question and answer basis.

normal (nongraph i cs) term i na 1.

3.6 The machine driving module

It can be entered from a

In this module the semantics of the IL for each drawing-machine are

defined, through conversion routines. As has been pointed out in the

paragraph on languages, this can be a multi-level conversion.

The module also has a link with the file system to store files

in low-level machine language format. This 1 ink is for exceptional

cases only. These files are accessible only for output directly to the

drawing-machine.

The basic module can be split up in the obvious way into

subrr,odules, one for each machine. In each of the machine modules all

real tiMe problems caused by the physical devices must be solved. Also

the error recovery from hardware errors or user operating errors must be

provided. This might require an extra level of interaction.

IMPLEMENTATION 4-1

4. IMPLEMENTATION

This chapter provides a link between the previous two. We will

outline the implementation of the graphics system (chapter 3) on the

available hardware (chapter 2). Details wi 11 be given only when they

are relevant for the purpose of this chapter and when they are available

(important information, for instance, about the UNIX system is still

lackin9.

It seems appropriate to make a few remarks on our design philosophy

and attitude towards system programming. In the first place we have

decided to use a hi9h-level system programming language for most

programming tasks and to avoid using assembly language as much as

possible. Programs which are easier to read and to debug can be expected

from this approach. In the second place a thorough study of system

programming techniques will be made. In particular we wi 11 pay close

attention to the ideas developed by P. BRINCH HANSEN [1] (realized in

the language CONCURRENT PASCAL). In 4.2 we will show how this approach

influences the PDP11/45 operating system.

The discussion in this chapter is split

covers the usa9e of the SARA configuration,

PDP11-POP8 configuration.

4.1 The usage of the SARA configuration

4.1.1 Tt1e Mode II protocol

into two parts. The first

the second that of the

The Mode II protocol

CYBER installation of SARA

wi 11 handle the communication between the

and the PDP11/45 satellite. This protocol is

designed for the service of a full duplex, asynchronous communication

line and has extensive error recovery facilities (see [8]). Up to

sixteen independent data streams are supported: eight input streams (to

I MP L. EM E NT AT I ON 4-2

the host computer) and eight output streams (to the satellite).

This protocol is chosen because it is now supported and \iJ i 11

continue to be supported by SARA. The SARA front end system wi 11 handle

the Mode II protocol irrespective of changes in or replacement of the

CYBER installation (see [28]).
The Mode 11 protocol used by SARA at this moment • services the

communication between the CYBER and remote batch terminals. Seven of the

sixteen streams can be used in this application, namely:

- Two terminal control streams used for communication between the

CYBER and the terminal on device level.

-

-

-

-

-

A display and keyboard stream which are the means of communication

between the terminal operator and the central site operating

syster,.

A line printer, card reader and card punch stream.

We intend to use these streams as follows:

The terminal control streams are used in the obvious manner.

The card reader and card punch stream are used for the transmission

of character or bi na r,,
I information (including pictures) •

1n

noninteractive applications.

The display and keyboard stream will be used for the interactive

exchange of information. These streams can -- with some

difficulty -- be used for the transmission of binary information

too.

In the

di sp 1 ay and

initial experimental system, we will try to use the

keyboard streams for the interactive exchange of graphics

information. The final system wi 11 require assignment of not yet used

streams for the following:

IMPLEMENTATION
4-3

- Interactive exchange of binary data.

- Binary output for the HRD-1 .

There exists a program for the Mode I I protocol that runs under

COMTEX [12] on a bare PDPll/20. Large modifications would be required

to incorporate it in our operating system on the PDP11/45. The protocol

will be written in a high-level system programming language as much as

possible. It t1as been agreed that, during the implementation phase, SARA

wi 11 offer special testing facilities and manpower.

4.1.2 High-level language and computation speed

One reason for using the SARA installation is the availability of

high-level languages. First of al 1, a graphics language as an ex tens ion

of ALGOL 68 wi 11 be designed. This extension contains utilities such as

basic graphics 1/0 routines and transformations.

Another useful aspect of the CYBER is its high computation speed.

