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How program statements transform predicates

by

L. Ammeraal

Mathematical Centre, Amsterdam

ABSTRACT

This paper deals with relationships between conditions that hold be-~
fore the initiation of a statement and on its completion. Statements are
semantically defined by statement functions which are transformations in
the state space, They induce predicate transformers which map state space
subsets to such subsets. The predicate transformers and their inverses are
explicitly given for some well-known constructs including the conditional
statement and the while statement. A number of examples illustrate how pred-

icate transformers can be used.

KEY WORDS & PHRASES: program semantics, correctness proofs, program correct-—
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INTRODUCTION

Sequences of the form
{x} s {v}

are frequently found in papers on program correctness. Usually X and Y are
assertions or conditions which hold before initiation of a statement S and
on its completion, respectively. Since X and Y are comments, they are not
very precisely defined and anything that improves program readability will
do. However, X, Y and S are not mutually independent. It would be nice if
two of them determined the third, like the sides of a rectangular triangle.
Unfortunately we have not yet discovered a relationship between X,Y and S

as elegant as Pythagoras® theorem. In cases like
{x>0}x:=x+1{x>1}

this relationship is intuitively clear without precise definitions or any
other mathematical equipment, but in general it is not evident how one un-
known in the triple (X,S,Y) can be derived from both other items. It is not

difficult to realize that

{X} while B do S od {X A -B}
is a consequence of
{X A B} s {X},
but it is less well-known how Y in
{X} while B do S od {Y}
can be expressed as a function of X if Y' is given as a function of X' in

{x'} s {y'}.

Such functions and their inverses are discussed in this paper. Because func-

tions have unique values we will only accept the strongest Y or X that fol-



lows from a given X or Y. If we would tolerate information to be lost then,

e.g., | + 1 = 2 could serve as a Y for any X and S.

In this paper we will avail ourselves of the conventional notation of ele-~
mentary set theory. This has two pleasant aspects. First, anyone who is not
altogether unfamiliar with modern mathematics understands it. Secondly,

useful theorems from standard text-books can immediately be applied.
STATES AND PREDICATES

There are two distinct ways of writing things down, viz. either in mathe-
matical or in symbolic notation. E.g. x := x + 1 is in symbolic notation.

In mathematics we would write something like x' = x + 1. Objects in symbolic
notation can be discussed with the aid of mathematical notation. In the

program

1) begin real x, y; int i, j; bool b;

end,

where Sl,,M,Sm stand for statements, the symbols x, y, i, j, b are usually
called "variables". This is not a definition. The term ''variable" is a
source of troubles when we use both notations at the same time. We will
therefore neither define this term nor use it. This is possible if we re-
place program (1) by

(2) begin real X5 XZ; int Xq5 XQ; bool xs;

end.
If R is the set of real numbers and Z is the set of integers, we will say
that the set

V=RXxRxZx Zx {true, false}

is the state space of program (2). It is the set of all 5-tuples
(E.»l ggzgg39£49€5) ¢ Where
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E1» &9 € R
€3, EAEZ
Eg e‘{true, false}.

Greek letters gi were written here to emphasize that matﬁematical notation
was used. When this is clear from the context we can safely use X, instead
of gi. We will do. so and keep in mind that such X, is just an element of
some set, say R. The resemblance of x, in x,¢Z and in program (2) is based
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on pure accident. The example leads to the following definitions.

A state space is a Cartesian product
1 g X ev 0’

The sets V ..,Vn are sometimes called types. The elements x = (Xl’x2’°"’xn)

1°°
of V are called states.

If now, e.g., the statement

(3) Xy ¢= 50

is chosen for S1 in program (2), its effect (semantics) can be described in

terms of the state space: any state (xl,xz,x3,x4,x5) is mapped to the state
(xl,xz,SO,XA,xs).
We will write this as

v Ef(xl,x29x3,x4,x5) e V: f(x) = (xl,xz,SO,x4,X5)

or simply as

(4) f(xl 9x2’X3 9x4axs) = (Xl ’XZ 35037{4 9X5) 9

when it is clear that f is defined for all x eV,
In the context of program (2) we regard (3) just as a symbolic notation of
(4). The subset

Y={xeV|x-= (XI’XZ’SO’xa’XS)}



of V is the mathematical equivalent of the symbolically written condition

X, = 50 that could be inserted as a comment after S, in program (2). Thus
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subsets of the state space V are equivalent to "'restrictions'" or "conditions'

)
imposed on V. We will use the term predicate for a:subset of V when we

think of the corresponding condition at the same time. We should be aware

of the following correspondence between conditions (Boolean expressions)

and set expressions.

