
ma
the
ma
tisch

AFDELING INFORMATICA

L.G.L.T. MEERTENS

MODE ANO MEANING

Prepublication

cen
trum

amsterdam

IW 45/75 DECEMBER

1975

AFDELING INFORMATICA

L.G.L.T. MEERTENS

MODE AND MEANING

Prepub I i cation

stichting

mathematisch

centrum

IW 45/75

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

PJUnte.d a.:t .the. Mathemo.Uc..al. Ce.ntAe., 49, 2e. BoeJLha.ave..o.tJz.a..a,t, Am.o.teJLdam.

The. Ma.:thema.:Uc.al. Ce.ntJte., 60UY1.de.d .the. 11-.th 06 Fe.bJtuMy 1946, ,Lo a. n.on.
pJtofy< . .t ..i.n..o.tau,tfon. (Ul?l,t.n,g a..t the. plLomotion 06 puJte. ma.:thema.uc...o and m
a.pplic.o.UonJ.,. 1.t A.-6 .opon1.io11.e.d by .:the. Ne..:theJLland6 GoveJLnme.nt :th'1.ough the.
Ne..:theJLlan.dJ., 0Jtga.Mzo.Uon 6oJt the. Advanc.e.me.nt o 6 PuJte. Re..o e.a.11.c.h (Z. W. 0) ,
by .the. MUYl.,{,c.J..pal.ay 06 Am.o.:te.11.da.m, by .the. Uru.vvu..i..ty 06 Am1.>:teJLdam, by
.:the. F1te.e. UMve.MUy a..:t Am-6.:teJLda.m, and by indU-6.t!Ue..o.

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 4.22, 5.24

*) Mode and meaning

By

L.G.L.T. Meertens

ABSTRACT

The concept of the (static) mode of a value is considered in relation

to the (dynamic) meaning. It is shown how this concept may be carried

further in order to increase the security and to obtain higher levels of

abstraction.

KEY WORDS & PHRASES: Mode, meaning, security, levels of abstraction.

This paper is not for review; it is meant to be published elsewhere.

O. INTRODUCTION

Values are usually represented inside a computer by a sequence of bits. The

meaning of such a sequence cannot be derived from the sequence alone. For example,

an integer and a pointer might happen to be represented by identical strings of

O's and I's, even though their meanings, as far as the programmer is concerned,

are vastly different. One of the major innovations marking the advent of high

level programming languages is the concept of a mode (or type) associated with

values. This constituted a recognition of the preponderance of certain well under

stood meanings assigned by programmers to bit sequences. Thus, one may have real

numbers, of mode "real", or truth values, of mode "boolean", and the syntax

prevents unintentional confusion between values of these two modes. Moreover,

the representation is hidden from the programmer: this is in itself quite useful

in order to achieve abstraction from the particular representation employed, with

all the benefits inherent in such abstraction.

This concept of mode seems to have reached its climax, at least up until now,

in ALGOL 68. For this reason, this paper uses ALGOL 68 as a point of departure.

Its purpose is to indicate how the concept may be carried even further in order

to increase the security by more comprehensive static checking, and even to obtain

higher levels of abstraction. The presentation is certainly not a coherent, theo

retical one, but, rather, informal and at times even haphazard. New ad-hoc syn

tactic constructions may at times be introduced without warning, and with seman

tics only suggested by context. I hope it will be clear that these are not put

forward as proposed extensions of ALGOL 68. Should the ideas outlined here pro

voke some reflexion from language designers, this paper will have served its pur

pose.

