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0. INTRODUCTION 

Among programming languages there is a family of languages which are charac­

terized by their syntactic and semantic simplicity and their suitability for con­

versational use. Perhaps the most familiar of these is BASIC, some others being 

FOCAL, JOSS and TELCOMP. The typical user of such languages is not a professional 

programmer, nor does he dwell in an academic computer science environment. He 

does not have the time nor the ambition to learn a complicated language for the 

occasional program he writes. 

Now, these languages were mostly designed before the current ideas on "struc­

tured" programming became generally accepted. They lack most of the tools that 

a programming language can provide for taking a structured approach to program­

ming, presumably because about the same effects could be obtained with "simpler" 

means. Unfortunate as this is by itself, the situation is particularly bad since, 

for example, BASIC - maybe the worst villain in this respect - is quite commonly 

used to teach high school students introductory courses in computer science. 

There exists little material on the effect on a programmer of the first program-



ming language he is exposed to, but from personal experience we have the strong 

impression that in many cases it deeply influences his thinking habits for a long 

time to come. 

It is out of concern with this situation that we have looked at the problem 

of designing a language which would have an appropriate arsenal of structured­

programming tools (thus eliminating their harmful equivalents) and yet be very 

simple. To facilitate discussion, we have called the hypothetical language ful­

filling these criteria "B". Thusfar, the results are incomplete and in some re­

spects unsatisfactory. If we nevertheless present our attempts here, it is in the 

hope that others be stimulated to examine our approach critically, to suggest 

simplifications or other improvements, or to contribute otherwise to the solution 

of the problems that have to be overcome. 

It is a legitimate question if it is necessary to develop a new language and 

if not one of the existing languages could take the place of the question mark in 

the abstract, We did review many of these, but, without naming any specific lan­

guage, we found none meeting all of our three criteria, as given in section 2. If 

one of these crit 0 ria is disregarded, however, it is easy enough to find a satis­

factory language, but in each case we hoped to do significantly better with re­

spect to the third criterion. In fact, since none of the existing programming lan­

guages appears to have been designed with this particular combination of objec­

tives, this situation is not surprising. We also looked into the possibility of 

taking a subset of an existing programming language. Apart from the fact that the 

definition of such a subset constitutes in essence the design of a new language, 

this did not work out either. The problem, in general, was that either the ex­

pressive power of the subset was definitely insufficient, or the semantics were 

too complicated. It is interesting to note that the languages that appeared to 

give the best results were quite wide-spread and successful ones: ALGOL 60 and 

PASCAL. 

I. DESIGNING A PROGRAMMING LANGUAGE 

In designing a programming language - or, for that matter, any major system -

one faces the task of bridging the gap between the design objectives and the 

basic material from which the system is to be built. It has been suggested that a 

good approach is the top-down one, starting from the objectives, 'and not commit­

ting oneself to design decisions until further postponement becomes impossible. 

Now, this approach is feasible only if it is possible to separate the system into 

a number of subsystems which are relatively independent, i.e., design decisions 

in one subsystem interact hardly with design decisions in the other ones. If such 

a separation is possible at all in language design, we have been unable to find 



it. (An exception may be separation of the choice of basic data types, data 

structuring primitives and the corresponding operations. We have not yet given 

these issues much thought.) 

Instead, we tried to clarify to ourselves our design objectives, took some 

general, but rather conmitting, decisions on matters of principle, sometimes by 

just cutting the knot, and next proceeded to fill in the open spots straightfor­

wardly, just to see what a programming language along these lines might look like. 

Especially in this latter part decisions are often quite arbitrary and completely 

open to revision; we felt it wiser to go to the bottom and then re-iterate the 

design process, than to remain pondering imponderable design decisions. 

2. CLARIFICATION OF DESIGN OBJECTIVES 

Our design objectives are 

simplicity 

suitability for conversational use 

inclusion of structured-programming tools. 

