
ma
the
ma
tisch

AFDELING INFORMATICA

cen
trum

L.J.M. GEURTS & L.G.L.T. MEERTENS

DESIGNING A BEGINNERS' PROGRAMMING LANGUAGE

Prepublication

amsterdam

IW 46/75 DECEMBER

1976

AFDELING INFORMATICA

stichting

mathematisch

centrum

L.J.M. GEURTS & L.G.L.T. MEERTENS

DESIGNING A BEGINNERS' PROGRAMMING LANGUAGE

Prepub I i cation

~
MC

IW 46/75 DECEMBER

2e boerhaavestraat 49 amsterdam

Plvi.Ytted a.t the. Ma.the.ma.u.c.a.l Cen.:tJr.e, 49, 2e BoeJtha..a.ve1i.tJuLa.t, Am.6.teJt.dam.

The Ma.the.ma.Uc.al CentJte, 6ounded :the 11-.th 06 Febll.WVLY 1946, i6 a. non­
p1to6U ,ln6:tUu.tlon cum.lng a.t the pll.Omo.Uon 06 puJte ma.the.ma.UC-6 a.nd Lt6
a.pp..U.c.a.:ti..on6. 1.t i..t:i .opon601ted by .:the Ne..:the!Lia.ndl> GoveJr.YLmen:t .th!tough .the
Ne.the!Lia.ndl> OJt.ga.n,i.za.Uon 6oll. .the Adva.nc.emeYtt o 6 Pwz.e Re6 eMc.h (Z. W. 0) ,
by .the M11YU.cupa.U..ty 06 Am6teJt.da.m, by .the Uvuve/l.6Uy 06 Am6teJui.a.m, by
:the F1tee Unlve/l.6..U-.y a.t Am6.teJtda.m, a.nd by indru,bu.e1i.

AMS(MOS) subject classification scheme (1970): 68A30

ACM-Computing Reviews-categories: 4.22

*) Designing a beginners' programming ~anguage

by

L.J.M. Geurts & L.G.L.T. Meertens

ABSTRACT

FORTRAN ALGOL 60 = PL/I ALGOL 68 = BASIC ?

KEY WORDS & PHRASES: programming language, structured programming, program­

ming language design, simplicity

This paper is not for review; it is meant for publication elsewhere

0. INTRODUCTION

Among programming languages there is a family of languages which are charac­

terized by their syntactic and semantic simplicity and their suitability for con­

versational use. Perhaps the most familiar of these is BASIC, some others being

FOCAL, JOSS and TELCOMP. The typical user of such languages is not a professional

programmer, nor does he dwell in an academic computer science environment. He

does not have the time nor the ambition to learn a complicated language for the

occasional program he writes.

Now, these languages were mostly designed before the current ideas on "struc­

tured" programming became generally accepted. They lack most of the tools that

a programming language can provide for taking a structured approach to program­

ming, presumably because about the same effects could be obtained with "simpler"

means. Unfortunate as this is by itself, the situation is particularly bad since,

for example, BASIC - maybe the worst villain in this respect - is quite commonly

used to teach high school students introductory courses in computer science.

There exists little material on the effect on a programmer of the first program-

ming language he is exposed to, but from personal experience we have the strong

impression that in many cases it deeply influences his thinking habits for a long

time to come.

It is out of concern with this situation that we have looked at the problem

of designing a language which would have an appropriate arsenal of structured­

programming tools (thus eliminating their harmful equivalents) and yet be very

simple. To facilitate discussion, we have called the hypothetical language ful­

filling these criteria "B". Thusfar, the results are incomplete and in some re­

spects unsatisfactory. If we nevertheless present our attempts here, it is in the

hope that others be stimulated to examine our approach critically, to suggest

simplifications or other improvements, or to contribute otherwise to the solution

of the problems that have to be overcome.

