AFDELING INFORMAT | CA W 36/75 NOVEMBER

P.J.W. TEN HAGEN, P. KLINT, H. NOOT & T. HAGEN

DESIGN OF AN INTERACTIVE GRAPHICS SYSTEM

2nd Printing

Printed at the Mathematical Centre, 49, Ze Boerhaavesirnad

The Mathematical Centrne, founded the 11-th of February 1946, L5 a non-
profAt Anstitution aiming at the promotfion of pure mathematics and +Ls
applications. 1t 48 sponsored by ZLhe Netherlands Govermment through Zne
Netherlands Onganization forn the Advancement of Pure Resb eanch (Z.W.0),
by the Municipality of Amsterdam, by ZLne University of Amstendam, by
the Free University at Amsiterndam, and by Andustries.

ACM -Computing Reviews- Category: 8.2, 4L, 35.
Ist printing March 1975

Design of an interactive graphics system

by

P.J.W. ten Hagen, P. Klint, H. Noot & T. Hagen

ABSTRACT

This report contains a set of specifications for a general purpose

interactive graphics satellite system. A plan is outlined for the

- The research that has to be done in order to solve the open
problems.

- The functioning of the hardware in the system.

- Ihe choice of programming tools and the definition of the modules
of the system.

- Ihe organisation of the work to be done, especially with respect
to the order in which the various modules will be implemented.
The practical wuse of the system and research that can be

undertaken wi th the system are outlined.

KEY WORDS & PHRASES: Interactive graphics satellite system, graphics

languages, drawing machines, picture files.

CONTENTS

CONTENTS

0.

1.1
1.2

INTRODUCTION

1.2,
1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4

1.2.2

1.2.2.1

1.2.2.
1.2.2.

&
a—

»

P NN RN DN N D DN NN

»

W ww NN NN

o
N -

W W W w W W
e IN NN =

2

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH
Interactive graphics systems

Research aspects

Research in the design phase

Programming tools
Intermediate Lanqguage

Primitive graphics elements and datatypes

Interaction
Research with the graphics system

/

Display of complex datastructures
Typographical aids

Classification and recognition of pictures

CONFIGURAT ION

CYBER 73-28 confiqguration
PDP8/1 configuration
Hardware

Function in the I[GS

PDP 11/45 configuration
General purpose devices
Background memory

Console

Data communication equipment
Graphics devices

HRD-1 Laser Display/Plotter
GT40 display

Digiset L40T2

-
}

oomanih ol ol wmoonk wondl R s e stk aanad zemedh woemalh.
! | ! } | | i \ | l I |
\O W 00 OO VI W £ W W NN - e

!
P

N NN NN N N N D D DN NN
l
0O ~N O ON Ul W NN

i I ! !

! ! } i

CONTENTS

3. PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM

3.1 Overview

3.2 Language aspects

3.3 Principles of interaction

3.4 The picture file system

3.5 The application level

3.5.1 High level graphics lanqguaqges

3.5.2 Utilities and other modules

3.6 The machine driving module

L. IMPLEMENTAT ION

4,1 The usage of the SARA-configuration

L.o1.1 The Mode 11 protocol

4.1.2 High level language and computation speed

4L.1.3 SARA background storage and file system

L.1.4 Availability of the graphics system to SARA users
4.2 The terminal configuration

L.2.1 Conversion between Intermediate Language programs

and drawing machine code programs

L.2.1.1 The
4L.2.1.2 The
4.2.1.3 The
4L.,2.1.4 The

GT 40

HRD-1
plotter
Digiset

4.2.2 Local high level programming language
4.2.3 Picture files

CONTENTS

5. IMPLEMENTAT ION STAGES 5-1
5.1 Introduction 5-1
5.2 Modules 5-2
5.2.1 UNIX -9
5.2.2 PP-protocol 5-2
5.2.3 Intermediate Language (IL) 5-2
5.2.4 GT 40 5=3
5.2.5 Mode |1l protocol 5-3
5.2.6 ALGOL 68G 5-4
5.2.7 System programming language | 5-4
5.2.8 IL file manager 5-5
5.2.9 HRD -1 5-5
5.2.10 Plotter 5-6
5.2.11 SCOPE , 5-6
5.2.12 Picture files 5-7
5.2.13 Editor 5=7
5.2.14 Interaction monitor and interaction 5=7
5.2.15 1/0 intermediate language 5-8
5.2.16 Utilities 5=
5.2.17 SARA operating system and reservations 5-9
5.2.18 Digiset _ 5-10
5.3 Stages revisited 5-10
5.3.1 Stage one >o=10
5.3.2 Stage two o-11
5.3.3 Stage three 5-11
5.3.4 Stage four >-11
5.3.5 Stage five 5=12
5.3.6 Stage six o=12
6. L | TERATURE 6-1

INTRODUCT | ON 0-1

0. INTRODUCTION

This report contains a proposal for an interactive graphics system
together with a plan to realize it.

The main difference between our proposed system and existing
systems is that our system is to be a truly general purpose graphics
system. In the first place, this means that it must be possible to
attach a wide variety of drawing-machines to the system. To this end,
the system will be completely drawing-machine independent except for a
basic layer. The basic machine dependent layer should provide a picture
file system that allows all system functions to deal with one idealized
hvpothetical drawing-machine.

In the second place, a wide variety of applications must be
possible. The system should support a general purpose programming
language for applications and a graphics lanquage of the same (high)
level. The graphics language must be capable of controlling the physical
machines via the hypothetical machine, provide a data structure for
drawings, and allow picture input as simple as its picture output.
Furthermore, the graphics language program must share data with the
application language program. The solution chosen is to extend a
high-level language with data structures and operations for manipulation
of pictures.

The first combination of a high-level langquage with a graphics
language will be ALGOL 68 extended in a natural way with graphics
facilities. This language called ALGOL 68G will serve as a prototype for
similar combinations with other languages.

We have concluded from literature (R.A.GUEDJ [17], F.NAKE and
A.ROSENFELD [20]) that similar attempts in the past were not very
successful. There are several reasons, however, why we think it s

appropriate to start this particular project on computer graphics now.

