
AFDELING !NFORMATICA

J .W. DE BAKKER

FLOW OF CONTROL N THE PROOF THEORY OF
STRUCTURED PROGRAMM NG

Prepub I i cation

! I✓ 47 SEPTEMBER

AFDELING INFORMATICA

J.W. DE BAKKER

stichting

mathematisch

centrum

IW 47/75

FLOW OF CONTROL IN THE PROOF THEORY OF
-13TRUCTURED PROGRAMMING

Prepub I i cation

MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

Plt.inte.d a.t :the. Ma.the.ma.ti.cal Ce.ntlf.e, 49, 2e BoeJLha.a.veA.tlta.a.t, Am.6:tvuio.m.

The Ma.the.ma:.ti.ca.l Centti.e, 6ou.nded :the 11-:th o 6 FebltuMy 1946, ,l6 a. non
pltO 61..:t .ln&t.U:uti.o n aim-lng a.t :the p,wmoUo n o 6 pu1te ma.:thema..:ti.c& a.nd w
a.ppli.c.a.ti.oru.. 1:t i6 6pon60Jt.ed by :the Ne.theJLta.nd6 GoveJr.nme.n-t :tMou.gh :the
Ne:tlte.Jr1.a.nd6 01t.ga.ruza.tion 6011. :the Adva.nc.eme.n-t 06 PU/le ReAe.a1tch (Z.W.O),
by :the Mwti..c.i.paLUy 06 ArnhteJt.dam, by :the Univell.6.i.:ty 06 Arn6teJtda.m, by
the F11.ee Uni.ve.11.6Uy a.t Arnhtvulam, and by ..i.nd.u6rueA.

AMS(MOS) subject classification scheme (1970): 68A05

ACM -Computing Reviews- category: 5,24

Flow of control in the proof theory of structured programming*)

by

J.W. de Bakker

KEY WORDS & PHRASES: Flow of control, recursion, while and repeat statements,

program correctness, axiomatic method, weakest precondi

tions, termination

*) This paper is not for review; it is meant for publication elsewhere

FLOW OF CONTROL IN THE PROOF THEORY OF

STRUCTURED PROGRAMMING

J.W. de Bakker

Mathematical Centre, Amsterdam

ABSTRACT

The proof theory of structured progrannning inso
far as concerned with flow of control is investigated.
Various proof rules for the while, repeat-until and
simple iteration statements - all essentially variants
of Hoare's original while rule - are analyzed with re
spect to their soundness and adequacy. Next, a recently
proposed proof rule for recursive procedures due to
Dijkstra is - after correction - shown to be a simple
instance of Scott's induction rule. Finally, Manna &

Pnueli's rule for total correctness of the while state
ment is formally justified using the Hitchcock & Park
theory of program termination based on well-founded re
lations.

O. INTRODUCTION

In this paper we investigate the proof theory of
structured programming insofar as it is concerned with
the control structure of programs. More specifically,
we analyze
- a variety of proof rules for the while, repeat-until

and simple iteration ([II]) statements;
a recently proposed proof rule for recursion due to
Dijkstra ([S]);
Manna & Pnueli's rule ([12]) to prove totaZ correct
ness of the while statement.

Section 1 of the paper is preliminary and contains the
notation - viewing programs as relations between states
expressed with the aid of various relational opera
tors-, the basic properties of (parameterless) recur
sive procedures such as the rule of computational (or
Scott's) induction, and the notation for stating par
tial and total correctness using some auxiliary opera
tors.
Section 2 (proof rules for iteration): All proof rules -
apart from one exception - are sound. None of them is
fully adequate, i.e., none of them allows to prove aZZ
properties of the statement concerned. It is shown that,
for deterministic programs, each proof rule fully char
acterizes terminating programs only. Also, an extension
of the rules yielding full adequacy is proposed.
Section 3. Dijkstra's proof rule for recursive proce
dures which employs his "weakest preconditions" is an
alyzed. In the form given, the rule is incorrect, at
least if our interpretation of his informally stated
system is indeed the intended one. A modification of
the rule leads to a correct version which is immediate
ly obtained by Scott's induction.
Section 4 (total correctness of the while statement):
It is explained how Dijkstra's rule could be special
ized to his "Fundamental Invariance Theorem for Repeti
tion" which, at closer scrutiny, is nothing but a weak
er version of Hoare's while rule. Next, we recall some
of the theory as introduced in [6], where total cor
rectness is proved using properties of well-founded re
lations. This enables us to prove the soundness of the
rule of Manna & Pnueli which, though intuitively ap
pealing, is not so easy to justify formally.

