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• *) How program statements transform predicates 

by 

L. Ammeraal 

Mathematical Centre, Amsterdam 

ABSTRACT 

This paper deals with relationships between conditions that hold be­

fore the initiation of a statement and on its completion. Statements are 

semantically defined by statement functions which are transformations in 

the state space. They induce predicate transformers which map state space 

subsets to such subsets. The predicate transformers and their inverses are 

explicitly given for some well-known constructs including the conditional 

statement and the while statement. A number of examples illustrate how pred­

icate transformers can be used. 

KEY WORDS & PHRASES: program semantics, correctness proofs, program correct­

ness, predicate transformers 

This paper is not for review; it is meant for publication elsewhere. 





INTRODUCTION 

Sequences of the form 

{x} s {Y} 

are frequently found in papers on program correctness. Usually X and Y are 

assertions or conditions which hold before initiation of a statement Sand 

on its completion, respectively. Since X and Y are comments, they are not 

very precisely defined and anything that improves program readability will 

do. However, X, Y and Sare not mutually independent. It would be nice if 

two of them determined the third, like the sides of a rectangular triangle. 

Unfortunately we have not yet discovered a relationship between X,Y and S 

as elegant as Pythagoras' theorem. In cases like 

{x > O} x := x + I {x > I} 

this relationship is intuitively clear without precise definitions or any 

other mathematical equipment, but in general it is not evident how one un­

known in the triple (X,S,Y) can be derived from both other items. It is not 

difficult to realize that 

{X} while B do S od {X A ,B} 

is a consequence of 

{X A B} S {X}, 

but it is less well-known how Yin 

{X} while B do Sod {Y} 

can be expressed as a function of X if Y' is given as a function of X' in 

{X'} S {Y'}. 

Such functions and their inverses are discussed in this paper. Because func­

tions have unique values we will only accept the strongest Y or X that fol-
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lows from a given X or Y. If we would tolerate information to be lost then, 

e.g., I+ l = 2 could serve as a Y for any X and S. 

In this paper we will avail ourselves of the conventional notation of ele­

mentary set theory. This has two pleasant aspects. First, anyone who is not 

altogether unfamiliar with modern mathematics understands it. Secondly, 

useful theorems from standard text-books can immediately be applied. 

STATES AND PREDICATES 

There are two distinct ways of writing things down, viz. either in mathe­

matical or in symbolic notation. E.g. x := x + I is in symbolic notation. 

In mathematics we would write something like x' = x +I.Objects in symbolic 

notation can be discussed with the aid of mathematical notation. In the 

program 

(I) begin real x, y; inti, j; bool b; 

S • • s 
I ' ••• ' m 

where s1, ••• ,Sm stand for statements, the symbols x, y, i, j, bare usually 

called "variables". This is not a definition. The term "variable" is a 

source of troubles when we use both notations at the same time. We will 

therefore neither define this term nor use it. This is possible if we re­

place program (I) by 

(2) 

end. 

If R is the set of real numbers and Z is the set of integers, we will say 

that the set 

V =Rx Rx Z x Z x {true, false} 

is the state space of program (2). It is the set of all 5-tuples 

c, 1,, 2 ,,
3
,,4,,

5
), where 



Greek letters~. were written here to emphasize that mathematical notation 
1 

was used. When this is clear from the context we can safely use x. instead 
1 

such x. is just an element of 
1 

3 

of ~i" We will do. so and keep in mind that 

some set, say R. The resemblance of x3 in 

on pure accident. The example leads to the 

x
3

EZ and in program (2) is based 

following definitions. 

A state space is a Cartesian product 

The sets v
1

, ••• ,Vn are sometimes called types. The elements x = (x1 ,x2 , ••• ,xn) 

of V are called states. 

If now, e.g. ' the statement 

(3) := 50 

is chosen for s1 in program (2), its effect (semantics) can be described in 

terms of the state space: any state (x1,x
2

,x
3

,x4 ,x5) is mapped to the state 

(x
1
,x

2
,so,x

4
,x

5
). 

We will write this as 

or simply as 

(4) 

when it is clear that f is defined for all x EV. 

In the context of program (2) we regard (3) just as a symbolic notation of 

(4). The subset 
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of Vis the mathematical equivalent of the symbolically written condition 

x
3 

= 50 that could be inserted as a comment after s
1 

in program (2). Thus 

subsets of the state space V are equivalent to "restrictions" or "conditions" 

imposed on V. We will use the term predicate for a :subset of V when we 

think of the corresponding condition at the same time. We should be aware 

of the following correspondence between conditions (Boolean expressions) 

and set expressions. 

