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ABSTRACT 

The proof theory of structured progrannning inso­
far as concerned with flow of control is investigated. 
Various proof rules for the while, repeat-until and 
simple iteration statements - all essentially variants 
of Hoare's original while rule - are analyzed with re­
spect to their soundness and adequacy. Next, a recently 
proposed proof rule for recursive procedures due to 
Dijkstra is - after correction - shown to be a simple 
instance of Scott's induction rule. Finally, Manna & 

Pnueli's rule for total correctness of the while state­
ment is formally justified using the Hitchcock & Park 
theory of program termination based on well-founded re­
lations. 

O. INTRODUCTION 

In this paper we investigate the proof theory of 
structured programming insofar as it is concerned with 
the control structure of programs. More specifically, 
we analyze 
- a variety of proof rules for the while, repeat-until 

and simple iteration ([II]) statements; 
a recently proposed proof rule for recursion due to 
Dijkstra ([S]); 
Manna & Pnueli's rule ([12]) to prove totaZ correct­
ness of the while statement. 

Section 1 of the paper is preliminary and contains the 
notation - viewing programs as relations between states 
expressed with the aid of various relational opera­
tors-, the basic properties of (parameterless) recur­
sive procedures such as the rule of computational (or 
Scott's) induction, and the notation for stating par­
tial and total correctness using some auxiliary opera­
tors. 
Section 2 (proof rules for iteration): All proof rules -
apart from one exception - are sound. None of them is 
fully adequate, i.e., none of them allows to prove aZZ 
properties of the statement concerned. It is shown that, 
for deterministic programs, each proof rule fully char­
acterizes terminating programs only. Also, an extension 
of the rules yielding full adequacy is proposed. 
Section 3. Dijkstra's proof rule for recursive proce­
dures which employs his "weakest preconditions" is an­
alyzed. In the form given, the rule is incorrect, at 
least if our interpretation of his informally stated 
system is indeed the intended one. A modification of 
the rule leads to a correct version which is immediate­
ly obtained by Scott's induction. 
Section 4 (total correctness of the while statement): 
It is explained how Dijkstra's rule could be special­
ized to his "Fundamental Invariance Theorem for Repeti­
tion" which, at closer scrutiny, is nothing but a weak­
er version of Hoare's while rule. Next, we recall some 
of the theory as introduced in [6], where total cor­
rectness is proved using properties of well-founded re­
lations. This enables us to prove the soundness of the 
rule of Manna & Pnueli which, though intuitively ap­
pealing, is not so easy to justify formally. 

Our main aim with the paper is to show how the re-

lational theory provides a unified framework for the 
analysis of a seemingly wide variety of rules. The 
theory allows one to see these rules in a better per­
spective, allowing one to compare and, in some cases, 
to correct or extend them. Instead of remaining iso­
lated ideas, they obtain their due place as propositions 
in the general theory. An additional feature is the 
first application - albeit rather modest - of the very 
interesting theory of r61. 

I. ITERATION AND RECURSION: NOTATION AND BASIC 
PROPERTIES 

Details about the material in this section can be 
found e.g. in r1,2,3,4,6l. 

I . I . Progrcons and z>e iations 

In our (structured) language we have 
- basic actions A, A1, ••. , and procedure calls 

P, pl, ... • 
construction rules combining statements s1 , s2 and 
boolean p by 

sequential composition : Si;s2 
selection : if p then s 1 else s2 
while statement : while p do S tor p*S, for short) 
repeat-until stateiiient°: reneat S until p (or 
S*p, for short) - --- · 
simple iteration statement ([Ill) : loop S; while 
p:T repeat (or S*p*T, for short (which, by defini­
tion, equals S;p*(T;S))). 
Declarations for (narameterless, possibly recur­

sive) procedures have the format P • srPl, where SfPl 
is any statement, which may have occurrences of P (e.g., 
P • if p then A1 ;P else A2). 