2. I. Simplicity 

Simplicity in a programming language has two aspects which may, but need not, 

be at a par: simplicity for the user, and simplicity for the implementer. 

For the kind of user we have in mind, simplicity would mean: 

I. he has only a small number of constructions to learn; 

2. the concrete syntax of the constructions is suggestive of their meanings and 

therefore easy to remember; 

3. the semantics for each construction is as straightforward as can be; 

4. it must be possible to postpone learning more complicated concepts, if any, 

until the simpler ones are understood. 

It should be understood that we are aiming at a far simpler language than 

FORTRAN, ALGOL 60 or PASCAL, that is, simpler in the above respects. This implies, 

of course, that a proficient programmer may feel hampered by the poorness of the 

language. But Bis not intended to serve his purposes, and he would be well ad­

vised to use other languages. The typical program we envisage is small (100 

lines, say) and relatively straightforward. 

If anything, B should be no exploring ground for new concepts in programming. 

Elegance is of no concern, simple-mindedness is. 

It follows from our aims that the whole enterprise will be a failure if B 

should not gain widespread use. Obviously, the quality of B alone, supposing the 

design efforts turn out successful, is no warrant for acceptance. A necessary 

condition is the availability of implementations, which can be furthered by 



simplicity for the implementer. (Of course there are many more conditions, but 

these are not intrinsic to the language.) Simplicity implies here: 

a straightforward parsing scheme which (hopefully) needs only one pass; 

- no need for optimization; 

simple memory management at run time; 

few run-time routines. 

Typically, B should be implementable on small minicomputers. 

Unless we head for an "interpretive" language (see 3.2), the one-pass goal 

suggests declaration before use, except maybe in those cases where the meaning of 

identifiers is clear from the context. Simple memory management would be served 

by having all programs satisfy the "most recent" property (if at some time more 

than one instance of a recursive procedure is active, the static chain of lexico­

graphically enclosing blocks contains the most recently activated one). One way 

to achieve this is to forbid routines as parameters. Garbage collection is another 

source of difficulties; if a heap is necessary, it would be nice, for example, 

to deal memory in chunks of uniform size, to which only one pointer may refer an~ 

from which only one pointer emerges. These issues require further study. 

We also strive for uniformity of implementations, meaning that a program which 

runs on one implementation will also run on another one with the same result 

(but for limitations of time or memory size). As far as Bis concerned, this means 

we are restricted to a small set of generally available characters. It would also 

mean, for example, that real arithmetic would have to be specified down to the 

last bit. If properly done, this may be helpful to implementers on minicomputers. 

A special consequence of this uniformity is that the semantics should be 

deterministic. This is also desirable for another reason. If non-determinism of 

the semantics would be reflected in (pseudo-)non-determinism of the implementa-

tions, this would be very unhelpful to the programmer who tries to find why his 

program fails. If, on the other hand, the implementations are deterministic where 

the language is not, experience shows that eventually, in the mind of the program­

mer, the semantics of the progralllllling language is supplanted by the semantics of 

the implementation. 

2.2. Suitability for conversational use 

We require that Bis suited for conversational use. The term "conversational" 

(or "interactive") has no clearly delineated meaning. In some cases the error 

messages of a compiler are already considered conversational if directed to a 

terminal; on other occasions the term is reserved for natural language oriented 

systems which display a sophisticated form of intelligence. 

We choose to use the term for a system with the following aspects: 

it follows the "utterances" of the user closely, and reacts illDllediately when-



ever appropriate, rather than keeping its reaction till the final moment of 

analysis when the user is done; 

it displays one "face" to the user, rather than a variety of faces of subsys­

tems on different levels, such as an editor, a file system, a compiler, each 

with its own conventions and reactions and hardly aware of each other's exis­

tence; 

it does not leave the user uncertain whose turn it is and prompts him 

whenever a reaction is required. 