INTRODUCT | ON 0-2

First of all, we have at our disposal much better programming
tools than were available in the past: new programming lanqguages like
ALGOL 68 provide the control structure, data structure, and welldefined
extendability needed to realize a high-level graphics language.
High-level system programming lanquages delegate irrelevant details to
the compiler instead of to the programmer, as was the case with
assembly language programming. Moreover, the state of the art in system
design is such that considerable insight has been gained in topics
like inter-process communication and parallel execution. Present day
minicomputers and data communication equipment make it possible to
develop satellite systems for special purposes, such as graphics input
and output. These subsystems, although comparable in complexity to
operating systems for medium size computers, have a relatively simple
interface with the operating system as well as with the user (the
programmer or the person at the terminal). Moreover, operating systems
for these minicomputers exist that are especially well equipped for
system software development wusing high-level languages. Last but not
least, new drawing-machines exist that closely resemble an ideal general
purpose drawing-machine. These machines follow the general trend in
computer hardware of becoming more and more cost effective.

The second reason is that the need for a modest general purpose
graphics system (which, according to the plan, will be realized in one
of the earlier stages) 1is growing quickly in the field of programming
ttself. This is caused by the fact that recently developed programming
languages (general or special purpose) allow manipulation of complex
data structures. These data should be drawn rather than printed in order
to visualize them for the user. This is true for input as well as
output. The classical 1/0 devices require linearization of essentially
two-dimensional data. This situation constitutes a serious drawback in

all systems that support the languages mentioned above.

INTRODUCT I ON 0-3

The existence of better tools does not mean that all problems are
now solved. |In particular, the interactive use of a graphics system
is still an open problem (see P.BOULLIER [21] for an advanced general
purpose interactive system which allows local interaction only). Chapter
1 of this report describes a number of research subjects we will have to
deal with, more or less extensively, in the course of our project.

Chapter 2 describes the hardware configuration and the so-called
>>’hard”® software on which the system must be implemented.

Chapter 3 contains a functional description of the graphics system.
This inventorization, together with some design concepts, leads
to a division of the system into modules that <can be implemented
independently.

Chapter 4 is a concrete implementation proposal for the system of
chapter 3 on the hardware of chapter 2. The choice of the programming

tools and the way they are applied receives special attention.

Chapter 5, finally, contains a plan for the organisation of the

work to be done. The order in which the various modules are to be
implemented 1is defined. Several milestones are placed along the road
that leads to the final system. Each milestone corresponds to a new

facility that will have been added to the existing part. Together with
the description of the work required for each module, time estimates are
given based on the assumption that the work will be carried out by a
team consisting of the four authors of this report. It is concluded that

the complete system will require a team effort of at least four years.

INTERACT IVE GRAPHICS SYSTEMS AND RESEARCH 1-1

T.INTERACTIVE GRAPH RESEARCH
1.1 Interactive graphics systems

An interactive graphics system 1is defined as an operating system
that allows input and output in the form of a picture at run time.

Graphics systems can be divided into general-purpose and special-
purpose systems. In the second type of system, programs can only
use graphics 1/0 in a limited field of application (aerodynamic
calculations, electrical networks, etc.). One of the problems in general
purpose systems is that input to programs must be possible in a uniform
way for a wide variety of applications and all kinds of different
drawing-machines. .

A second problem is the definition of an interface between a
graphics language (even if elementary) and a high-level programming
language. One way of overcoming this difficulty 1is to represent the
graphics elements as procedures in the high-level language. This leads
to the display procedure approach, as used in various FORTRAN-based
graphics systems (see D.GROOT [15], A.D.RULLY [26]}) or ALGOL-1like
systems (see W.M. NEWMAN [22]). The nesting structure of the procedure
calls and declarations wused <can be a reflection of the structural
properties of a picture. This situation imposes two serious limitations

on interaction, however:

- The structure of nested procedure calls cannot be changed
interactively.
- The display files which are the output of the qraphics programs are

unstructured sequential files.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-2

We intend to avoid these limitations by defining our graphics
language as an extension of ALGOL 68. In this way the interface between
graphics and nongraphics language elements is completely defined within
the ALGOL 68 framework, wi thout the need of compiler modifications.
The data structuring possibilities of ALGOL 68 will provide the display
file structuring necessary for interaction. The ease of defining and
implementing graphics languages in ALGOL 638 makes this method attractive
even when the ultimate goal would become a graphics language implemented

on a completely different host language.

1.2 Research aspects

The research aspects of the graphics project can be divided into:

- Research during the design of the system.

- Research carried out with the help of the system.

Of course, the usefulness of the system can be judged from the
success of research projects of the second type. Such an evaluation may
even lead to changes in the initial system. The same remarks can be made
for research during the design phase, when already implemented parts of
the system are applied. Hence the two research categories mentioned, are
not really disjunct. For convenience however, we will adhere to this

distinction.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-3

1.2.1 Research in the design phase

1.2.1.1 Programming tools

Programming tools will be understood, in this context, to be
languages and lanquage elements wused for the implementation of the
graphics system. In this section we will discuss the programming tools
whose design or selection requires some further research.

The major system programming task consists of the implementation of
an Interactive graphics terminal on a satellite computer. To this end
we need an operating system that supports a system programming language.
The operating system chosen at the start will be UNIX (see D.M.RITCHIE
and K.THOMPSON [24]), which supports the high-level lanquage C (see
D.M.RITCHIE [25]). This language does not contain primitives for
system programming however, |ike semaphores, <critical regions etc. An
alternative mignht be the use of ALEPH (see D. GRUNE et al. [16]),
extended with system programming primitives. ALEPH has a drawback: no
implementation on the PDP11/45 is available.

Some associated projects are selection of programming primitives
and extension of either ALEPH or C. Primitive actions will be
designed with the help of simulation in the candidate languages. In the
experimental stage they can be changed without the necessity for regular
compi ler modifications. Noninterpretive implementation can follow
afterwards.