Our main aim with the paper is to show how the re-

lational theory provides a unified framework for the
analysis of a seemingly wide variety of rules. The
theory allows one to see these rules in a better per
spective, allowing one to compare and, in some cases,
to correct or extend them. Instead of remaining iso
lated ideas, they obtain their due place as propositions
in the general theory. An additional feature is the
first application - albeit rather modest - of the very
interesting theory of r61.

I. ITERATION AND RECURSION: NOTATION AND BASIC
PROPERTIES

Details about the material in this section can be
found e.g. in r1,2,3,4,6l.

I . I . Progrcons and z>e iations

In our (structured) language we have
- basic actions A, A1, ••. , and procedure calls

P, pl, ... •
construction rules combining statements s1 , s2 and
boolean p by

sequential composition : Si;s2
selection : if p then s 1 else s2
while statement : while p do S tor p*S, for short)
repeat-until stateiiient°: reneat S until p (or
S*p, for short) - --- ·
simple iteration statement ([Ill) : loop S; while
p:T repeat (or S*p*T, for short (which, by defini
tion, equals S;p*(T;S))).
Declarations for (narameterless, possibly recur

sive) procedures have the format P • srPl, where SfPl
is any statement, which may have occurrences of P (e.g.,
P • if p then A1 ;P else A2).

Programs determine relations between states: We
write xSy if statement S maps input x to output y. Prop
erly speaking, we need here an interpretation of schemes
S to relations S, say. Rigour will be sacrificed to in
tuition (and brevir.-,), and we identify programs and
their corresponding input-output relations. Relational
operators will then be used as counterpart of the vari
ous construction rules of the language. We use, for V
the set of states and x,y,z £ {/:

- s 1;s2 for.composition: xs 1;s2y iff ~z[xS 1z A_zs2y]
u, n, c with the usual set-tlieorectical meaning

- l1 for the empty relation, I ={(x,x) I XE:V} for the
identity

- S* = I u Su S;S u ••. =
- small letters p,q,r, ••.
- complementation, denoted

I : p = I\p.

., i
Ui=O S
for subsets of I
by-, onZy with

For each boolean p: V ➔ {true,false}, for conven
ience's sake always assumed to be total, we introduce
two relations p,p, viz. p = {(x,x) I p(x) = true},
p = {(x,x) I p(x) = false}. This double use of p - as
boolean and as a relation - is admittedly ambiguous,
but it pays off below. We shall freely use relational
identities such as I;S = S, nus= s, pnp = n, pup= I,
p;q = pnq, etc. Using the relational operators, with
";" having priority over "u", we can write:

p;S~ u p;S2 for :if p then s1 else s2
(p;)*;p for p*S
S;(j5;S)*;p for S*p
S; (jl;T;S)*;p for S*p*T

1.2. Reaursive procedures

We summarize the basic properties of recursive pro
cedures we shall need below. Let S[P] be any statement
with possible occurrences of P, and, for any S', let
S[S'] denote the result of replacing all occurrences of
pin S by S'. Each S has the following properties:
I. Monotonicity: If S1 S s2 then S[S 1] S S[S2].

2. Continuity: Let s0 S s1 S Then S[UiSi l =
= U. S[S.].

We now1 assuffie the declaration P .. srPl.
3. Union.theorem: Let, foi any,T, sO[Tl = T, si+l[Tl

= S[S1 [T]]. Then P = u. S1 [n].
4. Least fixed point prop@;gy: P = S[P] and, for any T,

if S[T] = T (or even S[TJ c T) then Pc T.
5. Conrputational (or Scott's)-induction: Let r 1[Pl,

T2[P] be any two statements, and let T1[X], T2[X]
result from these by replacing P be the "program var
iable" X. Assume that a and b are both satisfied:
a. T 1[nJ s T2 [nJ.
b. For all X, if T1[X] S T2[X] then T1rs[Xll S

S TiS[X]].
Then we may infer that
c. T1[P] S T2[P].
Exanrple. Let T1[P] =p;P and T2[Pl =P;q. Assume
a. p;n s n;q (note that this is trivially satisfied)
b. For all X, if p;X S X;q then p;S[X] S S[X7;q.
Then we may infer that
c. p;P S P;q.
(Cf. the proof rule for recursive procedures in [87
and its explanation in [13].)