Programs determine relations between states: We 
write xSy if statement S maps input x to output y. Prop­
erly speaking, we need here an interpretation of schemes 
S to relations S, say. Rigour will be sacrificed to in­
tuition (and brevir.-,), and we identify programs and 
their corresponding input-output relations. Relational 
operators will then be used as counterpart of the vari­
ous construction rules of the language. We use, for V 
the set of states and x,y,z £ {/: 

- s 1;s2 for.composition: xs 1;s2y iff ~z[xS 1z A_zs2y] 
u, n, c with the usual set-tlieorectical meaning 

- l1 for the empty relation, I ={(x,x) I XE:V} for the 
identity 

- S* = I u Su S;S u ••. = 
- small letters p,q,r, ••. 
- complementation, denoted 

I : p = I\p. 

., i 
Ui=O S 
for subsets of I 
by-, onZy with 

For each boolean p: V ➔ {true,false}, for conven­
ience's sake always assumed to be total, we introduce 
two relations p,p, viz. p = {(x,x) I p(x) = true}, 
p = {(x,x) I p(x) = false}. This double use of p - as 
boolean and as a relation - is admittedly ambiguous, 
but it pays off below. We shall freely use relational 
identities such as I;S = S, nus= s, pnp = n, pup= I, 
p;q = pnq, etc. Using the relational operators, with 
";" having priority over "u", we can write: 



p;S~ u p;S2 for :if p then s1 else s2 
(p; )*;p for p*S 
S;(j5;S)*;p for S*p 
S; (jl;T;S)*;p for S*p*T 

1.2. Reaursive procedures 

We summarize the basic properties of recursive pro­
cedures we shall need below. Let S[P] be any statement 
with possible occurrences of P, and, for any S', let 
S[S'] denote the result of replacing all occurrences of 
pin S by S'. Each S has the following properties: 
I. Monotonicity: If S1 S s2 then S[S 1 ] S S[S2 ]. 

2. Continuity: Let s0 S s1 S .... Then S[UiSi l = 
= U. S[S.]. 

We now1 assuffie the declaration P .. srPl. 
3. Union.theorem: Let, foi any,T, sO[Tl = T, si+l[Tl 

= S[S1 [T]]. Then P = u. S1 [n]. 
4. Least fixed point prop@;gy: P = S[P] and, for any T, 

if S[T] = T (or even S[TJ c T) then Pc T. 
5. Conrputational (or Scott's)-induction: Let r 1[Pl, 

T2[P] be any two statements, and let T1[X], T2[X] 
result from these by replacing P be the "program var­
iable" X. Assume that a and b are both satisfied: 
a. T 1[nJ s T2 [nJ. 
b. For all X, if T1[X] S T2[X] then T1rs[Xll S 

S TiS[X]]. 
Then we may infer that 
c. T1[P] S T2[P]. 
Exanrple. Let T1[P] =p;P and T2[Pl =P;q. Assume 
a. p;n s n;q (note that this is trivially satisfied) 
b. For all X, if p;X S X;q then p;S[X] S S[X7;q. 
Then we may infer that 
c. p;P S P;q. 
(Cf. the proof rule for recursive procedures in [87 
and its explanation in [13].) 

1.3. Partial and total correctness 

Sis partially correct with respect to p,q iff 
Yx,y[p(x) A xSy ➔ q(y)J or, in our formalism, p;S s S;q 
(or {p} S {q}, as in [7]). Sis totally correct with 
respect to p,q iff Yx[p(x) + 3y[xSy A q(y)JJ. 
We introduce two new operators between a statement S 
and a boolean p, viz. 

(Sop)(x) 1£..: 3y[xSy A p(y)J 

(s+p)(x) 'll.: 'vy[xSy+p(y)J 

We have, e.g., 
(i) Sis totally correct with respect to p,q iff 

p S Soq _ 
(ii) S + p = Sop 
(iii) So(puq) = (Sop) u (Soq), s1 + (S 2➔p) = (S 1;S2) + 

+ p, and, for Sa function (i.e., 
Yx,y,z[xSy A xSz + y=z]): S 0 (pnq) = (Sop) n (Soq), 
S + (puq) = (S+p) u (S+q), etc. 

2. PROOF RULES FOR ITERATION 

We discuss the soundness and adequacy of a number 
of proof rules for the while, repeat-until and simple 
iteration statements. Apart from one exception, the 
rules are all easily seen to be sound. None of them is 
fully adequate, however, and it is shown how to extend 
them to achieve adequacy. 