It must be possible to integrate B into such a system, and in fact we hope 

ultimately to define the complete B-system, rather than just the B-language. The 

B-editor should already perform the parsing and detect most syntactical errors. 

This means that the syntax of B must be such that the effect of syntactical errors 

is as local as possible, and it suggests that the language should be line orien­

ted; that is, programs are considered as sequences of lines, not as mere sequences 

of symbols. If the editor knows the syntax, this also gives perspectives for 

simplifying editing commands. 

2.3. Inclusion of structured-programming tools 

The most important design goal is the inclusion of a set of structured­

programming tools. Abstractly, we consider any language feature that aids in 

proving program correctness a structured-programming tool. (There are many other 

ways of looking at structured programming, all of which eventually seem to con­

verge to the same set of tools.) 

There are several ways in which a structured-programming tool can facilitate 

a correctness proof. We can at least discern the following three aspects. 

a. The various constructions should have a clearly understandable meaning, i.e., 

a meaning which is easily expressible in terms of assertions, can be grasped 

intuitively, and does not require retention of the original definition. To 

illustrate this point, the while and the if-then-else construction are con­

ceptually simple, but the meaning of the for-statement of ALGOL 60 can only 

be fully understood using the definition in the Revised Report on ALGOL 60. 

For example, the effect of the statement 

for i:= O whil.e false, i step 1 until 0, i + 1 step i - 1 until 10, i do -- ---
begin print (i); i:= i + 1 end 

is not easily determined as printing 

0 3 7 15. 

b. A proof can usually be divided into relatively independent smaller proofs. 



The language should permit this division to be reflected in the program texts. 

(Stepwise refinement is the corresponding method of program construction.) 

The usual tools are block structure and procedures. However, most programming 

languages hardly encourage a top-down approach. One either has to substitute 

the refinement literally in the program text, with the effect that the orig­

inal structure is hidden, or must use procedures, thus incurring a great loss 

of efficiency, and moreover, the definition of the procedure must often be 

inserted preceding the application. 

c. The level of abstraction at which it is possible to understand an algorithm 

and, therefore, the level at which it is convenient to prove the correctness, 

is invariably much higher than the level supported by the progrannning lan­

guage, even for simple programs. Here, even more strongly than in the previous 

aspect, one wishes to be able to clearly separate the different levels of 

abstraction in the program text. One way to do this is to build several 

layers, each providing the primitives for the next one. 

We hasten to say that we do not expect that the user of B will write down a cor­

rectness proof for his programs; the point is that a program that is easily proved 

correct is easily understood, and the hypothetical correctness proof is reflected 

in the construction of the program. 

The distinction between these three aspects is not always clear-cut, and we 

used it only to guide our thinking. As to the first aspect, a schematic descrip­

tion of our design method may be given as follows. Take a feature F which is 

under consideration as a candidate for inclusion in B. (At this stage Fis an im­

precise concept.) Now try to find the algorithmic concepts which might be imple­

mented using F, and examine if these specific concepts themselves merit being 

translated into new features to be included in B. This may very well lead to 

the conclusion that inclusion of F itself is undesirable. (Just as the goto-state­

ment may be abolished in favour of a while and an if-then-else construction.) 

Otherwise, the semantics of Fare chosen such that they do not give rise to 

surprises if used to model these notions. An example of such a surprise, if the 

passing of variables as parameters is implemented with the ALGOL-60 call-by-name 

semantics, is illustrated by 

procedure swap (p, q); integer p, q; 

begin integer h; h:= p; p:= q; q:= h end, 

~fter which swap (i, a[i]) and swap (a[i], i) have different meanings. 

Complications are the facts that the number of features to be included should re-

main limited, and that two conceptually different notions may be semantically so 

close as to be confusing. 



