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Context sensitive table Lindenmayer languages and a relation to the lba 
*) problem 

by 

P.M.B. Vitanyi 

ABSTRACT 

Families of languages generated by classes of context sensitive 

Lindenmayer systems with tables using nonterminals are classified in the 

Chomsky hierarchy. It is shown that the family of languages generated by 

deterministic A-free left context sensitive L systems with two tables using 

nonterminals coincides with the context sensitive languages. Combined with 

the fact that the family of languages generated by deterministic A-free 

context sensitive L systems (with one table) using nonterminals is equal 

to the DLBA languages this shows the classic LBA problem to be equivalent 

to whether or not a trade-off is possible between one sided context with 

two tables and two sided context with one table for deterministic A-free 

L systems using nonterminals. Without the restriction to A-freeness such a 

trade-off is possible since the recursively enumerable languages are gen­

erated in both cases. By stating the £esults in their strongest form a com­

plete classification of the considered language families is obtained since 

the hierarchies induced by the involved parameters (A-freeness, determinism, 

number of tables, amount of context, closure under various types of homo­

morphisms) basically collapse to the recursively enumerable languages, con­

text sensitive languages and DLBA languages. 

KEY WORDS & PHRASES: Formal languages - Lind.enmayer systems -

Classification of Language families - LEA-problem. 

This paper is not for review; it is meant for publication elsewhere 





1 • INTRODUCTION 

Lindenmayer systems, or L systems, are parallel rewriting systems 

originally introduced as automata theoretic models for growth and develop­

ment of filamentous organisms (LINDENMAYER, 1968). As an alternative to 

the usual generative grannnars, and also because of its elegant mathematical 

nature caused by the simultaneous rewriting of all letters of a string, a 

large amount of 'formal language theoretical work has been done in this area, 

see e.g. (HERMAN & ROZENBERG, 1975, ROZENBERG & SALOMAA, 1974, LINDENMAYER & 

ROZENBERG, 1975). If each letcer of a given string can be rewritten in but 

one way according to the ~ewriting rules the L system is deterministic. 

From both the biological and formal language theory viewpoints deterministic 

rewriting systems are relatively
0

important. In (VITANYI, 1975) families of 

languages generated by deterministic context sensitive L systems with vari­

ous restrictions were investigated. The resulting families were classified 

with respect to each other and the Chomsky hierarchy. The present paper 

will extend this research by considering L systems with tables. Table L 

systems were introduced by Rozenberg and consist of L systems with several 

sets (tables) of rewriting rules, where at each moment all letters in a 

string are rewritten simultaneously according to a single table. Whereas in 

the sequential rewriting of generative grammars this would not constitute 

any difference, because of the parallel nature of L systems the use of 

tables can result in an increase of generating power. 

We can obtain languages from L systems in various ways. One way is to 

consider all strings generated from the initial string: the "pure" L lan­

guage of the system. By dividing the alphabet in a set of terminals and 

nonterminals we can consider the language consisting of all strings over 

the terminals in the "pure" L language. Such a language is called an exten­

sion language since the terminal-nonterminal mechanism extends the gener­

ative power of a class of L systems. Another device is taking an homomor­

phism of a·"pure" L language or extension language. We will treat all fam­

ilies of languages generated by context sensitive L systems with tables 

using nonterminals accordig to the effects of restrictions like: A-freeness 

of production rules, determinism of production rules, number of tables, 

one-or two sided context, and closure of these families under various types 



of homomorphisms. Because of the great generative power of already deter­

ministic context sensitive L systems using the terminal-nonterminal mecha­

nism, the partial ordering according to set inclusion of the considered 

language families basically collapses to the recursively enumerable lan­

guages, context sensitive languages and deterministic linear bounded auto­

maton (DLBA) languages. Hence the classification yields an interesting 

equivalence of the classic LBA problem (is the family of DLBA languages 
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equal to the family of context sensitive languages?) in terms of L systems. 

