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A problem in collateral elaboration 

by 

R. van Vliet 

ABSTRACT 

While studying ~he language ALGOL 68, we hit on the intriguing ques­

tion: "which outputs may be generated by executing the statement 

print ((i:=I, i:=2, i:=3))". The units in the row display are elaborated 

collaterally, giving rise to 3 collateral actions. At a first glance one 

is tempted to think that any 3-tuple of the numbers I, 2, 3 might be out­

put. Looking closer, one easily sees that some 3-tuples (e.g. 3, 2, I) will 

not occur in a reasonable implementation. If an implementation actually 

elaborates the units in the row display collaterally, only 16 of the 27 

3-tuples may occur. 

In sections I - 4 the reader is made familiar with the idea of decom­

posing actions. Three types of actions are considered: serial, collateral 

and simultaneous. The concept of independent actions is introduced. Using 

this concept it is pointed out to what extent collateral and simultaneous 

actions are different and to what extent they may be considered the same. 

Finally in sections 5 and 6 a somewhat :;eneralized version of the 

problem mentioned above is solved. 

KEY WORDS & PHRASES: Collateral actions, serial actions, simultaneous 

actions, result function of an action. 





I. SERIAL, COLLATERAL AND INSEPARABLE ACTIONS 

From [I], section 2.1.4.2, we cite: 

A) An action may be inseparable, sel'iaZ or coZZateraZ. A serial or 

collateral action consists of one or more other actions, termed its 

direct actions. An inseparable action does not consist of other actions. 

B) A descendent action of another action bis a direct action either of b, 

or of a descendent action of b. 

C) The direct actions of a serial actions take place one after the other; 

ie e., the completion of a direct action of s is followed by the initia-

tion of the next direct action, if any, of s. 

D) The direct actions of a collateral action are merged in time; i.e., a 

collateral action consists of inseparable actions, taking place one after 

another, each of which is chosen from among those of its descendent in­

separable actions which at that moment, are active (that is, initiated 

and not yet completed). 

In this terminology an inseparable action may be regarded as either a col­

lateral or a serial action having one direct action. From the next section 

of [I] we extract: 

A serial action is initiated by initiating the first of its direct 

actions, and it is completed when the last of its direct actions is 

completed. 

A collateral action is initiated by initiating all of its direct ac­

tions, and its is completed when all of its direct actions are completed. 

Some terminology and notation: 

A descendent action of an action a is termed a descendant of a. 

An action is executed when it takes place. 

The decomposition of an action into its direct actions will be denoted 

inbetween square brackets. Is decomposed in is denoted by 11
::

11
• 

For example, let an action p have two direct actions a and b; this is de­

noted: 

Serial 

Collateral 

Simultaneous (sec3) 

p• • . . 
p• • . . 
p• • . . 

[a;b] 

[a,b] 

[a/b] 
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The state of an action may be uninitiated, initiated, in execution, or 

completed. 

Note that in this terminology initiating an action only means giving 

permission to execute it eventually. If an action a is not a descendant of 

a collateral action, it will be executed immediately after its initiation; 

if a is a descendant of a collateral action, then, after the initiation of 

a, other initiated descendants of that collaterial action may take place 

before a is executed. 

This description does not cover all situations encountered in daily 

life. It emphasizes, however, the very important concept of decomposing 

actions into smaller and smaller ones, until we end up with some actions 

we wish to regard as inseparable. Moreover it gives a clear and suitable 

terminology, that we will use henceforth. 

Whether or not a certain action is to be regarded as inseparable, 

depends on the problem under consideration. For instance, as far as the text 

is concerned [going to the next line] on a teletype may well be regarded as 

inseparable; but, while studying the fingers of the typist, [going to the 

next line] is a serial action: [depress return key; depress linefeed key]. 

2. THE RESULT OF AN ACTION 

Let an action a take place in a system S described by a set of inde­

pendent parameters IT. To each TIE IT a set of values V corresponds. The TI 
state of the system can be denoted by a function¢ : IT+ UV such that TI 
¢(TI) EV. Let the set of all states be denoted by~. 

TI 
The execution of a changes the state of S. We define: 

The result function of a is a function r : ~+~which maps the state of S a 
before the execution of a on the state after the execution of a. 