1. THE GREATER SECURITY OF ALGOL 68 - AN EXAMPLE

The ALGOL-68 concept of the mode of a value is a full-grown version of the

type of ALGOL 60. The Revised ALGOL 68 Report fl] states (in pragmatics): Each

value has an attribute, termed its "mode", which defines ho1,, that value relates

to other values and which actions may be applied to it. Although the ALGOL-60

type gives a hint in the same direction, it does not convey sufficient informa

tion to determine statically whether a given operation (i.e., action applied to

a value) will be meaningful. As an example, consider the following ALGOL-60

program:

Z: begin integer i;

end.

p_rocedure var (op); p_rocedure op; op (i);

p_rocedure spot (op); p_rocedure op; op (l);

p_rocedure zel:'o (v); integer v, v·-.- O;
p_rocedure jwrrp (s); Zabel s; [£ to s;

vrocedure do (op, arg); p_rocedure op, arg; arg (op);

do (zero, var);

do (jwrrp, spot)

The execution of the two procedure statements that call do is perfectly meaning

ful. With the same ease, however, it is possible to write do (jwrrp, var),

do (zero, spot) or even do (do, do), whose execution would result, respectively,

in the meaningle$S operations rE._~~ i, l:= 0 and do (do). Note that this possi

bility of ALGOL 60 is not due to specification being optional, but to the undis

criminating specification procedurP, which does not disclose the type of para

meters accepted (LANGM.AACK ["2~).

In ALGOL 68, zero and jwrrp would have different modes, since they accept

parameters of different

have to accept different

fer!:'nt modes ,,ml

would :u,ve to be

SimiLir: , of rmd

for ir parameters, they aro themselves of dif-

of these modes. The ;c;:J.me holds, of course,, for the parameter~ Before 2~1

be called with ,0v, the different cases to he distinguished in order to s1~e

if the actual modes comply. A comparable ALGOL-68 program would therefore run as

follows:

CJase op in

esac

:1.o (:.;:ump, spot

The definition of d(0 is rather complicated compared to the ALGOL-60 version.

What has happened is that the type-checking implied in a foolproof ALGOL-60 im-

plementation has been made explicit here. Such calls as do var) and

do (zero, spot), when elaborated, give rise to the elaboration of e1•ro!' 1 and

eP:r>or· 2 (not further defined here), respectively. An attempted call like do (do,

do) is even syntactically invalid. Thus, there is no way of writing a (syntacti

cally valid) call with a parameter whose value is of a potentially unacceptable

mode, except for the case where an explicit test is made before that value is

used. (It is, perhaps, also illustrative that in a first approach I inadvertently

wrote op (aY'g) for the body of do and only noticed the error while transcribing

the ALGOL-60 version to ALGOL 68.) Also, implicit tests are no longer needed. So,

as far as both safety and efficiency are concerned, the ALGOL-68 approach is supe

rior to that of ALGOL 60.

2. MODE AS A STATIC SU:t,,lVARY OF MEANINGFUL OPEPATIONS

The mode of a value may be viewed as a static summary of the meaningful oper

ations on that value. For example, if a list consists of two fields, the head

field, which is a string, and the tail field, which is a pointer to a list, the

following mode-declaration reflects this recursive definition:

mode list = str>uct (stY'ing head, Y'ef list tail).

This declaration may then also be taken as stating that meaningful operations

on a list are:

selection of the head field, followed by meaningful operations on a string;

selection of the tail field, followed by meaningful operations on a pointer

to a list.

If we take as meaningful operations on a pointer to a list:

following the pointer (dereferencing), followed by meaningful operations on

a list,

then this verbal explanation may be depicted schematically in the following

diagram:

deref

This diagram corresponds to a finite state t h' h au omaton w 1c , with lisl_ as initial
state, accepts a (regular) language, each of whose sentences corresponds to a

meaningful operation on a list.

For the more complicated mode-declaration

mode lost = stro.ct (strinq head, ref lust tail),

lust= struct (strinq head, ref last tail),

last= struct (string head, ref lost tail),

we obtain the following diagram:

The corresponding finite state automaton, with lost as initial state, accepts the

same language as the automaton for list: the meaningful operations on list and

lost values coincide. Indeed, list and lost (or lust or last) specify the same

mode, as is consistent with the philosophy of modes in ALGOL 68, quoted above.

The connection between the equivalence of modes and of finite state automata has

already been pointed out by KRAL 131.