2.1. Rules for the while statement 

In the literature we encountered the following 
four versions(taking a few liberties with the notation): 

W ([l]): {uAp} S {u} 
l {u} p*S {uAp} 
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(In words, if the assertion u is an invariant of 
S - under the additional assumption that p holds - then 
u is an invariant of p*S. Moreover, upon termination of 
p*S, p holds.) 

{uAp} S{u}, uAp:, V 
W2([12l): {u} p*S {v} 

W/197): 
{w} S{ u} , u :, if Ethen w else v 

{ u} p*S { V} 

~\UBJ): 
{ u} S{ w}, w:, if p then u else v 

{u} p*S { v} 

In the relational notation these rules are written 
as 

WI: 'vu1u;p;S s S;u ~ u;p*S s p*S;p;u] 

('/2: Yu,v[u;p;S s S;u and p;u =:. v.,. u;p*S s p*S;v] 

('/3: 'vu,v,w1w;S s S;u and u s p;w u p;v • u;p*S 5 P*S;v] 

[•J 4: 'vu,v,wru;S s S;w and w s p;u u p;v • u;p*S 5 p*S;vl 

to which we add (cf. r 31 > : 

l\: 'vu,v13w1usw, w;p;SsS;w, w;psvl => u;p*S s p*S;vl 

Of course, (•15 is nothing but the inductive assertion 
method: In order to show that p*S is partially correct 
with respect to u,v, try to find intermediate w satis­
fying the three "verification conditions" u 5 w, 
w;p;S ~ S;w, and w;p ~ v. 

Our analysis of the five rules is summarized in 
the following three lemmas: 

LEMMA 2.1 (Soundness). 
a. PJ 1, [•J 2, N3 and ('JS are sound. 
b. (r} 4 is not sound. 

PROOF. 
a. Straightforward from the fact that p*S = (p;S)*;j5 = 

= (IJ.(p;S) 1 );j5, by applying induction on i. 
b. Takiftg v = w = p = S = n, and u = I, and using the 

fact that n*n = I, W 4 yields the contradiction that 
IS sl. 0 

It is maybe not immediately clear how to under­
stand the notion of adequacy of a proof rule. We take 
the following approach: Let (1J 1 (p,S,X), or (•1 1 (X) when p 
and Sare understood, be defined as: 

('/ 1 (p,S,X): 'vufu;p; S S S;u,.. u;X S X;p;u] 

Then we call W1 (p,S,X) adequate with respect to the 
while statement p*S iff for all X, if W1(p,S,X) holds, 
then X = p*S. 

From now on, we omit reference top and Sin our 
notation. Also (~.(X), i = 2,3,5 are defined similarly 
to W1(X). We thefi have 

LEMMA 2.2 (Adequacy). For all X: 
a. (rJ 1(X) -WzCX) - ('J1 (X) - (<J5 (X) 

b. W1(X) • [X 5 n*S]. Hence, Ni(X) •[XS P*S], 

i = 2,3,5. 
c. None of the Wi(X), i = 1,2,3,5, is adequate. 

PROOF. 
a. We show that W1 (X) (,l) f\ (X) (ij) WzCX) (ij_i) 

(<J~(X) (~) (•1 1 (X). 

(i) Assume W1 (X) and the assumptions of P's (X:) for 
some uo, v0 , w0 . Then the assumption of W1 (X) 
is satisfied for w0 , hence w0;x S X;p;w0 fol­
lows. Since u0 s w0 and j5;w0 s v0, the result 
u0 ;x s X;v0 follows, thus establishing W5 (x). 