It is a legitimate question if it is necessary to develop a new language and

if not one of the existing languages could take the place of the question mark in

the abstract, We did review many of these, but, without naming any specific lan­

guage, we found none meeting all of our three criteria, as given in section 2. If

one of these crit 0 ria is disregarded, however, it is easy enough to find a satis­

factory language, but in each case we hoped to do significantly better with re­

spect to the third criterion. In fact, since none of the existing programming lan­

guages appears to have been designed with this particular combination of objec­

tives, this situation is not surprising. We also looked into the possibility of

taking a subset of an existing programming language. Apart from the fact that the

definition of such a subset constitutes in essence the design of a new language,

this did not work out either. The problem, in general, was that either the ex­

pressive power of the subset was definitely insufficient, or the semantics were

too complicated. It is interesting to note that the languages that appeared to

give the best results were quite wide-spread and successful ones: ALGOL 60 and

PASCAL.

I. DESIGNING A PROGRAMMING LANGUAGE

In designing a programming language - or, for that matter, any major system -

one faces the task of bridging the gap between the design objectives and the

basic material from which the system is to be built. It has been suggested that a

good approach is the top-down one, starting from the objectives, 'and not commit­

ting oneself to design decisions until further postponement becomes impossible.

Now, this approach is feasible only if it is possible to separate the system into

a number of subsystems which are relatively independent, i.e., design decisions

in one subsystem interact hardly with design decisions in the other ones. If such

a separation is possible at all in language design, we have been unable to find

it. (An exception may be separation of the choice of basic data types, data

structuring primitives and the corresponding operations. We have not yet given

these issues much thought.)

Instead, we tried to clarify to ourselves our design objectives, took some

general, but rather conmitting, decisions on matters of principle, sometimes by

just cutting the knot, and next proceeded to fill in the open spots straightfor­

wardly, just to see what a programming language along these lines might look like.

Especially in this latter part decisions are often quite arbitrary and completely

open to revision; we felt it wiser to go to the bottom and then re-iterate the

design process, than to remain pondering imponderable design decisions.

2. CLARIFICATION OF DESIGN OBJECTIVES

Our design objectives are

simplicity

suitability for conversational use

inclusion of structured-programming tools.

2. I. Simplicity

Simplicity in a programming language has two aspects which may, but need not,

be at a par: simplicity for the user, and simplicity for the implementer.

For the kind of user we have in mind, simplicity would mean:

I. he has only a small number of constructions to learn;

2. the concrete syntax of the constructions is suggestive of their meanings and

therefore easy to remember;

3. the semantics for each construction is as straightforward as can be;

4. it must be possible to postpone learning more complicated concepts, if any,

until the simpler ones are understood.

It should be understood that we are aiming at a far simpler language than

FORTRAN, ALGOL 60 or PASCAL, that is, simpler in the above respects. This implies,

of course, that a proficient programmer may feel hampered by the poorness of the

language. But Bis not intended to serve his purposes, and he would be well ad­

vised to use other languages. The typical program we envisage is small (100

lines, say) and relatively straightforward.

If anything, B should be no exploring ground for new concepts in programming.

Elegance is of no concern, simple-mindedness is.

It follows from our aims that the whole enterprise will be a failure if B

should not gain widespread use. Obviously, the quality of B alone, supposing the

design efforts turn out successful, is no warrant for acceptance. A necessary

condition is the availability of implementations, which can be furthered by

simplicity for the implementer. (Of course there are many more conditions, but

these are not intrinsic to the language.) Simplicity implies here:

a straightforward parsing scheme which (hopefully) needs only one pass;

- no need for optimization;

simple memory management at run time;

few run-time routines.

Typically, B should be implementable on small minicomputers.

Unless we head for an "interpretive" language (see 3.2), the one-pass goal

suggests declaration before use, except maybe in those cases where the meaning of

identifiers is clear from the context. Simple memory management would be served

by having all programs satisfy the "most recent" property (if at some time more

than one instance of a recursive procedure is active, the static chain of lexico­

graphically enclosing blocks contains the most recently activated one). One way

to achieve this is to forbid routines as parameters. Garbage collection is another

source of difficulties; if a heap is necessary, it would be nice, for example,

to deal memory in chunks of uniform size, to which only one pointer may refer an~

from which only one pointer emerges. These issues require further study.