1.3. Partial and total correctness

Sis partially correct with respect to p,q iff
Yx,y[p(x) A xSy ➔ q(y)J or, in our formalism, p;S s S;q
(or {p} S {q}, as in [7]). Sis totally correct with
respect to p,q iff Yx[p(x) + 3y[xSy A q(y)JJ.
We introduce two new operators between a statement S
and a boolean p, viz.

(Sop)(x) 1£..: 3y[xSy A p(y)J

(s+p)(x) 'll.: 'vy[xSy+p(y)J

We have, e.g.,
(i) Sis totally correct with respect to p,q iff

p S Soq _
(ii) S + p = Sop
(iii) So(puq) = (Sop) u (Soq), s1 + (S 2➔p) = (S 1;S2) +

+ p, and, for Sa function (i.e.,
Yx,y,z[xSy A xSz + y=z]): S 0 (pnq) = (Sop) n (Soq),
S + (puq) = (S+p) u (S+q), etc.

2. PROOF RULES FOR ITERATION

We discuss the soundness and adequacy of a number
of proof rules for the while, repeat-until and simple
iteration statements. Apart from one exception, the
rules are all easily seen to be sound. None of them is
fully adequate, however, and it is shown how to extend
them to achieve adequacy.

2.1. Rules for the while statement

In the literature we encountered the following
four versions(taking a few liberties with the notation):

W ([l]): {uAp} S {u}
l {u} p*S {uAp}

2

(In words, if the assertion u is an invariant of
S - under the additional assumption that p holds - then
u is an invariant of p*S. Moreover, upon termination of
p*S, p holds.)

{uAp} S{u}, uAp:, V
W2([12l): {u} p*S {v}

W/197):
{w} S{ u} , u :, if Ethen w else v

{ u} p*S { V}

~\UBJ):
{ u} S{ w}, w:, if p then u else v

{u} p*S { v}

In the relational notation these rules are written
as

WI: 'vu1u;p;S s S;u ~ u;p*S s p*S;p;u]

('/2: Yu,v[u;p;S s S;u and p;u =:. v.,. u;p*S s p*S;v]

('/3: 'vu,v,w1w;S s S;u and u s p;w u p;v • u;p*S 5 P*S;v]

[•J 4: 'vu,v,wru;S s S;w and w s p;u u p;v • u;p*S 5 p*S;vl

to which we add (cf. r 31 > :

l\: 'vu,v13w1usw, w;p;SsS;w, w;psvl => u;p*S s p*S;vl

Of course, (•15 is nothing but the inductive assertion
method: In order to show that p*S is partially correct
with respect to u,v, try to find intermediate w satis
fying the three "verification conditions" u 5 w,
w;p;S ~ S;w, and w;p ~ v.

Our analysis of the five rules is summarized in
the following three lemmas:

LEMMA 2.1 (Soundness).
a. PJ 1, [•J 2, N3 and ('JS are sound.
b. (r} 4 is not sound.

PROOF.
a. Straightforward from the fact that p*S = (p;S)*;j5 =

= (IJ.(p;S) 1);j5, by applying induction on i.
b. Takiftg v = w = p = S = n, and u = I, and using the

fact that n*n = I, W 4 yields the contradiction that
IS sl. 0

It is maybe not immediately clear how to under
stand the notion of adequacy of a proof rule. We take
the following approach: Let (1J 1 (p,S,X), or (•1 1 (X) when p
and Sare understood, be defined as:

('/ 1 (p,S,X): 'vufu;p; S S S;u,.. u;X S X;p;u]

Then we call W1 (p,S,X) adequate with respect to the
while statement p*S iff for all X, if W1(p,S,X) holds,
then X = p*S.