In general only a few parameters influence the changes caused by ex­

ecuting a. The set of these parameters is denoted by da ={TIE IT I there 

exist ¢
1 

and ¢
2 

E ~ such that ¢ 1(p) = ¢2(p) for all p E IT# TI and 

ra(¢1) I ra(¢2)} 



Likewise, only the values of some parameters can ever be affected by 

executing a. The set of these parameters 

i ={TIE TI I there is a$ E ~ such that 
a 

is denoted by i. 

(ra($)) (TI)# $a(TI)} 

inseparable descendants, As actions may be decomposed into we would 
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like to express the result function of an action in the result functions of 

its inseparable descendants. Let f.g denote the product of two functions f 

and g, i.e., by f.g we mean the function obtained by first applying g and 

then applying f. 

A serial action a:: [a1; a 2; ••• ;an] is executed by first executing a 1, 

then a2, ••• then an. So the result of a serial action 

a::[a1;a2; ••• ;an] is ra .ra ••• r 
n n-1 al 

The situation is more complicated if a is a collateral action. First, 

let a have only two inseparable direct actions a 1 and a 2• a may be executed 

by first executing a 1 and then a 2 - which has as result function ra
2
.ra

1
-, 

or by first executing a
2 

and then a
1 

- which has as result function ra
1 
.ra

2 
So the result function of a is either r .r 

a2 
or r .r . Generally 

al al a2 
these two functions are different. The result of a is the!l said to be un­

predictable and a 1 and a
2 

are termed dependent actions. ra
2
.ra

1 
and ra

1 
.ra

2 
are termed the possible result functions of a, whereas the states of S after 

executing [a1;a2] or [a
2
;a1J are loosely indicated as "possible results" 

of a. 

is the same 

of a is r .r , and a
1 

and 
a2 al 

function as r .r , then the result function 
al a2 

a
2 

are termed independent actions. 

Without going into mathematical detail, we roughly indicate the con-

ditions under which two inseparable actions a and bare expected to be in-

dependent. x denotes the intersection of ia and ib. Two actions a and bare 

independent if: 

A) ia n db= 0 
ib n da = 0 

and 

B) (ra($))(n) = (rb(~))(n) for all~ E ~ and TIE X• 

We make some evident generalizations: 

Two actions a and bare independent, if each direct action of a is indepen-,, 
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dent of all direct actions of b; otherwise a and bare dependent (if a orb 

is inseparable, that inseparable action is regarded as the only direct 

action). 

An action has an unpredictable result, if either 

a) one of its direct actions has an unpredictable result; or 

b) that action is collateral, and two of its direct actions are dependent. 

The order in which the inseparable descendants of a collateral action 

are executed, severely influences its result if some of its direct actions 

are dependent. Therefore, the direct actions of a collateral action are 

sometimes synchronized by the use of a semaphore (see [2]). Throughout this 

report we will ass~e no synchronization. 

3. SIMULTANEOUS ACTIONS 

As stated above, it is not possible to classify all actions as serial, 

collateral or inseparable. Consider for instance [playing the piano]. The 

left and right hand- execute simultaneous actions. Thus [playing the piano] 

may be decomposed into two direct actions that must take place simultaneous­

ly. [I] however, only describes inseparable actions, that take place one 

after the other. So the only way to describe [playing the piano] is as an 

inseparable action. To cope with simultaneous actions, we extend our classi­

fication as follows. 

An action may be simultaneous. A simultaneous action consists of one 

or more direct actions, that take place simultaneously. A simultaneous ac­

tion is initiated by initiating all of its direct actions. It is completed 

when all of its direct actions are completed. 

There is a difficulty in this definition, worth spending some words on. 

Let p be a simultaneous action, p:: Ca/bJ. a and bare both serial, 

a:: [a1;a2; ••• ;an], b:: [b 1;b2; ••• ;bm]. 

Initiating p will initiate a and b, which in turn initiate a 1 and b 1 simul­

taneously. a 1 and b 1 are descendants of a serial action, so they will 

iIIUilediately be executed. It is not clear that a 1 and b 1 are completed at the 

same instant of time; nor is it clear that a and b are; nor is it clear n m 
that this was the desired effect. Again synchronization of a and b may play 

an important role here. 
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Expressing the result function of a simultaneous action p, having two 

inseparable descendants a and bin the result functions of a and bis com­

plicated, because we lack the tools to describe the simultaneous application 

of two functions. 