We also strive for uniformity of implementations, meaning that a program which

runs on one implementation will also run on another one with the same result

(but for limitations of time or memory size). As far as Bis concerned, this means

we are restricted to a small set of generally available characters. It would also

mean, for example, that real arithmetic would have to be specified down to the

last bit. If properly done, this may be helpful to implementers on minicomputers.

A special consequence of this uniformity is that the semantics should be

deterministic. This is also desirable for another reason. If non-determinism of

the semantics would be reflected in (pseudo-)non-determinism of the implementa-

tions, this would be very unhelpful to the programmer who tries to find why his

program fails. If, on the other hand, the implementations are deterministic where

the language is not, experience shows that eventually, in the mind of the program­

mer, the semantics of the progralllllling language is supplanted by the semantics of

the implementation.

2.2. Suitability for conversational use

We require that Bis suited for conversational use. The term "conversational"

(or "interactive") has no clearly delineated meaning. In some cases the error

messages of a compiler are already considered conversational if directed to a

terminal; on other occasions the term is reserved for natural language oriented

systems which display a sophisticated form of intelligence.

We choose to use the term for a system with the following aspects:

it follows the "utterances" of the user closely, and reacts illDllediately when-

ever appropriate, rather than keeping its reaction till the final moment of

analysis when the user is done;

it displays one "face" to the user, rather than a variety of faces of subsys­

tems on different levels, such as an editor, a file system, a compiler, each

with its own conventions and reactions and hardly aware of each other's exis­

tence;

it does not leave the user uncertain whose turn it is and prompts him

whenever a reaction is required.

It must be possible to integrate B into such a system, and in fact we hope

ultimately to define the complete B-system, rather than just the B-language. The

B-editor should already perform the parsing and detect most syntactical errors.

This means that the syntax of B must be such that the effect of syntactical errors

is as local as possible, and it suggests that the language should be line orien­

ted; that is, programs are considered as sequences of lines, not as mere sequences

of symbols. If the editor knows the syntax, this also gives perspectives for

simplifying editing commands.

2.3. Inclusion of structured-programming tools

The most important design goal is the inclusion of a set of structured­

programming tools. Abstractly, we consider any language feature that aids in

proving program correctness a structured-programming tool. (There are many other

ways of looking at structured programming, all of which eventually seem to con­

verge to the same set of tools.)

There are several ways in which a structured-programming tool can facilitate

a correctness proof. We can at least discern the following three aspects.

a. The various constructions should have a clearly understandable meaning, i.e.,

a meaning which is easily expressible in terms of assertions, can be grasped

intuitively, and does not require retention of the original definition. To

illustrate this point, the while and the if-then-else construction are con­

ceptually simple, but the meaning of the for-statement of ALGOL 60 can only

be fully understood using the definition in the Revised Report on ALGOL 60.

For example, the effect of the statement

for i:= O whil.e false, i step 1 until 0, i + 1 step i - 1 until 10, i do -- ---
begin print (i); i:= i + 1 end

is not easily determined as printing

0 3 7 15.

b. A proof can usually be divided into relatively independent smaller proofs.

The language should permit this division to be reflected in the program texts.

(Stepwise refinement is the corresponding method of program construction.)

The usual tools are block structure and procedures. However, most programming

languages hardly encourage a top-down approach. One either has to substitute

the refinement literally in the program text, with the effect that the orig­

inal structure is hidden, or must use procedures, thus incurring a great loss

of efficiency, and moreover, the definition of the procedure must often be

inserted preceding the application.

c. The level of abstraction at which it is possible to understand an algorithm

and, therefore, the level at which it is convenient to prove the correctness,

is invariably much higher than the level supported by the progrannning lan­

guage, even for simple programs. Here, even more strongly than in the previous

aspect, one wishes to be able to clearly separate the different levels of

abstraction in the program text. One way to do this is to build several

layers, each providing the primitives for the next one.

