
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 42/75

R.M. BAER & J. VAN LEEUWEN

THE HALTING PROBLEM FOR LINEAR TURING ASSEMBLERS

Prepub I i cation

IA

~
MC

JULI

2e boerhaavestraat 49 amsterdam

· PJunted a.t .the Ma.thema;Uc.a£. Centlc.e, 49, 2e BoeJLhaa.ve-6.tM.a:t, Am1.i.teJLdam.

The Ma.thema;Uc.a£. Centlc.e, oou.n.ded .the 11-.th 06 Febll.uaJc.y 1946, ,l6 a. non
pll.o6U -ln1.i.tl:tu,tlon a,,im,[ng a.t .the pll.omo:Uon 06 pull.e ma:thema;UC6 a.nd ,Lu
a.ppUc.a.tlow... I.t ,l6 1.ipon1.>0Jz.ed by .the Nethvrl.a.ndo GoveJLnment .thll.ough .the
Nethvrl.a.ndo OJz.ga.nlza;Uon. 6oll. .the Adva.nc.ement on PUite Re6eaJc.c.h (Z.W.O),
by .the Muvu.c.-lpa.U.ty 06 Am1.i.teJLda.m, by .the UnlveMliy oo Aml.i.teJLda.m, by
;Che Fll.ee UnlveMUy a:t Aml.i.teJLda.m, a.n.d by -lndU,6VUe6.

AMS (MOS) subject classification scheme (1970): 02F15, 68M25

ACM -Computing Reviews- categories: 5.26

I

Proposed running head:

LINEAR TURING ASSEMBLERS

Send page-proofs to:

Dr. Jan van Leeuwen

Dept. of Computer Science

SUNY at Buffalo

4226 Ridge Lea Road

Amherst, NY 14226

,

THE HALTING PROBLEM FOR LINEAR TURING ASSEMBLERS

* Robert M. Baer

Department of Computer Science, University of California, Berkeley, and

Department of Biochemistry & Biophysics, University of California,

San Francisco

and

** Jan van Leeuwen

Department of Computer Science, University of California, Berkeley, and

Department of Mathematics, University of Utrecht, Utrecht, The Netherlands.

*

**

The research of this author was supported, in part, by Grant USPHS

GM-17539.

The research of this author was supported by the Netherlands Organi

zation for the Advancement of Pure Research (ZWO). A part of this paper •

was prepared at the Mathematical Centre, Amsterdam 1005, The Netherlands.

Abstract Turing assemblers are Turing machines which operate on n-dimen

sional tapes under restrictions which characterize a procedure of assembly

rather than computation, and which are intended as an abstraction of cer

tain algorithmic processes of molecular biology. It has been previously

shown that Turing assemblers with n-dimensional tapes can simulate arbitrary

Turing machines for all n > I. Here it is shown that for n = I even non

deterministic Turing-assemblers have a sharply restricted computational

capability, being able to successfully assemble only regular sets. The

halting problem for linear Turing-assemblers is therefore algorithmically

solvable, and a characterization of the set of achievable final assemblies

will be given as a subclass of the context-free languages.

§1. Introduction

The objects of molecular biology are assembled by mechanisms not yet com

pletely understood. Some objects seem to develop through a process of self

assembly, while others seem to be algorithmically assembled by mechanisms

such as ribosomes. The latter processes raise the question to what extent

notions of assembling are equivalent to the well understood subjects of

computability. In the study of cellular automata it appears that the dis

tinction between computing capability and replicating capability can be

either emphasized or erased, according to one's taste (i.e., depending on

how the notion of replication is formalized). In any case, the relation

between a constructing ability and a computing ability is well understood

for cellular automata. The same relation appears not to have enjoyed the

same depth of study in the case of sequential automata. In Baer [2], a

study was initiated with a view toward remedying this state of affairs.

As a model of a mechanism which is to build a structure by assembling

together a suitable collection of building-blocks according to some algo

rithmic prescription, it was proposed in [2] that a restricted version of

a Turing machine with n-dimensional work-tape might be suitable. The prin

cipal restriction held that the machine could operate only in contact with

the structure being erected and that extensions of the structure could be

realized only by adjoining building-blocks to the surface of the structure.

Such machines are called Tur>ing assemblers. The building-blocks are taken

to be n-dimensional unit cubes which come in finitely many varieties, and

in unlimited quantity for each variety. A collection of blocks is said

to constitute an assembly if the blocks in the collection form a connected

set inn-dimensional space. (Here, "connected" means the transitive closure

2

of "facewise-connected".)