From now on, we omit reference top and Sin our
notation. Also (~.(X), i = 2,3,5 are defined similarly
to W1(X). We thefi have

LEMMA 2.2 (Adequacy). For all X:
a. (rJ 1(X) -WzCX) - ('J1 (X) - (<J5 (X)

b. W1(X) • [X 5 n*S]. Hence, Ni(X) •[XS P*S],

i = 2,3,5.
c. None of the Wi(X), i = 1,2,3,5, is adequate.

PROOF.
a. We show that W1 (X) (,l) f\ (X) (ij) WzCX) (ij_i)

(<J~(X) (~) (•1 1 (X).

(i) Assume W1 (X) and the assumptions of P's (X:) for
some uo, v0 , w0 . Then the assumption of W1 (X)
is satisfied for w0 , hence w0;x S X;p;w0 fol
lows. Since u0 s w0 and j5;w0 s v0, the result
u0 ;x s X;v0 follows, thus establishing W5 (x).

(ii) Assume f</5 (X) and the assumptions of W2(X) for

u0,v0 • Taking w0 = u0 , we see that the assump
tions of W (X) are satisfied for u0 , v0 , w0 ,
hence u ;x5c X;v follows, thus establishing
W (X). 0 - 0

(iii),(tv) Similar.
b, (This proof is a slight variant of an unpublished

argument due to Scott.) First we show: For any R, S,
if Vu,v[u;R s R;u,.. u;S S S;u] then Sc R*: Jake an
arbitrary state x , and define u0 (x) df. x0R x. It
is easy to check 2hat u0 ;R s R;u0 holds. Tnus u0 ;s S
c S·u follows, i.e. Vx,y[x0R*x A xSy + x0R*y]. In
- ' 0 * 7 • particular, Vx,y[x=~0 A xSy + x0R ?·• i.e., *
Vy[x0Sy ➔ x0R*y]. Since x was arbitrary, S s ~ fol
lows. Applying this resul2, from W1(X) we obtain
that X 5: (p; S) *. Also, taking u = I in [IJ I (X) !ields
x c X;ji. Combining the two inclusions for X yields
X ~ (p;S)*;p = p*S.

c. Ob;erve that, e.g. (•J. (ll) holds for each i = I ,2,3,5.
Only from additionalirequirements, e.g. that X be
total (Vx3y[xXy]) and all our relations be functions
(i.e., if we restrict ourselves to deterministic pro
grams) can we infer from X s p*S that X = p*S, D

We now show how to extend the rule W5(X) to a new
rule which is adequate.

LEMMA 2.3 (Extended while rule).
Let "'5'(X) be defined as:

ut;;'<X) : Vu,v[3w[usw, w;p;SsS;w, w;ji5:vl - u;X 5: X;vl

Then "'5'(X) iff X = p*S.

PROOF.
(If). We show that ~:S(p*S) holds.; is lemma 2.1, p~rt
a ... follows by taking, for a~me given u0 ,vo, ~he (i~
ductive assertion) w0 ~s w~ -· (p;S)*o~~: It.is eas~~y
c~ecked that w0 satisfies he three veri ication con i
tions.
(Only if). We use the auxiliary result: For all R,S : .
Vu,v[u;R s R;v .. u;S 5: S;v] iff S SR. The proof of this
is left to the reader. Now assume (~(X), and ta~e any
u ,v . We have, using (tl'_s(X) and w<;<p*S) respectively:
uO;XO.o: X;v0 -3w[u0sw, w;p;SsS;w, w;jisv0 J - uo;p*S:::
5:0p*S;v0 • Thus we obtain: Vu,v[u;X:;:X;v - u;p*S:;:p*S;vl,
and X = p*S follows by the auxiliary result. D

2.2. Rules for the repeat-until statement

Similar results as in 2. I are obtained for the re
peat-until statement. We consider

R1([14]):

R2([10]):

R3 ([9J):

R4([3]):

Vu,v[(u u ji;v);S s S;v .. u;S*p::: S*p;vl

Vu,v[u;S s S;v and ji;vsu,.. u;S*p s S*ji;vl

Vu,v,w[w;S 5:S;u and u5:p;v u p;w .. u;S*p S S*p;vl

Yu,v[3w[u;S~S;w, w;p;S=S;w, w;p5vl •
u;S*ji 5: S*p;vl.