The host Jlanguage used for the first implementation of the
high-level graphics language will be ALGOL 68. Therefore the
constructions in this lanquage are potential programming tools in the
sense used here. The choice of language elements to be used for the
implementation of the graphics extension constitutes another design
problem. For example, unlike the proposal of DEHNERT ao.[7], the mode

>>flexible row of ...”> will not be used to implement the union operator,

to avoid unnecessary copying operations.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-4

1.2.1.2 Intermediate language

The IL (Intermediate Language) will be discussed in detail in
section 3.3. For the moment, it suffices to know that the IL 1is an
intermediate level lanquage between high-level graphics languages and
the machine languages of graphics /0 devices. It is a language for the
definition of pictures. In our system, a high-level graphics language
that generates a picture will do this in the form of an IL program. This
program can be stored in a picture library or translated to the machine
code of an actual graphics device. When pictures are read in from a
graphics device, the reverse steps are taken. This results in an IL
picture description that can be mapped into a data structure available
to the high-level graphics program. Iln our view, the design and
implementation of the Intermediate Language presents the following

research problems:

- To design IL primitives for storage and retrieval operations in
picture libraries. These primitives must enable the description of
pictures containing references to library subpictures.

- To find a level of complexity between the high-level graphics
languages and the drawing-machine Jlanguages that allows efficient
conversion in both directions.

- Efficient conversions to and from the Intermediate Language are
of particular importance: on the one hand, they influence the
execution speed of complex library manipulations and on the other
hand, they influence the execution speed of all transports between

program and device.

-~ The construction of an abstract machine to be used for the

definition of the semantics of the |L.

INTERACT IVE GRAPHICS SYSTEMS AND RESEARCH 1-5

1.2.1.3 Primitive graphics elements and data types

An important subject for research is the design of a graphics
language. First of all a set of graphics primitives has to be defined,
l.e. primitive data types and primitive operations. Next, constructions
for composition of complex data types and operations on complex data
have to be built. These language elements can then be used to give
structured descriptions of pictures together with their associated

nongrapnhic information. An example of such a language is the design of

the ALGOL 68 extension discussed in section 3.3 and TEN HAGEN[29] .

The importance of this aspect of the design of the interactive
graphics system is self-evident. The appearance of the system as seen
by the user is strongly determined by the facilities offered in the

high-level language. All facilities provided should be available through
the high-level lanqguage.

1.2.1.4 Interaction

The study of interaction mechanisms is another important research
project during the design of our graphics system. It is known in
principle how to construct or modify complicated drawings on a display
with the aid of light pens etc. The problem of supplying those drawings
as input to a program has not been solved satisfactorily. In fact, this
would require a form of pattern recognition which enables the generation
of a data structure of a type known to the program, on which the drawing
can be mapped.

Interaction with programs in present day general purpose graphics

systems proceeds, as far as we know, in the following two steps:

-~ Parts of the drawing thatsmust be detectable by a light pen, have

to be identified as such statically.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-6

- After a light pen hit on such a part, a simple action like
deletion, replacement or transformation, is undertaken. This action
is either predetermined or selected from a limited set with the

help of, for example function buttons.

In this type of interaction, the data structure representing the
picture can be changed only by inserting or replacing subpictures known
in advance. The input of arbitrary pictures, constructed at a display,
is very difficult. The situation in three dimensional computer graphics
seems at first sight somewhat different due to the existence of
trans formations such as hidden line algorithms, which drastically change
the picture displayed. There are two data structures Iinvolved here:
one representing the three-dimensional picture, the other representing
a two-dimensional projection of the same picture. The former is not
changed by hidden line algorithms and the like. In general it cannot be
changed interactively from a display because of the irreversibility of
projection transformations. Furthermore, there are to our knowledge
no general purpose graphics systems Iin which the two-dimensicnal
projections can be used as program input. This problem is of the same
complexity as the input of arbitrary pictures.

We will start with the investigation of an interaction mechanism
that is characterized by the following properties: picture elements are
light-pen detectable if and only if they are declared to be so called
’basic’ or ’structured” symbols. In general, any (sub)picture can be
declared to be a basic symbol or a structured symbol. Basic symbols
are, apart from graphics primitives like lines, points, etc.,
picture elements whose internal structure is reduced to the simplest
form possible, namely a list of primitives. The data structure of a
structured symbol remains identical to that of the picture. Symbols can
be defined both statically and dynamically. Because of the fact that
symbols are the only picture elements that can be referred to during
interaction, those defined dynamically must be composed from symbols

already existent. In this way, the data structure representing a drawing

INTERACT IVE GRAPHICS SYSTEMS AND RESEARCH 1-7

can be altered drastically, for instance, by replacing an old symbol
with a newly defined one. Conflicts between interpretations of light pen
hits will be resolved by supplying the type of the structured symbol
pointed at. An important aspect of symbols will be the possibility
of defining them as pictures with associated nongraphic data. This
will increase the usefulness of picture input to programs. How this
association will be accomplished still has to be investigated.

A further aspect of our interaction mechanism will be the

implementation of a specially designed flow of control langquaqge that is

part of the conversation between the user and a3 running program.

A few words about a possible realization may be appropriate here:
the places in a program where interaction has to take place could be
indicated by calling a procedure >’interaction’. This procedure could
be the standard one or may be user-defined with the help of primitives
provided by the system. It can process the input generated at a display
and produce the necessary changes in the data structure of the picture.
All information passed between the high-level language program and a
display is converted to an |IL program (see 1.2.2.2). This introduces
the problem how a symbol identified at a display can be found in the IL
program and in the high-level data structure. These problems strongly
resemble each other. We suggest two solutions. We will wuse the

abbreviations DM and HL for drawing-machine lanquage and high-leve]l

language in this discussion.

- There exists a table of pointers to all symbols in the picture data
structure. This table is produced during the conversion between
either IL and DM or between HL and IL, and is added to the target

language file. The procedure ’interaction’ and its analog from DM

to IL use these pointers to locate a symbol in the data structure.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-3

- Some information on the position of the symbol in the picture is
transmitted to the interaction mechanism which searches the symbol

in the HL or |IL data structure by scanning it, directed by this

information.

The mechanisms just described are mentioned only to show, that our
interaction proposals can be implemented. The actual mechanism we will

use remains to be investigated in detail.

1.2.2 Research with the graphics system
1.2.2.1 Display of complex information structures

Complicated structured information can best be visualized in the
form of pictures, when it has to be used by human beings. This fact
suggests using a graphics system as a programming aid by having it draw
data structures and flow charts. In particular, we might think of the

following examples, each of which could be a more or less extensive

research project:

- The data structures that exist during the execution of an ALGOL 68
program can be represented in the form of a directed graph. Such
graphs could constitute important diagnostic information.

- Monitoring and displaying the flow of control in'programs at run
time. This could be used both as a debugging aid and as a design
aid, in particular in the study of complicated programs like
operating systems.