In general ,

executed on

all graphics operations that

the PDP11/45 or are defined

are too time consuming to be

on ALGOL 68 data structures,

wi 11 be delegated to the SARA installation. Complicated graphics

utilities such as hidden line and rotation algorithms, projections and

specialized 1/0 routines (typesetting of tables for instance) wi11 be

collected in a separate subroutine library, maintained on the SARA

installation. ·rhese subroutines must be callable both from a high-level

language program and interactively from the graphics terminal. They will

be written in ALGOL 68 or partly in FORTRAN IV. The latter is chosen for

reasons of speed. In any case, as little assembly language (COMPASS [6])

as possible will be used in order to decrease the dependence on the host

computer.

IMPLEMENTATION 4-4

4.1.3 SARA background storage and file system

The SARA mass storage fac i 1 it i es wi 11 be used for a 11 storage

tasks that exceed the capacity of the PDP11-PDP8 disk units. Without

modification, the available file system wi 11 be used for the following

app 1 i cations:

- To store picture libraries and Digiset character libraries on

magnetic tape. These libraries can be part of the graphics system

or be user generated.

- The user controlled storage of pictures in the form of f i 1 es

containing IL programs or drawing-machine code.

- The system controlled storage of drawing-machine code files (for

example: plot files). When picture output files are too large to be

stored on the PDP11-PDP8 disk units, they wi 11 be buffered on the

SARA disks, and sent to the termina1 in parts.

Furthermore, as long as there is no direct • • transm1ss1on line

between the Digiset and the PDP11/45, the SARA magnetic tape facilities

wi 11 be used for the production of Digiset machine code tapes, which can

be used as input to the Digiset.

4.1 .4 Availability of the graphics system to SARA users

Non i n t er a c t i v e use of the g rap h i cs sys t em w i 11 p r o ce e d as f o 1 1 ow s :

first of all the user generates his picture as an IL file (the output

of a high-level graphics language program, for instance). At this stage,

SARA resident picture and subroutine libraries can be used. A picture

thus generated can be displayed on a graphics device by means of a

spec i a 1 ''batch'' command (see (5]). The i dent if i cation procedure for

output received from SARA is sti 11 under consideration.

IMPLEMENTATION 4-5

Interactive work at the terminal can be done in the following

way: if necessary, a picture file can be prepared beforet,and as in

the noninteractive case, and libraries needed during interaction can be

retrieved from magnetic tape. Then reservation of graphics devices must

be made from a SARA terminal. For the work at the graphics terminal,

both the interactive graphics facilities and the standard INTERCOM [3]

facilities will be made available. An identification mechanism will be

designed that allows the system and the user to keep track of (user)

files that may reside at SARA, at the terminal, or both in the form of

two copies.

Furthermore, graphics devices must be guarded against damage caused

by user programs. The strategy wi 11 be to prevent user access to device

functions directly and to provide virtual functions instead. These

functions can be mapped under system control

secure way.

4.2 The terminal configuration

to device functions in a

This section is devoted to the function of the PDP11-PDP8

configuration in the IGS. As outlined in the introduction of this

chapter, an advanced system programming language will be used for the

development of system software. Moreover we intend to implement the IGS

as an extension to an existing operating system, if we can find one

which meets our requirements.

At this moment the UNIX time-sharing system [24] seems most suited

for our purpose for the following reasons:

- It supports an efficient high-level system programming language,

named C [25].

IMPLEMENTATION 4-6

- It is designed to al low extensions.

-
-

System development and maintainance is possible under UNIX itself.

File handling is very flexible.

- It is a tiMe-sharing system.

The UNIX system requires 21K words (42K bytes) of core memory, a

disk unit and a clock. The major languages avai lab]e under UNIX are

assembler, FORTRAN IV, and C. The greater part of UNIX software is

written in C.

An escape might be the RSX-llM system of DEC [9]. This realtime

operating system requires 16K words of core, a disk unit and a clock.

Unfortunately FORTRAN IV and MACR0-11 (assembler) are the only languages

supported. Here are some other points which make this system less

attractive for us:

-
-
-

No time-sharing facility.

