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*) Mode and meaning 

By 

L.G.L.T. Meertens 

ABSTRACT 

The concept of the (static) mode of a value is considered in relation 

to the (dynamic) meaning. It is shown how this concept may be carried 

further in order to increase the security and to obtain higher levels of 

abstraction. 

KEY WORDS & PHRASES: Mode, meaning, security, levels of abstraction. 

This paper is not for review; it is meant to be published elsewhere. 



O. INTRODUCTION 

Values are usually represented inside a computer by a sequence of bits. The 

meaning of such a sequence cannot be derived from the sequence alone. For example, 

an integer and a pointer might happen to be represented by identical strings of 

O's and I's, even though their meanings, as far as the programmer is concerned, 

are vastly different. One of the major innovations marking the advent of high

level programming languages is the concept of a mode (or type) associated with 

values. This constituted a recognition of the preponderance of certain well under

stood meanings assigned by programmers to bit sequences. Thus, one may have real 

numbers, of mode "real", or truth values, of mode "boolean", and the syntax 

prevents unintentional confusion between values of these two modes. Moreover, 

the representation is hidden from the programmer: this is in itself quite useful 

in order to achieve abstraction from the particular representation employed, with 

all the benefits inherent in such abstraction. 

This concept of mode seems to have reached its climax, at least up until now, 



in ALGOL 68. For this reason, this paper uses ALGOL 68 as a point of departure. 

Its purpose is to indicate how the concept may be carried even further in order 

to increase the security by more comprehensive static checking, and even to obtain 

higher levels of abstraction. The presentation is certainly not a coherent, theo

retical one, but, rather, informal and at times even haphazard. New ad-hoc syn

tactic constructions may at times be introduced without warning, and with seman

tics only suggested by context. I hope it will be clear that these are not put 

forward as proposed extensions of ALGOL 68. Should the ideas outlined here pro

voke some reflexion from language designers, this paper will have served its pur

pose. 

1. THE GREATER SECURITY OF ALGOL 68 - AN EXAMPLE 

The ALGOL-68 concept of the mode of a value is a full-grown version of the 

type of ALGOL 60. The Revised ALGOL 68 Report fl] states (in pragmatics): Each 

value has an attribute, termed its "mode", which defines ho1,, that value relates 

to other values and which actions may be applied to it. Although the ALGOL-60 

type gives a hint in the same direction, it does not convey sufficient informa

tion to determine statically whether a given operation (i.e., action applied to 

a value) will be meaningful. As an example, consider the following ALGOL-60 

program: 

Z: begin integer i; 

end. 

p_rocedure var (op); p_rocedure op; op (i); 

p_rocedure spot (op); p_rocedure op; op ( l); 

p_rocedure zel:'o (v); integer v, v·-.- O; 
p_rocedure jwrrp ( s); Zabel s; [£ to s; 

vrocedure do (op, arg); p_rocedure op, arg; arg (op); 

do (zero, var); 

do (jwrrp, spot) 

The execution of the two procedure statements that call do is perfectly meaning

ful. With the same ease, however, it is possible to write do (jwrrp, var), 

do (zero, spot) or even do (do, do), whose execution would result, respectively, 

in the meaningle$S operations rE._~~ i, l:= 0 and do (do). Note that this possi

bility of ALGOL 60 is not due to specification being optional, but to the undis

criminating specification procedurP, which does not disclose the type of para

meters accepted (LANGM.AACK ["2~). 

In ALGOL 68, zero and jwrrp would have different modes, since they accept 



parameters of different 

have to accept different 

fer!:'nt modes ,,ml 

would :u,ve to be 

SimiLir: , of rmd 

for ir parameters, they aro themselves of dif-

of these modes. The ;c;:J.me holds, of course,, for the parameter~ Before 2~1 

be called with ,0v, the different cases to he distinguished in order to s1~e 

if the actual modes comply. A comparable ALGOL-68 program would therefore run as 

follows: 

CJase op in 

esac 

:1.o ( :.;:ump, spot 

The definition of d(0 is rather complicated compared to the ALGOL-60 version. 