The operation of a Turing assembler is understood as the process which

results when the Turing assembler is placed in its initial state, at some

canonical position on an initial assembly. If the Turing assembler enters

a terminal state, the assembly produced is taken to be then-dimensional

construct which exists upon the Turing assembler's halt. In [2] it was

shown that Turing assemblers which operate inn-dimensional space (n ~ 2)

can simulate any (ordinary one-head, one-tape) Turing machine, and hence

have universal computing capability, even if there is only one variety of

building-block available for erecting assemblies. It follows that the

halting problem for such Turing assemblers is undecidable.

Turing assemblers which operate in one-dimensional space are called

linear assemblers. Such constructors appear to have an algorithmically more

interesting behaviour with some useful interpretations in language theory.

We shall therefore give a detailed study of linear assemblers, considering

both several restricted models of linear assemblers as well as the general

non-deterministic linear assembler. We shall relate their domains and ranges

to regular and (linear) context-free languages, solve the halting problem

for the various models, and also compare the kinds of linear assembler which

we distinguish with more traditional types of automata.

Since the halting problem for linear assemblers (in their most general

form) is solvable such machines cannot serve as universal computational

devices in molecular biology, and are indeed considerably less powerful

than the higher-dimensional assemblers.

ln §2 we briefly review some of the concepts from automata- and

3

language-theory, and recall some terminology introduced in [2].

In §3 we consider (for any natural number k) the character of assem

blies produced by linear assemblers which are constrained to make exactly

k (full) passes across their assemblies. We show that a set of assemblies

produced by a~y such a k-pass assembler can also be produced by a 2-pass

linear assembler. Assuming that the machine may start on any arbitrary

initial assymbly, the range of a k-pass assembler is shown to be a regular

set.

In §4 we examine the class of w-pass linear assemblers which can re

verse their motion only at the ends of the assemblies on which they operate

but which have no constraint upon the number of passes which they may make

across their assemblies. We show that, for each w-pass assembler T, there

-is a one-pass assembler T which adjoins as a suffix to its initial assem-

bly the sequence of alternating suffixes and prefixes which T adjoins to

its initial assembly. A corollary to this result is that the halting prob

lem for w-pass assemblers is strongly decidable.

In §5 the general class of non-deterministic linear assemblers is

considered. After a detailed argument involving the use of crossing

sequences it is shown that the set of all initial assemblies on which such

an assembler may halt is a regular set which can be effectively determined

from the program of the assembler.

In §6 the solvability of the halting problem for the general linear

assembler is shown to follow from the result in §5, and some applications

to language theory are presented. In particular it is shown that the

range of a linear assembler is a linear context-free language (and each

4

linear context-free language can be so obtained).

§2. Preliminaries

Our notations and terminology will mainly follow standard references

like Hopcroft & Ullman [5] or Salomaa [8]. Finite, non-empty sets of sym

bols are called alphabets. The number of elements in an alphabet Eis de

noted by# E. Finite sequences or strings of symbols from E are called

words, and the set of all words over E (including the empty word A) is de-

* * noted by E . For x, y EE we denote their concatenation by xy, and with

this operation r* is recognized as the free monoid generated by E. The

length of a word xis denoted by lxl, IA!= O.

* Subsets of E are called languages (over E). The product of languages

L1 and L2 is L1L2 = {xy: x E L1 y E L2}, the star of a language Lis

L* = U{Ln: n ~ O} where by definition LO= {A} and for all n ~ 0

Ln+I = L°L. A mapping h: L
1

+ L2 is called a homomorphism if h(xy) =

= h(x)h(y).

We will assume that the reader is reasonably familiar with some of the

machine-models discussed in Hopcroft & Ullman [5] like finite-state

automata and stack-automata, although no detailed knowledge of it will be

required.

A language is called regular just in case it can be recognized by a

finite-state automaton. One can alternatively characterize the regular

languages as the smallest family of sets containing the finite languages

that is closed under the operations of (set-theoretic) union, product,

and star.

5

We shall denote Turing-machines as T = <Q,r,TI>, where Q is a finite

set of states, r =Au {a} an alphabet (with ca distinguished symbol called

the blank), and TI the program of T. The program is a list of quintuples

<p,a,b,q,m> (p,qEQ;a,bEr;mE{-1,0,l}) which are all interpreted as instruc

tions. If Tis in state p when scanning symbol a on its tape, then Twill

replace a by b, switch to state q, and move left (m=-1), right (m=l) or not

at all (m=O), in accordance with some instruction <p,a,b,q,m> in its pro

gram. If the program~ contains no pair of distinct quintuples both begin

ning with <p,a, •.• >, then Tis said to be deterministic (non-deterministic

otherwise). The Turing-machines we consider are single tape, single head

devices. Note that a finite state automaton is a Turing-machine whose

program contains quintuples of the form <p,a,a,q,I> (a#c) and

<p,c,c,p,O> only.