We will assume that the following restrictions hold: 

a) if a and bare independent r = rb.r p a 
b) ip c ia u ib 

c) dp c da u db 

4. EQUIVALENCE OF SIMULTANEOUS AND COLLATERAL ACTIONS 

IN VAGUE COSYSTEMS 

DEFINITION. A cosystem Chas two elements: a system S (i.e., a set of 
C 

parameters IT, and for each TI€ IT a set of possible values V, and a set of TI 
actions A ) • c· 

The states in the system can again be denoted by functions 

~:IT+ UV, the set of all states is indicated by~. The elements of A TI C 

are denoted as functions r: ~ + ~. 

An action is said to be in the cosystem C if it can be decomposed into 

elements of A. 
C 

A cosystem C is said to be fixed if all elements of Ac are inseparable; 

otherwise C is termed vague. 

In many applications it is possible to specify a set of actions A, 
C 

such, that all actions in a system S that are considered, are composed of 
C 

elements of Ac. In most cases however it is uncertain whether or not all 

elements of Ac are inseparable. 

In vague cosystems it is difficult to determine whether or not two ac­

tions are dependent. This is due to the fact that independence of two actions 

was ultimately based on the independence of their inseparable descendants. 

But in vague cosystems we don't know the inseparable descendants of an ac­

tion. This is remedied if the following condition holds (which it does 

usually): 

For each action a€ Ac and each inseparable descendant h of a 

i • 
a 

It is now easily seen that two actions a and bare in-
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dependent if the conditions specified in section 2 hold. 

Two arbitrary actions p and q in such a cosystem are independent if 

each descendent action of p belonging to Ac is independent of each descendent 

action of q belonging to A. We are tempted to replace the notion of "in-
c 

separability" by the notion "belongs to A". 
C 

Let us now consider the actions 

p:: [a/b] 

q:: [a,b] 

where a and bare dependent elements of A. For the simultaneous action p we 
C 

have to accept any result not violating the restrictions of section 3. 

If the cosystem is fixed we know that the only possible results of the 

collateral action q are rb.ra and ra.rb. But if the cosystem is vague, the 

only thing we know is that all results will fit the restrictions in section 

3. 

EXAMPLE. C is a cosystem. 

The system S has three parameters x, y, z. 
C 

The set V = V = V = { p I p is real, p > 0} 
X y Z 

A = {a, b} where 
C 

r = (x,y,z) ➔ (x,x*y,z) and 
a 

rb = (x,y,z) ➔ (x,y+-z,z). 

For the result function of the simultaneous action p:: [a/b] we clear­

ly have to accept all functions that leave the values of x .and z unchanged. 

If the cosystem is fixed the possible result functions for the collat- · 

eral action q:: [a,b] are 
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If the cosystem is vague however we cannot exclude any of the result 

functions of pas a possible result function of q. Suppose for instance the 

X*Y . 
result function r = (x,y,z)-+ (x, 

1 
,z)wouldoccur.As we don't know 

q +X*Y*Z 

the inseparable descendants of a we cannot exclude the splitting 

a·· [a
1
;a

2
J where 

(x,y,z)-+ (x, 1 
z) r = , 

al X*Y 

(x,y,z)-+ (x, 1 z) r = - , 
a2 y 

as a possible decomposition of a. 

Executing the descendants of q in the order a
1

; b; a 2 would yield the 

above result function. 

It is this equivalence of collateral and simultaneous actions in vague 

cosystems, that makes us think of collaterality as a kind of parallellism. 

5 THE ALGOL 6G STATEI!ENT print ((i:+I, i:=2, i:=3)). 

We will now study the problem what are the possible outputs of the 

simple ALGOL 68 program: 

'begin' 

'int' i; 

print((i:=l, i:=2, i:=3)) 

'end' 

As a first step we will consider the program 

'begin' 
1 int ' i , j , k; 

print((i:=1, j:=2, k:=3)) 

'end' 

Roughly following [1], the elaboration of the unit 

print ((i:=l, j:=2, k:=3)) can be viewed as a graph of actions as in fig. 1. 
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[j := 2; 
Yz +- j] 

[k := 3; 
Y3 +- k] 

', I .,,,,...,,. 
', I ,........,,. ....... 

', I ,.........-
', I ,...........-

' ..... ' ..... : / / / / 

'...J,..... ....... 
J 

assignation to i is denoted by "i :=" 
dereferencing i is denoted by "i +-" 

The splitting into three paths corresponds to the collateral elabora­

tion of the three units in the rowdisplay (i:=1, j:=2, k:=3). 