3. GENERAL DECISIONS 

3.1. Abstract syntax 

One of the issues where a decision appeared necessary at an early stage is 

that of the general syntactic approach, which has implications both for control 

structures and for data structures. As to the abstract syntax, i.e. the basic 

method of program composition, it was not hard to decide that an expression lan­

guage, where (in general) the elaboration of any construction yields a result, 

was out of the question: in such languages, e.g., ALGOL 68, constructions which 

have an effect, e.g., assignations or closed clauses, have side effects if used 

as expressions. If expressions do have side effects, there are no good program 

points to assign assertions to; in fact, the meaning of a program with such ex­

pressions may be difficult to grasp unless the side effects belong to a different 

level of abstraction. If expressions with side effect should be allowed at all, 

they should be the exception rather than the rule, and be confined to a clearly 

separate corner, such as function procedures. 

The choice therefore fell on the more conventional approach of program com­

position as a sequence of statements, executed in turn. 

3.2. Concrete syntax 

For the concrete syntax, the possibilities seem almost unlimited. Yet, the 

following line of reasoning gave us some hold. 

Let the term "constructor" stand loosely for those symbols or combinations of 

symbols which form, so to say, the skeleton of a construction. In ALGOL 68 we 

find, among others, constructors +, :=, @, ~i: and :!:t th.en el,se [i. These symbols 

are, in general, either rather special characters or word delimiters. Since, for 

B, we are confined to a small character set, only a few special characters are 

available, fewer than the number of constructors we need. It is, of course, pos­

sible to combine several characters into one symbol(:=, or even:/=:), but this 

is mnemonically bad, since such symbols are hardly suggestive of the associated 

meaning. Another possibility is overloading of constructors, but that seems even 

worse - just consider the parsing problems in ALGOL 68, for automata and human 

beings alike, arising from the overloading of: and(. 

This leads us straight to the use of word delimiters. Now, we think it a bad 

idea, if only for competitive reasons, to require a form of stropping. On the 

other hand, it appears unwise to have reserved words, not so much because we want 

to encourage choosing such words as identifiers, but because of the havoc such an 

accidental choice may work in the parsing of the program. (Also, this approach 

would not allow the beginner to have only a partial knowledge of the set of re­

served words.) The only way out is to have such a syntactic structure that it is 



always clear to the parser whether a word has to be interpreted as an identifier 

or as a "keyword", as in PL/I. A simple way to achieve this would be to alternate 

keywords and identifiers as in FOR I FROMM TON DOS OD. This would imply that a 

construction beginning with a keyword cannot take the place of such an identifier. 

Therefore we make the following distinction. Let the term "construend" refer to 

the constructions "held together" by the keywords of the constructors (the same 

way as operands are held together by operators). We then have for construends 

"statements", which always start with keywords, and "expressions", which never do. 

We take care that the first keyword of the constructor of any construction is 

unique, i.e., distinct from the remaining keywords of that constructor and 

from all keywords of other constructions. This precludes having both IF THEN and 

IF THEN ELSE, or both FOR WHILE DO OD and WHILE DO OD, or PR PR. Under these con­

ditions it is possible to construct with great liberty almost any combination of 

keywords, expressions and statements, as long as the keywords of the constructor 

up to a potential construend tell us whether to expect next a statement or an ex­

pression, or nothing at all. 

3.2. Compilation vs. interpretation 

Another quite general issue is the choice between orientation towards compi­

lation vs. interpretation. (These terms are not the most felicitous, since they 

refer to properties of implementations, not of languages, but we hope their 

meaning is nevertheless clear.) The orientation towards interpretation is in many 

aspects very attractive. In general, the syntax and semantics may be greatly sim­

plified by having a run-time determined type. The implementation effort may then 

in general be greatly reduced. Another perspective is the integration of program 

statements and system commands. This is done in some of the interactive languages; 

for example, PRINT (Ix I) FOR I= I, 10 may be used as a statement, but also as 

a command, so that the system contains in fact a glorified desk calculator. The 

idea is very appealing; after ample consideration, however, we have decided not 

to pursue it, since we fear it might encourage an attitude towards programming 

that we would rather discourage: progrannning should be done in the mind or on 

paper, not at a terminal. Moreover, we did not quite see how the interpretive 

orientation could be reconciled with (a) the locality of scope of identifiers 

required for factoring correctness proofs, or (b) easy use of assertion oriented 

proofs, since the assertions would have to be extended with clauses like "if this 

variable has the proper type, if that variable has the proper type, ..• ". For 

these reasons, we closed our ears to the chant of the sirens and decided on com­

pilation orientation. 