Turing machines begin their computation on tapes which contain just

one string over A and which are otherwise blank (i.e., the data on the

tape as string over L contains no embedded blanks). Moreover, all machines

which we consider shall maintain this condition of no embedded blanks

during the course of computation.

It shall be useful to distinguish those states of a machine

T = <Q,A u {a},TI> which drive it to the right (left) whenever the machine

scans a non-a symbol. The set of right-states. of Tis

➔ +
Q = {p E Q: <p,a,b,q,m> E TI & a# a~ m = 1}, the set of left-states Q is

defined similarly.

A Turing machine is called a linear (Turing-) assembler when the

following conditions on its program TI hold. If a # a and <p,a,b,q,m> E ·11 ,.

6

then b = a (i.e., the machine cannot rewrite any non-□ symbol). Also,

if <p, □,□,q 1 ,m0> En and p E Q and <qi,c,□ ,qi+l'mi> En (i=I, ••• ,), then

m. # 1 (i=l, ••• ,k). (i.e., the machine, having arrived at a blank square
i

as a result of a move to the right, may not thereafter move further to the

right without placing a nonblank symbol in this square). The corresponding

condition is to hold when the machine arrives at a blank square as a result

of a move to the left. These latter restrictions correspond to a view of

the assembler as a machine which adjoins building-blocks to the ends of a

linear array of such blocks (nonblank symbols), and whose motion is confined

to the physical structure being assembled (see Baer [2]).

A configuration of T ~ <Q,A U { □ },~> is denoted either as a string of

the form UqV (qEQ;U,VEA*) or as a triple of the form <q,j,W> (qEQ;WEA*; j

any integer). UqV denotes that the current assymbly is UV and that the

ma.chine is scanning the first symbol of V (unless Vis empty, in which case

the machine is scanning the blank at the innnediate right of U). To explain

the second denotation we consider the tape-squares of T indexed by the set

Z of rational integers; the tape itself is then described by a mapping

W: Z ➔ AU{□}. Then <q,j,W> denotes the machine in state q, scanning square

j of a tape described by W. (We consider only tapes carrying an assembly

and usually identify W with this assembly.)

The computations of a linear assembler T may now be formally defined

as (finite) sequences of successive configurations of the assembler. We

denote the set of final assemblies which can be produced by T from the

initial configuration q1U by T(U). When Tis non-deterministic it may very

well happen that T(U) has many elements. We let

* domain (T) = {U EA: T(U) f ~} and range (T) = U {T(U): U E domain (T)}.

It will sometimes be convenient to identify the set of states Q of

a Turing assembler with {0,1, ••• ,#Q - I}. In so doing, we shall always

identify Oas the halting state, and I as the initial state (i.e., the

state in which the machine, scanning the leftmost symbol of its initial

assembly, starts). Whether starting in state l or not, if the machine

moves from one end of its current assembly to the other with no reversals

of motion, we say that the machine has made a pass across the assembly.

7

Still thinking of the tape-squares of an assembler T as being indexed

by Z, we define qu(i) = q. q. q .•••• to be the sequence of states in which
Jt J2 J3

T has crossed the boundary between squares i and i+l in a computation on U.

The sequences qu(i) are called the crossing-sequences of the computation,

a concept due to Rennie [3] and Trakhtenbrot [10] that we shall use in §4.

§3. Assemblies generated by k-pass assemblers

Let k be a natural number. A k-pass assembler is a deterministic

linear assembler T = <Q,A u { □ },~> which operates in the following way.

The initial configuration is of the form q1W, where q, is the initial

state of T and WE A*. If k=O then the machine simply adjoins a prefix to

the initial assembly without ever making a left-to-right pass across the

assembly. If k IO then T moves steadily to the right of Wand upon reaching

its end adjoins a bounded suffix to W. If k = 1, the machine then terminates;

if k > I, the machine next makes a right-to-left pass along the current

assembly, adjoins a prefix upon reaching the left end of the current assem

bly, and continues to make, passes and adjoin fixes until precisely k passes

and fixes have been made, at which point T terminates.

8

Note that k-pass assemblers are somewhat related to a transducer

model described by Schutzenberger [9], and can also be viewed as a special

type of bounded crossing transducer (Rajlich [7]).

Theorem 3.1. If Tis a k-pass assembler, there is a 2-pass assembler T

which is equivalent to T.

Theorem 3.2. The range of a k-pa.ss assembler is a regular set.

