

AFDELING INFORMATICA

L. AMMERAAL

stichting

mathematisch

centrum

I W 48/75

EXTENDING A RUN-TIME STACK WITH SOME REGISTERS
/

Prepub I i cation

~
MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

Punted a.:t .the. Ma.thematic.a.£. Cen:tJr.e., 49, 2e.. BoeJLhaave..6.tna.a.:t, Am-0.te.Jz.dam.

The. Ma.thema;tlc.a.£ Ce.ntlr.e.., 6ou.nde..d :the. 11-:th 06 Fe..b1tUCV1-y 1946, ..u, a. non
p1to6.U. ,l.Yll,;t,i;tu;Uon. aim.ln.g at :the. p.!tomotion. 06 puJLe.. ma:thematie/2 a.n.d w
a.pp.U.c.a;t.,i,oru.. T:t i/2 .tipon.M.1te.d by :the. Ne..:theAlan.df.i GoveJLn.me..n.:t :th/tough .the.
Ne.;the!tla.ndf.i 01tga.niza.:ti..o n. noJt .the. Adva.n.c..eme..n.:t o 6 PuJLe Re..6 e.cvi.c..h (Z. W. 0) ,
by :the. MwucJ..pa.i.dy o0 Am.o:teJt.dam, by :the. Unlve.M.U.y o,6 Am.o.teJLdam, by
:the. F ne.e. Uru.ve.MUy a.t Am.o:teJt.dam, a.n.d by .ln.df.L6.tJr.J,e..o.

AMS(MOS) subject classification scheme (1970): 68Ll5

ACM -Computing Reviews- category: 4.12

EXTENDING A RUN-TIME STACK WITH SOME REGISTERS

by

L. Ammeraal

ABSTRACT

This paper describes how a variable number of registers (or accumula

tors) can be used as the upper part of a virtual stack. It formally defines

the concept of a virtual stack and outlines how a compiler for an ALGOL-like

language can generate instructions for such a stack.

KEY WORDS & PHRASES: stack, registers, compiler, code generation, ALGOL 68

INTRODUCTION

Many conventional machines have fast register-to-register instructions.

Programmers are often recommended to avoid unnecessary load and store in

structions because these are more expensive. For the implementer of high

level languages such an advice does not conform to his need for elegant and

generally applicable addressing methods. Registers (or accumulators, as they

are sometimes called) are usually available in a very limited number. They

often have the awkward property to be only statically addressable, i.e. one

can use, e.g., register R5 but not Ri where i is not known before execution

time. It has sometimes been said that a machine should either have no

registers, or infinitely many. Ignoring the advice about register exploita

tion and performing all operations on a run-time stack is possible but not

satisfactory for machines like the Control Data 6600. A first step to im

prove this is having one register available as the top of the stack. This

means that memory access is not actually done in the following two

situations:

a. a value 1s to be pushed to the stack and the register is "free",

b. a value 1s to be popped from the stack and the register is "occupied".

A boolean variable stock can be used at compile-time to indicate whether

the register is to be considered occupied or free; the reduction in stack

operations can be visualized by the deletion of all sequences "PUSH; POP"

in the object program. My first paper [l] on the Mini ALGOL 68 compiler

describes this in more detail. With only one register as topmost stack

element, still much memory access is necessary. A natural attempt to reduce

this is to generalize the idea mentioned above with respect to the number of

registers. To keep this presentation as simple as possible I chose to use

at most three registers as top stack elements. At any moment a variable

number of these three registers are actually occupied. In a more general

discussion we would have two variable numbers of registers, of which one

is more variable than the other. Fixing the maximum number to three is less

confusing and this number can easily be replaced by a different one, if

wanted. The ideas presented in this paper were successfully implemented 1n

the current version of the Mini ALGOL 68 compiler.

2

TERMINOLOGY

A proper stack Sis an n-tuple (S 11 S9, ••• ,S), where s1~Sn,••·,S are1:._ ____ _ ,., n c: n
contiguous storage cells. The number n is called the (proper) height of S

and is to be considered variable (n ~ 0). Storage cel 1 :.J_I'! is called the

(~~) !£2. of :3. We will say that a value x is properly pushed if the

sequence of statements

1.s executed.