Booleaﬁ expression set expression
AV B . AUB
AAB AnB
-— A A (=V-A;A's complement)
A=3B AcB
true v
false g

STATEMENT FUNCTIONS AND PREDICATE TRANSFORMERS

Program statements are strings of symbols cdmposed according to syntactic
rules. Thus Xy = 50 and Xy = 5 % 10 are different statements. Their effects
on the state space, however, are the same. We define:

The statement function of a statement S is a function

f: W »>V,

defined on some domain W < V.,

EXAMPLE 1, Let V = Rz, i.e. the program has the form

begin real X 9Xy5

end.

We consider the statement

S: i=
X, sqrt(x]+x2).

Then



f(xl,xz) = ( x1+x2, x2)
Here f is only defined on the domain

W= {(xl,xz) eV | x * X, 20}

We are interested in mappings not only from states to states but also from
predicates to predicates. Predicates are subsets of the state space V. The
set of all subsets of a set A is called the power set P(A) of A. As before
W denotes the domain of the statement function f£. Then f induces a function

from P(W) to P(V). This function is also written as f and is given by
£X) = {f(x) e V]| x e X} for all X c W.
This new function f will be called predicate transformer.

EXAMPLE 2.

vV = R2

X = {(x],xz) e V| X, > 0}

Ss x1:= x1 + 1

Then the statement function and the predicate transformer are given by
f(xl’XZ) = (x1 + 1, XZ)
f(X) = {(XI’XZ) eV | x, > 1}.

In the next section some general rules to find f(X) will be given. In this
and some other examples X, seems superfluous. Its only purpose is to prevent
us from identifying state spaces with the set of real numbers, which would
be highly unrealistic.

Set theory (cf.[7]) provides many interesting properties of mappings which
we may use for our purposes by virtue of our definition of predicate trans-
formers. For a given statement function f with domain W we define the in-

verse predicate transformer f—l as a function from P(V) to P(W) given by

f-l(Y) ={xeW]| £(x) ¢ Y} for any Y <V,



X, cWand ¥, Y., Y, < V we mention the following prop—-

Then for any X, X 12 ¥

12 %2
erties, which are easy to prove.

(5) £(X,UK,) = £(X,) U £(X,)

(6) £(X,0X,) < £(X)) U £(X,)

) X, X, implies £(X)) < £(X,)

(8) £ (e = £ @) v (L)

(9) £ nr,) = £ a £ (1)

(10) Y, © Y, implies f_](Yl) c f_l(Yz)
(1 f(X) = P if and only if X = §
(12) e () c v

(13) X< £ (£()

(14) £l - =w- £

If the statement function f maps W onto V, i.e. £(W) =V, then

(15) fE ) =

If £ is one-to-ome, i.e. x =x, whenever £(x,) = £(x,), then
(16) £ lEm) = x

(17) £(X,0K,) = £(X,) n £(X,)

Often W = V, as in the following examples.

EXAMPLE 3.

= {(xl,xz) e V| x, > 31

™
|

Then
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f(x]’xz) = (x] ’XZ)

£(X) = {(x),%,) eV | % > 9}

f‘l(f(X)) = {(xl,xz) eV | X, <=3 Vx >+ 3}

This example illustrates (13). Since f is not one~to—-one;, (16) does not

apply here.

EXAMPLE 4,

Then

Y = {(xl,xz) eV | x > - 2}

f (Y) =V

£ () = {Gx,,x)) €V | %, 20}

Here (12) applies, but (15) does not, because f does not map V onto V.

PREDICATE TRANSFORMERS FOR SOME STATEMENTS

For each program statement the statement function is its semantic definition.

The predicate transformer and its inverse are then determined. In other

words, f(x) is given by definition; £(X) and f—l(Y) by theorems. They will

be presented in this section for

a. the
b. the
the

[¢]

d. the
e. the

dummy statement
assignment statement
compound statement
conditional statement

while statement.

The given expressions for f(X) and f—I(Y) are rather evident. We will omit

their proofs but insert some elementary examples.

a. The

dummy -statement.

The seﬁantics of the dummy statement are defined by f(x) = x for all

&



x € V. We denote this statement by the symbol skip. Evidently, f(X) = X and
£ 1(x) = X for all X < V. “

b. The assignment statement

Let the state space be V = V] bs V2 X oes X Vn’ and let for some i

(1<i<n) a function
s W > Vi (Wev)

be given. Then the statement function f with domain W and given by

f(?_‘_) = (xl"“’xi-l’ ¢(§_), Xi+l’.'°’xn)

X (x],...,xi,...,xn)

defines the semantics of the assignment statement. symbolically denoted by
x, = $(x).