3. HOW TO FILL THE REMAINING GAPS

Until now it has been taken more or less for granted that the operations

prescribed by a syntactically valid construct are always (dynamically) meaning

ful. This need not, however, be the case. I shall consider two cases in which

"the further elaboration is undefined":

• A name which is to be dereferenced, or to which another value is to be assigned,

happens to be nil (as in ref real (nil):= 3.14).

• The subscript in a slice is out of range (as in r1: JJ int a; a14l).

It is a desirable property of programming languages that such cases cannot

arise, for more than one reason: If we succeed in excluding all such cases, the

possibility of writing (syntactically valid) programs whose elaboration turns out

to be undefined only at run-time simply disappears. If the programmer cannot show

statically that a certain operation will be meaningful, the burden of testing is

laid upon his shoulders. This wi 11, in general, increase the number of marks he

has to write down (cf. the definition of do in ALGOL 68). The programmer is there

by encouraged to reconsider the problem, and to reformulate his implementation of

the algorithm 1n such a way that it becomes clear that undefined operations cannot

arise. The understandability of the program will then, hopefully, increase. More··

over, he is obliged to consider each case in which things might go wrong. A fur

ther, not insignificant, advantage is the disappearance of costly implicit tests

in a foolproof implementation.

Although only two special cases are discussed below, most of the other exis

ting gaps may be approached in much the same spirit. For example, a syntactic

check on the use of uninitialized variables is present in ALEPH 14,51. Even the

problem of wrong input data may perhaps be solved by specifying, as part of the

program, a syntactic description against which the input is checked beforehand.

3. I. The prob Zerr. oj' nil name:s

A complete and satisfactory solution of the case of dereferencing or assign

ing to a nil name is possible within the framework of ALGOL 68. It suffices to

exclude nil names (e.g., by not providing a representation for the nil-symbol),

so that any name refers to a value. If a prograllDller wants to use constructs whose

value may be a name, but may also not refer to a value (i.e., be nil), he can

write a construction like

mode list= struct (string head, union {ref list, void) tail).

A nil list is then represented by the value empty, the only void value. A piece of

program such as

ref list a:= z;

while tail £[_ a :/: ref list (nil)

do a:= tail 21 a od

would have to be rewritten

£!![_ list a:= z;

while aase tail 21 a in

(r-ef list b): (a:= b; tr-ue)

out false

esaa

Note that the number of tests explicitly performed remains the same, and that the

total number of tests decreases, since in a not exceedingly intelligent iI11pleI11enta

tion the assignation a:= tail Qf.. a entails a test on r-ef list (a) not being nil

(because of the selection), and perhaps even two more tests on a itself (because

of the assignment and the implied dereferencing of the second occurrence).

The rewritten version admittedly looks a bit cumbersome. It is my feeling

that future programming languages should have a more convenient way of expressing

such a flow of control. A possible notation might be

r-ef list a:= z;

do tail Qf.. a in (r-ef list b): a:= b od.

There is also a connection with DIJKSTRA's guarded commands [67.

3. 2. The pr-ob lem oj" I he c1,dJiJ1!Y''ipt. mnge

The treatment of subscripts is not dealt with so easily. Yet this case seems

typical both of the inefficiency caused by high-level programming languages compar

ed to hand coding - in most cases the programmer knows perfectly well that the

subscript is in range, but he is unable to exploit this knowledge - and of the

opportunities provided by evenhigh-leve] languages for writing programs whose

lack of meaning transpires only during elaboration - it does not seem bold to

conjecture that "subscript out of range" accounts for about half of the run-time

errors. A first step towards a solution has been made in PASCAL, by introducing

ranges as a type. The major defect of this approach is that ranges are completely

compile-time determined, just as in good old FORTRAN. For a more detailed criti

cism, see HABERMANN [77.

The obvious next step requires modes which can be yielded dynamically, but

which are staticized over certain parts of the program. Suppose we may write:

mode r-3 = 1 : 3;

[r-3 l r-eal a;

for- i E r-3 do a[i]:= 0 od.