We have (notation as in section 2. 1):

LEMMA 2.4.
a. R1 , R2 , R3 and R4 are sound.
b. For all X, Rl(X) - Rz(X) ~ R~(X) - R4(X).
c. For all X, Ri(X) • [X s S*p], 1 = 1,2,3,4.

d. For all X, ~(X) iff X = S*p.

PROOF. Similar to the proofs in section 2.1. D

2.3. Rules for the sirrrpZe iteration statement

We consider

S 1([11]): Vu,v[u;S5:S;v and v;ji;TsT;u-+u;S*p*TSS*p*T;vl

S2([3]): Vu,v[3w[u;S5:S;w, w;j5;T;S5:T;S;w, w;p5:v],.
u;S*p*T S S*p*T;v].

We have

LEMMA 2.5.
a. S1 and Sz are sound
b. For all X, S (X) - S (X)
c. For all X, Si(X).,. 1X2s S*p*Tl, i 1,2.

d. For all X, ~(X) iff X = S*p*T.

PROOF. Similar to the proofs in section 2.1. In the
proof of 2.5c we use the auxiliary result: For all

3

R, S, T, if Vu,vru;R::: R;v and v;S s S;u"" u;T s T;vl*
then Ts (R;S)*;R. To show this, take u0 (x) <Ii x0 (R;S) x,
and v0 (x) dt. x0 (R;S)*;Rx, etc. D

3. A PROOF RULE FOR RECURSION

In sections 3 and 4 all programs are assumed de
terministic, i.e., all relations are functions.

3. I. Weakest preconditions

We quote from r57: "We consider the semantics of
a program S fully determined when we can derive for
any postcondjtion q satisfied by the final state, the
weakest precondition that for this purpose should be
satisfied by the initial state. We regard this weakest
precondition as a function of the postcondition q, and
denote it by fS(q) ." Though not stated in this quota
tion, the rest of 157 makes it clear that Dijkstra is on
ly interested in total correctness. Consider once more
its formulation in our notation: Vx1p(x) ➔ 3yfxSy A
q(y)ll, or, using the o-operator: Vxfp(x) + (S 0 q)(x)l.
Thus we see that whatever condition p guarantees total
corr;ctness with final q, such p always implies S 0 q,
Hence, the weakest such pis nothing but S0 q itself,
which we therefore propose to identify with fS(q). Our
interpretation is supported by (i) All basic properties
and additional rules from 157 are provable for S0 q.
(ii) The main theorem of f5] is, after correction, also
provable.

We now give a selection of the basic properties of
fS(q) as mentioned in 157:

V1: p = q implies fS(p) = fS(q), i.e., p = q => S0 p = S0 q.

P2 : fS(f) = f (f the identically false predicate), i.e.,
SoQ = r2.

fS(pnq) = fS(p) n fS(q), i.e., S0 (pnq)
= (Sop) n (Soq). Similarly for u.

f(S 1 ;s2)(p) = fS 1(fS2 (p)), i.e., (S 1 ;s2) 0 p
= Slo(S2op).

As an example, we exhibit the proof of P4:
For all x, we have
((S 1 ;S 2) op) (x) iff (def. 11 0 11)

3yfxS 1;s2y A p(y)l iff (def. ";")
~Yt~zl xS 1z A zS2yl A p(y)l iff
3y,zfxS 1z A zS2y A p(y)l iff
3zfxSlz A 3y:zSzy A p(y) lJ iff (def. " 011)

3ztxS 1z A (S 2°p)(z)l iff (def. 110 ")

(S 1o(S2 op))(x).
The otfier proofs are equally simple.

3.2. The Fundamental Invariance Theorem for Recursive
Procedures (F.I.T.R.P.).

We quote from f57: "Consider a text, called H", of
the form H": ... H' ... H' ... H' ... , to which corresponds a
predicate transformer fH", such that for a specific pair
of predicates q and r, the assumption q S fH'(r) is a
sufficient assumption about fH' for proving q S fH"(r).
In that case, the recursive procedure H defined by
proc H; •.. H ... H ... H ... corp enjoys the property that
q n fH(I) s fH(r)". Thus, the theorem reads: From
a. If q s fH'(r) then q s fH"(r)
one may infer that

b. q n fH(I) ~ fH(r}.
In this form the theorem is incorrect. Take q
r = o. Then we obtain, using V2 above: From
a'. If I c O then Is 0
one may i;fer that
b'. In fH(I) SO.