Recall that if the (say right hand edges of the) squares of a Turing

machine tape are thought of as indexed by Zin the natural way, then one

particular gage on the computation of the machine may by defined in the

following way. Let $(i,W) be the number of times the read/write head passed

edge i during the computation which begins with configuration q
1

W, and let

t(W) = max. $(i,W). The function tis called the aZternation gage of the
i

machine. By a theorem of Trakhtenbrot [IO], if a Turing machine (with a

one-sided infinite tape) transforms the set A* in a way such that there

is a constant c for which t(W) < c for all W € A*, then there is an equi

valent Turing machine (again with one-sided infinite tape) whose alterna-

* tion gage t' satisfies t'(W) = 1 for all W €A; i.e., the equivalent

machine produces the same result as the original machine but needs only
~

one pass (i.e., needs no reversal of motion) to produce this result. Any

k-pass assembler satisfies the condition of Trakhtenbrot's theorem except

for a technicality that stems from Trakhtenbrot's use of one-sided

(infinite) tapes. In the next section we show that there is version of

Trakhtenbrot's theorem that applies to linear assemblers more general than

k-pass assemblers (in that the number of passes need not be bounded).

The proof of 3.1 is trivial for the cases O < k < 2 and is proved
~

9

for larger values of k by induction, by way of construction of a suitable

equivalent (one-less-pass) machine. We shall need a more elaborate version

of this same scheme for the construction in the next section, and save the

argument for there.

The proo~ of 3.2 is almost immediate from the statement of 3.1.

We note that 3.2 is related to a result of Schutzenberger [9], which

states that the transform of a regular set by a two-pass transducer is

again a regular set. However, transducers rewrite strings whereas assem

blers merely extend them.

§4. The halting problem for w-pass assemblers

By an w-pass assembler we mean a deterministic linear assembler which

is required to move uniformly across its current assembly at each pass,

without being constrained to make a fixed number of passes (like the k-pass

assembler). Thus, if an w-pass assembler is in a right-state and scanning

a nonblank symbol, then the assembler must move right and go into a right

state. There is a corresponding condition for the action due to left-states.

An w-pass assembler may cycle in a given position only if it is scanning

a blank square. An w-assembler assembler halts just in case it enters a

halting-state, and without loss of generality it may be assumed that this

happens (if at all) only upon completion of a suffix (or prefix).

Thew-pass assemblers are in their operation somewhat related to

Hibbard's scan-limited automata ([4]).

An w-pass assembler may have two different types of divergent be

haviour: extending the assembly indefinitely or finally cycling back and

10

forth across the assembly without extending if further.

We shall show that the halting problem for w-pass assemblers is solv

able by reducing it to the halting problem of one-way assemblers. A one

~ay assembZer is an assembler whose program contains no quintuple < ••• ,-1>;

such machines can make no left-moves. A one-way assembler may adjoin many

suffices to an assembly, in this way contrasting I-pass assemblers which

always halt after adjoining the first suffix.

Lemma 4.1. The halting problem for one-way assemblers is solvable.

Proof. Let T = <Q,E,n> be a one-way assembler and #Q = n. If T starts on

an assembly W, then T takes IWI steps to reach the end of W, and then may

take at most n - 1 steps without halting or repeating some instruction

<q,a, ••• >. D

Lemma 4.2. For each w-pass assembler T = <Q,A u {a},n> one can effectively

construct a one-way assembler T = <Q,A u {a},i> which has the following

property: for any string WE A+, f halts on W just in case T halts when

applied to W. Further, if T (at the end of successive left-to-right passes)

adjoins suffixes v1,v2, .•• to the assembly and (at the end of successive

right-to-left passes) adjoins prefixes u1,u2, ••• , then v1u1v2u2 ••• is the

suffix which f adjoins to W.

Proof. We modify the argument used in Baer [2] to reduce k-pass assemblers

(k>2) to 2-pass assemblers. We are here considering only deterministic

machines, so let n(q,a) denote the unique quintuple inn that begins

<q,a, •• >. Let (n(q,a)). denote the i-th component of the quintuple. Let
1

+n Q' = Q (where n=HQ); let P(Q) denote the power set of Q; and let Q" be

1 1

+
the collection of n-tuples <P1, •• ,Pn> over P(Q) satisfying: Pin Pj =~if

i; j. We construct T as follows. As the set of states of T we take

Q = Q x Q' x Q". The purpose of the second and third components, T_ and
. q

T~ of any state q € Q is the maintenance of an updated correspondence of q

the states q' to which states q are driven by left-to-right passes of the

current assembly, and right-to-left passes, respectively. If

T = <p 1, •• ,pn> € Q' ands€ E, we write Ts in place of then-tuple

<(n(p1,s)) 4, ••• ,(n(pn,s))
4

>. If T' = <P 1, ••• ,Pn> € Q" ands€ E, we write

-1
s T' for then-tuple <Pj, ••• ,P~> in which Pi= {q € Q: (n(q,s)) 4 € Pi}

(i=l, •• ,n). Note that, since n is single-valued, if the components of T'

-1
are pairwise disjoint, then the components of s T' are also pairwise dis-

joint.