- The visualization of statistical information about the runtime
behaviour of programs, like calling-frequencies of subprograms,

resource usage, et cetera.

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-9

- Control of input to programs at a visual display, in those cases

where the correctness of the input can best be verified by means of

a picture.

1.2.2.2 Typoqgraphical aids

At the Mathematical Centre, a lot of work has already been
done on the development of various programs that perform typographical
functions. For further information see the list of references in
TEN HAGEN [30]). With an interactive graphics system, research in

computer typesetting can be continued. We merely list here some of the

bossibilities:

- Interactive programs for the determination of the layout of
complicated mixtures of text and illustrations.

- Interactive text editors that can cooperate with the layout
programs.

- Interactive programs for generating special characters.

- Programs for generating tables.

- Specialized programs like music editors.

1.2.2.3 Classification and recognition of pictures

An important classifier in information storage and retrieval
systems for two-dimensional information is a linear key appended to each
picture. This key is a linear character string, which can be used as an
index. The program can interpret the key as a schema for the picture.
This simplified picture can be presented to the user as a notation for
the key. An example of such keys is the Wiswesser line formula chemical
notation (see E.G.SMITH [27]). This notation is strictily based upon
the topological properties of chemical structure formulas. This kind of
classification can be used in question-answering systems for pictures

that deal with both their topological properties as well as properties

INTERACTIVE GRAPHICS SYSTEMS AND RESEARCH 1-10

specified by associated data.

The first step in picture recognition is to define the notion of
recognition. Such a notion <can be obtained by specifying all (possibly
not disjoint) sets that a picture might belong to. When classifications
with the help of linear keys (see above) are available, research can be
done in the development of algorithms that produce these keys from input
drawings.

Another picture classification that seems worthwile to investigate
s based on the data structure that represents the picture. In this way,

pictures processed or produced by a program can be classified at the

same time.

CONFIGURATION 2-1

2. CONFIGURATION

The Interactive Graphics System (further referred to as IGS) will
be implemented on a network of three computer confiqgurations, namely:
a CYBER73-28 (CDC), a PDP11/45 (DEC) and a PDP8/! (DEC). The PDP11/45
will function as a graphics satellite of the CYBER73-28. The CYBER wil]
execute the graphics application programs. All interactive graphics
devices are connected to the PDP11/45. The PDP8/I will function as a
data concentrator for the PDP11/45. Thus, logically, all peripherals can

be considered as connected to the PDP11/45,.

For users of the CYBER73-28 it will be possible to produce files
containing graphics information. These files can be put in the output
queue for the hardcopy graphics devices of the satellite. |In a later
stage this facility will be extended to enable the (interactive)
production of picture files at the graphics terminal for input to

application programs running on the CYBER73-28.
Our main programming task consists of the design and implementation

of the complete software package for the PDP11/4L5 graphics satellite.

The description of the hardware configuration in this chapter

serves two purposes:

- A hardware overview in order to illuminate its usage in graphics
applications,
- Specification of the programming of this hardware on the lowest

level.

The discussion of the CYBER73-28 is restricted to the interface
with the satellite. A survey of the PDP11/45 - PDP8/1 configuration s
given in fig 2.1.

CONFIGURATION 2-2

(Just prior to the publication of this report we decided to use a
16K PDPB/E instead of an 8K extension of the PDP8/I. The RKO08 disk unit
Is connected to the PDP8/E. The PDP8/E is connected to the PDP11/45
in an identical way as the PDP/1. The PDP8/1I and the PDP8/E are also
connected by means of an interface designed by P. BEERTEMA. This change

in configuration does not affect any conclusion in the report.)

2.1 CYBER73-28 configuration

The CYBER73-28 computer (2 processors) at SARA provides on-line
terminals and batch terminals. |In the network the CYBER73-28 will treat
the PDP11/45 as a remote batch terminal. The operating system SCOPE [4]
provides features which are necessary in our IGS, such as high-level

languages and file support. Furthermore the users of the CYBER73-28 wil]

have the opportunity to display picture files on the graphics devices of
the PDP11/45.

Initially the communication will conform to the SARA-implementation
of the Mode || protocol [3], which supports streams only for card

readers, card punches, printer and an operator console. Conversion for

graphics devices will have to be done at the satellite. Installation

of an interactive stream will require an extension of SCOPE in order to

support interactive streams in the Mode || protocol.

2.2 PDP8/1 confiquration

2.2.1 Hardware

The PDP8/1 computer is equipped with 24K words of core and a memory

protection wunit. It has to be seen as a data concentrator for the
PDP11/45. The 1/0 devices of the PDP8/| are:

CONF I GURAT I ON 2-3

- Background memory: a dual dectape wunit, a disk unit, and a disk

cartridge unit.

- Graphics devices: a storage display unit with a joystick and a

small Calcomp plotter.

- Terminal devices: a console teletype and two Olivetti terminals

multiplexed to the PDP8/1I.

- Converters: three D/A converters.

- Interface device: an interface for the connection with the
PDP11/45, designed at the Mathematical Centre by P. BEERTEMA.

- Miscellaneous devices: two paper tape readers, two paper tape

punches, a line printer, and a braille printer.
For specific details about the devices see table 2.1.

2.2.2 Function in the IGS

The purpose of the PDP8/1 configuration with respect to the IGS is

as follows:

- Support of programming tasks on the PDP11/45: the background memory

for file storage (permanent storage on DECtape and paper tape, and
temporary storage on disks), and the line printer for assembly
listings and editing facilities.

- Servicing the |1/0 devices under the Mode || protocol.

- Integration of the KV08 display and the Calcomp plotter in the IGS.

The existing programs on the PDP8/1 are already capable of
performing most of these tasks under the operating systems TRACK, 0S8
and UTOR. The remaining tasks will be carried out as part of a different
programming project. For completeness we list here the programming tasks

in this project which are required for the IGS:

CONF I GURATION 5L

- implementation on the PDP8/1 of the communication protocol (see
HAGEN [18]) between the PDP11/45 and the PDP8/I.

- Extension of the single user editor to a multi user editor.

- Some conversion routines to and from Mode || format.

- Inteqgration within the IGS of the plotter and the KV08 display (it

has not vyet been decided whether this will be carried out by us or

others) .