RSX-11M is written in assembly language.

More difficult to extend than UNIX.

In the following subsections we will examine several implementation

aspects of the graphics satellite system.

4.2.1 Conversion between IL and drawing-machine code programs

The software needed for communication between IL programs and

graphics devices will now be considered more closely. This communication

proceeds with the help of conversion routines, that translate IL

programs to drawing-machine code and, for input devices, from

drawing-macine code to IL programs. In some cases, conversion must be

separated in two steps: one between an IL program and ''extended device''

code and one between ''extended device'' code and phys i ca 1 device code.

In the initial system al 1 conversion tasks wi 11 reside in the PDPll/45.

IMPLEMENTATION 4-7

In a later stage, the demands made upon the SARA installation and the

PDPll/45 system may require reassignment of the work load: permanent

delegation of conversions for noninteractive applications to the CYBER

i t • seems wise • to run conversion may be advisable. In any case,

routines for interactive devices on the PDP11/45 to allow simple local

interactive operations such as picture editing.

Graphical devices and their related conversion routines are now

treated one by one.

4.2.1.1 The GT4U

The GT40 display processor lacks a subroutine and stack mechanism,

which would be highly desirable for the realization of display

procedures. Software that runs on the PDP11/05 (which is a part of

the GT40) wi 11 extend the GT40 instruction set with these operations.

This will result in core saving (reduced length of display files) and

increased interaction possibilities (structured display files). Apart

from this addition to the GT40, routines are required for conversion

between IL programs and programs in (extended) GT40 code. These

conversion routines must compress too large pictures by omitting

details. In this way, output for devices like the HRD-1 can be judged on

the GT40 first.

4.2.1.2 The HR0-1

The interactive mode of the HRD-1 is superimposed on its storage

mode. All interactively produced extensions of a background picture are

stored temporarily in a display file. This display file is added to the

refresh mode. Upon a user command,

is generated with all extensions

a completely new background picture

included. Deletions can be handled

in asimilar way. Deleted parts, however, remain visible until a new

background is generated. This regeneration clears the refresh mode file.

Because the background picture is an IL program, routines are needed to

I MPL Et·iENTAT I ON 4-8

modify the IL program in accordance with the extensions and deletions

made since the previous modification.

The interaction mechanism for the HRD-1 has to be designed from

scratch. Because the HRD-1 is developed recently, interactive software

is not available.

Like the GT40, the HRD-1 does not have a subroutine mechanism. A

so l u t i on f o r th i s prob 1 em mi g ht be to extend the H RD-1 i n s t r u ct i on s et

by software on the PDP11/45 in a similar way as proposed for the GT40.

Another solution is the use of the system programming language of the

PDP11/45 operating system. This language has a procedure mechanism;

procedures in assembly language that correspond to HRD-1 operations

(hereafter referred to as HRD procedures) can be provided in the form

of a 1 ibrary. An IL program can be translated to a system programming

language program in a straightforward manner:

translated into calls of HRD procedures and

drawing operations

IL procedure calls

are

and

declarations are translated into the corresponding construction in the

system programming language.

Both when an extended HRD is implemented and when translation to

the system programming language is used, the basic software provided by

Laser Scan Ltd. (which is not interactive) might be of help. Because

this software was not developed under a real time operating system (DOS

[13J), large rrod if i cat ions wi 11 be required.

4.2.1.3 The plotter

For the plotter, conversion routines are needed that generate a

plot file from an IL program. lni tial ly, these plot files wi 11 have a

structure that is acceptable to the existing PDP8/ I plot system. In a

later stage, the addition of a subroutine (or macro) facility to this

plot system could be considered.

IMPLEMENTATION 4-9

•

4.2.1.4 The Digiset

•
The t ran s l a t i on of an IL program to

of the fact

a Digiset

that the

program 1s a

complicated

language •
IS

matter because

strictly oriented to typesetting.

D i g i s et ma ch i n e

The completely

specialized architecture makes the Digiset an ideal testcase for the

machine independency of our intermediate language. To al low efficient

conversion, alphabets of small straight and curved 1 ines have been, or

must be designed (see H.NOOT and P.J.W.TEN HAGEN [23]). The conversion

routine must be able to:

-
-
-
-
-
-

Approxi~ate lines and curves with chaines of basic elements.