(ii) Assume f</5 (X) and the assumptions of W2(X) for 



u0,v0 • Taking w0 = u0 , we see that the assump­
tions of W (X) are satisfied for u0 , v0 , w0 , 
hence u ;x5c X;v follows, thus establishing 
W (X). 0 - 0 

(iii),(tv) Similar. 
b, (This proof is a slight variant of an unpublished 

argument due to Scott.) First we show: For any R, S, 
if Vu,v[u;R s R;u,.. u;S S S;u] then Sc R*: Jake an 
arbitrary state x , and define u0 (x) df. x0R x. It 
is easy to check 2hat u0 ;R s R;u0 holds. Tnus u0 ;s S 
c S·u follows, i.e. Vx,y[x0R*x A xSy + x0R*y]. In 
- ' 0 * 7 • particular, Vx,y[x=~0 A xSy + x0R ?·• i.e., * 
Vy[x0Sy ➔ x0R*y]. Since x was arbitrary, S s ~ fol­
lows. Applying this resul2, from W1(X) we obtain 
that X 5: (p; S) *. Also, taking u = I in [IJ I (X) !ields 
x c X;ji. Combining the two inclusions for X yields 
X ~ (p;S)*;p = p*S. 

c. Ob;erve that, e.g. (•J. (ll) holds for each i = I ,2,3,5. 
Only from additionalirequirements, e.g. that X be 
total (Vx3y[xXy]) and all our relations be functions 
(i.e., if we restrict ourselves to deterministic pro­
grams) can we infer from X s p*S that X = p*S, D 

We now show how to extend the rule W5(X) to a new 
rule which is adequate. 

LEMMA 2.3 (Extended while rule). 
Let "'5'(X) be defined as: 

ut;;'<X) : Vu,v[3w[usw, w;p;SsS;w, w;ji5:vl - u;X 5: X;vl 

Then "'5'(X) iff X = p*S. 

PROOF. 
(If). We show that ~:S(p*S) holds.; is lemma 2.1, p~rt 
a ... follows by taking, for a~me given u0 ,vo, ~he (i~­
ductive assertion) w0 ~s w~ -· (p;S)*o~~: It.is eas~~y 
c~ecked that w0 satisfies he three veri ication con i­
tions. 
(Only if). We use the auxiliary result: For all R,S : . 
Vu,v[u;R s R;v .. u;S 5: S;v] iff S SR. The proof of this 
is left to the reader. Now assume (~(X), and ta~e any 
u ,v . We have, using (tl'_s(X) and w<;<p*S) respectively: 
uO;XO.o: X;v0 -3w[u0sw, w;p;SsS;w, w;jisv0 J - uo;p*S::: 
5:0p*S;v0 • Thus we obtain: Vu,v[u;X:;:X;v - u;p*S:;:p*S;vl, 
and X = p*S follows by the auxiliary result. D 

2.2. Rules for the repeat-until statement 

Similar results as in 2. I are obtained for the re­
peat-until statement. We consider 

R1([14]): 

R2([10]): 

R3 ([9J): 

R4([3]): 

Vu,v[(u u ji;v);S s S;v .. u;S*p::: S*p;vl 

Vu,v[u;S s S;v and ji;vsu,.. u;S*p s S*ji;vl 

Vu,v,w[w;S 5:S;u and u5:p;v u p;w .. u;S*p S S*p;vl 

Yu,v[3w[u;S~S;w, w;p;S=S;w, w;p5vl • 
u;S*ji 5: S*p;vl. 

We have (notation as in section 2. 1): 

LEMMA 2.4. 
a. R1 , R2 , R3 and R4 are sound. 
b. For all X, Rl(X) - Rz(X) ~ R~(X) - R4(X). 
c. For all X, Ri(X) • [X s S*p], 1 = 1,2,3,4. 

d. For all X, ~(X) iff X = S*p. 

PROOF. Similar to the proofs in section 2.1. D 

2.3. Rules for the sirrrpZe iteration statement 

We consider 

S 1([11]): Vu,v[u;S5:S;v and v;ji;TsT;u-+u;S*p*TSS*p*T;vl 

S2([3]): Vu,v[3w[u;S5:S;w, w;j5;T;S5:T;S;w, w;p5:v],. 
u;S*p*T S S*p*T;v]. 

We have 

LEMMA 2.5. 
a. S1 and Sz are sound 
b. For all X, S (X) - S (X) 
c. For all X, Si(X).,. 1X2s S*p*Tl, i 1,2. 

d. For all X, ~(X) iff X = S*p*T. 