Boolean expression 

A V B 

A A B 

-,A 

A~B 

true 

false 

set expression 

Au B 

A n B 

A (=V-A;A's complement) 

AC B 

STATEMENT FUNCTIONS AND PREDICATE TRANSFORMERS 

Program statements are strings of symbols composed according to syntactic 

rules. Thus x
3 

:= 50 and x3 := 5 * 10 are different statements. Their effects 

on the state space, however, are the same. We define: 

The statement function of a statement Sis a function 

f: W + V, 

defined on some domain W c V. 

EXAMPLE I. Let V = R2 , i.e. the program has the form 

end. 

We consider the statement 

Then 
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Here f is only defined on the domain 

We are interested in mappings not only from states to states but also from 

predicates to predicates. Predicates are subsets of the state space V. The 

set of all subsets of a set A is called the power set P(A) of A. As before 

W denotes the domain of the statement function f. Then f induces a function 

from P(W) to P(V). This function is also written as f and is given by 

f(X) = {f(x) € V I~ EX} for all X c W. 

This new function f will be called predicate transformer. 

EXAMPLE 2. 

X = {(xI,x
2

) € V I xI > O} 

S: xI := x 1 + l 

Then the statement function and the predicate transformer are given by 

f(xI,x2) = (x
1 

+ I, x2) 

f(X) = {(xI,x2) € V I x1 > I}. 

In the next section some general rules to find f(X) will be given. In this 

and some other examples x2 seems superfluous. Its only purpose is to prevent 

us from identifying state spaces with the set of real numbers, which would 

be highly unrealistic. 

Set theory (cf.[7]) provides many interesting properties of mappings which 

we may use for our purposes by virtue of our definition of predicate trans­

formers. For a given statement function f with domain W we define the in­

verse predicate transformer f-l as a function from P(V) to P(W) given by 

for any Y c V. 
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Then for any X, x1, x2 c Wand Y, YI' Y2 c V we mention the following prop­

erties,, which are easy to prove. 

(5) f(XIuX2) = f(XI) u f(X2) 

(6) f(XInx2) c f(XI) u f(X2) 

(7) XI c x2 implies f(X 1) c f(x2) 

(8) f- 1(YI~Y2) = f-I(YI) u f-I(Y
2

) 

(9) 

(IO) 

(II) 

(I 2) 

(13) 

(14) 

f- 1(YinY
2

) = f-I(Y
1
) n f-I(Y

2
) 

-I -I 
YI c Y2 implies f (YI) cf (Y2) 

f(X) = 0 if and only if X = 0 

f(f-I (Y)) c Y 

X C f-I(f(X)) 

f- 1(V-Y) = W - f-I(Y) 

If the statement function f maps W ~ V, i.e. f(W) = V, then 

Often W = V, as in the following examples. 

EXAMPLE 3. 

Then 



2 f(x 1,x2) = (x
1

,x
2

) 

f(X) = {(x
1
,x

2
) EV I x

1 
> 9} 

-1 
f (f(X)) = {(x

1
,x

2
) EV 

This example illustrates (13). Since f is not one-to-one; (16) does not 

apply here. 

EXAMPLE 4. 

Then 

S: 

f-I (Y) = V 

-1 
f(f (Y)) = {(x1,x2) EV I x 1 ~ O} 

Here (12) applies, but (15) does not, because f does not map V onto V. 

PREDICATE TRANSFORMERS FOR SOME STATEMENTS 

7 

For each program statement the statement function is its semantic definition. 

The predicate transformer and its inverse are then determined. In other 

words, f(~) is given by definition; f(X) and f- 1(Y) by theorems. They will 

be presented in this section for 

a. the dummy statement 

b. the assignment statement 

c. the compound statement 

d. the conditional statement 

e. the while statement. 

-1 
The given expressions for f(X) and f (Y) are rather evident. We will omit 

their proofs but insert some elementary examples. 

a. The_dummi -statement. 

The semantics of the dummy statement are defined by f(~) = x for all 
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x EV. We denote this statement by the symbol skip. Evidently, f(X) = X and 

f-I(X) = X for all X ~ V. 

b. The_assi~nment_statement 

Let the state space be V = v1 x v2 x ••• x Vn, and let for some i 

(l~i~n) a function 

<f>: W + V. 
l. 