Access libraries of (user defined) special characters.

Construct typefounts from sets of special characters.

Split drawings into strips.

Initialize the Digiset by loading selected typefounts.

Generate Digiset machine code on the basis of the actions mentioned

above.

The study reported in [23] will guide the implementation of most of

these tasks.

4.2.2 Local high-level programming language

Es pe c i a l l y du r i n g the des i g n and t es t i n g p h as e , i t i s i r, po rt an t to

have a high-level graphics language that runs on the PDP11/45. We will

create such a language by defining a graphics extension of the system

programming language using ML/I macros (see P.J.BROWN [2]). Picture

definitions in this extended language are preprocessed by the t'll/1

macroprocessor prior to translation. ML/I macros will be written that

replace language elements of the extension by either assembly code or

language elements of the host languages. In this way, a graphics

language can be realized.

IMPLEMENTATION 4-10

4.2.3 Picture files

There is no difference between a picture file and any other file.

FroM a logical point of view, however, files can be distinguished

according to their function in the graphics system. Moreover a specific

conversion routine can operate only on certain kinds of files. Within

the framework of the existing file system, the following file types wi 11

be distinguished:

-
-
-
-
-

High-level language program files.

Intermediate Language (IL) files.

Machine code files for specific devices.

Scratch files for edit operations.

I L 1 i bra ry f i 1 es •

Routines to perform library search operations wi 11 have to be

designed and implemented for the handling of IL library files.

IMPLEMENTATION STAGES 5-1

5. IMPLEMENTATION STAGES

5.1 Introduction

In this chapter we will outline the order in which the various

parts of the IGS wil 1 be implemented. The graphics system is designed in

such a way that it can be viewed as a structure of independent modules.

Each module corresponds with a specific representation or processing

facility of graphics data.

As a consequence of this design, modules can be ordered in such

a way that the system can be developed in steps by implementing the

modules (or part thereof) one after another. The implementation phase

is split up into six stages. In each stage several modules are added to

the system. After the first stage, a graphics system exists, in which

results of high-level graphics programs can be displayed on the GT40.

After the second, output to all graphics devices, except the Digiset, is

possible. Thereafter, a local picture editor is implemented. Graphical

input to high-level programs will be considered in the fourth stage. In

the fifth stage, a truly interactive system will arise and finally the

D i g i s e t w i l 1 be tack 1 e d • P r i o r to each s tag e a de t a i 1 e d p 1 an toge the r

with time estimates will be produced. In this way, experience

gained during one stage can affect the next. In general the end of

each implementation stage seems a natural time for evaluation and

documentation. Note: The time needed for evaluation and documentation is

not included in this plan.

· In section 5.2, we wi 11 describe the various system modules in the

order in which they are dealt with. For some tasks only the starting

time can be indicated. They wi 11 extend throughout the implementation

phase.

IMPLEMENTATION STAGES 5-2

In the following sections we wi 11 discuss the implementation stages

mentioned above.

5.2 Modules

The programming efforts required are now estimated for each module

separately. Estimates related to the first stage are considered more or

less accurate, the others only reflect our feeling about the efforts

needed.

5 . 2 • 1 UN I X (4. 2)

The initial operating system UNIX has to be generated. All modules

of the first stage must be built and tested under it. We have to study

UNIX thoroughly in order to get fully acquainted with it and judge its

usefulness. Estimated time: one month.

5. 2. 2 PP pro taco 1 (2. 2. 2)

The PP protocol will be implemented at

the 1/0 devices of the PDP8/l configuration

this stage in order to make

available. The work wi 11

consist of writing a DR11 driver in assembly language and coding the

remainder in C. Estimated implementation time: one month.

5.2.3 Intermediate Language (IL) (3.4)

Because of the central role of the IL in the graphics system, its

implementation must be started as soon as possible. Those parts of the

IL that are required for control of drawing-machines for output are

rea 1 i zed in the f i rs t stage.