PROOF. Similar to the proofs in section 2.1. In the 
proof of 2.5c we use the auxiliary result: For all 
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R, S, T, if Vu,vru;R::: R;v and v;S s S;u"" u;T s T;vl* 
then Ts (R;S)*;R. To show this, take u0 (x) <Ii x0 (R;S) x, 
and v0 (x) dt. x0 (R;S)*;Rx, etc. D 

3. A PROOF RULE FOR RECURSION 

In sections 3 and 4 all programs are assumed de­
terministic, i.e., all relations are functions. 

3. I. Weakest preconditions 

We quote from r57: "We consider the semantics of 
a program S fully determined when we can derive for 
any postcondjtion q satisfied by the final state, the 
weakest precondition that for this purpose should be 
satisfied by the initial state. We regard this weakest 
precondition as a function of the postcondition q, and 
denote it by fS(q) ." Though not stated in this quota­
tion, the rest of 157 makes it clear that Dijkstra is on­
ly interested in total correctness. Consider once more 
its formulation in our notation: Vx1p(x) ➔ 3yfxSy A 
q(y)ll, or, using the o-operator: Vxfp(x) + (S 0 q)(x)l. 
Thus we see that whatever condition p guarantees total 
corr;ctness with final q, such p always implies S 0 q, 
Hence, the weakest such pis nothing but S0 q itself, 
which we therefore propose to identify with fS(q). Our 
interpretation is supported by (i) All basic properties 
and additional rules from 157 are provable for S0 q. 
(ii) The main theorem of f5] is, after correction, also 
provable. 

We now give a selection of the basic properties of 
fS(q) as mentioned in 157: 

V1: p = q implies fS(p) = fS(q), i.e., p = q => S0 p = S0 q. 

P2 : fS(f) = f (f the identically false predicate), i.e., 
SoQ = r2. 

fS(pnq) = fS(p) n fS(q), i.e., S0 (pnq) 
= (Sop) n (Soq). Similarly for u. 

f(S 1 ;s2 )(p) = fS 1(fS2 (p)), i.e., (S 1 ;s2 ) 0 p 
= Slo(S2op). 

As an example, we exhibit the proof of P4: 
For all x, we have 
( (S 1 ;S 2) op) (x) iff (def. 11 0 11 ) 

3yfxS 1;s2y A p(y)l iff (def. ";") 
~Yt~zl xS 1z A zS2yl A p(y)l iff 
3y,zfxS 1z A zS2y A p(y)l iff 
3zfxSlz A 3y:zSzy A p(y) lJ iff (def. " 011 ) 

3ztxS 1z A (S 2°p)(z)l iff (def. 110 ") 

(S 1o(S2 op))(x). 
The otfier proofs are equally simple. 

3.2. The Fundamental Invariance Theorem for Recursive 
Procedures (F.I.T.R.P.). 

We quote from f57: "Consider a text, called H", of 
the form H": ... H' ... H' ... H' ... , to which corresponds a 
predicate transformer fH", such that for a specific pair 
of predicates q and r, the assumption q S fH'(r) is a 
sufficient assumption about fH' for proving q S fH"(r). 
In that case, the recursive procedure H defined by 
proc H; •.. H ... H ... H ... corp enjoys the property that 
q n fH(I) s fH(r)". Thus, the theorem reads: From 
a. If q s fH'(r) then q s fH"(r) 
one may infer that 



b. q n fH(I) ~ fH(r}. 
In this form the theorem is incorrect. Take q 
r = o. Then we obtain, using V2 above: From 
a'. If I c O then Is 0 
one may i;fer that 
b'. In fH(I) SO. 