I and

Since a' is always satisfied we obtain that, for arbi
trary procedure H, fH(I) (or H0 I) = O, i.e., His no
where defined, which is absurd. Next, we propose a modi
fied version: From
a". If q n fH' (I) ~ fH"(r) then q n fH"(I) ~ fH"(r)
one may infer that
b". q n fH(I) S fH(r).
Proof of this version: First we show that we can re
write the inclusion q n fH(I) S fH(r) as the inclusion
q;H S H;r. We have Vx[q(x) A 3y[xHy A I(y)J ➔
➔ 3z[xHz A r(z)J] iff Vx,y[q(x) A xHy + 3z[xHz A r(z)ll
iff (Ha function) Vx,y[q(x) A xHy ➔ r(y)J iff q;H~H;r.
Applying the same rewriting for H' and H" we obtain:
From
a 11 '. If q;H' ~ H' ;r then q;H 11 .5: H11 ;r
one may infer that
b"'. q;H _s H;r.
We now use that H" = ... H' ... H' ..• H' ..• = S[H' J, say,
and that H • S[H]. (Remember that His the recursive
procedure declared by proc H; ... H ... H •.. H ... corp,
i.e., proc H; S[H] corp, or H • S[H] in our notation.)
W~ thus obtain as next step: From
aiv. If q;H' S H';r then q;S[H'] S S[H'];r
one may infer that
biv. q;H S H;r.
Finally, we apply a renaming of the program and proce
dure variables and obtain: For P satisfying P.., S[Pl,
from
av. If q;X ~ X;r then q;S[X] S S[X];r
one may infer that
bv. q;P S P;r
and this is nothing but the special case of Scott's in
duction rule mentioned at the end of section l .2. D

4. TOTAL CORRECTNESS OF THE WHILE STATEMENT

In this section we first explain how Dijkstra's
theorem could be specialized to a correct rule for the
while statement, which turns out to be nothing but a
weaker version of W1 from section 2.1. Next, we briefly
review some of the results of Hitchcock & Park [6] on
proving program termination using the notion of well
founded relation, and then finally justify the proof
rule for total correctness due to Manna & Pnueli [127.

4.1. The Fundamental Inva:r:>iarwe Theorem for Repetition
(F.I.T.R)

In [5], it is asserted that: From
a. If q n p s fS(q)
one may infer that
b. q n f(p*S)(I) S f(p*S)(qnp).
Using our interpretation of fS(q), and the same re
writing argument as applied in section 3.2, we obtain
instead: From
a'. q;p S Soq
one may infer that
b'. q;p*S S p*S;q;p.
Since, clearly, if q;p S S0 q then q;p;S s S;q (i.e., if
Sis totally correct with respect top n q and q, then
Sis partially correct with respect top n q and q) we
see that the F.I.T.R. is just a weaker version of W .

The derivation of the (correct) F.I.T.R. from the
(incorrect) F.I.T.R.P. is based on the alleged equiva
lence of a) q n p s fS(q), and a") if q s fH' (qnp) then
q S (qnp) u (p n fS(fH'(qnp))). One easily sees that
though indeed a) • a"), it is not true that a") • a):
Take p =Ito obtain a counterexample.

4

4.2. Termination proofs according to Hitchcock & Park

We quote some of the results of [67 to be used
here.

DEFINITION 4. l. A relation R is well-founded in x = x0
iff there does not exist an infinite sequence
x0Rx 1Rx2

DEFINITION 4.2. For T[Xl any statement which is mono
tonic in X, let µX[T[X77 denote the least fixed point
of T[X], and vXrT[Xll its greatest fixed point (~ote
that both exist according to the Knaster-Tarski theorem).

LEMMA 4.3 (r67). R is well-founded in x iff µX[R➔X](x)
holds.