What has happened is that the type-checking implied in a foolproof ALGOL-60 im-

plementation has been made explicit here. Such calls as do var) and 

do (zero, spot), when elaborated, give rise to the elaboration of e1•ro!' 1 and 

eP:r>or· 2 (not further defined here), respectively. An attempted call like do (do, 



do) is even syntactically invalid. Thus, there is no way of writing a (syntacti

cally valid) call with a parameter whose value is of a potentially unacceptable 

mode, except for the case where an explicit test is made before that value is 

used. (It is, perhaps, also illustrative that in a first approach I inadvertently 

wrote op (aY'g) for the body of do and only noticed the error while transcribing 

the ALGOL-60 version to ALGOL 68.) Also, implicit tests are no longer needed. So, 

as far as both safety and efficiency are concerned, the ALGOL-68 approach is supe

rior to that of ALGOL 60. 

2. MODE AS A STATIC SU:t,,lVARY OF MEANINGFUL OPEPATIONS 

The mode of a value may be viewed as a static summary of the meaningful oper

ations on that value. For example, if a list consists of two fields, the head 

field, which is a string, and the tail field, which is a pointer to a list, the 

following mode-declaration reflects this recursive definition: 

mode list = str>uct (stY'ing head, Y'ef list tail). 

This declaration may then also be taken as stating that meaningful operations 

on a list are: 

selection of the head field, followed by meaningful operations on a string; 

selection of the tail field, followed by meaningful operations on a pointer 

to a list. 

If we take as meaningful operations on a pointer to a list: 

following the pointer (dereferencing), followed by meaningful operations on 

a list, 

then this verbal explanation may be depicted schematically in the following 

diagram: 

deref 

This diagram corresponds to a finite state t h' h au omaton w 1c , with lisl_ as initial 
state, accepts a (regular) language, each of whose sentences corresponds to a 



meaningful operation on a list. 

For the more complicated mode-declaration 

mode lost = stro.ct ( strinq head, ref lust tail), 

lust= struct (strinq head, ref last tail), 

last= struct (string head, ref lost tail), 

we obtain the following diagram: 

The corresponding finite state automaton, with lost as initial state, accepts the 

same language as the automaton for list: the meaningful operations on list and 

lost values coincide. Indeed, list and lost (or lust or last) specify the same 

mode, as is consistent with the philosophy of modes in ALGOL 68, quoted above. 

The connection between the equivalence of modes and of finite state automata has 

already been pointed out by KRAL 131. 

3. HOW TO FILL THE REMAINING GAPS 

Until now it has been taken more or less for granted that the operations 

prescribed by a syntactically valid construct are always (dynamically) meaning

ful. This need not, however, be the case. I shall consider two cases in which 

"the further elaboration is undefined": 

• A name which is to be dereferenced, or to which another value is to be assigned, 



happens to be nil (as in ref real (nil):= 3.14). 

• The subscript in a slice is out of range (as in r1: JJ int a; a14l). 

It is a desirable property of programming languages that such cases cannot 

arise, for more than one reason: If we succeed in excluding all such cases, the 

possibility of writing (syntactically valid) programs whose elaboration turns out 

to be undefined only at run-time simply disappears. If the programmer cannot show 

statically that a certain operation will be meaningful, the burden of testing is 

laid upon his shoulders. This wi 11, in general, increase the number of marks he 

has to write down (cf. the definition of do in ALGOL 68). The programmer is there

by encouraged to reconsider the problem, and to reformulate his implementation of 

the algorithm 1n such a way that it becomes clear that undefined operations cannot 

arise. The understandability of the program will then, hopefully, increase. More·· 

over, he is obliged to consider each case in which things might go wrong. A fur

ther, not insignificant, advantage is the disappearance of costly implicit tests 

in a foolproof implementation. 

Although only two special cases are discussed below, most of the other exis

ting gaps may be approached in much the same spirit. For example, a syntactic 

check on the use of uninitialized variables is present in ALEPH 14,51. Even the 

problem of wrong input data may perhaps be solved by specifying, as part of the 

program, a syntactic description against which the input is checked beforehand. 

3. I. The prob Zerr. oj' nil name:s 

A complete and satisfactory solution of the case of dereferencing or assign

ing to a nil name is possible within the framework of ALGOL 68. It suffices to 

exclude nil names (e.g., by not providing a representation for the nil-symbol), 

so that any name refers to a value. If a prograllDller wants to use constructs whose 

value may be a name, but may also not refer to a value (i.e., be nil), he can 

write a construction like 

mode list= struct (string head, union {ref list, void) tail). 