I and 

Since a' is always satisfied we obtain that, for arbi­
trary procedure H, fH(I) (or H0 I) = O, i.e., His no­
where defined, which is absurd. Next, we propose a modi­
fied version: From 
a". If q n fH' (I) ~ fH"(r) then q n fH"(I) ~ fH"(r) 
one may infer that 
b". q n fH(I) S fH(r). 
Proof of this version: First we show that we can re­
write the inclusion q n fH(I) S fH(r) as the inclusion 
q;H S H;r. We have Vx[q(x) A 3y[xHy A I(y)J ➔ 
➔ 3z[xHz A r(z)J] iff Vx,y[q(x) A xHy + 3z[xHz A r(z)ll 
iff (Ha function) Vx,y[q(x) A xHy ➔ r(y)J iff q;H~H;r. 
Applying the same rewriting for H' and H" we obtain: 
From 
a 11 '. If q;H' ~ H' ;r then q;H 11 .5: H11 ;r 
one may infer that 
b"'. q;H _s H;r. 
We now use that H" = ... H' ... H' ..• H' ..• = S[H' J, say, 
and that H • S[H]. (Remember that His the recursive 
procedure declared by proc H; ... H ... H •.. H ... corp, 
i.e., proc H; S[H] corp, or H • S[H] in our notation.) 
W~ thus obtain as next step: From 
aiv. If q;H' S H';r then q;S[H'] S S[H'];r 
one may infer that 
biv. q;H S H;r. 
Finally, we apply a renaming of the program and proce­
dure variables and obtain: For P satisfying P.., S[Pl, 
from 
av. If q;X ~ X;r then q;S[X] S S[X];r 
one may infer that 
bv. q;P S P;r 
and this is nothing but the special case of Scott's in­
duction rule mentioned at the end of section l .2. D 

4. TOTAL CORRECTNESS OF THE WHILE STATEMENT 

In this section we first explain how Dijkstra's 
theorem could be specialized to a correct rule for the 
while statement, which turns out to be nothing but a 
weaker version of W1 from section 2.1. Next, we briefly 
review some of the results of Hitchcock & Park [6] on 
proving program termination using the notion of well­
founded relation, and then finally justify the proof 
rule for total correctness due to Manna & Pnueli [127. 

4.1. The Fundamental Inva:r:>iarwe Theorem for Repetition 
(F.I.T.R) 

In [5], it is asserted that: From 
a. If q n p s fS(q) 
one may infer that 
b. q n f(p*S)(I) S f(p*S)(qnp). 
Using our interpretation of fS(q), and the same re­
writing argument as applied in section 3.2, we obtain 
instead: From 
a'. q;p S Soq 
one may infer that 
b'. q;p*S S p*S;q;p. 
Since, clearly, if q;p S S0 q then q;p;S s S;q (i.e., if 
Sis totally correct with respect top n q and q, then 
Sis partially correct with respect top n q and q) we 
see that the F.I.T.R. is just a weaker version of W . 

The derivation of the (correct) F.I.T.R. from the 
(incorrect) F.I.T.R.P. is based on the alleged equiva­
lence of a) q n p s fS(q), and a") if q s fH' (qnp) then 
q S (qnp) u (p n fS(fH'(qnp))). One easily sees that 
though indeed a) • a"), it is not true that a") • a): 
Take p =Ito obtain a counterexample. 
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4.2. Termination proofs according to Hitchcock & Park 

We quote some of the results of [67 to be used 
here. 

DEFINITION 4. l. A relation R is well-founded in x = x0 
iff there does not exist an infinite sequence 
x0Rx 1Rx2 .... 

DEFINITION 4.2. For T[Xl any statement which is mono­
tonic in X, let µX[T[X77 denote the least fixed point 
of T[X], and vXrT[Xll its greatest fixed point (~ote 
that both exist according to the Knaster-Tarski theorem). 

LEMMA 4.3 (r67). R is well-founded in x iff µX[R➔X](x) 
holds. 

PROOF. First we show 
(i) For all x, vX[R 0 Xl(x) iff there exist xo = x, 

x 1,x2 , ... such that x0Rx1Rx2 ... , i.e., iff R is 
not well-founded in x. 
Let rd!. vX1RoXl. 
(Only if). Let x = x0 , and assume r(x0). Since 
r = Ror, by the definition of"" there exi~ts x 1 
such that x0 Rx 1 A r(x). Similarly, there exists 
x 2 such that x 1Rx2 A r(x2), etc. Hence 
x0Rx 1Rx2 •••• 
(If). Let the predicates be defined by: s(x) iff 
there exists an infinite R-sequence starting in x. 
Thens S R0 s. By the definition of r, thens Sr. 