Used in this way, this is a mere abbreviation, but it should also be possible to

write directly

moder=l n; [rl real p; read (p);

for i ~ r
do r imin:= i; real min:= p[imin];

mode r2 = succ i : upb T_;

od.

for j over r2

do if p[jl < min then min:= p[imin:= jl f.i od;

pfiminl:= p[i]; pl-il:= min

This requires that the syntax recognizes in some way that the range yielded by

suca i: !!:P2- £. is a subrange of!_, provided that i is of mode!_· This may seem a

bit ad hoc, but it is, in principle, certainly possible. In fact, what should be

recognized by the syntax and what should not can only be determined by studying

a number of representative, diverse algorithms. It is probably too much to ask

for recognition of the fact that (i + j) f 2 lies in the same range as i and j.

In such cases, we always have the escape afforded by

case (i + j) f 2 in (r mid): p[midl out skip esaa.

This is acceptable as long as the number of cases where such cumbersome expres

sions cannot be circumvented is sufficiently small.

Some statistics were obtained by examining 24 small programs, taken from

various courses on ALGOL 68. Out of these 24, 16 programs used multiple values

(where the use of strings as though they were primitive values was not counted).

A total of 95 slices were found, 88 of which could be expressed with static range

checking without the need to introduce an extra dynamic check. In this count,

not only were simple loops over a range included, but also cases like

while t ~ n dot:= a[t] od,

which can be expressed, using the notation suggested at the end of section 3. 1,

as

dot in(!_ tl): t:= a[tl~ od.

On closer inspection, 2 of the 7 remaining slices (both occurring in a textbook

in print!) might give rise to a subscript-out-of-range error. So, if we only

count the other 5 cases as genuine, the quite acceptable percentage of 5% is

obtained for the cases where slicing is encumbered by the proposed measures.

Some features which might further reduce this percentage:

For-loop in reverse order (for i revo !_do ... od).

Static recognition that certain parts of the program are reachable only if

some range£_ is not empty, so that both lwb ~ and upb ~ are known to be in

range, as at the" ..• " in for i over~ do ... od.

e Allowing intersection of ranges, as in mode£_= rl n r2, after which r is

recognized as a subrange of rl and r2.

4. MODES DEFINED BY CHARACTERISTIC PREDICATES

BAUER & GNATZ [8] have suggested the possibility of definitions like

mode posreal = (real x) bool: x > O.

This is quite similar to ~ode~= 1 n, which could be expressed by

modem= (inti) bool: 1 $ i Ai$ n.

Of course, in the context of real x, posreal y, z, the assignations x:= y and y:= z are

OK, buty:=xis not, since it cannot be guaranteed thatx is positive. One has to write

EE!!.!!_ x in (posreal p): y:= pout error esae.

The reasonformentioning this construction here is that it provides a tool

for increasing security in certain cases where no other simple syntactic means

avail. Suppose that a function has been defined which only converges if a posi

tive argument is supplied. A sensible prograrraner may insert a check at the

routine's entry, but if this check fails, his trouble begins. Where did the

erroneous value originate? How was it passed on? By prescribing the mode posreal

at all places where he knows the values involved should be positive, the pro

grarmner can catch the error at its point of origin.

5. ABSTRACTION FROM DATA REPRESENTATION

Even though a certain operation may be perfectly meaningful as far as the

semantics of the algorithmic language is concerned, it may be sheer nonsense

from a human point of view. My school teachers would insist that one cannot add

apples and pears together, and yet enough progralllr.ling errors have been made by

adding birth dates to salaries or relative errors to absolute quantities. I

myself have a sore recollection of a program dealing with music which employed

two different systems to represent notes by integers. In spite of some careful

measures, values in one system kept turning up at places where values in the

other system were expected.

It is strange that the security provided by abstraction from data representa-

tion is offered at a low level, but should be withheld from the user at higher

levels of abstraction.

An example of the use of integers to represent an in fact completely differ-

ent concept is given by

int male= 1, female= 2, neuter= 3.

The intention here is merely to introduce three new, distinct values to represent

genders. This is much more clearly expressed by the scalar type of PASCAL:

~gender= (male, female, neuter).