4. DEFINITION OF B0 

Presented below is the "definition" of a language B0, an order O approximation 

of B, interspersed with some justification for particular choices made. As men­

tioned before, the choices made are often quite arbitrary; in general, if no jus­

tification is mentioned for a choice which may be thought questionable, the reason 

is probably that no such justification exists. No attempt is made for any formali­

ty or rigidity, as this would be completely pointless at this stage. Also, no 

attempt has been made for clarity or completeness of description; we heavily rely 

on the reader's knowledge of programming language concepts and his intuitive un­

derstanding. 

B0 is neither more nor less than the result of the very first term of an 

iterative design process, such as is normally not disclosed for the world to be­

hold. 

We have freely incorporated any feature found in existing languages where 

this seemed desirable. In such cases, in general, no reference or credit is given. 

4.1. Layout 

Typographical display features, such as space or new line, play a role in the 

syntax of B0 • They are required to separate lexical units which otherwise might 

be taken for one unit, e.g. a keyword and a tag. They are not allowed within 

lexical units. At any given position a transition to a new line may be forbidden, 

optional or obligatory, depending on the particular construction in which it 

occurs. Each statement may start at a new line, and, moreover, unless the state­

ment is the last part of another statement, the new line is always obligatory, 

and so constitutes a sequencing operator, just like the semi-colon in ALGOL. Some 

constructions have other obligatory line transitions. The syntax of B0 is such 

that a new line where forbidden or no new line (but a space) where obligatory, 

never changes a valid program into another valid program. As a consequence, a 

B0 editor that is aware of the syntax and automatically indents at each new line, 

may also automatically increase the indentation level at each new line which is 

not obligatory, thus indicating continuation of the running statement. Similarly, 

at the end of each statement the editor can restore the old indentation level. 

As a result, B0 programs always have a reasonable layout. 

4.2. Control structu:t>es 

The traditional if-then-else construction seems to perform two conceptually 

different functions: to prescribe an action in a specific, typically rare, event, 

as in 

i:f. x > ma,x then max:= x fi 



or to select an action according to the appropriate case, as in 

:!:1 :r < O then sign:= -1 

eUf :r > 0 then sign:= +1 

else sign:= 0 fi. 

It is only by coincidence if there are exactly two cases from which to select in 

the latter case. Therefore B0 has two different constructions: 

IF condition statement 

and 

CASE condition1 statement 1 

CASE condition statement 
n n 

ELSE statement. 

(Note that the keyword ELSE is, technically speaking, superfluous.) Of course, 

the conditions are (a special case of) expressions. They are tested sequentially; 

each alternative starts on a new line. The above examples would become, assuming 

some format for assignations: 

and 

IF X > MAX PUT X IN MAX 

CASE X < 0 PUT -1 IN SIGN 

CASE X > 0 PUT +I IN SIGN 

ELSE PUT O IN SIGN. 

This form of the case-statement was suggested by the structured presentation of 

the semantics in the Revised ALGOL 68 Report. 

We have some doubt whether the presence of the if statement beside the case 

statement is really desirable: the semantics are so close that the uninitiated 

programmer may get confused and use the former construct where the latter is more 

appropriate. The reverse situation is not so bad; it it simply means that the 

programmer has to consider the action to be taken if the (exceptional) condition 

is not met. 