2.3 PDP11/45 configuration

The PDP11/45 computer will initially be provided with 48K words of
core, a memory management unit and a floating point processor. 5See the
DEC handbooks [10] and [11].

2.3.1 General purpose devices

2.3.1.1 Background memory

There are two disk cartridge units, one for system working space,

and the other for graphics data files.

2.3.1.2 Console

The DECwriter will be the standard operator console. The GTAO0 can

also be used for this purpose if a GTLO console driver is written.

CONF | GURAT 1 ON 2-5

2.3.1.3 Data communication equipment

CYBER73-28 connection. The PDP11/45 s initially connected to the
CYBER with a 9600 BD synchronous telephone line, later to be
replaced by a 50 KBD videoline. The PDP11/45 equipment consists of
a DQ 11-AE [8] with hardware cyclic redundancy check, programmable
character recognition and direct memory access. Communication has
to be maintained according to the so called Mode || protocol [3].
This fixes the way the DQ 11-AE has to be programmed. The program
for the protocol on the level above the DQ 11 driver, will be
taken from the DEC COMTEX Mode |1 ISR/TAB [12]. The exchange of
information with the protocol will be on a file by file basis. This
will imply file conversion in most cases.

PDP8/1 connection. A DR 11-C wunit provides a full duplex
16-bit-parallel data transport. The DR 11 handler takes care of the
data transport according to the PP protocol [18]. The communication
with the PDP8/I is on a file by file base. There 1is no
master-slave relation, both participants in the communication
behave symmetrically.

GT4O0 connection. DL 11-E modules (see [11]) take care of a full
duplex 9600 BD serial data transport between the PDP11/45 and the
PDP11/05, which is part of the GTA0. The GT40 has no storage
capacity for complete files. Information must be exchanged below
the file level. The communication protocol still has to be

designed.

CONFIGURATION 2-6

2.3.2 Graphics devices

2.3.2.1 HRD-1 Laser Display/Plotter

The HRD-1 of Laser Scan Ltd. (see [19]) is a high resolution film
recording and image display system. The HRD-1 can be used for drawing In

three ways:

1. High quality hardcopy output on diazofi Im.

2. QOutput to a large screen in storage mode. The storage mode is
obtained by recording the picture on semi permament photochromic
film, which is projected on the screen.

3. QOutput in refresh-mode directly on the screen.

The refresh-mode picture 1iIs superimposed on the storage-mode
projection. Storage of the refresh mode picture is avoided by selecting
a different address area. This constitutes the only difference between
storage mode and refresh mode. The writing beam (from an argon ion
laser) is successively controlled by the following four components: a
modulator, a secondary deflection system, a dynamic focussing lens
and the main deflection system. The accuracy and high resolution are
obtained by an autonomous interferometric control in the main deflection
system. An auxilirary laser supplies 1light for the interferometer.
Program control of the writing beam is obtained by feeding the four
components through the HRD-1 computer interface. Sixteen function
buttons, a tracker ball and a keyboard provide the HRD-1 with
interaction facilities.

Computer control of the HRD-1 is provided through an interface.
Sixteen PDP11/45 memory registers are reserved for the control functions

and the status and data information. The control functions are:

CONFIGURAT ION 2~7

- Global and local moves.

- Mode-setting and focussing of the beam.

- Film control.

Status and data information specify:

- Machine status, interrupt flags and error conditions.

- Position of the beam.
- Function buttons.
- Keyboard codes.

- Position of the tracker ball.

The HRD-1 will be used for hard copy output on film of batched
picture and text files, with the emphasis on pictures, and for

Interactive graphics terminal sessions.

2.3.2.2 GT40 display

The GT40 interactive graphics display consists of a PDP11/05
processor with 8K memory and a display unit. For interaction the GT40
has a keyboard and a light pen. The screen, a cathode ray tube, is only

17.1 by 22.8 cm. It will be used for the following purposes:

- Inspection of picture files.

- Simulation of other graphics devices.

- Interactive experiments. The GT40 is relatively easy to program,
and therefore well suited for graphics experiments.

- The development of special character sets for specific applications
and special hard-copy output devices, like the Digiset and the
HRD-1.

- To display information generated by tracers that monitor (system)

programs (see 1.2.2.1).

CONF IGURATION 2-8

- To use the GT40 as a character display.

All the software for the GT40 has to be developed. At the basic

level it performs the following tasks:

- The interface with the PDP11/45: design and implementation of a

communications protocol.

- The extension of the display-processor language with virtual

instructions in order to obtain a more manageable display.

2.3.2.3 The Digiset L40OT2

Although our configuration does not contain a Digiset, the
possibility exists to use one. Connection with this Digiset can be
established through a telephone 1line or via a magnetic tape unit. The

Digiset 40T2 [14] is a photo-typesetter that can be computer-controlled.

The photo-typesetter produces hard-copy output on film or paper. Input

consists of 8-bit transparant code supplied through a paper tape reader,

a magnetic tape unit or an on-line computer connection.

The Digiset can operate in two modes, namely, the character

definition mode and the typesetting mode. Switching between the two

modes is under input-code control and can be done at any moment duri ng

operation. Special properties of the Digiset with respect to character

definition and positioning allow application as a drawing-machine of

high precision (0.01 mm) and acceptable speed (100 times faster than a

plotter).
The best results of the drawing capacity can be expected for

pictures that combine drawings and texts, with emphasis on texts. The

text-oriented design results in a considerable better performance when

the overall movement of the beam is left to right.

CONFIGURATION 2=9

The application as a line-drawing-machine requires considerable
programming effort in addition to the substantial effort to use it as
a text-composer (see H.NOOT and P.J.W.TEN HAGEN [23], P.J.W.TEN HAGEN
[30]).

The Digiset can use only program-defined characters of arbitrary
shape. These character sets are organised in type founts and stored
fountwise on disk. By (re)defining characters dynamically as needed,
an in principle unlimited character set for texts, line drawings and

grey~-scale pictures is available.

CONF I GURATION

POP8/! configuration

device description

dual dectape unit

disk unit

disk cartridge unit

storage display

Calcomp plotter

console teletype

Olivetti terminal

D/A converter

PDP11/45 interface

paper tape rd/punch

paper tape reader

paper tape punch

line printer

braille outputdevice

number

Nname Oor SsSer.nre.