Furthermore, we need 
(ii) R ➔ X = R0 X (section 1.3) 
(iii) µXrT[Xll = vX[illll (direct from the definitions). 
Combining (i), (ii) and (iii) yields that R is well­
founded in x iff µX[R➔Xl(x) holds. 0 

Next, we consider the question: For what reason 
could the while statement P*S fail to deliver a value 
for some argument x = x . Either a) The sequence 
x0 _p;S x1p;S x2 ... can Re continued ad inf., orb) Th~re 
exists Xn such tha~0 p;S x 1 p;S x2···x _ 1 p;S x , with 
x satisfying p n S0 I (i.e., x satisfie~ the tes¥ of 
tRe loop but Sis undefined innxn). From a) and b) to­
gether we see tha£...E*S does terminate properly iff the 
relation p;S u p;S 0 1 is well-founded. Thus we obtain 

THEOREM 4.4 ([67). p*S terminates properly for all x iff 
µX[p;S u p;SoI ➔ Xl = I. 

4.3. A justification of the Manna & Pnueli rule 

First we apply theorem 4.4 to obtain an extension 
of f•J 1 to total correctness. 

LEMMA 4.5. From 
a. u;p ~ S 0 u, and 
b. Sis well-founded 
one may infer that 
c. u S µX[p;S u p;S 0 I ➔ Xl 

(In words, if u is an invariant of the well-founded S 
guaranteeing termination of S - under the additional 
assumption that p holds - then u implies proper termin­
ation of p*S.) 

PROOF. We use the auxiliary result that for Ra func­
tion, µXfR➔X7 = 11.(Ri➔O). (By [67, this does not hold 
for arbitrary R, Eut we recall the restriction stated 
at the beginning of section 3, that all programs con­
sidered be deterministic.) Therefore, we can apply 
Scott's induction in the following way: Let 
rd,. µX[p;S u p;SoI ➔ X7. We shall show c'): If 
u;X Sr, then u;(S➔X) Sr. Once c') has been estab­
lished, we conclude, by Scott's rule, that u;µX[S➔Xl S 
s r, and, since by assumption b) we have µX[S➔Xl = I, 
the desired result c) follows. In order to prove c'), 
assume u;X Sr, and u(y) and (S➔X)(y) for some y. We 
must show that the r(y), or, by the fixed point prop-



erty, that (p;S u p;S 0 1 7 r}(y), or, equivalently, that 
both (p•S-+r) (y) and (p;S 0 I+r) (y). To show (p;S-+r) (y), 
we assu~e y p;S z, and show that then r(z). Since u(y) 
and p(y), by assumption a) we have that ySt and u(t) 
for some t. Since Sis a function, t = z. Since 
(S-+X)(y), also X(z). From u(z) and X(z), and since 
u•X c r r(z) follows as desired. The proof of 
(;;~-+;)(y) is straightforward and therefore omitted. 0 

We now give the justification of the Manna & Pnueli 
rule. They write {p(x)} S {xQy} for: For all states x 
satisfying p, S terminates properly with output y sat­
isfying xQy. Now let (W,<) be a well-founded set (no 
infinite decreasing <-chains) and fa partial function 
mapping the set of states V to W. Then Manna & Pnueli's 
rule reads as follows: From 
a. {u(x) A p(x)} S {xQy A (f(x) > f(y)}} 
b. Vx,y[xQy A p(y) -+ u(y)J 
c. Vx,y,z[xQy A yQz-+ xQz] 
d. Vx[u(x) A p(x) -+ xQx) 
one may infer that 
e. {u(x)} p*S {xQy Ap(y)} 

In our relational formulation this takes the form 
as given in 

THEOREM 4.6. From 
a. u;p S (SnQ) 0 I 
b, µX[S-+X] = I 
C, Q;p,: Q;u 
d. Q;Q SQ 
e. u;p SQ 
one may infer that 
f. u S µX[p;S u p;SoI-+ X] 
g. u;p*S S Q;p 