In this way, meaningless expressions like male+ female x neuter are prohibited.

(The formula 6 - me - de in the Towers-of-Hanoi example of the Revised ALGOL 68

Report is a "dirty" programming trick to select the third element of a set,

different from me and de.)

An elegant way to prevent the mixing up of arithmetic quantities represent

ing, e.g., physical quantities with different dimensions, is presented by

CLEAVELAND [97. His system is described by grafting it on ALGOL 68, using the

same descriptional technique as the Revised Report. A simple example is given by

pouch inch real x, y, pouch cm real z.

The declarer pouch inch real is used for values which are represented as real

numbers but have a distinct mode, as indicated by the tag inch which, of course,

has no inherent meaning. After these declarations, x:= y is a valid assignation,

but x:= z is not. It is possible, however, to write x:= z x 0.393? inch/cm. The

validity is checked by performing dimensional analysis as part of the mode

mechanism. (Note that O. 3937 inch/cm is not a formula, but a denoter for values

of the mode P!}Uch inch/cm real.) A quite different method of use is illustrated

by

11952 : 19?5 ye·ars] bool of age;

for y from 1952 to 19?5 years

do of age 1yJ:= y - 1952 years z 21 years od.

For more-dimensional multiple values, association of different pouches with

different subscript positions will effectively prevent accidental transposition

of subscriots.

Although the incorporation of such features in future programming languages

should be encouraged, the general problem needs a separate attack. There will

always remain a need for the introduction of new modes with a meaning not yet

catered for. In order to rel_)resent values of that mode, sone choice has to be made

among the already definable modes. Presumably, some operations are then ·possible

which are meaningless in terms of the intended meaning.

Consider, e.g., a mode "stack". Meaningful operations on a stack are push

ing and popping. In order to model a stack, a pair consisting of an integer and

a large array might be used. Alternative representations are a linear list or a

double-ended queue (which may be available as primitive in some programming

languages). Using the last representation it would be possible to pop the bottom

of the stack, an operation which cannot be expressed reasonably using the first

model. Conversely, using the first model it is possible to select elements of

the stack at random. All of these are meaningless in terms of the semantics of

a stack and should be precluded.

Using the class concept of SIMULA 67, we can define

class stack;

begin integer ptr; inteqer array cezzr1 large 7;

end.

procedure push (i); integer i;

begin ptr:= ptr + 1; cell[ptrl:= i end;

integer procedure pop;

begin pop:= cell,ptr]; ptr:= ptr - 1 end;

ptr:= 0

If, as has been proposed, the identifiers ptr and cell are hidden and only push

and pop are exported, then, after the declaration ref (stack) s, t, the only

operations that may be used on sand tare a.push and a.pop, and t.push and

t.pop, respectively. Thus, in fact, each new variable of class stack is of a

new, unique mode.

The advantages of the use of classes for lightening the correctness proof

by factoring it are expounded by HOARE [10]. A very similar construction is put

forward by LISKOV & ZILLES [l I], who stress the fact that an abstract data type

should be characterized by the available operations as defined by the user. The

germ of this idea could already be found in WILKES [12].

This feature, nice though it may be, is insufficient to cater for our needs,

since only monadic operations may be prescribed. A solution has been proposed

by MORRIS [13], which will be demonstrated here as an extension of "definition

modules" as proposed by SCHUMAN [14]. There, identifiers and other indicators

may be hidden in the context in which the definition module is invoked by

preceding their definition by irrrplicit. If, likewise, the possibility is intro

duced of prefixing a mode-definition with primitive, meaning that in the invoca

tion context the mode defined is treated as primitive, we achieve the desired

effect. For example, we might define

definition prelude=

begin mode primitive int= [O: 15] bool,

primitive ahar = [O : 15] bool,

qp_ +=(int a, b) int: ... ,

end

... ,
qp_ abs = (ahar a) int: a,

qp_ repr = (int a) ahar: a

and then invoke the definition in

begin env prelude;

int i, ahar a;

where in the latter context i:= abs a and a:= repr i are legal assignations,

while i:= a and a:= i are syntactically invalid. The mode of abs is proa ([]

bool) [J bool in the context of the definition module, but proa (ahar) int

in the invocation context.