For the case-statement, we would have preferred semantics where the ordering 

of cases is immaterial. The only possible way we see, is to test all conditions 



and to require that at most one succeeds. This means however, introduction of run­

time errors for cases which, abstractly viewed, are perfectly valid, such as 

CASE problem-can-be-solved-by-method-a APPLY method-a 

CASE problem-can-be-solved-by-method-b APPLY method-b 

ELSE reach-for-higher-means, 

where either method might apply to a particular problem. 

In cases were no action is required in the ELSE part, the PASS statement is 

used: 

CASE A> 0 PUT P + IN P 

CASE A< 0 PUT P + IN P 

ELSE PASS. 

For repetition the obvious choice seems to be: 

WHILE condition statement. 

Although this is our choice indeed, we have also given attention to possibilities 

as 

WHILE condition1 statement 1 

WHILE condition statement 
n n 

DONE, 

but the advantage of having this multi-conditional form available does not seem 

to outweigh the disadvantage of the extra DONE in the much more frequent uni­

conditional case. Should it be decided, however, to discard the if-statement, 

then this form becomes the most attractive one. 

No provisions are given for escape from a while statement. All "solutions" 

known to us are rather ad-hoc and violate the principle that upon completion the 

condition is known to fail. Also, no repeat-until construction is provided, since 

it is an open invitation for the common beginner's progrannn.ing error of overlook­

ing the possibility that a loop may be "empty", as in 

REPEAT PUT A // 10 IN A 

UNTIL A< 10, 

which yields the first digit of A, unless A happened to be a one-digit number. 

A condition may take the form 

simple-condition1, •.• , simple-condition0 



with the meaning that the simple-conditions are evaluated from left to right, un­

til one of them fails (in which case the whole condition fails) or all are found 

to succeed. (Note that the order of evaluation is innnaterial if the expressions 

have no side effects, unless the evaluation may yield an error.) 

Example: 

I<= I, I<= N. 

No connectives are provided in B0 for disjunction or negation. It may turn out in 

practice that this is. untenable, especially for the while-statement as it stands 

now. 

Another form of repetition is given by 

FOR id OVER range-id statement 

or 

FOR id REVO range-id statement. 

As in ALGOL 68, the identifier is bound to the statement and cannot be assigned 

to. Range-identifiers correspond to the type of index values and are used in 

array-declarations. The keyword REVO reverses the order so that the range is tra­

versed from upper to lower bound. 

Example: 

FOR I OVER ROW 

FOR JOVER COL 

PUT O IN A(I, J) 

For grouping a sequence of statements into one, we have the block 

BEGIN 

statement 1 

statement 
n 

END. 

We are not too pleased with the keywords BEGIN and END: they have an imperative 

connotation rather than a parenthetical one. 

Declarations may be interspersed between the statements. As a rule, declara­

tion must precede application. 

4.3. Procedures 

Conceptually, we can divide the use of procedures into 



refinement; 

process specification where the iterative structures are insufficeint or cum -

bersome; 

new functions or operations. 

For the first type of use, parameters and recursion are not needed (and even un­

wanted). In this case access to non-local entities is standard. The other two 

types, which are not clearly distinct, need some kind of parameters. In these 

cases, we consider access (other than through parameters) of non-local entities 

which belong to the realm where the procedure is applied, undesirable and un­

necessary. 

For refinement, one can use a statement 

DO ref-id 

and then define the refinement by 

ref-id: statement. 

The effect is as though the statement were textually substituted for the piece 

of text DO ref-id. In order to avoid confusion it is required that all identifiers 

used in the statement are "visible" from the position where the refinement is de­

fined. 