(WcV) 

be given. Then the statement function f with domain Wand given by 

defines the semantics of the assignment statement. symbolically denoted by 

X. : = <l>(x) • 
l. -

It then follows that, for all X c Wand Y c V 

0 

f(X)={(x
1

, ••• ,x., ••• ,x) EV I 3x. 
i n l. 

(18) 

(19) 

EXAMPLE 5. 

V = R2 

X = {(x
1
,x

2
) I x

1 
+ x2 > O} 

S: 

Then 

f(x
1

,x2) = (x1-x2 ,x2) 

{ (xi ,x2) 
0 .o 0 

- X } f(X) = 3x1 (xl ,x2) E X A XI = XI 2 

{ (xl ,xz) 
0 0 0 

- X } = 3x 1 
. 

xi + x2 > 0 A XI = XI . 2 

= { (xi ,xz) XI + 2x2 
> O}. 

0 

The last step consisted of eliminating x1• 



We now take Y = f(X) and apply (19): 

f-1 (Y) = { (xi ,x2) (x
1
-x

2
,x

2
) € Y} 

= { (xi ,x2) (xl-x2) + 2x
2 

> O} 

= { (xl ,xz) XI + x2 > 0} = X 

Because f is one-to-one, we could have predicted this by using (16). -

Remark_on_the_symbolic_notation_of_statements. 
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We have used the symbol S for statements and f for the corresponding state­

ment functions. When several statements are involved, it is more convenient 

to denote them by capital letters F, G, ..• , and their statement functions 

by the corresponding small letters f, g, .••• 

c. The_comEound_statement 

The sequence G;H is considered a new statement F, semantically 

defined by 

f(~) = h(g(x)) 

Then 

f(X) = h(g(X)) 
-1 -1 

for all X cg (h (V)), 

for all Y c V. 

d, The conditional statement 

For any predicate B c V the sequence 

if B then G else H fi 

is called a conditional statement F, semantically defined by 

(20) f(x) = {g(x) 
h(x) 

if x € B n g-l(V) 

if x E: B n h -I (V). 

Here B = V - B, the complement of B. Clearly the domain off is 

B n g - 1 (V) u B n h - I (V) • ( Intersection "n" has precedence over "u" through­

out this paper). 
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For all subsets X of this domain and for all Y c V: 

(21) f(X) = g(BnX) u h(BnX) 

(22) 
-1 . -1 -1 

f (Y) = B n g (Y) u B n h (Y). 

EXAMPLE 6. 

x = {<x,y) 1 x + Y > 1} 

(For convenience's sake we write (x,y) instead of (x1,x2)) 

F: if x < y then x := x + y else y := x + y fi 

Consequently 

B = {(x,y) EV Ix< y} 

G X := X + y 

H y := X + y. 

Then 

g(x,y) = (x+y,y) 

h(x,y) = (x,x+y). 

Our goal is to find f(X) by using (21). 

B n X = {(x,y) X < y /\ X + y > l} 

B n X = {(x,y) X ~ y /\ X + y > l} 

We apply (18): 

0 0 0 

g(BnX) = {(x,y) E V 3x . (x ,y) E BnX I\ x=x +y} . 
= {(x,y) E V (x-y,y) E B n X} 

= {(x,y) E V x-y < y I\ (x-y)+y > l } 

= {(x,y) E V l <·x < 2y} 

We can find h(BnX) = {(x,y) EV I l < y ~ 2x} in a similar way. 

Then (21) yields 

f(X) = { (x,y) E V I l < x < 2y v 1 < y ~ 2x}. 



EXAMPLE 7. 

Y = {(x,y) I y = 2} 

F: if x > 0 ~ y := x + 1 else skip fi 

Thus 

B = {(x,y) I x > O} 

G: y := X + I 

Then we find by using (22): 

f-I(Y) = B n {(x,y) 

B n {(x,y) 

= {(x,y) X > 

{(x,y) X:,; 

= {(x,y) X = 

e. The while statement -------------------
We will adopt the obvious 

(x,x+l) E Y} u 

y = 2} 

O} n {(x,y) 

O} n {(x,y) 

V (x :,; 0 

notation 

-k { 
y if k = 0 

g (Y) = 
g -1 (g -k+ l (Y)) if k > O. 

The sequence 

(23) while B do God 

X + I 

y = 2} 

I\ y = 

= 2} u 

2)}. 

is called a while statement F. We will define its statement function fin 

terms of statement G (with statement function g) and predicate B c V. The 

domain off is 

(24) 
oo -k -

W = k~O g (B). 