A nil list is then represented by the value empty, the only void value. A piece of 

program such as 

ref list a:= z; 

while tail £[_ a :/: ref list (nil) 

do a:= tail 21 a od 

would have to be rewritten 

£!![_ list a:= z; 

while aase tail 21 a in 



(r-ef list b): (a:= b; tr-ue) 

out false 

esaa 

Note that the number of tests explicitly performed remains the same, and that the 

total number of tests decreases, since in a not exceedingly intelligent iI11pleI11enta

tion the assignation a:= tail Qf.. a entails a test on r-ef list (a) not being nil 

(because of the selection), and perhaps even two more tests on a itself (because 

of the assignment and the implied dereferencing of the second occurrence). 

The rewritten version admittedly looks a bit cumbersome. It is my feeling 

that future programming languages should have a more convenient way of expressing 

such a flow of control. A possible notation might be 

r-ef list a:= z; 

do tail Qf.. a in (r-ef list b): a:= b od. 

There is also a connection with DIJKSTRA's guarded commands [67. 

3. 2. The pr-ob lem oj" I he c1,dJiJ1!Y''ipt. mnge 

The treatment of subscripts is not dealt with so easily. Yet this case seems 

typical both of the inefficiency caused by high-level programming languages compar

ed to hand coding - in most cases the programmer knows perfectly well that the 

subscript is in range, but he is unable to exploit this knowledge - and of the 

opportunities provided by evenhigh-leve] languages for writing programs whose 

lack of meaning transpires only during elaboration - it does not seem bold to 

conjecture that "subscript out of range" accounts for about half of the run-time 

errors. A first step towards a solution has been made in PASCAL, by introducing 

ranges as a type. The major defect of this approach is that ranges are completely 

compile-time determined, just as in good old FORTRAN. For a more detailed criti

cism, see HABERMANN [77. 

The obvious next step requires modes which can be yielded dynamically, but 

which are staticized over certain parts of the program. Suppose we may write: 

mode r-3 = 1 : 3; 

[ r-3 l r-eal a; 

for- i E r-3 do a[i]:= 0 od. 

Used in this way, this is a mere abbreviation, but it should also be possible to 

write directly 



moder=l n; [rl real p; read (p); 

for i ~ r 
do r imin:= i; real min:= p[imin]; 

mode r2 = succ i : upb T_; 

od. 

for j over r2 

do if p[jl < min then min:= p[imin:= jl f.i od; 

pfiminl:= p[i]; pl-il:= min 

This requires that the syntax recognizes in some way that the range yielded by 

suca i: !!:P2- £. is a subrange of!_, provided that i is of mode!_· This may seem a 

bit ad hoc, but it is, in principle, certainly possible. In fact, what should be 

recognized by the syntax and what should not can only be determined by studying 

a number of representative, diverse algorithms. It is probably too much to ask 

for recognition of the fact that (i + j) f 2 lies in the same range as i and j. 

In such cases, we always have the escape afforded by 

case (i + j) f 2 in (r mid): p[midl out skip esaa. 

This is acceptable as long as the number of cases where such cumbersome expres

sions cannot be circumvented is sufficiently small. 

Some statistics were obtained by examining 24 small programs, taken from 

various courses on ALGOL 68. Out of these 24, 16 programs used multiple values 

(where the use of strings as though they were primitive values was not counted). 

A total of 95 slices were found, 88 of which could be expressed with static range 

checking without the need to introduce an extra dynamic check. In this count, 

not only were simple loops over a range included, but also cases like 

while t ~ n dot:= a[t] od, 

which can be expressed, using the notation suggested at the end of section 3. 1, 

as 

dot in(!_ tl): t:= a[tl~ od. 

On closer inspection, 2 of the 7 remaining slices (both occurring in a textbook 

in print!) might give rise to a subscript-out-of-range error. So, if we only 

count the other 5 cases as genuine, the quite acceptable percentage of 5% is 

obtained for the cases where slicing is encumbered by the proposed measures. 