PROOF. First we show
(i) For all x, vX[R 0 Xl(x) iff there exist xo = x,

x 1,x2 , ... such that x0Rx1Rx2 ... , i.e., iff R is
not well-founded in x.
Let rd!. vX1RoXl.
(Only if). Let x = x0 , and assume r(x0). Since
r = Ror, by the definition of"" there exi~ts x 1
such that x0 Rx 1 A r(x). Similarly, there exists
x 2 such that x 1Rx2 A r(x2), etc. Hence
x0Rx 1Rx2 ••••
(If). Let the predicates be defined by: s(x) iff
there exists an infinite R-sequence starting in x.
Thens S R0 s. By the definition of r, thens Sr.

Furthermore, we need
(ii) R ➔ X = R0 X (section 1.3)
(iii) µXrT[Xll = vX[illll (direct from the definitions).
Combining (i), (ii) and (iii) yields that R is well
founded in x iff µX[R➔Xl(x) holds. 0

Next, we consider the question: For what reason
could the while statement P*S fail to deliver a value
for some argument x = x . Either a) The sequence
x0 _p;S x1p;S x2 ... can Re continued ad inf., orb) Th~re
exists Xn such tha~0 p;S x 1 p;S x2···x _ 1 p;S x , with
x satisfying p n S0 I (i.e., x satisfie~ the tes¥ of
tRe loop but Sis undefined innxn). From a) and b) to
gether we see tha£...E*S does terminate properly iff the
relation p;S u p;S 0 1 is well-founded. Thus we obtain

THEOREM 4.4 ([67). p*S terminates properly for all x iff
µX[p;S u p;SoI ➔ Xl = I.

4.3. A justification of the Manna & Pnueli rule

First we apply theorem 4.4 to obtain an extension
of f•J 1 to total correctness.

LEMMA 4.5. From
a. u;p ~ S 0 u, and
b. Sis well-founded
one may infer that
c. u S µX[p;S u p;S 0 I ➔ Xl

(In words, if u is an invariant of the well-founded S
guaranteeing termination of S - under the additional
assumption that p holds - then u implies proper termin
ation of p*S.)

PROOF. We use the auxiliary result that for Ra func
tion, µXfR➔X7 = 11.(Ri➔O). (By [67, this does not hold
for arbitrary R, Eut we recall the restriction stated
at the beginning of section 3, that all programs con
sidered be deterministic.) Therefore, we can apply
Scott's induction in the following way: Let
rd,. µX[p;S u p;SoI ➔ X7. We shall show c'): If
u;X Sr, then u;(S➔X) Sr. Once c') has been estab
lished, we conclude, by Scott's rule, that u;µX[S➔Xl S
s r, and, since by assumption b) we have µX[S➔Xl = I,
the desired result c) follows. In order to prove c'),
assume u;X Sr, and u(y) and (S➔X)(y) for some y. We
must show that the r(y), or, by the fixed point prop-

erty, that (p;S u p;S 0 1 7 r}(y), or, equivalently, that
both (p•S-+r) (y) and (p;S 0 I+r) (y). To show (p;S-+r) (y),
we assu~e y p;S z, and show that then r(z). Since u(y)
and p(y), by assumption a) we have that ySt and u(t)
for some t. Since Sis a function, t = z. Since
(S-+X)(y), also X(z). From u(z) and X(z), and since
u•X c r r(z) follows as desired. The proof of
(;;~-+;)(y) is straightforward and therefore omitted. 0

We now give the justification of the Manna & Pnueli
rule. They write {p(x)} S {xQy} for: For all states x
satisfying p, S terminates properly with output y sat
isfying xQy. Now let (W,<) be a well-founded set (no
infinite decreasing <-chains) and fa partial function
mapping the set of states V to W. Then Manna & Pnueli's
rule reads as follows: From
a. {u(x) A p(x)} S {xQy A (f(x) > f(y)}}
b. Vx,y[xQy A p(y) -+ u(y)J
c. Vx,y,z[xQy A yQz-+ xQz]
d. Vx[u(x) A p(x) -+ xQx)
one may infer that
e. {u(x)} p*S {xQy Ap(y)}

In our relational formulation this takes the form
as given in

THEOREM 4.6. From
a. u;p S (SnQ) 0 I
b, µX[S-+X] = I
C, Q;p,: Q;u
d. Q;Q SQ
e. u;p SQ
one may infer that
f. u S µX[p;S u p;SoI-+ X]
g. u;p*S S Q;p