From fig. 1 we see that the statement print ((i:=1, j:=2, k:=3)) gives 

rise to a serial action, having a collateral direct action 

p:: [[i:=1; y 1 +- i], [j:=I; Yz +- j], [k:=3; y3 +- k]]. [l] only specifies a 

vague system, so we cannot determine the state of the system after the exe­

cution of this action. 

In a reasonable implementation the direct actions of p will of course 

be independent, thus {y 1=1, y2=2, y
3
=3} after the execution of p. We can 

achieve this by assuming the following types of inseparable actions: 

assignations [i:=l] [j:=2] [k:=3]; dereferences [y1 +- i] [y2 +- j] [y3 +- k]. 

The collateral action p now has three direct actions, each being a 

* 

series of two inseparable actions: an assignation followed by a dereference. 

* Our definition of a dereference differs of that given in [I]. This is a 

consequence of not going into the details of elaborating a row display. 



Further we assume that the parameters of the system are (i,j,k,y1,y2 ,y
3
). 

It is then easy to see that the direct actions of pare independent 

9 

As an illustration of the actions that take place, consider the fol­

lowing analogous problem. Three boys are given the numbers 1, 2, and 3. Boy 

number 1 is given the task [clean blackboard i and write down your number 

on it; read the number written on blackboard i]. Boy number 2 has a same 

task using blackboard j and boy number 3 has the same task using blackboard 

k. (See fig 2). 

rn 
] 

Which numbers will be read by the boys? Evidently an assignation cor­

responds to .[cleaning the board and writing a number on it], and derefer­

encing corresponds to [reading a number]. 

Let us return to the question about the possible outputs of 

print ((i:=1, i:=2, i =3)). As above we have to make some assumptions about 

our cosystem, in order to make it fixed. 

Assume the system has 4 parameters (i,y 1,y2 ,y3). Inseparable actions 

are assignations [i:=n] (n=l,2,3), dereferences [y + i] (n=l,2,3). In n 
fig. 3 we have decomposed the action print ((i:=l, i:=2, i:=3)) 
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[i := I; 
1..] y I := 

..... 
........ ..... 

........ -.... -.... 
........ ..... ..... ..... ..... 

[i := 2; 
Y2 := i] 

..... / 
..... .J. ..... 

..... 
........ ..... ..... 

........ ..... ..... ..... ..... -.... 

[i := 3; 
Y3 := i] 

It is a serial action having only one direct action p. 

p:: [[i:=l; y
1 

+ i], [i:=2; y
2 
~ i], [i:=3; y3 + i]]. Denoting by an the 

assignation [i:=n] (n=l,2,3) and by d the dereference [y ~ i] (n=l,2,3), 
n n 

we find: p:: [[a
1
;d

1
J, [a2;d2J, [a3 ;d3JJ. A possible output is denoted by 

the values of y
1
,y

2
,y

3 
after the execution of p. The assignations a 1, a2 

and a
3 

are dependent. They all have a different effect on i. So the result 

of pis unpredictable. 

The problem of the boys and the blackboards can be changed accordingly 

by assuming that all boys work on one and the same blackboard i. Of course 

they have to work collaterally, so no two boys can [clean and write] or 

[read] simultaneously, nor can one of the boys be [cleaning and writing] 

while one of the others is [reading]. 

The result of p depends on the order in which the assignations and de­

references take place, for example, 

[al; dl; a2; d2; a3; d3] will yield 1,2,3 as output. 

[al; a2; d 1; d2; a3; d3] will yield 2,2,3 as output. 

Which outputs of pare possible is a combinatorial problem, that 1.S 

solved in the next section. 



6. POSSIBLE OUTPUTS OF print ( (i = , i '"'2, , • 1, i =.n)). 

Under similar assumptions as in section 5, and using the same notation, 

we may decompose the action print ((i •=1, i:,=2, ... ,i =n)) into a series 

of actions. This series has one collateral direct action 

p [[a
1

; d 1J,. ,[a ; d ]]. The system is described by the parameters 
n n 

(i,y
1
,y

2
, •• ,yn), and the possible outputs of pn will be indicated by the 

n 
values of y

1
,y

2 
••• ,yn after the execution of p. 