We hasten to say that we do not expect that the user of B will write down a cor­

rectness proof for his programs; the point is that a program that is easily proved

correct is easily understood, and the hypothetical correctness proof is reflected

in the construction of the program.

The distinction between these three aspects is not always clear-cut, and we

used it only to guide our thinking. As to the first aspect, a schematic descrip­

tion of our design method may be given as follows. Take a feature F which is

under consideration as a candidate for inclusion in B. (At this stage Fis an im­

precise concept.) Now try to find the algorithmic concepts which might be imple­

mented using F, and examine if these specific concepts themselves merit being

translated into new features to be included in B. This may very well lead to

the conclusion that inclusion of F itself is undesirable. (Just as the goto-state­

ment may be abolished in favour of a while and an if-then-else construction.)

Otherwise, the semantics of Fare chosen such that they do not give rise to

surprises if used to model these notions. An example of such a surprise, if the

passing of variables as parameters is implemented with the ALGOL-60 call-by-name

semantics, is illustrated by

procedure swap (p, q); integer p, q;

begin integer h; h:= p; p:= q; q:= h end,

~fter which swap (i, a[i]) and swap (a[i], i) have different meanings.

Complications are the facts that the number of features to be included should re-

main limited, and that two conceptually different notions may be semantically so

close as to be confusing.

3. GENERAL DECISIONS

3.1. Abstract syntax

One of the issues where a decision appeared necessary at an early stage is

that of the general syntactic approach, which has implications both for control

structures and for data structures. As to the abstract syntax, i.e. the basic

method of program composition, it was not hard to decide that an expression lan­

guage, where (in general) the elaboration of any construction yields a result,

was out of the question: in such languages, e.g., ALGOL 68, constructions which

have an effect, e.g., assignations or closed clauses, have side effects if used

as expressions. If expressions do have side effects, there are no good program

points to assign assertions to; in fact, the meaning of a program with such ex­

pressions may be difficult to grasp unless the side effects belong to a different

level of abstraction. If expressions with side effect should be allowed at all,

they should be the exception rather than the rule, and be confined to a clearly

separate corner, such as function procedures.

The choice therefore fell on the more conventional approach of program com­

position as a sequence of statements, executed in turn.

3.2. Concrete syntax

For the concrete syntax, the possibilities seem almost unlimited. Yet, the

following line of reasoning gave us some hold.

Let the term "constructor" stand loosely for those symbols or combinations of

symbols which form, so to say, the skeleton of a construction. In ALGOL 68 we

find, among others, constructors +, :=, @, ~i: and :!:t th.en el,se [i. These symbols

are, in general, either rather special characters or word delimiters. Since, for

B, we are confined to a small character set, only a few special characters are

available, fewer than the number of constructors we need. It is, of course, pos­

sible to combine several characters into one symbol(:=, or even:/=:), but this

is mnemonically bad, since such symbols are hardly suggestive of the associated

meaning. Another possibility is overloading of constructors, but that seems even

worse - just consider the parsing problems in ALGOL 68, for automata and human

beings alike, arising from the overloading of: and(.

This leads us straight to the use of word delimiters. Now, we think it a bad

idea, if only for competitive reasons, to require a form of stropping. On the

other hand, it appears unwise to have reserved words, not so much because we want

to encourage choosing such words as identifiers, but because of the havoc such an

accidental choice may work in the parsing of the program. (Also, this approach

would not allow the beginner to have only a partial knowledge of the set of re­

served words.) The only way out is to have such a syntactic structure that it is

always clear to the parser whether a word has to be interpreted as an identifier

or as a "keyword", as in PL/I. A simple way to achieve this would be to alternate

keywords and identifiers as in FOR I FROMM TON DOS OD. This would imply that a

construction beginning with a keyword cannot take the place of such an identifier.

Therefore we make the following distinction. Let the term "construend" refer to

the constructions "held together" by the keywords of the constructors (the same

way as operands are held together by operators). We then have for construends

"statements", which always start with keywords, and "expressions", which never do.