It then follows that, for all X c Wand Yc V

o] [+ o]
f(X)= {(Xl""’xi""’xn) eV | Sxi t X = (Xl""’xi—l’ X, xi+l,...,xn)<5X A

(18)

X.
1

FICHIN
(19) f‘I(Y)=={§_€ W lx= (Xl""’xn) A (Xl""’xi~1’ ¢ (x), xi+1,...,xn)€'Y}

EXAMPLE 5.

V=R
X = {<Xl’x2) | X+ X, > 0}

Then
f(xl,xz) = (xl-xz,xz)

1

[+]
= {(xl,xz) I I, ¢ x *+x,> 0 A X,

= {(xl,xz) | X, + 2x, > 0}.

f(X) = {(xl,xz) | Sx; : (X;,xz) e X Ax, =x

]
™

[]
»

The last step consisted of eliminating X,

&



We now take Y = £(X) and apply (19):

f—l(Y) = {(xl,xz) | (xl—xz,xz) e Y}

{(XI,XZ) | (x]—xz) + 2x2 > 0}

{(xl,xz) | X+ x> 0} = X

Because f is one-to-one, we could have predicted this by using (16). °

Remark on the symbolic notation of statements.

We have used the symbol S for statements and £ for the corresponding state-
ment functions. When several statements are involved, it is more convenient
to denote them by capital letters F, G,..., and their statement functions

by the corresponding small letters f, g,... &

c¢. The compound statement

The sequence G;H is considered a new statement F, semantically

defined by

h(g(x)) for all x ¢ g—l(h—l(V)).

£(x)
Then

h(g(X)) for all X c g '~ (),

£(X)
£y = g ' (1))  for all Y < V.

d. The conditional statement

For any predicate B < V the sequence
if B then G else H fi
is called a conditional statement F, semantically defined by

g(x) if xeBag (V)
(20) f(x) = - -
h(x) if xeBnh (V).

Here B = V - B, the complement of B. Clearly the domain of f is
1

i, 1

B n g_](V) uBnh (V). (Intersection "n" has precedence over "u" through-

out this paper).
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For all subsets X of this domain and for all Y c V:
(21) £(X) = g(BnX) u h(BnX)

-1, -1 -1
(22) f (¥) =Bng (Y)Y uBnh (Y).

EXAMPLE 6.

2

V=R

X={(xy) | x+y>1}
(For convenience's sake we write (x,y) instead of (xl,xz))
F: if x <y then x :=x + yelsey :=x+y fi

Consequently

B={(x,y) e V] x<y}
G : X 1=x+y

H : y =X+ ¥ .

Then

L]

g(x,y) = (x+y,y)
h(x,y) = (x,x+y).

Our goal is to find £(X) by using (21).

BnX={@Ey) |lx<yax+y>1}

BnX={(x,y) | x2yAx+y>1}

]

We apply (18):

{(x,y) e V| 3x° : (x°,¥) € BnX A x=x°+y}

g(BnX)

{(x,y) e V| (x-y,y) € B n X}

{(x,y) e V]xy<y A (x-y)ty > 1}

{(x,y) e V]1<x< 2y}

We can find h(BnX) = {(x,y) e V] 1 <y< 2} in a similar way.
Then (21) yields

fFX) ={(x,y) e V|1 <x<2y v 1<yc< 2}



EXAMPLE 7.

V = R2

Y={(xy) | y=2}

F: if x > 0 then y := x + 1 else skip fi-
Thus

B={(x,5) | x> 0}

G: y = x + 1

H: skip.
Then we find by using (22):

f_l(Y) =B n {(x,7) | (x,x+1) € Y} u

Bon{(x,y) | y=2}

={(XsY) I x > 0} n {(XQY) | x + 1 =2} u
{(x,y) | x <0} n {(x,y) | y =2}
={xy) lx=1 v x=<0 r y=2)]

e. The while statement

We will adopt the obvious notation

N Y if k=0
g (D=3 e
¢ ')y if k> o.

The sequence

(23) while B do G od

is called a while statement F. We will define its statement function f in
terms of statement G (with statement function g) and predicate B < V. The

domain of £ is
(24) w=_0 g%®.
k=0

Intuitively, W is the set of all states x € V which have the property that
repeated application of g eventually results in a state x' ¢ B. Then the

statement function for (23) is

&

BIBLIOTHEEK MATHEMATISCH CELNT
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£(g(x)) ifxeBnW

(25) £f£(x)= -
X ifxeBnW

(The domain W is closely related to the recursive nature of this definition.
A (not allowed) attempt to find f(x) for some x € V - W may result not only
in an undefined g(x) as in Example 1, but also in an infinite process.)