The program n off is a union of sets IT. of instructions corresponding
1

to different phases of the behavior off.

Corresponding to the initial pass of T across the starting assembly

W, we set

n1 = {<p,a,a,q,I> <p,a,a,p,l> € n A a€ A A

(where it is understood that, in the braces, T and T' range over all per

missible values).

Corresponding to T changing state but motionless on a blank square,

we set

<p,a,c,q,0> € n A p • <p,T,T'>.,..
•

q = <q,T,T'>}.

12

Corresponding to T printing a suffix, we set

rr
3

= {<p,o,a,q,I> <p,o,a,q,l> €~A p = <p,T,T'> ::o,

- -I q = <q,Ta,a T'>}.

Corresponding to T printing a prefix, we set

n
4

= {<p, □ ,a,q,l> <p,o,a,q,-1> €~A p = <p,T,T'> ::o,

q = <q ,T,T'>l,
a

where q, T, and T' are defined in the following way: We recall that we
a

identify the states in the set Q with an initial segment of the natural
A

numbers; then (T) = (T) a (all nEQ) and n n

A

(T') n

and the notation qa is used to emphasize the fact that when T writes a

prefix of length greater than unity, f must be programmed to write this

same prefix in reverse order. Thus, suppose that the current assembly is

Wand that T reaches the left end of Wand writes the prefix U = u
1

•• uk

and then reverses its direction. The complication which arises when k ~ 2

is dealt with by providing f with a set of states which cause T to write

U from left to right (rather than from right to left as T does). Thus in

the definition of the instructions in rr
4

the state qa is generally distinct

from the state q.

Corresponding to reversing its motion after writing a suffix we

set

13

<p,o,o,q,-1> €~A p = <p,T,T'> A

q = <q',T,T'> A q' = (µi)[q € (T').]}
1

where we note that (µi) ("the least i such that •• ") might just as well be

written (1.i) ("the unique i such that •• "), a point we shall return to,

below.

Corresponding to T reversing its motion after writing a prefix we set

n6 = {<p,o,o,q,O> I <p,o,o,q,I> €~A p = <p,T,T'> A

q = <q',T,T'> A q' = (T) }.
q

To verify the statement of the Lemma, we need make only a few observations.

First, the sets IT. of instructions, above, form a union which is clearly
1

the program of a one-way assembler. We take as the initial state off the

state <q1,T1,Ti> where q1 is the initial state of T, T1 is a list of the

right-states of T, and Tj is a list of singletons representing the left

states of T. Second, the behavior of T, when started on the leftmost sym

bol of an assembly W, acts in the appropriate way. We consider the different

phases of this behavior.

As f makes its pass across the initial assembly W, it keeps track of

the corresponding state of T, were T passing across the same assembly.

f also, at each step, updates the two lists, T and T', which keep track

of the states to which each right-state of T would be driven by W, and a

list of sets of left-states corresponding to the left-states to which T

would be driven (by right to left passes across the current assembly).

Upop reaching the first blank (bordering Won the right), if T hesitates -

BIBLIOTHEEK MATHEMATl::CH CENirlUth
-AIVISTERDAM~

14

changes state without writing and advancing - then, according to n
2

, so

does f. If T writes a suffix, say V, then, according to rr
3

, so does f, and

moreover f updates the lists T and T to correspond to the current assembly.

When a suffix has been written by f (as it would have been written by

T), f can extract directly from the list T' the state to which T would be

then driven by a right-to-left pass across W, and can then accordingly

write (in backwards order) the prefix, say U, which T would have written

at the end of its right-to-left pass across the assembly. As f writes the

string U, it updates both T and T'. When Uhas been written, T extracts

directly from the table T the state to which T would be driven by the

current assembly from the state in which T would have found itself upon

beginning a left-to-right pass across this assembly.

We note that the computation off terminates just in case that of

T does, and in the event of termination the final assembly is just as

stated in the Lennna. 0

From 4.1 and 4.2 we have innnediately

Theorem 4.3. Whether any w-pass Turing assembler halts when started on

any assembly Wis decidable (by a Turing machine, within

n n2
IWI + n x n x 2 steps, where n is the number of states of the assembler).