A recurrent complaint with respect to the design of ALGOL 68 has been the

use of the name concept both for variables and for pointers to (structured)

objects. The essence of this complaint is the fact that two properties of names

are invariably linked together: that of granting access to an object without

automatic creation of a copy, and that of granting the right to supersede it

(or its possible sub-objects) with another object. For example, if lists are

represented in the usual way, access to a list implies the possibility of an

operation such as tail£[a:= a, creating an ill-formed (circular) list. This

is a typical example of a meaningless operation in terms of the semantics of

lists, made possible by the fact that some representation has to be chosen.

Using the above approach, one may define

definition lists=

begin mode list = union (nil, properlist),

primitive nil = void,

end.

primitive properlist = ref struat (string head, list tail),

qp_ * = (string a, list b) proper list:

~ struat (string head, list tail):= (a, b),

qp__ head = (properlist a) string: head 91.. a,

qp_ tail = (properlist a) list: tail 91.. a,

Only well-formed lists may be formed with the operations made available by this

module. In other words, if a language such as ALGOL 68 is endowed with the pos

sibility of user-defined "primitive" modes, the basis for complaints like the

above vanishes completely.

6. CONCLUSION

A sketch has been given of how information about dynamic properties of

values (their meaning) can be expressed as a static property (their mode),

with varying degrees of sophistication. It is my belief that it is not sufficient

to study disciplines through which more reliable programs may be obtained, but

that we should also provide tools through which the willing spirit can enforce

this discipline on his weak flesh. I hope that this paper may suggest some

feasible tools to future language designers.

REFERENCES

[I] WIJNGAARDEN, A. VAN, et al. (Eds.), Revised report on the algorithmic

language ALGOL 68, Acta Informatica 5 (1975) 1-236.

[2] LANGMAACK, H., On correct procedure parameter transmission in higher

programming languages, Acta Informatica 2 (1973) 110-142.

[3] KRAL, J., The equivalence of modes and the equivalence of finite auto

mata, ALGOL Bulletin 35.4.5 (1973) 34-35.

[4] BOSCH, R., D. GRUNE & L. MEERTENS, ALEPH Manual, Report IW 17/74

(Mathematical Centre, Amsterdam, 1974).

[5] BOSCH, R., D. GRUNE & L. MEERTENS, ALEPH, A Language Encouraging Program

Hierarchy, The International Computing Symposium 1973, Davos

(North-Holland, Amsterdam, 1974) 93-99· (Report TW 9/73, l"athe

matical Centre, Amsterdam, 1973.)

[6] DIJKSTRA, E.W., Guarded corrnnands, nondeterminacy a:nd formal derivation

of programs, Comm. ACM 18 (1975) 453-457.

[7] HABERMANN, A.N., Critical comments on the programming language PASCAL,

Acta Informatica 3 (1973) 47-57.

[8] BAUER, F,L. & R. GNATZ, Mengen in algorithmischen Sprachen oder: Arten

und Pradikate, Bericht Nr. 7202, Abt. Mathematik der TU Munchen

(1973).

[9] CLEAVELAND, J.C., Pouches, a programming language construct encouraging

redundancy, UCLA-ENG-7555 (1975).

[10] HOARE, C.A.R., Proof of correctness of data representations, Acta

Informatica I (1972) 271-281.

[II] LISKOV, B. & s. ZILLES, Programming with abstract data types, Proceedings

of a Symposium on Very High Level Languages, SIGPLAN Notices 9

(April 1974) 50-59.

[12] WILKES, M.V., The outer and inner syntax of a programming language,

ComrJuter J. 11 (1968) 260···263.

[13] MORRIS, J.H., Types are not sets, SIGPLAN Symposium on Principles of

Programming Languages (1973) 120-124.

[14] SCHUMAN, S.A., Toward modular programming in high-level languages,

ALGOL Bulletin 37.4.1 (1974) 30-53.