Similarly, the value of Sn 1.s properly popped to x by

x :=S; n :=n-1. n

A register configuration is an m-tuple (R ,R ., .•. ,R) , where
P1 P2 Pm

me {D,1,2,3} (as motivated in the introduction),

D· E {1,2,J} (z:=1, ... ,m), and
... 1.,

We thus have the following ten register configurations:

fJ

A virtual stack 5 1 1.s an (n+m)-tuple

(m=O)

(m=l)

(m=2)

(m=3).

3

which is composed of the proper stack (S1.,s2,,Sn) and the register con

figuration (R .,R ., •.. ,R). The (virtual) height of S' is n+m.
P1 P2 Pm

In the following we shall use t for Pm· The (virtual)~ of S' is Rt

if m > O, or Sn if m=O. We now observe that each triple (n.,m,t)., where

n E {0,1,2., ••• }

m E {0.,1,2.,3}

t E {1.,2,3},

uniquely determines a virtual stack

(The reverse does not hold if m=O).

This can easily be verified from the four lines with register configurations

listed above.

If m = 0., the register configuration 1s /.

If m > O, the register configuration 1s the t-th one on them-th line of

the last three of those lines.

SOME USEFUL CODE GENERATING AND BOOKKEEPING PROCEDURES

It will now be shown how a value is brought to or taken from the vir

tual stack. For reasons of brevity I will use (Mini) ALGOL 68 for this

purpose. Those who are unfamiliar with this language should first pay some

attention to the following examples, explained by ALGOL 60.

Mini ALGOL 68

a) (a < b I c I d);

b) proc f = (real a) int:

(s;b);

ALGOL 60

:!:i_ a < b then c e foe d;

integer proceduPe f(a); value a; real a;

begins; f:= b

end;

4

c) proa p = (int a) void: S; procedure p(a); value a; integer a; S;

d) n+:= 1 n:= n + 1

After this explanation the following very simple functions newer and

older will now immediately be clear. They yield the cyclic successor and

predecessor of a given element kin the triple (1,2,3).

proa newer= (int k) int: (k=3

proa older= (int k) int: (k=l

1

3

k+l);

k-1);

The procedures of this section are part of a compiler. It is now

interesting to notice that-m·and tare known at compile-time, whereas the

proper height n is not. Increasing and decreasing n is not done by the com

piler but at run-time. It is the task of the compiler to generate instruc

tions for these and other operations. These instructions are here generated

by means of the output procedure out. Because m and tare compile-time

variables, only their values and not the variables themselves must be output.

Therefore the following notation is adopted here for the actual parameters

of out. A string between quote symbols(") is actually output, but some

thing of the form

{ }
X

must first be transformed into a string by replacing all occurrences of x

inside the braces by the value of x. So if, e.g., t=2 then the instruction

is written by

The following procedure changes the global variables m and t such that

Hl will become available to put something in.

proc newtop = void:

(t .- (m=O \ 1 \ newer

(m < 3 I m+:= 1 I
(t));

out ("n+:=1"); out ({S
n

5

At first sight it may seem wrong to (properly) push Rt. It is correct, how

ever, because if this happens then m=3 and, immediately before, t :=newer(t)

was executed, which means that Rt is now in fact the "oldest" register. Let

us assume, e.g., the virtual stack to be

Then (n,m,t) = (4,3,2). The effect of newtop is now

yielding the new virtual stack

of which R3 has still to be filled.

The following two procedures ensure that, after the call, m 2 1 and

m 2 2~ respectively.

proc at leaD t lr•eg= void:

(m=O \ out (11R1 := Sn"); out ("n-:=1"); m:=1; t:=lJ;

proc atleast2reg = void:

(m < 2

(m=l

int tl := older (t); out ({Rt := S }t); out ("n-:=1")
1 n 1

out ("R ·- S ") · out ("R ·= S ") · out ("n-:=2"); t :=2 2 · - n ' 1 · n-1 .,

);

m :=2

);

6

AN EXAMPLE.

Even with only three registers the number of proper stack operations is

reduced considerably in practice. In some simple but frequently occurring

situations the proper stack is not used at all. As an example, consider the

assignation

x .- yy+l,

where the modes of x and yy are specified by ref int and ref ref int. (This

example was also dealt with in [l], using only one register). We assume that,

initially, m=O. The example can be written in Reverse Polish as

x, yy, deref, deref, 1, add, assign.