Some features which might further reduce this percentage: 

For-loop in reverse order (for i revo !_do ... od). 

Static recognition that certain parts of the program are reachable only if 



some range£_ is not empty, so that both lwb ~ and upb ~ are known to be in 

range, as at the" ..• " in for i over~ do ... od. 

e Allowing intersection of ranges, as in mode£_= rl n r2, after which r is 

recognized as a subrange of rl and r2. 

4. MODES DEFINED BY CHARACTERISTIC PREDICATES 

BAUER & GNATZ [8] have suggested the possibility of definitions like 

mode posreal = (real x) bool: x > O. 

This is quite similar to ~ode~= 1 n, which could be expressed by 

modem= (inti) bool: 1 $ i Ai$ n. 

Of course, in the context of real x, posreal y, z, the assignations x:= y and y:= z are 

OK, buty:=xis not, since it cannot be guaranteed thatx is positive. One has to write 

EE!!.!!_ x in (posreal p): y:= pout error esae. 

The reasonformentioning this construction here is that it provides a tool 

for increasing security in certain cases where no other simple syntactic means 

avail. Suppose that a function has been defined which only converges if a posi

tive argument is supplied. A sensible prograrraner may insert a check at the 

routine's entry, but if this check fails, his trouble begins. Where did the 

erroneous value originate? How was it passed on? By prescribing the mode posreal 

at all places where he knows the values involved should be positive, the pro

grarmner can catch the error at its point of origin. 

5. ABSTRACTION FROM DATA REPRESENTATION 

Even though a certain operation may be perfectly meaningful as far as the 

semantics of the algorithmic language is concerned, it may be sheer nonsense 

from a human point of view. My school teachers would insist that one cannot add 

apples and pears together, and yet enough progralllr.ling errors have been made by 

adding birth dates to salaries or relative errors to absolute quantities. I 

myself have a sore recollection of a program dealing with music which employed 

two different systems to represent notes by integers. In spite of some careful 

measures, values in one system kept turning up at places where values in the 

other system were expected. 

It is strange that the security provided by abstraction from data representa-



tion is offered at a low level, but should be withheld from the user at higher 

levels of abstraction. 

An example of the use of integers to represent an in fact completely differ-

ent concept is given by 

int male= 1, female= 2, neuter= 3. 

The intention here is merely to introduce three new, distinct values to represent 

genders. This is much more clearly expressed by the scalar type of PASCAL: 

~gender= (male, female, neuter). 

In this way, meaningless expressions like male+ female x neuter are prohibited. 

(The formula 6 - me - de in the Towers-of-Hanoi example of the Revised ALGOL 68 

Report is a "dirty" programming trick to select the third element of a set, 

different from me and de.) 

An elegant way to prevent the mixing up of arithmetic quantities represent

ing, e.g., physical quantities with different dimensions, is presented by 

CLEAVELAND [97. His system is described by grafting it on ALGOL 68, using the 

same descriptional technique as the Revised Report. A simple example is given by 

pouch inch real x, y, pouch cm real z. 

The declarer pouch inch real is used for values which are represented as real 

numbers but have a distinct mode, as indicated by the tag inch which, of course, 

has no inherent meaning. After these declarations, x:= y is a valid assignation, 

but x:= z is not. It is possible, however, to write x:= z x 0.393? inch/cm. The 

validity is checked by performing dimensional analysis as part of the mode 

mechanism. (Note that O. 3937 inch/cm is not a formula, but a denoter for values 

of the mode P!}Uch inch/cm real.) A quite different method of use is illustrated 

by 

11952 : 19?5 ye·ars] bool of age; 

for y from 1952 to 19?5 years 

do of age 1yJ:= y - 1952 years z 21 years od. 

For more-dimensional multiple values, association of different pouches with 

different subscript positions will effectively prevent accidental transposition 

of subscriots. 

Although the incorporation of such features in future programming languages 

should be encouraged, the general problem needs a separate attack. There will 

always remain a need for the introduction of new modes with a meaning not yet 

catered for. In order to rel_)resent values of that mode, sone choice has to be made 



among the already definable modes. Presumably, some operations are then ·possible 

which are meaningless in terms of the intended meaning. 