§5. Nondeterministic linear assemblers

In this section we consider the computations of general non-deter

ministic linear assemblers. (Note that such assemblers are a special,

generative counterpart to Hibbard's scan-limited automata [4]).

Any initial assembly on which an assembler may produce a finite,

15

halting computation is called hopeful (for this assembler). ,

We shall prove that there is an effective characterization of the

hopeful assemblies of a general assembler and use it in section 6 to solve

the halting problem for the most general case.

We begin-with an easily proved, preliminary lemma.

Lemma 5.1. For any linear assembler there is an equivalent linear assem

bler which extends assemblies by adjoining successive suffixes and pre

fixes of length at most one.

Theorem 5.2. For any nondeterministic linear assembler, the set of hope

ful assemblies is a regular set which can be effectively determined.

Before we give the proof of this theorem we shall discuss the idea

behind the tedious construction that we need.

Consider an assembler operating on a particular initial assembly X.

We wish to keep track of the position of the leftmost symbol of this ini

tial assembly, so let n be the boundary between the square containing this

symbol and the (blank) square to its left. Let L denote the part of the

tape to the left of n, and R denote the part of the tape to the right, i.e.,

if X = x1 ••• ~, then we may represent the situation by the following figure:

L R

The assembler, starting on x1, may operate for a while on Rand then cross

over n into L, operate on L for a while, cross back, etc.

16

The strategy of the following construction is to consider the operation of

the assembler on the Rand L regions separately. This requires that the

assembler, operating on a particular region, should be able to guess the

state in which it might return to this region if the region is exited. Then

the assembler's behaviors on the left and right regions can be made con

sistent by requiring that the crossing sequences be consistent. This leads

to constructing, from the original assembler, an acceptor of permissible

crossing sequences. The acceptor is a modification of the original assem

bler which uses the region Ras a storage tape, and which behaves like a

one-way stack-automaton.

We shall prove that the the behavior of the assembler as an acceptor

of classes of permissible crossing sequences can be reduced to that of a

finite automaton.

The essential point is to eliminate the need for keeping track of the

entire L-on R-part of the assembly. Instead, we show that it is sufficient

to store only the current right-most symbol of the assembly, together with

a few tables that completely describe the behavior, as far as the assembler

needs it, of the assembler operating on the initial part of Lor on R.

We first describe the tables. (We explain this only for the R-part

where the initial assembly occurs. The construction is similar for the

L-part).

With each assembly symbol a (appearing eventually on the R-part),

two tables will be associated:

- the top-departure table T describing the behavior with a
a

'currently as a rightmost occurrence when the machine moves

stationary or in the inside of R.

- the bottom-departure table B describing the behavior with this a

instance of a currently as the rightmost symbol just after the

machine returns (in a "guessed" state) across S2 onto Ragain.

The tables T have entries of the form a

(i) 00 , with q e: Q, F c Q

(ii) ~ , with q e: Q and T denoting LOOP or HALT

(iii) 00 , with q e: Q, F c Q

and similarly in the tables B we find entries of the form a

(iv) 00 , with q e: Q, F c Q

(v) 00 , with q e: Q and T denoting LOOP or HALT,

(vi) 00 , with q e: Q, F c Q.

Entries in T indicate, for any state q, that whenever the machine a

is currently in state q at the right-most symbol, in an "inside" move it

will either cross S2 from R to Lin any of the states from F (type (i)),

get stuck somewhere on the R-part as indicated by T (type (ii)), or after

circulating in R (but not crossing n), return to the top in any of the

states of F (type (iii)).

Entries in B similarly indicate the behaviour after the machine a

crosses n from L to R in state q.

,When a current a,T ,B -combination is known, the tables associated
a a

17

18

with a symbol cr' that is next to be assembled to the right are easily

shown to be effectively computable from cr,T, and B, because these tables a a

(and a) permit one to completely predict the behavior on the R-part.

Lemm.a 5.3. For any cr,T ,B -combination, and next symbol o', the successor a a

tables T
0

, and B
0

, are uniquely and effectively etermined.

Observing that there are only finitely many different tables, it follows

from 5.3 that we can compound an extensive list L, showing for each a, a' and

pair of tables linked too what the successor tables for o' will be.

Lemm.a 5.4. Lis finite and is effectively computable.

Finally, to accomodate an integral consideration of all possible initial

assemblies, we will permit (and, in fact, require) assembly symbols to appear

between crossing state couples on the input tape, modifying the machine's

behavior still one more time in letting it find the "next" assembly symbol

(of the initial assembly), at the precise moment that the symbol would occur

under the scanner.