TU 55

RS08

RKO8

KV08

565

TE 318

AA-01

D1 811/

PC 0Ok

EL 1000

Facit 1

Ane lex

DNL

2-10

tabel 2.1

manufacturer remarks

DEC

DEC 256 K words
DEC 1.2 M words
DEC

Calcomp 300 st/s,30 cm

Teletype Corp. 10ch/s

Olivetti 110bd 80c/1line
DEC

MC

DEC 300 ¢/s,30 c/s

Electrologica 1000 c/s

Facit 150 c/s

Anelex Corp. 20 lines/s

CONFIGURATION

PDP11/45 configuration

device description number name

PDP11/45 processor

floatingpoint
processor

clock

16K core

16K core

memory manager

loader

bootstrap

DEC writer

interface to DEC

writer

interface to CYBER

interface to PDP8/I

KB11-A
FB11-B

KW11-L
MF11-UP
MM11-UP
KT11-B
MR11-BB
LA30-CD

DL11-A

DQ11-EA

DR11-C

tabel 2.2
manu- remarks
fact.

DEC

DEC

DEC timeslices
of 20 msec

DEC wi th a
controller

DEC

DEC

DEC

DEC console
writer

DEC 300 BD

DEC 50 K BD,
cyclic
redundancy
check char.
recogni tion

DEC 16 bit

parallel,
250KBD

intern

ref.

2.3

2

.3

.

. 1

.

N

.2

.2

.3

2-11

extern ref.

proc.handb.

proc.handb.
chapter /
per.handb.
page 4-197
per.handb.
page L-245
per.handb.
page L-245
proc.handb.
chapter 6

per.handb.
page L4-201
per.handb.
page 4-124

DQ11 NPR
synchronous
line interf.
(preliminary)
1974
per.handb.

page L4-165

CONFIGURATION 2-12

interface to GT4O 1 DL11-E DEC 9600BD ser. 2.3.1.3 per.handb.
asynch. page 4-124
null modem 1 H312 A DEC for interf. 2.3.1.3 per.handb.
to GT40 page L4-185
disk controller | RK11-D DEC controller 2.3.1.1 per.handb.
(two disks) page L4-282
disk cartridge drive 2 RKG5-BB DEC 1.228 m 2.3.1.1 per.handb.
words page L4-282

proc.handb. = processors handbook PDP11/45, 1974-75, DEC
per.handb. = peripherals handbook PDP11 , 1973-74, DEC

CONFIGURATION

GTL40 configuration

device description number name manu-

fact.

PDP11/05 processor 1 KD11-B DEC

keyboard

l LK 40 DEC

interface to 11/45 1 DL11-E DEC

8K core] MM11-L DEC
GTL0 display and 1 DEC
processor

proc. handb.

per.

handb.

remarks

9600 BD

serial

tabel

i

2.3

ntern

ref.

2

2=-13

extern ref.

.3.2.2 proc.handb.
2.3.2.2 GTLO users

.3.2.2

.3.3.3

.3.2.2

processors handbook PDP11/05, 1973, DEC
peripherals handbook PDP11, 1973-74, DEC

guide page 6
per.handb.
page 4-124
per.handb.
page 4-245
GTLO users
guide
chapter &

HRD~1

KB 11-A
:j pracesgsgor
flﬁating 'P* ptac‘ .

PDPB/E ; .%meggQSwwm_ﬁwwmwm
| | disk unmit

ek g Gl W MDA

E¥8BE contr

16K ext. arithmetic

RKOS5 disk

B -! ! t ¥ i

RK}} contr |

laser

display/plotter |

pemory manager

prog. clock

elock

HUNIBUS“]]/45

KL 8-JA ' _ : KL B-E
st —— N S -y DE 811 . | : DR 8-F ;
: | | []~ } | . EEa—— interface : tty
DQ 11-RA " ” | | | DR §1i~C DR 11-C - | ; interface | interface |
' | . | | ' | | | 9600 BD interface
CRC - T 14) ' parallel j : paraliel
char. req. | ynce DEC writer | interface | | interface
50 X BD | 600 B) | 300 BD |
f- ; - RS 08
- N1 81 DY 88 | . DEC tape
- e - S ———— : : disk unit
: | interface | interface | dual unit

RF0O8 contr

nnn

Anelex

lineprinter

3 D/A

DEC paper tape converters

- reader/punch

- 300 ch/s 30 ch/s

KY 08
display

NEEBEAEE B EPRE PN EERETIRBEE IR ERRRED P ERE TR S EERE T XY

GT40

EL 1000
paper tape

reader
1000 ch/s

joystick

Calcomp

plotter

Pacit
300 st/s

paper tape

punch
150 ch/s

braille i Teletype multiplexer

UNIBUS 11/05

printer console-

¥
s
e
.
4
1
.
»
4
|
4
§
%
¥
*
]
4
4
]
’
4
a2
4
§
.
%
$
"
¥
¥
9
*
¥
4
¥
5
%
*
&
]
#
: |
[
v
&
*
§
.
4
|
’
1
¥
¥
¢
"
s
"
¥
4
4
]
|
L]

] ch/s ' writer

KD i1-B | : M 1L

processor - 8K core

Olivetti Olivetti

terminal | terminal

‘-*“‘*ﬂ.‘*““‘.*‘***""".‘*'*“"'“‘F‘fﬂlﬁlhtttitntnlllﬁ*!"ﬁOﬁit#ﬁ#*qﬂnﬂttiiiﬁvﬁl'ii‘-‘-.l-it#

"
4
¥
&
4
1
¥
L
¥
a
)
+
"
L
¥
*
'
’
1
1
a
4
‘
4
1
1
L
L]
s
4
.
*
4
.
4
1
#
|

SOABEESFBEBONRAD A NBO R A GRS AP OE PG RORANRRERSOPAIAPRAFIRDER R PAEP IR REA N ROERBAAN T ISR ERE TN E R Y NI FETLE N SRER AL ER SR E N RS SRS IR R R LR LR R R AL EREE R &L R A

fig. 2.1. A survey of the PDP11/45, PDP8/I and PDP8/E configuration

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-1

3. PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM

3.1 Overview

In this overview we will split up the overall function of the [GS

in three basic functions. Each graphics program will require execution

of all basic functions.