The elaboration of x and yy give rise to calls of newtop. Because we assume

m=O as initial state, these calls yield R1 and R2. The meaning of deref is

dereferencing, which can be implemented by replacing an address by the

contents of this address.

In our case the address is in the virtual top R2. In general atZeastlreg is

called to ensure that m ~ 1 before dereferencing. Both add and assign can be

considered as dyadic operations. Therefore atZeast2reg is called by each

of them, but here, too, the required number of registers is already avail

able, so no run-time actions are involved. Dyadic operations decrease the

height of the virtual stack by one. They are implemented as follows:

atleast2reg; tl :=t; t :=older(t); m-:=1;

out ({Rt:= Rt QE_ Rt }t t).
1 ' 1

Thus the object code will be:

Rl .- x;
R2 ,- yy;

R2 .- contents of the address given in R2;

R2 .- contents of the address given in R2;

R3 . - 1 . .,

R2 .- R2 + R 3;

SR .- R ""
1

C,

As the last instruction shows, identifiers like x are associated with

certain elements of the proper stack S. If S. is this element for x then
1,,

R1 contains i., the address of x. This address is the result of the given

7

assignation: an assignation (a priori) yields a value in (Mini) ALGOL 68.

In the compiler, m=l and t=l after the generation of these instructions. If

the result of the assignation has to be voided, e.g. if it is followed by a

semicolon, then the following procedure is called.

proe voiding= void:

(m=O J out ("n-:=1 ")

).

m-:=1;

(m > 0 I t .- older (t))

In our case this will set m to O and produce no object code.

THE VIRTUAL STACK AT RUN-TIME ROUTINE ENTRY AND EXIT.

If a procedure is called at run-time, care must be taken that the

routine uses the virtual stack with initial values of m and t as they were

at the moment of the call.

A similar condition must be satisfied on routine exit. As mentioned be

fore, m and tare compile-time quantities. They may have different values

at the various points where a given procedure is called. Therefore some kind

of normalization is necessary before and after the execution of a routine.

In the implementation of Mini ALGOL 68 the values of actual parameters must

reside on the proper stack instead of in registers. This is so because

these values are accessed through their corresponding formal parameters and

these are, like normally declared identifiers, identified by their position

in the proper stack S', as mentioned in the last example. Therefore the

contents of Rp1, ... ,Rt are, in this order, properly stacked before the call

8

is carried out and m=O is assumed at the beginning of the routine. On rou

tine exit normalizing to m=O is done if no value is delivered, i.e. for a

procedure yielding void. For other procedures we normalize to m=l, t=l.

This is accomplished in the compiler as outlined below.

proc routinetext = ...

(int mold :=m; told :=t; m :=0;

now the syntactic procedure unit

is called which generates code

for the procedure body;

it void is yielded

then output instructions for resetting n

to the value at call time

else output the same instructions, but,

additionally put the result which

was at the top of the old virtual

stack into Rl

fi; output the return jump;

m := mold; t :=told

);

proc can=

(

output instructions to (properly) stack RP , ... ,Rt;

output the jwrrp to the routine and 1

output the return label

if.. void is yielded then m :=O else m :=1; t :=1 fi
)

These compile-time and run-time modifications on the virtual stack can be

depicted on a time axis as follows.

execution of

main program

I
proper stacking

(at run-time)

m:=O

execution of

routine

/
resetting n

and moving

result, if any,

to Rl

(at run-time)

(at compile-time)

CONCLUSION

execution of

main program

m:=O (if void)

9

time

m:=l, t:=l (if non-void)

(at compile-time)

The concept of a virtual stack implies two levels of abstraction. At

the most abstract level we consider values simply to be pushed to and popped

from a stack. At a less abstract level we are aware that this stack is

virtual and comprises a proper stack extended with some registers. We are

thus enabled to combine straightforward stack-oriented translation methods

with a good use of registers.

REFERENCES

[I] AMMERAAL, L., An implementation of an ALGOL 68 subZanguage3 Proceedings

of the International Computing Symposium 1975, North-Holland

Publishing Company, Amsterdam (1975), pp. 49-53.

[2] AMMERAAL, L., Mini ALGOL 68 User's Guide3 Mathematical Centre IW 32/75,

Amsterdam (1975).