PROOF. We use the auxiliary result that, for any R, p, 
we have µX[p;R-+ X] = µX[p;R;p-+ X], the simple proof 
of which is omitted. In order to show f), we use Scott's 
induction (cf. the proof of lemma 4.5) and prove f'): 
if u;X s r, then u;(S+X) Sr, where r is defined as: 
r = µX[p;S u p;Sol-+ X]. So assume u;X Sr, and u(y) 
and (S-+X)(y) for some y. To show r(y), or, by the fixed 
point property, both (p;S-+r)(y) and (p;S 0 I+r)(y). The 
second of these is again obvious, and we prove only the 
first. By the auxiliary result, it is sufficient to 
show (p;S;p+r)(y). So assume y p;S;p z and show r(z). 
Since p(y) and u(y), by a) we have ySt and yQt for some 
t. Since ySz and Sis a function, t = z. Since yQz and 
p(z), from c) we infer that u(z). Since ySz and 
(S+X)(y), also X(z). Then, using u;X s r, the result 
r(z) follows, and the proof of£') is completed. 

Next we prove g) by first applying simultaneous 
Scott's induction to show u;p*S SQ and Q;p*S SQ. 
Thus, assume u;X s Q and Q;X s Q. We verify 
- u;(p;S;X up) SQ: 

u;p;S;X S (ass. a) u;p;Q;X S Q;X SQ 
u;p SQ (ass. e) 

- Q;(p;S;X up) C Q: 
Q;p;S;X s (ass: c) Q;p;u;S;X s (ass. a) Q;p;u;Q;X S 
S Q;Q;X s Q;Q s (ass. d) Q, and 
Q;p s Q 

Thus, we have shown that u;p*S s Q. Clearly, then 
also u;p*S s Q;p, and the proof of g) and hence of 
theorem 4.6 is completed. 0 

REFERENCES 

[!] J.W. de Bakker, Recursive Procedures, Mathematical 
Centre Tracts 24, Amsterdam (1971). 

[2] J.W. de Bakker, Least fixed points revisited, to 
appear in Theoretical Computer Science. 

[3] J.W. de Bakker & L.G.L.T. Meertens, On the comp­
leteness of the inductive assertion method, 
to appear in J. of Comp. Syst. Sci. 

5 

f4] J.W, de Bakker & W.P, de Roever, A calculus for 
recursive program schemes, in Automata Lan­
guages and Programming (M. Nivat, ed.): 
p.167-196, North-Holland, Amsterdam (1973). 

[57 E.W. Dijkstra, A simole axiomatic basis for pro­
gramming language constructs, Proc. Kon. Ned. 
Akad., Ser. A, 77 (or Indagationes Math., 36), 
1-15 (1974). -

[6] P. Hitchcock & D. Park, Induction rules and proofs 
of termination, in Automata, Languages and 
Prograrraning (M. Nivat, ed.), p.225-251, 
North-Holland, Amsterdam (1973). 

[7] C.A.R. Hoare, An axiomatic basis for computer pro­
grarraning, CACM ..!l (1969), 576-580. 

[8] C.A.R. Hoare, Procedures and parameters, an axio­
matic approach, in Symp. on Sem. Alg. Lang. 
(E. Engeler, ed.), Lecture Notes in Math., 
Vol. 188, p. 102-116, Springer (1971). 

[97 C.A.R. Hoare, An axiomatic definition of the pro­
gramming language PASCAL, in Int. Symp. on 
Theor. Progr. (A. Ershov, ed.), Lecture Notes 
in Comp. Sci., vol. 5, p.1-16, Springer (1974). 

[10] C.A.R. Hoare & N. Wirth, An axiomatic definition of 
the programming language PASCAL, Acta Inf. 2 
(1973), 335-355. 

[II] D.E. Knuth, Structured programming with goto state­
ments, Comp. Surveys_§_ (1974), 261-302. 

[12] Z. Manna, Mathematical Theory of Computation, 
McGraw-Hill (1974). 

[137 Z. Manna & J. Vuillemin, Fixpoint approach to the 
theory of computation, CACM 15 (1972), 528-
536. -

[147 N. Wirth, On the composition of well-structured 
programs, Comp. Surveys_§_ (1974), 247-260. 