We take care that the first keyword of the constructor of any construction is

unique, i.e., distinct from the remaining keywords of that constructor and

from all keywords of other constructions. This precludes having both IF THEN and

IF THEN ELSE, or both FOR WHILE DO OD and WHILE DO OD, or PR PR. Under these con­

ditions it is possible to construct with great liberty almost any combination of

keywords, expressions and statements, as long as the keywords of the constructor

up to a potential construend tell us whether to expect next a statement or an ex­

pression, or nothing at all.

3.2. Compilation vs. interpretation

Another quite general issue is the choice between orientation towards compi­

lation vs. interpretation. (These terms are not the most felicitous, since they

refer to properties of implementations, not of languages, but we hope their

meaning is nevertheless clear.) The orientation towards interpretation is in many

aspects very attractive. In general, the syntax and semantics may be greatly sim­

plified by having a run-time determined type. The implementation effort may then

in general be greatly reduced. Another perspective is the integration of program

statements and system commands. This is done in some of the interactive languages;

for example, PRINT (Ix I) FOR I= I, 10 may be used as a statement, but also as

a command, so that the system contains in fact a glorified desk calculator. The

idea is very appealing; after ample consideration, however, we have decided not

to pursue it, since we fear it might encourage an attitude towards programming

that we would rather discourage: progrannning should be done in the mind or on

paper, not at a terminal. Moreover, we did not quite see how the interpretive

orientation could be reconciled with (a) the locality of scope of identifiers

required for factoring correctness proofs, or (b) easy use of assertion oriented

proofs, since the assertions would have to be extended with clauses like "if this

variable has the proper type, if that variable has the proper type, ..• ". For

these reasons, we closed our ears to the chant of the sirens and decided on com­

pilation orientation.

4. DEFINITION OF B0

Presented below is the "definition" of a language B0, an order O approximation

of B, interspersed with some justification for particular choices made. As men­

tioned before, the choices made are often quite arbitrary; in general, if no jus­

tification is mentioned for a choice which may be thought questionable, the reason

is probably that no such justification exists. No attempt is made for any formali­

ty or rigidity, as this would be completely pointless at this stage. Also, no

attempt has been made for clarity or completeness of description; we heavily rely

on the reader's knowledge of programming language concepts and his intuitive un­

derstanding.

B0 is neither more nor less than the result of the very first term of an

iterative design process, such as is normally not disclosed for the world to be­

hold.

We have freely incorporated any feature found in existing languages where

this seemed desirable. In such cases, in general, no reference or credit is given.

4.1. Layout

Typographical display features, such as space or new line, play a role in the

syntax of B0 • They are required to separate lexical units which otherwise might

be taken for one unit, e.g. a keyword and a tag. They are not allowed within

lexical units. At any given position a transition to a new line may be forbidden,

optional or obligatory, depending on the particular construction in which it

occurs. Each statement may start at a new line, and, moreover, unless the state­

ment is the last part of another statement, the new line is always obligatory,

and so constitutes a sequencing operator, just like the semi-colon in ALGOL. Some

constructions have other obligatory line transitions. The syntax of B0 is such

that a new line where forbidden or no new line (but a space) where obligatory,

never changes a valid program into another valid program. As a consequence, a

B0 editor that is aware of the syntax and automatically indents at each new line,

may also automatically increase the indentation level at each new line which is

not obligatory, thus indicating continuation of the running statement. Similarly,

at the end of each statement the editor can restore the old indentation level.

As a result, B0 programs always have a reasonable layout.

4.2. Control structu:t>es

The traditional if-then-else construction seems to perform two conceptually

different functions: to prescribe an action in a specific, typically rare, event,

as in

i:f. x > ma,x then max:= x fi

or to select an action according to the appropriate case, as in

:!:1 :r < O then sign:= -1

eUf :r > 0 then sign:= +1

else sign:= 0 fi.

It is only by coincidence if there are exactly two cases from which to select in

the latter case. Therefore B0 has two different constructions:

IF condition statement

and

CASE condition1 statement 1

CASE condition statement
n n

ELSE statement.