B0 does not have other types of procedures. The reason that this obvious 

structured-programming tool is not included, is simply that we have not (yet) 

found a satisfactory approach to the parameter mechanism. The call-by-name mecha­

nism of ALGOL 60 and the call-by-value mechanism of ALGOL 68 are both quite 

simple, but each has aspects making it unattractive for B: 

a. call by name: 

- may not be what is needed in the program; 

in certain cases a rather intricate systematic change of identifiers is needed; 

there exists a discrepancy between the abstract replacement one imagines while 

programming, and the concrete replacement by textual substitution (cf.2.3.a); 

implementation problems. 

b. call by value: 

requires a generalized notion of "value" (for example, procedures as values); 

problems in specifying the type of the parameters; 

either addresses are values, or unacceptable inefficiencies are incurred if, 

for example, arrays are transmitted. 

The conclusion seems to be that B1 will have about the parameter mechanism of 

PASCAL. 

The philosophy of the keywords opens the possibility of user-defined state-



ments, as in 

DEF INCR X 

PUT X + I IN X 

ENDDEF, 

after which a new INCR statement is defined. This also must await a choice for the 

parameter mechanism. 

4.4. Data st:t'Uatures 

The predefined basic types are INT, REAL and STRING. The usual arithmetic 

operations+,-,*, I and** are available, where for exponentiation the exponent 

must be an unsigned INT constant. If the operands are of mixed type, automatic 

widening from INT to REAL takes place. Division always yields a REAL value. Inte­

gral division is written with the operator II . Here, in contrast to ALGOL 60168, 

(-7) II 3 = -3, so that (A + B) II B = A II B + I always holds. The priorities 

of the operators are the conventional ones (and -2**2 = -4). For comparison, we 

have<,<=,=,<>,>= and>. Special functions available are SQRT, LN, EXP, SIN, 

COS, ATAN, SIGN, ABS and ENTIER, just as in ALGOL 60 and with the same type con­

ventions. However, the result of ABS has the same type as its argument, and ATAN 

takes two arguments; in the sense of numerical analysis, if 

PHI= ATAN (X, Y) and 

then 

X = R * COS (PHI) and y R * SIN (PHI). 

For strings, the basic operations are+ (concatenation) and the comparison 

operators. The function HEAD yields a string consisting of the first character 

of its argument; the function TAIL yields a string consisting of its argument 

minus its first character; if the argument of HEAD or TAIL is the empty string, 

then so is the result. 

New basic types may be created by a range-definition: 

RANGE range-id FROM int-expres&ion TO int-expression 
I 2 

or 

RANGE range-id HAS tag 1, •.. , tagn. 

The obligation to PASCAL should be obvious. A type BOOL could be defined as 

RANGE BOOL HAS TRUE, FALSE. 

That this type is not predefined is not without reason. In most cases, clarity 



is served by an explicit indication of what the alternatives in a two-valued type 

stand for, as in 

RANGE PASSAGE HAS OPEN, CLOSED 

so that one may ask 

IF AHEAD= OPEN 

The functions LWB and UPB yield the lower and upper bound of a range (not of 

an array!). 

Expressions of any range type may be used as arithmetic expressions, with 

automatic conversion to INT. The other way around is possible by a special 

simple-condition 

int-expression FITS range-type-variable 

which succeeds only if the value of the int-expression is within the range asso­

ciated with the range-type-variable, whereupon that value is assigned to the 

variable. Thus, a loop such as 

FOR I OVER H PUT O IN A(I) 

is short for 

BEGIN 
VAR AUX TYPE INT 

PUT LWB (H) IN AUX 

VAR I TYPE H 
WHILE AUX FITS I 

END. 

BEGIN 
PUT O IN A(I) 

PUT AUX + I IN AUX 

END 

For any of the basic types, simple variables may be declared in a declaration 

of the form 

VAR id TYPE type-id 1, •.• , id TYPE type-id , 
I n n 

where the type-id is either INT, REAL or STRING, or a range-id. 

The sequence 

id 1 TYPE type-id, id2 TYPE type-id 

may be shortened to 



id 1, id2 TYPE type-id. 

Constants may be declared by 

CONST id 1 IS expression1, . . . , id IS expression. 
n n 

There is no need to indicate a type here, as automatic conversion will take care 

whenever necessary. 