The ftirst basic function is to execute graphics application
programs. To this end the IGS supports high-level graphics languages.
The effect of a graphics application program is to read and to produce
zero or more picture files.

The second basic function is to drive all physical drawing
machines. The drawing-machines either produce pictures in hardcopy
(paper, film) or on a screen, or they produce picture input in the form

of a picture file.

The third basic function is to provide a link between the two
previous tasks. This linking function is realized 1in the form of a
picture file system. All picture files contain pictures in a standard

internal representation, the so-called Intermediate Language (IL).

A typical graphics session encompasses the following steps:

- A graphics language program is compiled and brought into execution
(function 1).

- The program opens a number of picture files. Open files can also be
linked to a drawing-machine, for input as well as output (function
3).

- The user starts the drawing-machines. All input is put into files
that will be consumed by the application program. All output
files for a drawing-machine are converted and consumed by the

machine-driving program (function 2).

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-2

level overview fig. 3.1

ALGOL 68G || FORTRAN EXTENDED ||HIGH-LEVEL

GRAPHICS PROGRAM |

application program level:

intermediate level: Intermediate Language

level of drawing-machines: PLOTTER {|DISPLAY1 || DISPLAY2Z ||DISPLAY3

The proposal in this chapter will be formulated by describing the
three basic functions in more detail. The main strategy 1is to split
up the functions into subfunctions that can be realized (implemented)
as more or less autonomous subsystems (modules). Each module is
characterized by its functions, its relations with other modules and its

internal structure. Before describing the modules a few design decisions

that apply to all functions are outlined.

The most important decision is to formulate the various functions
with the help of special languages. These languages will either be
implemented directly (e.g. the high-level programming lanquages) or will
be used only to guide the implementation (e.g. the IL).

A second decision deals with the information flow between the
various functions. The main goal here is to achieve efficiency by
finding a uniform way of exchanging information.

The third decision concerns the definition and realization of

interaction. |t will turn out that a two-level interaction mechanism is
required.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-3

3.2 Language Aspects

In each of the three basic function modules one or more programming
lanquages can be distinguished.

In the application module there exist several high-level graphics
languages. Each general purpose programming language (e.g. ALGOL,
PASCAL, FORTRAN) can be extended to a graphics programming language, in
a more or a less convenient way.

In the drawing-machine module there exist various drawing-machine
languages (machine instruction repertoires).

The linking function contains only one languaqge, the so-called

Intermediate Language (IL). This minimizes the number of conversion
routines needed for translation between high-level graphics languages
and physical machines: one for each language and one for each machine
(see fig 3.1). The IL can also be used for conversion between pictures
from one drawing-machine to another (e.qg. screen to plotter).

The IL 1s a language designed only for internal representation of
pictures. |ts semantics can be described with the help of a abstract

drawing-machine. The graphics 1/0 of the high~-level graphics program

consists of |L programs. The high-level program must be able to
generate and read |L-programs. The graphics |/0-instructions consist
of conversions between IL-programs and their representation in the

high-level graphics program. This conversion can be made efficient by
embedding the Il. in the high-level lanquage. This also provides the
programmer with one conceptually simple drawing-machine (that is if we
can invent a simple IL). |In fact we intend to realize all high-level
graphics lanquages by embedding the IL in an existing general purpose
programming language.

For both input and output we want to use the same |L. This
gquarantees complete symmetry between input and output at the application

level, which again will promote simplicity.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-4

In order to obtain a flexible transfer system between |IL files
and the various drawing-machines, 1t may be appropriate to proceed In
steps. This means that a drawing-machine is transformed into an extended
machine by adding instructions. The extended machine should resemble the
IL machine more closely in order to simplify conversion. The process can

be repeated as often as needed.

This strategy Is Iindispensable for the realization of
drawing-machines for input. The distance between a light pen hit and any
IL primitive is much greater than the distance between a vector function
on a screen and a line in the IL. It is at this point, rather than at
the application level, that the problems involved in obtaining symmetry

between input and output must be solved.

3.3 Principles of Interaction

Interaction is a special combination of input and output. Input
provided by a user goes directly to a program that is in some form of
waiting state. OQOutput goes directly to the user at the terminal. | nput
and output are exchanged on a question and answer basis.

Graphics interaction means that both input and output are pictures.
All input originates from a picture produced at a screen (visual
display). Output pictures are drawn on the same screen.

From this description, it follows that the interactive part of a

graphics system performs four subfunctions:

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-5

- Picture input.
~ Picture output.
- A question and answer mechanism.

- An arbitration function for sharing the screen.

In general, after a question by the program, the user needs the
complete drawing-machine for composition of the picture that constitutes
the answer. He also needs to reinspect the question picture from time to
time. Hence the question must be redisplayed and therefore remembered
by the system. This can be accomplished in two ways. The user can ask
the application program to repeat the question, or the question can
be redrawn from local storage. The latter solution requires a local
file capacity. We nevertheless prefer this solution because it strongly
reduces overhead and local file capacity will be necessary anyway.

For composition of a picture on a screen one can again choose
between two alternatives. In the first approach, user actions can be
recorded In a sequential file and be sent to the program. The program
must inperpret this raw material in order to extract the intended
picture. |t would be wise to display this picture at the screen and
allow some additional composition in order to ensure a correct answer.
Most existing graphics systems apply this raw picture input, wusually
without the correction cycle. We strongly prefer a different approach

for the following reasons:

- Raw Input violates the concept of symmetry between input and
output, since the primitive actions at the screen are more
primitive than the primitives in the IL. (for instance, a light pen

hit or a function button push is not a point or a line, at best a

point or a line can be the result (composed) of a sequence of hits

and pushes).

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-6

- Verification of the right input should be possible through a local
drawing- and editing system. The activation of a big appl ication
program for input that will instantly be rejected, causes an

unacceptable overhead.

The second approach uses a local picture editing system. A picture
editor is a much more complicated program than a text editor. A text is
a linear string of characters that is built up on a line by line basis.
As a consequence only the current line is subject to changes. Therefore
in most text input systems a local mode is used only to prepare a line
of text, which will be handled over as one information item. As compared
to texts, pictures require at least one more level of interaction. The
current picture input devices require a series of input actions iIn
order to specify one input primitive. Such a series can be compared in
length and complexity with one line of text. Pictures, however, have
a tree-like information structure. This means that such a primitive
must be linked to several points in the already existing picture. This
linking (composing, associating, constraint building, etc.) will require

a new series of input actions that may aqain be subject to local mode
editing. Furthermore, the complete picture must remain available in
order to specifv the linking points.