First we observe that the inseparable descendants of pn will not be 

mixed arbitrarily. An action dk is not initiated before the corresponding 

action ak has been completed. So only permutation in which~ precedes dk 

for all k (I~ k ~ n) will occur 

Secondly, not all possible permutations yield different outputs. For 

instance, the orders 

[al; dl; a • dz ~ ~ m ai; d.; G Q a.; d.; .• a . d J 2' l. J J n' n 
and 

[al; -d I; a2; d 7 ;.,.a.; d.; .. a.; d.;~@©a; d J 
·- J J 1. 1. n n 

will give rise to the same output.,, 

As an illustration consider p
2 

It has 4 inseparable descendants giving 24 permutations. Only 6 permuta­

tions can occur, and there are only 3 possible outputs: {l, l} {1,2} { 2,2}. 

Before continuing we introduce some sets 
n 

s denotes the set: 

sn = {L I L is an n-tuple (l 1,,e,
2

, • ,ln) .e. 1 is an integral number l ~ .e.i $ n}. 

As the results of pn are indicated by n integral numbers {l1,i2, ••• ln} 

for which the 2.bove relation holds, the results of pn are elements of sn. 

sn is a subset of sn sn ={LI L E sn; Lis not a possible result of p0
}. 

w w 

Gn denotes the set Gn = {G I G is a directed graph on n numbered points 

q
1
,q

2
~, .•• ,qn; to a given point in that graph at 

most one arrow is pointing; G contains no trivial 

cyclesL 

BlBLIOfht:.i.,< MATHEMATISCH CENTRUM 
--AMSTERDAM-
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n . n n I n G0 is a subset of G :G0 = {G GE G; G contains at least one cycle}. 

tn · n n 
s.w is the complement of sw ins. 

G'~ is the complement of G~ in Gn. 

Finding the possible outputs of pn (in other words finding the ele­

ments of s'n) will be done in two steps. 
w 

I. A one-to-one mapping is defined, that 

2. The following theorem is proved: LE 

n n maps s on G 

s•; if and onZy if f(L) E G'~ 

J. Let L be an element of 

as follows: 

n s • The mapping f maps Lon an element G of Gn 

A. q 1,q2 , ••• ,qn are n numbered points. 

n. 'For' i 'from' I 'to' n 'do' (connect q(l.) with 
J. 

from q(li) to qi) 

C. Remove all trivial cycles. 

q. in the direction 
1 

From step band cit is clear that G belonP,s to Gn. Fig. 4 shows f (2,4,4, 

1,5). 

3 

That this mapping is one-to-one can be seen by constructing its in­

verse. If G is element of Gn then f- 1 (G) is found as follows: 

'for' i 'from' 1 'to' n 'do' 

('if' an arrow points to q. 
J. 

'od' 

'then' follow it backwards, arriving at q. (J ~ j ~ n, j # i); 
J 

L = j. 
J. 

'else l. = i. 
1 

'fi') 



2 The theore~ is 

n "· l LEMMA. If GE Go then£ (G) E 

PROOF. G belongs to G~ so it has a cycle. Renumbering the points q 1, •• ,q
11 

of G only corresponds to ren.umbering the dh·ect actions of the collateral 

action pn. So, without loss of generality we may assume a cycle in Gover 

the first k points q 1, ••• ,qk (k > , as we excluded trivial cycles) 

We now try to find an order in which the descendants of pn could have 
-1 

been executed to yield L "" f (G). As q
1 

is connected to q
2

, l
2 

must have 

the value 1. Similarly i
3 

must have the value 2, •• ,l1 must have the value 

k. For a while we discard all action a. and d. with i > k. The only way to 
l. :I.. 

get k different values in. l 1,.. ,~ after execution of p11 is to have the k 

3 

assignations a 1, •• ,ak and k dereferences d 1,. ,dk in alternating order. 

The relation "must immediately precede" will be denoted by an arrow.~ has 

the value k-1, thus a(k~·l)-+ dk; similarly a (k-Z) ➔ d(k-1); .a1 ➔ d2; 

ak ➔ d 1 These requirements on the order of a 1, •• ,ak and d 1, •• ,dk must be 

combined with the requirement that ai precedes di for all i Clearly, no 

such order exists. So LE n s . 
w 

D 

LEMMA 2B. If f(L) E G ~ then there is at least one way to arrange the in­

separable descendants of pn such, that L is its output. 