The interaction parts will be designed later (see stage 4 and 5).

Estimated time: output part: one month; completing the IL: three months.

IMPLEMENTATION STAGES 5-3

5.2.4 GT40 (4.2.1.1)

The GT40 is the most easily programmable graphics device we have

and is needed to experiment with the IL just designed.

Experiments wi 11 be carried out with a local high-level programming

language (c.f. 4.2.2). This language will be stepwise developed as

needed • I t w i 1 1 be us e d i n th i s mod u 1 e f o r the f i rs t t i me . The t i me

required to develop these language elements is spread over all modules

involved.

The programming tasks are:

- Design and implementation of a GT40 - PDPll/45 protocol.

- Implementation of an extended GT40 (4.2.1.1).

- Coding of the conversion routine from IL to extended GT40 code

(first stage: output only).

Estimated programming time: three months, interaction part: two

months.

5 • 2 . 5 Mode I I p r o to co 1 (4 . 1 . 1)

The Mode I I protocol now has to be implemented.

a prerequisite for the communication with SARA needed

implementation of the ALGOL 68 graphics extension.

It

for

•
IS

the

IMPLEMENTATION STAGES 5-4

The progra~ming tasks are:

- The design and programming (in assembly language) of a DQ11 driver.

- The program for the scheduler in C.

- The programming of conversion routines.

Estimated time: three months.

5.2.6 ALGOL 68G (3.5)

With the rrodules present up to now the

high-level graphics language will enable testing

line. The extension of ALGOL 68 to a graphics

implementation of a

of one complete output

language will require

study of ALGOL 68, primitives of the graphics language, data structures

and the possibilities for interaction. First picture output (in the form

of IL files) wi 11 be considered only.

Estimated time: two months in the initial stage and six for the

complete language.

5.2.7 System programming language (4.2)

We have to design and study system programming primitives; this

mainly consists of a study of ALEPH (16] and the proposals of BRINCH

HANSEN [1]. As mentioned in the introduction of this chapter, this will

be done together with others in parallel to the tasks of stage one.

Estimated time: two months.

I t·1 PL E ME NT AT I O N ST 1, G ES 5-5

With this rrodule stage one of the system is completed.

OUTPUT TO ONE GRAPHICS DEVICE IS NOW POSSIBLE.

5.2.8 IL file manager (4.2.3)

Before rrore graphics devices are incorporated in the system, the

operating file system has to be equipped with the facility to direct

IL files to various devices. When interaction is considered the reverse

transports must be possible. The efforts required wi 11 strongly depend

on the properties of the avail ab 1 e f i 1 e sys tern. In the future the IL

file manager will be subordinate to the Interaction Monitor. Estimated

t i me : one non th •

5.2.9 HRD-1 (4.2.1.2)

Now the time has come to incorporate other graphics devices, first

as output devices only. There are two reasons for this:

-
-

The device independency of the IL must be tested.

The HRD-1, our most important graphics device, demands

programming effort that has to be started soon.

The work consists of:

- Programming of a HRD-1 driver in assembly language.

- Extension of the HRD-1 with a subroutine mechanism.

a lot of

- Implementation of a conversion routine from IL to extended HRD-1

code.

At this point the HRD-1 is available as general purpose output

device.

IMPLEMENTATION STAGES 5-6

Estimated programming time: three months. At a later stage

interaction will be considered. For

possibilities with the HRD-1 see (19].

HRD-1 will probably require two months.

5.2.10 Plotter (4.2.1.3)

a description of interaction

The work on interaction with the

With the incorporation of the plotter in the IGS all graphics

devices (except for the Digiset) are included in the graphics terminal.

Because of the small programming effort needed, it seems natural to do

this before interactive work is started. The only program needed is a

converter for some IL code to PDP8/l plot-system code.

Estimated time: half a month. At a later stage we might consider

the extension of the POPS/I plot-system with a subroutine or macro

mechanis This extension will probably require one month.

OUTPUT TO ALL GRAPHICS DEVICES IS NOW POSSIBLE.