The corrections in the picture must be possible in terms of
primitives (deletion, replacement) and by relinking these corrections
to the original picture. This editing on the level of primitives and

links is what we call the local interaction mode. The more primitive

Interactive mode of building picture primitives and link specifiers is
not considered as an extra interactive level (although it is). We expect

No more difficulties with it then we would encounter while col lecting
lines of text.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3=7

Complete pictures thus constructed constitute the input to the
interactive application program. This high-level interaction or global
interaction introduces two new problems in an IGS. Both have been
discussed already in chapter 1 as research subjects. We do not want to

repeat that discussion here, but instead try to define functions of the

system that would be able to solve these problems.

The careful reader will have noticed that we let the program
ask the questions, and the user provide the answers. This is because
answering requires much more intelligence than asking. When asking a

question the program must also specify the form of the answer with

respect to:

- The level of detail of the answer. In the exchange of tree-like
information it is generally convenient for the user to see as much
of the tree as possible, although only part of the tree is subject
to discussion. A special selection module should help to extract
the subpicture that constitutes a permissible answer out of the
picture supplied by the user.

- The topological (grammatical) properties of the tree as a graph.
There must be a function module that will reject all picture trees
of the wrong type. In this way the program can protect itself

against dangerous input (for instance, it can specify the branching
depth) .

The first function can be characterized as defining dynamically

the permissable actions. It is invoked prior to answering. The second

function can be characterized as checking the permissable structure of

the answer, and is invoked after the user has declared that the answer

IS ready.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM

The question and answer mechanism is a monitor function responsible
for the conversation dialoque. It decides whose turn it is and at which

moment turns change. 1t should provide both user and application program

with simple rules for conversation. All violations of these rules
should be caught by this mechanism. As a result, the module manages the

drawing-machine as a resource shared between user and program.
3.4 The picture file system

The picture file system performs the linking function between the
application level and the device level.

The interfaces with the other two basic modules consist only of
conversion routines to and from the Intermediate Language representation
of picture files and file operations.

The information exchange in the graphics system basically consists
of picture files. To this end all communication links must be able to
transport complete files. The basic layer that creates this facility
will not be discussed here. We merely assume that a file transporting
system exists. For the realization of this layer we refer to the
paragraphs on protocols in chapter 2 and 4 of this report. The file
operations we have in mind are the well known file handling operations
present in most operating systems (e.g. open, close, read, write etc.).
It follows that all information which has to be passed between the
application level and the drawing-machines must be expressed in the IL.

This information deals with the following subjects:

. The application program must have complete control over all

drawing-machines.
2. A tree structure must be present in the IL in order to preserve the

relations between subpictures.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-9

3. The IL must be able to specify interaction patterns.

A pointer mechanism or another selection mechanism must be provided
that identifies a particular piece of a data structure representing

a picture in the application program. The user makes his selection

based on the picture displayed on the screen.

>. Restrictions on the form of IL programs must be expressible with
the help of other IL statements in order to protect an application
program from wrongly structured input (e.g., grammatically wrong IL
programs or too deeply nested subtrees).

6. Library functions must be provided for selection of pictures and

sublibraries, and for building wup libraries of characters and

pictures.

At this stage, a draft proposal for an |IL exists (see P.J.W.
TEN HAGEN [29]) that covers the subjects 1 and 2 with respect to
line-drawing-machines. In chapter one of this report it is pointed out
that mechanisms exist for subjects 4 and 5. The interaction and library
functions still have to be designed.

The linking module sees every drawing-machine as an |IL machine.
Conversion routines exist between each physical device and an IL file. A
one-to-one mapping of such files on devices is possible. The conversion
routines are considered part of the machine-driving module. The
user-program can manipulate devices as if they were files. The same
reasoning holds for the sharing of a device between wuser and program
during interaction. This monitoring function will be carried out by the
so-called Interaction Monitor.

A second important function of the 1linking module is the local
editor (IL file editor) for picture preparation and correction. This

edi tor has a number of internal links to the Interaction Monitor:

- |t depends on the Interaction Monitor for the switching from active

to passive state during interactive sessions.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-10

- All access to symbol tables and picture libraries goes via the

Interaction Monitor.

- The Interaction Monitor can initiate a new edit cycle when the
form of the input violates the restricions defined in the previous
guestions.

- All file management is passed to the file manager through the

Interaction Monitor.
3.5 The application level

In the application level we find all facilities that are common to
general purpose operating systems. We will consider only those aspects

that are typical for a graphics system.
3.5.1 High level graphics languages

As can be concluded from the description of the linking function,
especially from the role of the Intermediate Language, all facilities
of the qgraphics system can be controlled via the IL. The most important
design decision we have made is to provide these facilities to the user
by embedding the IL in a high-level programming language.

This approach has in our opinion a number of advantages, which are

stated elsewhere in the report in different contexts. We repeat them

here for completeness:

- 1t minimizes the number of primitive concepts, since the
application level deals with only one drawing-machine (the IL

machine).

- Existing high-level Jlanguages provide lots of features that are

useful for a graphics language.

PROPOSAL FOR AN INTERACTIVE GRAPHICS SYSTEM 3-1]

- The application program as a whole and the graphics part of
it share the same data structure (of the high-level graphics
language) .

- Recently developed general purpose programming lanquages claim to
allow this kind of embedding (for instance ALGOL 68). We intend to
take this qauntlet thrown down by ALGOL 68.

- A well defined high-level lanquage is a prerequisite and a starting

point for a well defined graphics language.

In TEN HAGEN [29] a proposal is given how to embed the IL in
ALGOL 68. The extendability of ALGOL 68 allows this type of embedding
without any modifications of the ALGOL 68 compiler.

The type of langquage obtained has an Iimportant property namely, it
can be devided in several levels of complexity. Each level together with
the underlying levels constitutes a complete graphics language. This 1is
true in particular for the lowest level, the so-called primitive layer.
This laver provides a simple, efficient and easy to learn language for

modest graphics applications.
3.5.2 Utilities and other modules

In the application module a library organization must be provided
for complete application programs as well as procedures that can be
used by any other program. This module also should contain<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>