(Note that the keyword ELSE is, technically speaking, superfluous.) Of course,

the conditions are (a special case of) expressions. They are tested sequentially;

each alternative starts on a new line. The above examples would become, assuming

some format for assignations:

and

IF X > MAX PUT X IN MAX

CASE X < 0 PUT -1 IN SIGN

CASE X > 0 PUT +I IN SIGN

ELSE PUT O IN SIGN.

This form of the case-statement was suggested by the structured presentation of

the semantics in the Revised ALGOL 68 Report.

We have some doubt whether the presence of the if statement beside the case

statement is really desirable: the semantics are so close that the uninitiated

programmer may get confused and use the former construct where the latter is more

appropriate. The reverse situation is not so bad; it it simply means that the

programmer has to consider the action to be taken if the (exceptional) condition

is not met.

For the case-statement, we would have preferred semantics where the ordering

of cases is immaterial. The only possible way we see, is to test all conditions

and to require that at most one succeeds. This means however, introduction of run­

time errors for cases which, abstractly viewed, are perfectly valid, such as

CASE problem-can-be-solved-by-method-a APPLY method-a

CASE problem-can-be-solved-by-method-b APPLY method-b

ELSE reach-for-higher-means,

where either method might apply to a particular problem.

In cases were no action is required in the ELSE part, the PASS statement is

used:

CASE A> 0 PUT P + IN P

CASE A< 0 PUT P + IN P

ELSE PASS.

For repetition the obvious choice seems to be:

WHILE condition statement.

Although this is our choice indeed, we have also given attention to possibilities

as

WHILE condition1 statement 1

WHILE condition statement
n n

DONE,

but the advantage of having this multi-conditional form available does not seem

to outweigh the disadvantage of the extra DONE in the much more frequent uni­

conditional case. Should it be decided, however, to discard the if-statement,

then this form becomes the most attractive one.

No provisions are given for escape from a while statement. All "solutions"

known to us are rather ad-hoc and violate the principle that upon completion the

condition is known to fail. Also, no repeat-until construction is provided, since

it is an open invitation for the common beginner's progrannn.ing error of overlook­

ing the possibility that a loop may be "empty", as in

REPEAT PUT A // 10 IN A

UNTIL A< 10,

which yields the first digit of A, unless A happened to be a one-digit number.

A condition may take the form

simple-condition1, •.• , simple-condition0

with the meaning that the simple-conditions are evaluated from left to right, un­

til one of them fails (in which case the whole condition fails) or all are found

to succeed. (Note that the order of evaluation is innnaterial if the expressions

have no side effects, unless the evaluation may yield an error.)

Example:

I<= I, I<= N.

No connectives are provided in B0 for disjunction or negation. It may turn out in

practice that this is. untenable, especially for the while-statement as it stands

now.

Another form of repetition is given by

FOR id OVER range-id statement

or

FOR id REVO range-id statement.

As in ALGOL 68, the identifier is bound to the statement and cannot be assigned

to. Range-identifiers correspond to the type of index values and are used in

array-declarations. The keyword REVO reverses the order so that the range is tra­

versed from upper to lower bound.

Example:

FOR I OVER ROW

FOR JOVER COL

PUT O IN A(I, J)

For grouping a sequence of statements into one, we have the block

BEGIN

statement 1

statement
n

END.

We are not too pleased with the keywords BEGIN and END: they have an imperative

connotation rather than a parenthetical one.

Declarations may be interspersed between the statements. As a rule, declara­

tion must precede application.

4.3. Procedures

Conceptually, we can divide the use of procedures into

refinement;

process specification where the iterative structures are insufficeint or cum -

bersome;

new functions or operations.

For the first type of use, parameters and recursion are not needed (and even un­

wanted). In this case access to non-local entities is standard. The other two

types, which are not clearly distinct, need some kind of parameters. In these

cases, we consider access (other than through parameters) of non-local entities

which belong to the realm where the procedure is applied, undesirable and un­

necessary.