5.2.11 SCOPE (4.1.3, 4.1.4)

So far, the present features of SCOPE have met the requirements for

our IGS. A prerequisite for interaction and graphics work is the opening

of spec i a l (i n t e r act i v e) s t re a ms i n the Mode I I p rot o co 1 • So , SC OP E h as

to be rrodified. We have to specify the streams needed for our graphics

system. The adjustments have to be done by SARA. Estimated time: one

week (for the specifications only).

IMPLEMENTATION STAGES 5-7

5.2.12 Picture files (4.2.3)

Before work on interaction is started, flexible picture file

manipulation must be made possible. This requires the implementation of

a file system that performs read/write and search operations and has

the possibility of distinguishing files of different types. In the

future these operations will be controlled by the Interaction Monitor.

Estimated tiMe: one month.

5.2.13 Editor (4.2.3)

Graphic output is already possible. Conditions for starting

research on implementation methods for interaction are now fulfilled.

The design of an editor than can modify local picture files is the first

step. Edit commands have to be designed. Estimated time: four months.

LOCAL PICTURE EDITING IS NOW POSSIBLE.

5.2.14 Interaction Monitor and Interaction
•

After the design and implementation of the local editor, it is

possible to experiment with programs and interaction. Embe~ded in the

operating system is the Interaction and Transport Monitor (ITM) that

performs the following independent tasks:

- Assignment of (interaction) devices.

- Activating the picture file system and IL manager to perform file

-

• operations.

Interpreting sequences of interaction commands and activating the

corresponding functions or returning error messages. For example:

the decision whether an interactive command is executed at SARA or

at the terMinal configuration is taken by the ITM.

IMPLEMENTATION STAGES 5-8

The ITM will be implemented in parallel with the study of

i n t e r a c t i on . F i rs t , i n p u t of p i ct u res to p ro g rams w i 1 1 be de a 1 t w i th •

This req u i res :

-

-

one,

The implementation

and HL.

of provisional • • conversion routines

The implementation of the first two tasks of the ITM.

be t\:Jeen I L

Thereafter, the system wi 11 be extended to a truly interactive

which requires the completion of the ITM and the implementation of

interaction routines at SARA and at the terminal.

We estimate the time needed up to picture input as three months.

The extension to a truly interactive system will require another three

months.

5.2.15 1/0 Intermediate Language

Up to now si~ple interaction is possible. All basic tools for an

extended interactive use of the graphics devices are available. With

the results of the study during the implementation of the ITM, a final

definition of the IL can be given, and its internal representation can

be fully specified. Next the conversion routines between IL and HL,

respectively IL and DM ,called 1/0 IL, can be implemented in their final

for~. To avoid machine dependency these routines wi 11 be programmed as

much as possible in a high-level language.

I ~1 PL.EM E NT AT I O N ST AGES 5-9

Estimated time: three months.

INTERACTION ON THE APPLICATION LEVEL IS NOW POSSIBLE.

5. 2 • 1 6 U t i l i t i es

The IGS has now almost reached its final state. Only special

operations on pictures such as shading and hidden line elimination,

remain to be implemented. Routines for these operations wi 11 be

collected in a utility library. This approach guarantees an easy

extensibility of the system. The utilities will be written mainly

in ALGOL 68 and perhaps partly in FORTRAN for reasons of speed. The

addition of utilities will result in an adjustment of the ITM. The ITM

has to decide whether an interactive command can be carried out by a

SARA-resident or terminal-resident utility.

Estimated

graphics system

u t i 1 i ti es .

time: one month

is used, the

for 1 i bra ry

1 i bra ry w i 11

5.2.17 SARA operating system and reservations

set

be

up. As long as the

extended with new

The complete graphics system can now be made available to SARA

users. This implies that some extensions of the SARA operating system

have to be made, namely:

-

-

A graphics batch command to specify a file and the graphics device
•

that file has to be dumped on.

A mechanism to relate SARA job identifications to those of picture

f i l es .

IMPLEMENTATION STAGES 5-10

- An identification mechanism for picture files that are changed at

SARA upon commands issued at the terminal by different users. This

mechanism has to be part of the faci 1 ities offered by interactive

streams (5.2.11) shared by several users.