Consider, e.g., a mode "stack". Meaningful operations on a stack are push

ing and popping. In order to model a stack, a pair consisting of an integer and 

a large array might be used. Alternative representations are a linear list or a 

double-ended queue (which may be available as primitive in some programming 

languages). Using the last representation it would be possible to pop the bottom 

of the stack, an operation which cannot be expressed reasonably using the first 

model. Conversely, using the first model it is possible to select elements of 

the stack at random. All of these are meaningless in terms of the semantics of 

a stack and should be precluded. 

Using the class concept of SIMULA 67, we can define 

class stack; 

begin integer ptr; inteqer array cezzr1 large 7; 

end. 

procedure push (i); integer i; 

begin ptr:= ptr + 1; cell[ptrl:= i end; 

integer procedure pop; 

begin pop:= cell,ptr]; ptr:= ptr - 1 end; 

ptr:= 0 

If, as has been proposed, the identifiers ptr and cell are hidden and only push 

and pop are exported, then, after the declaration ref (stack) s, t, the only 

operations that may be used on sand tare a.push and a.pop, and t.push and 

t.pop, respectively. Thus, in fact, each new variable of class stack is of a 

new, unique mode. 

The advantages of the use of classes for lightening the correctness proof 

by factoring it are expounded by HOARE [10]. A very similar construction is put 

forward by LISKOV & ZILLES [l I], who stress the fact that an abstract data type 

should be characterized by the available operations as defined by the user. The 

germ of this idea could already be found in WILKES [12]. 

This feature, nice though it may be, is insufficient to cater for our needs, 

since only monadic operations may be prescribed. A solution has been proposed 

by MORRIS [13], which will be demonstrated here as an extension of "definition 

modules" as proposed by SCHUMAN [14]. There, identifiers and other indicators 

may be hidden in the context in which the definition module is invoked by 

preceding their definition by irrrplicit. If, likewise, the possibility is intro

duced of prefixing a mode-definition with primitive, meaning that in the invoca

tion context the mode defined is treated as primitive, we achieve the desired 

effect. For example, we might define 



definition prelude= 

begin mode primitive int= [O: 15] bool, 

primitive ahar = [O : 15] bool, 

qp_ +=(int a, b) int: ... , 

end 

... , 
qp_ abs = (ahar a) int: a, 

qp_ repr = (int a) ahar: a 

and then invoke the definition in 

begin env prelude; 

int i, ahar a; 

where in the latter context i:= abs a and a:= repr i are legal assignations, 

while i:= a and a:= i are syntactically invalid. The mode of abs is proa ([ ] 

bool) [ J bool in the context of the definition module, but proa (ahar) int 

in the invocation context. 

A recurrent complaint with respect to the design of ALGOL 68 has been the 

use of the name concept both for variables and for pointers to (structured) 

objects. The essence of this complaint is the fact that two properties of names 

are invariably linked together: that of granting access to an object without 

automatic creation of a copy, and that of granting the right to supersede it 

(or its possible sub-objects) with another object. For example, if lists are 

represented in the usual way, access to a list implies the possibility of an 

operation such as tail£[ a:= a, creating an ill-formed (circular) list. This 

is a typical example of a meaningless operation in terms of the semantics of 

lists, made possible by the fact that some representation has to be chosen. 

Using the above approach, one may define 

definition lists= 

begin mode list = union (nil, properlist), 

primitive nil = void, 

end. 

primitive properlist = ref struat (string head, list tail), 

qp_ * = ( string a, list b) proper list: 

~ struat (string head, list tail):= (a, b), 

qp__ head = (properlist a) string: head 91.. a, 

qp_ tail = (properlist a) list: tail 91.. a, 



Only well-formed lists may be formed with the operations made available by this 

module. In other words, if a language such as ALGOL 68 is endowed with the pos

sibility of user-defined "primitive" modes, the basis for complaints like the 

above vanishes completely. 

6. CONCLUSION 

A sketch has been given of how information about dynamic properties of 

values (their meaning) can be expressed as a static property (their mode), 

with varying degrees of sophistication. It is my belief that it is not sufficient 

to study disciplines through which more reliable programs may be obtained, but 

that we should also provide tools through which the willing spirit can enforce 

this discipline on his weak flesh. I hope that this paper may suggest some 

feasible tools to future language designers. 
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