We will now describe the finite automaton behavior to which the assem

bler is reduced.

Input strings are words over Q u E.

Let homomorphisms hQ' * hr on (QuE) be determined by

(
if s € Q

hQ(s) =
if s € E

(
if s € E

h~(s) =
' if s € Q

19

Definition. Let

B
1

= the set of all compatible w E (Qur)* such that hQ(w) is a crossing

sequence which leads to a halt on R when starting on hI(w);

B2 = the set of all compatible w E (Qur)* such that hQ(w) is a crossing

seq~ence which makes the assembler finally cross n to L, when

83 = the set of crossing sequences which lead to a halt on L.

B4 = the set of crossing sequences which make the assembler finally

cross n from L to R.

Lemma 5.5. The sets B. are regular.
1

Proof. We will show only that B
1

is regular. (The construction for B
2

, B
3

and B4 is similar and left to the reader).

The finite automaton for B
1

will have states with 6 components:

(i) the current state of the assembler (by construction, only when it

is at the top or bottom);

(ii) an assembly indicator (0 or I), showing whether all symbols of

the initial assembly already are passed or not;

(iii) a phase indicator (blank, !e.E_, cross, or return);

(iv) the top-most assembly symbol; this is, with the assembly indicator

at O, the currently last symbol adjoined;

(v) the corresponding top-departure table;

(vi) the corresponding bottom-departure table.

Thus states are of the form

, [<state>, 0 or I, phase, <symbol>, <table>, <table>].

20

In addition there are three special states -- r
O

, HALT, and LOOP

(where r
0

is a start state).

The transitions will correspond to the original assembler's behavior

if the appropriate tables are checked when the option is given for making

"inside" or "cr-ossing" moves.

Description of transitions:

-- for r
0

In this state we have to bring out the first and maybe only symbol

of the initial assembly.

Thus, for any o € E:

where T
1

and T
2

are the top- and bottom-departure tables related to the

assembly o, which are computed directly from the assemblers program a

similar fashion as in Lemma 5.3.

for states [q,O,top,o,T1,T2]

Here the compounding of the initial assembly is not yet complete,

so when simulating a move to the right, we have to read a next E-symbol

necessarily:

(q',1) € o(q,o) and o', Tj, Ti is

the successor of o, T
1

, T
2

according

to L}.

When not moving right, we have to consult the tables for what can

happen, thus on A input

$([q,O,top,cr,T
1

,T
2
],A) = {[r,O,cross,cr,T

1
,T

2
] I all r such

that 3F I 41)I FI €TI and r € F}

21

u {[r,O,top,cr,T1,T
2

] I all r such that

3F I q 19 F I € T 1 and r € F}

u h I I q I Cj T I € TI }

-- for states [q,l,top,cr,T
1

,T
2

]

This time we know the initial assembly has been scanned completely,

and when we are moving right, we will get to a blank for which we have to

consider adding it on to the assembly. Also on A input, the behavior of the

machine when not moving right is recorded.

= {[q',1,blank,cr,T
1

,T
2

J I (q',1) E o(q,cr)}

u {[r,l,cross,cr,T1 ,T2J I 3F lq 151 Fl€ T1 and r E F}

u { [r, l , ~, cr, T 1 , T 2 J I 3F I q I VI F I E T 1 and r E F}

u h I I q I Cj T I E TI }

-- for states [q,1,blank,cr,T1,T2J

The instruction to either add the new cube on or not is recorded.

22

<j>([q, l ,blank,er,T
1

,T
2

],A)

= {[q'I,top,.a,T
1
,T

2
J I (q',A) € o(q,a)}

u {[q',I,top,er',Tj,T2] I (q'er') € o(q,a) with er', Tj, T
2

the

successor of er, T1, T
2

according ~o L}

-- for states [q,i,cross,er,T1,T
2

]

In this case we simulate crossing n in state q, which therefore has

to be read from tape.

-- for states [q,i,return,er,T1,T
2

J

Here we simulate returning on the R-part. The return state must be

found on the input.

<j>([q,i,return,a,T1,T
2
J,r)

= {[q' ,i,!£.E_,o,T1 ,T2] I Ir 121 Fl € T2 and q' € F}

u {[q',i,cross,o,T1,T2] Ir Id Fl € T2 and q' € F}

This completes the transition behavior (all other combinations are

empty).

Clearly, when using HALT as a final state, the machine exactly

accepts B
1

•

Note that by taking states [••• ,1,cross, ••• ~ ••• , ••• J as final, the

same aytomaton accepts B
2

•

Using the sets B. we can now give the
l.