PROOF. G = f(L) is a directed graph, not containing cycles So it can be de­

composed in a number of trees,, t l t2,,, • , tm, Let t be such a a tree. The 

nodes oft are grouped in levels the level of a node equals the number of 

arrows in the path from the root to that node. So the root has level Oj 

under the root is level 11 then level 2, etc. (See fig. 5) 
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Nodes may further be divided into two groups: leaves and branches. Leaves 

are nodes, that have no descendent nodes, i.e., have no arrows starting 
' 

from them. Branches do have descendent nodes. All nodes to which an arrow 

is pointing from a given node q, are termed daughters of q, and q is 

termed their mother. 

Let the levels int be numbered from Oto k. We will now indicate an 

order in which the assignations and dereferences corresponding to the nodes 

oft, may be grouped, to yield L. 

1. If k=O then step 8 is taken. 

2. Set a counter i to k. 

3. Insert the assignations corresponding to the leaves of level i. 

4. Let a pointer p point to the leftmost node of level q. 

5. Let the mother of the node pointed to by p be N. Insert the assignation 

corresponding to N followed by the dereferences corresponding to the 

daughters of N. Make p point to the rightmost daughter of N. 

6. If the node pointed to by p bas a righthand neighbour, then make p point 

to that neighbour, and retake step 5. 

7. i is decreased by I. If i > 0 then step 3 is retaken. 

8. If the root oft is a leave, then insert the assignation corresponding 

to it. 

9. Insert the dereference corresponding to the root. 

Fig. 6 illustrates this algorithm. 
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3 
4 

5 6 

To this tree corresponds the order 

[a5;a6; al;d5;d6; a3;a4; a2;dl;d3;d4; d2] 

15 

That this is a correct way of ordering the actions corresponding to the 

nodes oft can be seen by observing: 

A. While treating level i, all assignations corresponding to level i-1 are 

inserted. Furthermore all dereferences corresponding to nodes in level 

i are inserted. As the levels are treated in reverse order, an assignation 

corresponding to a branch always precedes the corresponding dereference. 

B. If a node is a leave, then in step 3 special care is taken, to ensure 

that the assignation corresponding to it precedes its corresponding 

dereference. 

C. Let, int, q. be a daughter of q .• Then a. precedes d., and thus (assum-
1 J J l. 

ing that no other assignation is put inbetween these actions) l. has the 
1. 

value j. Hence in f(L) q. points at q., which is indeed the case. 
J - 1 

D Let now q. be such, that it is not a daughter of any other·node, i.e. 
l. 

it is the root oft. The only nodes in f(L) to which no other nodes 

are pointing, are nodes q., such that l. has the value j. This is 1.n-
J J 

deed guaranteed by the way in which the algorithm treats the root. 

We arrange the inseparab.le descendants of pn such, that the actions 

corresponding to a specific tree of f(L) are clustered together and have 

the designed order. Each cluster ends with a dereference, whereas the 

successor starts with an assignation. This implies that clusters cannot in­

fluence one another, so any permutation of clusters will yield Las out­

put. D 
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n n-1 CORROLARY. The nwnber of possible outputs of p equals (n+l) 

PROOF. Add a special point q
0 

to f(L). 

When q
0 

is connected to all roots of the component trees of f(L) then we 

achieve a tree tL. On the other hand, given a tree of n+l numbered nodes 

q
0

,q1, ••• ,qn, we can erase q0 and its connections. The resulting graph is 

element of G'~• So there is a one-to-one correspondence between the elements 

of G'~ - and hence the possible outputs of pn - and the trees on n+l num-
n-1 bered points. According to [3] the number of such trees equals (n+l) • D 

7. GENERALIZATION 

To conclude this document we think about the following more general 

question. 

dants 

of p. 

G. 11 1 . [ 1 2 n] 1ven a co atera action p:: a ,a , ••• ,a • 

be decomposed into a series of inseparable descen­

~.J what is the maximum number of possible results 
1 

Of course, this number is maximal if each allowed way of merging the 

actions a~ yields a different result. So the question simplifies to count-
J • 

ing all allowed ways of merging the actions a7. 
J 

From combinatorics we know that there are (k 1 + k2 + ••• + kn)? ways 

of merging the actions a~. However there is only one way in which the des­
•J 

cendants of an action a1 can be grouped. We thus divide by 

kl ! * k2 ! ... * k ! (En k ) ' 
n i=l i . 

The maximum number of possible results of p equals-------
. TTn k 

i=l i 

The answer to the question above is general and simple. The difficulty 

in finding the actual number of different possible results of collateral 

actions is to distinguish which of the allowed ways of merging the descen­

dants yield identical results. This fully depends on the actions under con­

sideration, and cannot be solved generally. 
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