Arrays of variables are declared by 

ARRAY (range-id 1, ••• , range-idd) id 1 TYPE type-id 1, . . . , id TYPE type-id , 
n n 

with the same abbreviation as for simple variables. 

Subscripting is only possible with subscripts of corresponding range-type. This 

implies that subscripts are either an identifier (constant or simple variable) or 

a subscripted variable. Practice only can teach us whether this restriction will 

be acceptable. 

Assignment is only possible to variables; there are no such things as array 

expressions. The general form of an assignation is 

PUT expression1 , ••• , expressionn IN variable 1 , ••• , variablen' 

where the types of the expressions must conform to those of the variables. The 

expressions are evaluated before the assignment takes place, so 

PUT B, A IN A, B 

will swap the contents of the variables A and B. This form of assignation has 

been chosen for didactic reasons, to emphasize the algorithmic notion of varia­

bles, instead of, e.g., 

SET XTO I 

or, even worse, 

LET X BE 

which is suggestive of algebraic rather than algorithmic variables. We have 

chosen not to incorporate structured variables. The reason for this is that 

structured variables make sense mainly to define abstract data types. The problem, 

therefore, is to find first a clear and simple way for introducing abstract data 

types with associated operations (which leads also to the problem of the para­

meter mechanism). 

We have not found a satisfactory solution to the problem of uninitialized 

variables. Roughly, we can distinguish four approaches (apart from "who cares"): 



I. Check at run-time. Disadvantage: yet another run-time error. 

2. Default initialization. Disadvantage: if the intended initialization (to an­

other than the default value) is accidentally omitted, this may pass by un­

noticed; worse than alternative I. 

2. Initialization as part of the declaration. Disadvantage: duplication of the 

semantics of assignment; moreover, there are problems for arrays (unless ~11 

elements are initialized to one same value). 

4. Static check whether all possible computation paths initialize a variable be­

fore it is used, with a suitable definition of "possible path". Disadvantage: 

the check is not very simple, and the correctness conditions may be unclear to 

the simple-minded user. 

At the moment, we tend to favour the last approach, provided that it turns out 

not too complicated. 

4.5. Transput 

and 

At the moment we envisage three transput statements: 

PRINT expression 1, 

NEWLINE 

. . . , expression, 
n 

READ variable 1, ••• , variablen. 

An alternative to the read statement would be to have an expression READ. This 

would be, however, an unnecessary introduction of an expression with side effects. 

It is intended that in 

RANGE ANSWER HAS YES, NO 

VAR GOON TYPE ANSWER 

PRINT "DO YOU WISH TO CONTINUE?" 

READ GOON 

YES (or NO) would be valid input. 

PRINT should output in a simple, standard format, the idea being that a program­

mer who wishes a special effect should take the trouble of constructing the 

necessary strings himself. An open problem is how to detect on input the end of 

a string. 



5. EXAMPLE OF A B0 PROGRAM 

BEGIN 

CONST N IS I 999 

RANGE SIEVESIZE FROM 2 TON 

RANGE PRIMALITY HAS PRIME, NONPRIME 

ARRAY (SIEVESIZE) A TYPE PRIMALITY 

FOR I OVER SIEVESIZE PUT PRIME IN A(I) 

VAR K TYPE INT, IOOJ'LT TYPE SIEVESIZE 

PUT2INK 

WHILE K * K FITS KMULT 

BEGIN 

VAR Kl TYPE SIEVESIZE 

IF K FITS Kl, A(KJ) = PRIME DO SIEVE 

PUT K + I INK 

END 

SIEVE: 

BEGIN 

PUT NONPRIME IN A(KMULT) 

WHILE KMULT + K FITS KMULT PUT NONPRIME IN A(KMULT) 

END 

FOR I OVER SIEVESIZE 

IF A(I) • PRIME 

BEGIN 

END 

END 

NEWLINE 

PRINT I 