Proof of Theorem 5.1. Observe that the machine may either cross Q during

23

a computation, or stay on the R-part. Hopeful assemblies in the first case

form the set

* which is regular. Hopeful assemblies in the second ase are simply B1 n E ,

which is also regular. Hence, the collection of all hopeful assemblies is

regular.

§6. The Halting Problem and Some Further Applications

Theorem 5.2 gives a criterion for deciding the halting problem of

linear assemblers. We can state a slightly stronger result:

Theorem 6.1. The halting problem for linear assemblers is equivalent to the

membership problem for regular sets.

Proof. The reduction of the halting problem follows directly form 5.2.

To show the converse, let A= <Q,E,o,q
0

,F> be a finite automaton

accepting a given regular language R.

Define a linear assembler which scans an (input-) assembly as does

A, halts when it reaches the first blank on the right in a final state,

but keeps moving back and forth on that block and the right-most non-blank

if it arrives in a non-final state.

Thus the halting corresponds precisely to acceptance.

,Since A can be chosen to be deterministic, so can the assembler.

24

The construction in §5 not only shows decidability of hopefulness,

but by changing the set of final states one can also show that the collec

tion of assemblies on which the machine might eventually diverge or loop

is a regular set. Deleting it from the collection of hopeful assemblies,

we get precisely the assemblies on which the machine always halts, what

ever non-deterministic choices are made during the computation. Moreover,

Theorem 6.2. The collection of assemblies on which a non-deterministic

linear assembler halts is a regular set which is effectively determined.

Let the transform of a set X be the collection of all final assemblies

which can be produced by a linear assembler when started on initial assem

blies from X.

We can characterize the transform of regular sets of initial assemblies

quite precisely.

Theorem 6.3. The transform of a regular set by a nondeterministic linear

is a linear context-free language.

Proof. Modifying the construction in §5, it is easy to let the automaton

also read the symbols that are assembled onto the initial array (rather

than having it done on A input).

-Defining Bi, B2, Bj, B4 much as before, but now inserting E symbols

for blocks that are assembled during the (proper) computation, the theorem

follows by the argument below.

if ct e: E

if ct

25

When the machine does not cross Q to the L-part during the computation,

-1
the collection of transforms we get is hr (ht(Bi) n R) n B1 which is regular.

If the machine crosses n, the set of hopeful assemblies is regular,

and cuts another piece R' from R.

We now have to determine the following sets:

where x denotes the crossing couples, together with the assembled symbols

written left-to-right (since they are actually assembled right-to-left, we

have to take reverses) on the L-part.

C
1

and C2 are both easily seen to be linear context-free languages.

Their union, together with the regular set, forms again a linear language.

One can show that on the other hand all linear context-free languages

may be obtained as the transform of a regular set. Theorem 6.3 is of inter

est largely because the motions of a linear assembler may be very irregular,

such compared to other proposals of machine-models for linear context-free

languages (see e.g. Amar & Putzolu [J]).

Corollary 6.4. Let R be a regular set, x an assembly. It is decidable

whether or not xis the transform of an element of R by means of a given

non-deterministic linear assembler.

Proof. Reduce it to the membership problem for a linear context-free lan-

guage.

26

References

1. V. Amar and G. Putzolu, Generalizations of regular events, in: E.R.

Caianello (ed.), Automata Theoey, Acad. Press, New York (1966) 1-5.

2. R.M. Baer, Computation by assembly, Tech. Rep. 12, Dept. of Computer

Sc., Univ. of California, Berkeley (1973) (to appear in .J. Comp. Syst. Sci.).

3. F.C. Rennie, Crossing sequences and off-line Turing-machine computations,

Proc. 6th Annual Symposium on Switching Theory (1965) 1613-172.

4. T.N. Hibbard, A generalization of context-free determinism, Inf. & Control

11 (1967) 196-238.

5. J.E. Hopcroft and J.D. Ullman, FoT'Tllal languages and thei:r Pelation to

automata, Addison-Wesley, Reading, Mass. (1969).

6. M.O. Rabin, Real-time computation, Israel J. Math l (1964) 203-211.

7. V. Rajlich, Bounded crossing transducers, Inf. & Control 27 (1975)

329-335.

8. A. Salomaa, FoT'TllaZ languages, Acad. Press, New York (1973).

9. M. Schiitzenberger, A remark on finite transducers, Inf. & Control

4 (1961) 185-196.

10. B.A. Trakhtenbrot, Turing computations with logarithmic delay, Algebra

i logica 3 (1964) #4, 33-48 (in Russian).

ONTVANGEN i i AUG. 197~5