PROOF. We use the auxiliary result that, for any R, p,
we have µX[p;R-+ X] = µX[p;R;p-+ X], the simple proof
of which is omitted. In order to show f), we use Scott's
induction (cf. the proof of lemma 4.5) and prove f'):
if u;X s r, then u;(S+X) Sr, where r is defined as:
r = µX[p;S u p;Sol-+ X]. So assume u;X Sr, and u(y)
and (S-+X)(y) for some y. To show r(y), or, by the fixed
point property, both (p;S-+r)(y) and (p;S 0 I+r)(y). The
second of these is again obvious, and we prove only the
first. By the auxiliary result, it is sufficient to
show (p;S;p+r)(y). So assume y p;S;p z and show r(z).
Since p(y) and u(y), by a) we have ySt and yQt for some
t. Since ySz and Sis a function, t = z. Since yQz and
p(z), from c) we infer that u(z). Since ySz and
(S+X)(y), also X(z). Then, using u;X s r, the result
r(z) follows, and the proof of£') is completed.

Next we prove g) by first applying simultaneous
Scott's induction to show u;p*S SQ and Q;p*S SQ.
Thus, assume u;X s Q and Q;X s Q. We verify
- u;(p;S;X up) SQ:

u;p;S;X S (ass. a) u;p;Q;X S Q;X SQ
u;p SQ (ass. e)

- Q;(p;S;X up) C Q:
Q;p;S;X s (ass: c) Q;p;u;S;X s (ass. a) Q;p;u;Q;X S
S Q;Q;X s Q;Q s (ass. d) Q, and
Q;p s Q

Thus, we have shown that u;p*S s Q. Clearly, then
also u;p*S s Q;p, and the proof of g) and hence of
theorem 4.6 is completed. 0

REFERENCES

[!] J.W. de Bakker, Recursive Procedures, Mathematical
Centre Tracts 24, Amsterdam (1971).

[2] J.W. de Bakker, Least fixed points revisited, to
appear in Theoretical Computer Science.

[3] J.W. de Bakker & L.G.L.T. Meertens, On the comp
leteness of the inductive assertion method,
to appear in J. of Comp. Syst. Sci.

5

f4] J.W, de Bakker & W.P, de Roever, A calculus for
recursive program schemes, in Automata Lan
guages and Programming (M. Nivat, ed.):
p.167-196, North-Holland, Amsterdam (1973).

[57 E.W. Dijkstra, A simole axiomatic basis for pro
gramming language constructs, Proc. Kon. Ned.
Akad., Ser. A, 77 (or Indagationes Math., 36),
1-15 (1974). -

[6] P. Hitchcock & D. Park, Induction rules and proofs
of termination, in Automata, Languages and
Prograrraning (M. Nivat, ed.), p.225-251,
North-Holland, Amsterdam (1973).

[7] C.A.R. Hoare, An axiomatic basis for computer pro
grarraning, CACM ..!l (1969), 576-580.

[8] C.A.R. Hoare, Procedures and parameters, an axio
matic approach, in Symp. on Sem. Alg. Lang.
(E. Engeler, ed.), Lecture Notes in Math.,
Vol. 188, p. 102-116, Springer (1971).

[97 C.A.R. Hoare, An axiomatic definition of the pro
gramming language PASCAL, in Int. Symp. on
Theor. Progr. (A. Ershov, ed.), Lecture Notes
in Comp. Sci., vol. 5, p.1-16, Springer (1974).

[10] C.A.R. Hoare & N. Wirth, An axiomatic definition of
the programming language PASCAL, Acta Inf. 2
(1973), 335-355.

[II] D.E. Knuth, Structured programming with goto state
ments, Comp. Surveys_§_ (1974), 261-302.

[12] Z. Manna, Mathematical Theory of Computation,
McGraw-Hill (1974).

[137 Z. Manna & J. Vuillemin, Fixpoint approach to the
theory of computation, CACM 15 (1972), 528-
536. -

[147 N. Wirth, On the composition of well-structured
programs, Comp. Surveys_§_ (1974), 247-260.