For refinement, one can use a statement

DO ref-id

and then define the refinement by

ref-id: statement.

The effect is as though the statement were textually substituted for the piece

of text DO ref-id. In order to avoid confusion it is required that all identifiers

used in the statement are "visible" from the position where the refinement is de­

fined.

B0 does not have other types of procedures. The reason that this obvious

structured-programming tool is not included, is simply that we have not (yet)

found a satisfactory approach to the parameter mechanism. The call-by-name mecha­

nism of ALGOL 60 and the call-by-value mechanism of ALGOL 68 are both quite

simple, but each has aspects making it unattractive for B:

a. call by name:

- may not be what is needed in the program;

in certain cases a rather intricate systematic change of identifiers is needed;

there exists a discrepancy between the abstract replacement one imagines while

programming, and the concrete replacement by textual substitution (cf.2.3.a);

implementation problems.

b. call by value:

requires a generalized notion of "value" (for example, procedures as values);

problems in specifying the type of the parameters;

either addresses are values, or unacceptable inefficiencies are incurred if,

for example, arrays are transmitted.

The conclusion seems to be that B1 will have about the parameter mechanism of

PASCAL.

The philosophy of the keywords opens the possibility of user-defined state-

ments, as in

DEF INCR X

PUT X + I IN X

ENDDEF,

after which a new INCR statement is defined. This also must await a choice for the

parameter mechanism.

4.4. Data st:t'Uatures

The predefined basic types are INT, REAL and STRING. The usual arithmetic

operations+,-,*, I and** are available, where for exponentiation the exponent

must be an unsigned INT constant. If the operands are of mixed type, automatic

widening from INT to REAL takes place. Division always yields a REAL value. Inte­

gral division is written with the operator II . Here, in contrast to ALGOL 60168,

(-7) II 3 = -3, so that (A + B) II B = A II B + I always holds. The priorities

of the operators are the conventional ones (and -2**2 = -4). For comparison, we

have<,<=,=,<>,>= and>. Special functions available are SQRT, LN, EXP, SIN,

COS, ATAN, SIGN, ABS and ENTIER, just as in ALGOL 60 and with the same type con­

ventions. However, the result of ABS has the same type as its argument, and ATAN

takes two arguments; in the sense of numerical analysis, if

PHI= ATAN (X, Y) and

then

X = R * COS (PHI) and y R * SIN (PHI).

For strings, the basic operations are+ (concatenation) and the comparison

operators. The function HEAD yields a string consisting of the first character

of its argument; the function TAIL yields a string consisting of its argument

minus its first character; if the argument of HEAD or TAIL is the empty string,

then so is the result.

New basic types may be created by a range-definition:

RANGE range-id FROM int-expres&ion TO int-expression
I 2

or

RANGE range-id HAS tag 1, •.. , tagn.

The obligation to PASCAL should be obvious. A type BOOL could be defined as

RANGE BOOL HAS TRUE, FALSE.

That this type is not predefined is not without reason. In most cases, clarity

is served by an explicit indication of what the alternatives in a two-valued type

stand for, as in

RANGE PASSAGE HAS OPEN, CLOSED

so that one may ask

IF AHEAD= OPEN

The functions LWB and UPB yield the lower and upper bound of a range (not of

an array!).

Expressions of any range type may be used as arithmetic expressions, with

automatic conversion to INT. The other way around is possible by a special

simple-condition

int-expression FITS range-type-variable

which succeeds only if the value of the int-expression is within the range asso­

ciated with the range-type-variable, whereupon that value is assigned to the

variable. Thus, a loop such as

FOR I OVER H PUT O IN A(I)

is short for

BEGIN
VAR AUX TYPE INT

PUT LWB (H) IN AUX

VAR I TYPE H
WHILE AUX FITS I

END.

BEGIN
PUT O IN A(I)

PUT AUX + I IN AUX

END

For any of the basic types, simple variables may be declared in a declaration

of the form

VAR id TYPE type-id 1, •.• , id TYPE type-id ,
I n n

where the type-id is either INT, REAL or STRING, or a range-id.