Intuitively, Wis the set of all states x EV which have the property that 

repeated application of g eventually results in a state x' EB. Then the 

statement function for (23) is 

BIBLIOTHEEK l\/lt-.THG1:,\TISCl I C:Ci :-, ;-- ' 
-AMSTERDAM-

I I 
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if XE B n W 

-if X E B n W 

(The domain Wis closely related to the recursive nature of this definition. 

A (not allowed) attempt to find f(x) for some~ EV - W may result not only 

in an undefined g(x) as in Example I, but also in an infinite process.) 

The predicate transformer and its inverse are 

(26) 
- 00 

f(X) = B n k~O Tk for any X q W, 

where 

{ ::+~ 
X 

= g (BnTk) (k=O, I , 2, ••• ) , 

(27) f-l (Y) 
00 

= k~O Sk for any Y c V, 

where 

(k=0,1,2, ••• ) 

EX.AMPLE 8. 

V = Z (the set of all integers) 

X = {x E Z x > 0 Ax even} 

F: while x $ 10 v (x~20 A x$3Q) do x:= 2 * x + 1 od. 

Then 

B = {x E z X $ 10 V 20 $ X $ 30} 

B = {x E z ]Q < X < 20 V X > 30} 

TO = X = {2,4,6, ••• }, B n T = {2,4,6,8,I0,20,22,24,26,28,30}, 0 

Tl = g(BnT0) = {5,9,13,17,21,41,45,49,53,57,61}, B n T1 = {5,9,21}, 

T2 = g(BnT I) = { l I , 1 9, 43} , B n T2 = 0, 

T3 = g(BnT2) = 0 etc. 



f(X) = B n (TouTluT2) = 

{ll,12,13,14,16,17,18,l9,41,43,45,49,53,57,61} u {32,34,36, ... } 

oo -k -
Here X satisfies X c W, because W = k~O g (B) = {x E Z Ix~ O}. 

EXAMPLE 9. 

Then 

V = Z 

Y = {x ,E Z x even} 

F: while x ~ IO do x := x + 3 od 

B = {x E Z X ~ 10} 

s
0 

= B n Y = {12,14,16, ••• } 

-I 
SI= B n g (So)= B n {9,ll,13, ••• } = {9} 

-1 
s2 = B n g (SI)= B n {6} = {6} 

-1 s3 = B n g (S2) = B n {3} = {3} 

etc. 

13 

We will now mention some properties that can be derived from (25), (26) and 

(27). First, the equivalence of 

and 

while B do G od 

if B then 

fi 

G; while B do God 

else 
skip 

follows innnediately if we formulate the statement function of the latter 

conditional statement. If we write the predicate transformer and its in­

verse for this conditional statement, we find the recurrence relations 
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f(X) = f(g(BnX)) u B n X 

f-I(Y) = B n g-I(f-l(Y)) u B n Y. 

Some less general results than (26) and (27) that are more practical can be 

derived from our predicate transformer. E.g. Hoare's "Rule of Iteration" 

(cf. [2]): 

if ~PAB {S} P then ~p {while B do S} ,BAP 

is written in our·notation as 

if g(XnB) c X then f(X) c B n X, where 

F: while B do God. 

It is proved as follows. It follows from (26) that f(X) c B. 
Furthermore 

g(XnB) c x<~) Tk c x (k=O,I, ••• ) .. kYo Tk c x .. f(X) c x. 

(a) is proved by induction: 

i. To= X, thus To C X 

ii. Suppose Tk c X. Then B n Tk c B n X.,. 

g(BnTk) c g(BnX) ~ Tk+l c g(BnX). 

It is given that g(BnX) c X, thus Tk+l c X. 

Thus g(XnB) c X implies f(X) c B n X. 

We conclude with a rule for the while statement mentioned in DE BAKKER [5] 

and written there as 

WS: V u,v [3 w[u s w, w; p; S S S; w, w; p S v].,. u; p * S s p * S; v] 

In a less sophisticated notation this theorem applied to our while statement 

F: while B do God 

reads as follows. 

For all predicates X and Y, it is true that f(X) c Y if there is a predicate 

W satisfying 



(28) X c W 

(29) g(WnB) cw 

(30) w n B-c Y. 

PROOF. We take W for X in our last example. This gives: 

if g(WnB) cw then f(W) c B n w. 

Thus f(W) c B n W, since (29) is given. Combining this with (30) yields 

f(W) c Y. From (28) it follows that f(X) c f(W). Thus f(X) c Y. D 
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