-

from

Accounting procedures for simultaneous use of the terminal and SARA

configurations. Most of this work can only be specified by us, but

has to be carried out at SARA by others.

Furthermore, a reservation procedure has to be designed, accessible

SARA terminals, by which the usage of graphics devices can be

claimed.

Estimated time: two months.

NOW ALL FACILITIES OF THE IGS CAN BE PROVIDED TO USERS VIA SARA

5.2.18 the Digiset

When a satisfactorily functioning graphics system is available, we

intend to continue the research reported in [23]. The main use of the

Digiset will be for the production of text output. Character sets have

to be designed for special texts, 1 ike formulas. Producing drawings wi 11

be considered too. Furthermore, a conversion routine from IL to Digiset

machine code wi 11 be imrlemented (4.2.1.4).

Estimated time: four months.

5.3 Stages revisited

This stage, which will end in the possibility to direct the output

of high-level graphics programs to the display of the GT40, wi 11 start

with the study of the initial operating system UNIX (5.2.1),fol lowed by

the implementation of the PP protocol (5.2.2). The Intermediate Language

I MPLEMENTAT JON STAGES 5-11

(5.2.3) and the driver and conversions routines of the GT40 (5.2.4) can

be designed and implemented. Before the extension of ALGOL 68 (5.2.6) to

a graphics language can be implemented, an implementation of the Mode II

protocol (5.2.5) has to be made. The goal of this stage is then reached.

During stage one a study of system programming primitives is made,

which may result in the implementation of a system programming language,

suited for our purpose.

The total time for stage one wi 11 be one year.

5.3.2 Stage two

To direct output to other graphics devices of the configuration

(see f i g 2 • 1) , an I n t e rme d i ate Language f i 1 e manage r has to be

implemented. Converters for the various devices such as the HRD-1

(S.2.9) and the plotter (5.2.10) must be made. In the beginning of 1976

a start has to be made with the modification of SCOPE (5.2.11).

The total time of this stage will be approximately five months.

5.3.3 Stage three

In this stage, the work on interaction is started. When picture

file manipulation (5.2.12) is possible, we start at a low level with the

1 o ca 1 ed i to r (5 . 2 . 1 3) .

Estimated time: nine months.

5.3.4 Stage four

Interaction with application programs wi 11 be realized. We start

with an implementation of the ITM (5.2.14), followed by the final

definition of the IL (5.2.15). Al 1 work on interaction of previous

modules wi 11 be completed.

IMPLEMENTATION STAGES 5-12

Estimated time for this stage: sixteen months.

5.3.5 Stage Five

At this stage the complete interactive system becomes available for

SARA users through a reservation system (5.2.17). Furthermore the system

w i 1 1 be ex t e n de d \.v i t h a 1 i b r a r y f o r g rap h i cs u t i l i t i es (5 . 2 • 1 6) .

The estimated time: three months.

5.3.6 Stage •
SIX

The Digiset will be incorporated in the system (5.2.18).

Estimated time is four months.

IMPLEMENTATION STAGES

MODULE

UN IX

pp

IL

GT40

MODE I I

A68G

SPL

IL FILES

HRD

PLOTTER

SCOPE

p I c-r FIL ES

ED I TOR

ITM

I /0 IL

UT I LIT I ES

SARA

DIG I SET

TOTAL:

TOTAL

1

1

4

5

3

6

2

1

5

1

1/4

1

4

6

3

1

2

4

50 1 / 4

S1

1

1

1

3

3

2

2

1 3

S2

1

3

1

5

S3

2

1

1

1 / 4

1

4

S4

1

1

4

1

6

3

9 1/4 16

fig 5.2 time schedule

S5

1

2

3

5-13

S6

4

4

LITERATURE 6-1

6. LITERATURE

l 1] BRINCH HANSEN, P., Operating System Principles, Prentice Hall, Inc,

Englewood Cliffs, New Jersey, 1973

[2J BROWN, P.J., ML/I User's Manual, Computing Laboratory, University

of Kent, march 1973

[3J CONTROL DATA CORPORATION, Control Data 731-10/173-10 Remote Batch

Terminal, Operating and Programming Guide, june 1974

[4 J CONTROL DATA CO RPO RAT I O~J, SCOPE 3. 2. 1 , Reference Manua 1, 1973

[5J CONTROL DATA CORPORATION, INTERCOM 3, Reference Manual, 1973

L 6J CONTROL DATA CORPORATION, COMPASS, Reference Manual, 1973

[7J DEHNERT, E., ERNST, G., WETZEL, H., GRAPHEX 68, Graphical Language

Features in ALGOL 68, Preprint, Technische Universit~t Berlin,

august 1974

[8J DIGITAL EQUIPMENT CORPORATION, The DQ 11 NPR, Synchronous Line

Interface, preliminary, feb. 1974
[9] DIGITAL EQUIPMENT CORPORATION, Introduction to RSX-11M, DEC-11-

0MIEA-A-D, may 1974

[10] DIGITAL EQUIPMENT CORPORATION, The PDP 11/45 processor handbook,

1974-1975
[11] DIGITAL EQUIPMENT CORPORATION, The PDP 11 peripherals handbook,

1973
[12 J DIGITAL EQU I Pt1ENT CORPORATION, COMTEX - 11 Mod I I IS R/TAP, 1973

[13J DIGITAL EQUIPMENT CORPORATION, Disk operating System Monitor

programmers Handbook PDP 11, oct. 1972

l14J DR - ING. RUDOLF HELL GMBH, Digiset 40T1/40T2, Befehlsliste und

Erlaeuterungen

[15J GROOT, D. and PATBERG, J., General Purpose Graphic System,

Preliminary Design Specifications, July 1972
[16] GRUNE, D., BOSCH, R. and MEERTENS, L.G.L.T., ALEPH Manual,

Mathematical Centre Report IW 17/74, June 1974

LITERATURE

[17J GUEDJ, R.A., The Challenge of Computer Graphics in Continental

Western Europe, Proc. IEEE, apri 1 1974

6-2

[18] HAGEN, T., The PP-protocol, Mathematical Centre Memorandum, act.

1974

[19J LASER SCAN LTD., The Laser Scan HRD-1 Laser Display/Plotter

Reference Manual, act 1974

l20] NAKE, F. and ROSENFELD, A., eds, Are we anywhere near a universal

graphical language?, Panel discussion in Graphic Languages, Proc.

IFIP Working Conference on Graphic Languages, North-Holland

Publishing Cy, 1972

[21 J BOU LL I ER, P. , et a 1 . , METAV I SU, in [20]

[22J NEWMAN, W.M., Display Procedures, CACM 14 1971

[23] NOOT, H. and TEN HAGEN, P.J.W., A Digiset Simulator, Mathematical

Centre Report IW 30/75, 1975

[24J RITCHIE, D.M. and THOMPSON, K., The UNIX Time-Sharing System, CACM

17(1974) july

[25J RITCHIE, D.M., C Reference Manual, Bell Telephone Laboratory, 1974

[26 J RULL Y, A. D. , A Subroutine Package for FORTRAN, in I BM Sys terns

Journal 7 nos 3 and 4, 1968

[27] SMITH, E.G., The Wiswesser Line-Formula Chemical Notation,

McGraw-Hill Book Cy, New York, 1968

[28J STICHTING ACADEMISCH REKENCENTRUM AMSTERDAt1, Concept Voorstel tot

Aanschaf van een Front-End Systeem voor de CYBER 73-28, SARA B175,
march 1974

[29] TEN HAGEN, P.J.W., Grafische Programmeer-talen, Mathematical Centre

Syllabus 25, 1974

[30] TEN HAGEN, P.J.W., Het Schrijven van lnformatie op een Twee­

Dimensionaal Medium, Mathematical Centre Report IN 3/73, july 1973
[31J VAN WIJNGAARDEN, A., ed., Revised Report on the Algorithmic

Language ALGOL 68, Technical Report TR 74/3, University of Alberta,

Edmonton, Alberta, 1974