The predicate transformer and its inverse are

(26) f(X) = B n kgo '1’k for any X o W,
where
TO =X
Tk+l =g (BnTk) (k=0,1,2,...),
_l _ oo
27) f (X) = kgo Sk for any Y ¢ V,
where
So =BnY
-1 )
Sk+1 =Bng (Sk) (k=0,1,2,...)
EXAMPLE 8,

\

Z (the set of all integers)
X={xeZ | x>0Ax even}

F: whilé x < 10 v (%220 A x<30) do x:= 2 % x + 1 od,
Then

B={xeZ | x<10 v 20 < x < 30}

]

B=1{xeZ | 10<x<20 v x> 30}

"

T =X=1{2,4,6,...}, Bn T, = {2,4,6,8,10,20,22,24,26,28,30},

0

T, = g(BnTO) = {5,9,13,17,21,41,45,49,53,57,61}, BNT, = {5,9,21},
T, = g(BnT]) = {11,19,43}, B n T, = o,
T3 = g(BnTz) = etec.
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£6X) = B n (TPTUT,) =
{11,12,13,14,16,17,18,19,41,43,45,49,53,57,61} u {32,34,36,...}

Here X satisfies X ¢ W, because W = k§0 g_k(ﬁ) ={xe2 | x = 0}.

EXAMPLE 9.

o]
I}

{x € Z | x even}

IA

F: while x 10 do x ¢=x + 3 od
Then

B=1{xe Z | x < 10}

S =BnY={12,14,16,...}

S. = B n g“‘(so) B n {9,11,13,...} = {9}

S, =Bng (s]) =Bn {6} = {6}
= -1 \ = =
S;=Bng (Sz’ =B n {3} = {3}

etc
i) =s us us. u...

0”1 Y "
= {...,-6,-3,0,3,6,9,12,14,16,...}.

We will now mention some properties that can be derived from (25), (26) and

(27). First, the equivalence of
while B do G od
and
if B then

G; while B do G od
else

SklE
fi

follows immediately if we formulate the statement function of the latter
conditional statement. If we write the predicate transformer and its in-

verse for this conditional statement, we find the recurrence relations

L2}
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£(X)

£l

f(g(BnX)) u B n X

Bng ‘(£ uBat.

Some less generél results than (26) and (27) that are more practicai can be
derived from our predicate transformer. E.g. Hoare's "Rule of Iteration"

(cf. [21):

if }PAB {S} P then |[P {while B do S} =BAP

is written in our notation as :

if g(XnB) < X then £(X) ¢ B n X, where
F: while B do G od.

It is proved as follows. It follows from (26) that £(X) c B.

Furthermore

kog T, c X = f(X) < X.

g(xnB) < x'& T o T

e © X (k=0,1,...) =

(o) is proved by induction:

i. TO = X, thus TO c X

ii. Suppose Tk < X. Then B n Tk c BnX=

g(BnTk) c g(BnX) = T < g(BnX).

k+1

It is given that g(BnX) < X, thus Tk+l c X.

Thus g(XnB) < X implies £(X) c¢ B n X.

We conclude with a rule for the while statement mentioned in DE BAKKER [5]

and written there as

Ws: Vu,v [Twlucw, w; p; SSS; w, wypcvl=u;p*Scp=x8;v]

In a less sophisticated notation this theorem applied to our while statement
F: while B do G od
reads as follows.

For all predicates X and Y, it is true that f(X) < Y if there is a predicate

W satisfying
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(28) XcW
(29) g(WnB) © W
(30) WnBctY.

PROOF. We take W for X in our last example. This gives:
if g(WnB) c W then f(W) < BnW.

Thus £(W) < B n W, since (29) is given. Combining this with (30) yields
f(W) ¢ Y. From (28) it follows that £(X) ¢ f(W). Thus f(X) ¢ Y. 0O

REFERENCES

(1] FLOYD, R.W., dssigning Meanings to Programs, Proc. Symp, Appl. Math. 19,
American Math. Soc. (1967) 19-32,

[2] HOARE, C.A.R., An axiomatic Basis of Computer Programming, CACM, Vol. 12.
No. 10 (October 1969), 576-580.

[3] DIJKSTRA, E.W., 4 Simple Axiomatic Basis for Programming Language con—
structs, Proc. Kon. Ned. Akad., Ser. A, 77 (or Indagationes Math.,
36), 1-15 (1974).

[4] MANNA, Z. & A. PNUELI, AxzZomatic Approach to Total Correctness of Pro-
grams, Report STAN-CS-73-382, Stanford University (1973)

[5] DE BAKKER, J.W., Flow of control in the proof theory of structured pro-
gramming, Proc. 16th IEEE Symp. on Foundations of Computer Science
(1975).

[6] MILLS, H.D., The New Math of Computer Programming, CACM, Vol 18, No. 1
(January 1975), 43-48

[7] HALMOS, P.R., Naive Set Theory, D. van Nostrand Company (1969).



ONTVANGEN 8 tny 1576