The sequence

id 1 TYPE type-id, id2 TYPE type-id

may be shortened to

id 1, id2 TYPE type-id.

Constants may be declared by

CONST id 1 IS expression1, . . . , id IS expression.
n n

There is no need to indicate a type here, as automatic conversion will take care

whenever necessary.

Arrays of variables are declared by

ARRAY (range-id 1, ••• , range-idd) id 1 TYPE type-id 1, . . . , id TYPE type-id ,
n n

with the same abbreviation as for simple variables.

Subscripting is only possible with subscripts of corresponding range-type. This

implies that subscripts are either an identifier (constant or simple variable) or

a subscripted variable. Practice only can teach us whether this restriction will

be acceptable.

Assignment is only possible to variables; there are no such things as array

expressions. The general form of an assignation is

PUT expression1 , ••• , expressionn IN variable 1 , ••• , variablen'

where the types of the expressions must conform to those of the variables. The

expressions are evaluated before the assignment takes place, so

PUT B, A IN A, B

will swap the contents of the variables A and B. This form of assignation has

been chosen for didactic reasons, to emphasize the algorithmic notion of varia­

bles, instead of, e.g.,

SET XTO I

or, even worse,

LET X BE

which is suggestive of algebraic rather than algorithmic variables. We have

chosen not to incorporate structured variables. The reason for this is that

structured variables make sense mainly to define abstract data types. The problem,

therefore, is to find first a clear and simple way for introducing abstract data

types with associated operations (which leads also to the problem of the para­

meter mechanism).

We have not found a satisfactory solution to the problem of uninitialized

variables. Roughly, we can distinguish four approaches (apart from "who cares"):

I. Check at run-time. Disadvantage: yet another run-time error.

2. Default initialization. Disadvantage: if the intended initialization (to an­

other than the default value) is accidentally omitted, this may pass by un­

noticed; worse than alternative I.

2. Initialization as part of the declaration. Disadvantage: duplication of the

semantics of assignment; moreover, there are problems for arrays (unless ~11

elements are initialized to one same value).

4. Static check whether all possible computation paths initialize a variable be­

fore it is used, with a suitable definition of "possible path". Disadvantage:

the check is not very simple, and the correctness conditions may be unclear to

the simple-minded user.

At the moment, we tend to favour the last approach, provided that it turns out

not too complicated.

4.5. Transput

and

At the moment we envisage three transput statements:

PRINT expression 1,

NEWLINE

. . . , expression,
n

READ variable 1, ••• , variablen.

An alternative to the read statement would be to have an expression READ. This

would be, however, an unnecessary introduction of an expression with side effects.

It is intended that in

RANGE ANSWER HAS YES, NO

VAR GOON TYPE ANSWER

PRINT "DO YOU WISH TO CONTINUE?"

READ GOON

YES (or NO) would be valid input.

PRINT should output in a simple, standard format, the idea being that a program­

mer who wishes a special effect should take the trouble of constructing the

necessary strings himself. An open problem is how to detect on input the end of

a string.

5. EXAMPLE OF A B0 PROGRAM

BEGIN

CONST N IS I 999

RANGE SIEVESIZE FROM 2 TON

RANGE PRIMALITY HAS PRIME, NONPRIME

ARRAY (SIEVESIZE) A TYPE PRIMALITY

FOR I OVER SIEVESIZE PUT PRIME IN A(I)

VAR K TYPE INT, IOOJ'LT TYPE SIEVESIZE

PUT2INK

WHILE K * K FITS KMULT

BEGIN

VAR Kl TYPE SIEVESIZE

IF K FITS Kl, A(KJ) = PRIME DO SIEVE

PUT K + I INK

END

SIEVE:

BEGIN

PUT NONPRIME IN A(KMULT)

WHILE KMULT + K FITS KMULT PUT NONPRIME IN A(KMULT)

END

FOR I OVER SIEVESIZE

IF A(I) • PRIME

BEGIN

END

END

NEWLINE

PRINT I