In (VITANYI, 1975) it was proved that the family of DLBA languages coincides 

with the family of languages generated by X-free, deterministic context sen­

sitive L systems (with one table) using nonterminals. Previously, VAN DALEN, 

1971, showed that the family of context sensitive languages equals the fam­

ily of languages generated by X-free context sensitive L systems (with one 

table) using nonterminals. Hence the LBA problem can be stated in terms of de­

terminism versus nondeterminism in L systems. By arguments similar to those 
~ 

in (VITANYI, 1975) WOOD, 1975, proved that the family of languages generated 

by X-free deterministic context sensitive L systems with two tables using 

nonterminals is equai to the family of context sensitive languages. Here 

the LBA problem was stated in the form of whether or not two tables can be 

reduced to one in the case under consideration. We shall demonstrate that 

the family of context sensitive languages equals the family of languages 

generated by X-free deterministic left context sensitive L systems with two 

tables using nonterminals, thereby molding the LBA problem in the form of 

whether or not a trade-off is possible between one sided context with two 

tables and two sided context with one table for A-free deterministic L sys­

tems using nonterminals. From the results it will appear that any further 

restriction on one of the two participants in the trade-off reduces the 

generative power to below the DLBA languages. If we relax the restriction 

of X-freeness we obtain in both cases the recursively enumerable languages. 

We should stress, however, that although it seems that the trade-off corre­

sponding to the LBA problem is between two deterministic rewriting systems, 

nondeterminism creeps in whenever we use more than one table since the 

choice of the next table to be used is nondeterministic. For a survey of the 

LBA problem and its reduction to other problems see (HARTMANIS & HUNT, 1974). 
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2. PRELIMINARIES 

We shall use the definitions and terminology of formal language theory 

as in (SALOMAA, 1974) and terminology and results on L systems as in 

(HERMAN & ROZENBERG, 1975, VITANYI, 1975). # Z denotes the cardinality of 

a set Z, lg(z) the length of a string or word z, and A is the empty word, 

i.e., lg(A) = 0. 

A (m,n)L system is a triple G = <W,P,w> where Wis a nonempty finite 

1 h + . . . . -, t . d ( m i n _j ) * . a p abet, w E W is the ~n~t~av s r~ng an P s iMoW x WxjMoW- x W_ is a 

finite set of production rules. We write an element of Pas (u,a,v) ➔ a 

where u E .~Owi, a E W, v E .fr
O

wj and a E w*. The operation of an (m,n)L 
i= J= 

system G is defined as follows: 

if 

(a. a. +1 ••• a. 1, a~, a~+l a. 2 .•• a. ) ➔ a. E P i-m i-m i- L L i+ i+n i 

for all i, l ~ i ~ k, where we take a.= A whenever j < l or j > k. 
J 

As usual we define i and i as the transitive reflexive anc transitive 

closure of G' respectively. We dispense with the subscripts if G is under­

stood. 

* The language produced by G is defined as L(G) = {vlw => v}. We can 

squeeze languages out of L systems in various ways. One of these, a favorite 

in formal language theory, is by the use of nonterminals. The extension 

(language) produced by G with respect to a terminal alphabet VT is defined 

* as E(G,VT) = L(G) n VT. We also call the four tuple G' = <W,P,w,VT> where 

W,P, and ware as before and VT is a subset of W, an E(m,n)L system, and 

E(G') = E(G,VT) an E(m,n)L language. 

Although the "pure" L languages (obtained without additional "squeezing" 

mechanisms) are not neatly nested in the Chomsky hierarchy and have none of 

the usual closure properties, families of extensions behave quite nicely in 

this respect. See, e.g., (HERMAN & ROZENBERG, 19 7 5, VITANYI, 19 75). Exten­

sions of classes of deterministic (m,O)L systems form an exception (VITANYI, 

1975). Another squeezing method is to apply homomorphisms of various types 
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to the produced languages (extensions). 

L systems are usually classified as follows: 

( i) By context • m, n 2:: 0: IL systems ( context sensitive) ; m = n = 1 : 

2L systems (two sided context); m + n = I: lL systems (one sided con­

text) where for our considerations left context sensitive or (1,0)L 

systems suffice; m = n = 0: OL systems (context free) 

(ii) By determinism. If for each element (u,a,v) + a E P there is no 

(u,a,v) + s· E P with 8 # a then we call the system deterministic. 

The property is indicated by prefixing a Das in D2L system. 

(iii) By ~-freeness. If (u,a,v) +A~ P then the system is called A-free or 

propagating. The property is indicated by prefixing a Pas in P2L 

systems and PDOL systems. 

A table (m,n)L system is a triple G = <W,P,w> with P = {P 1,P2, ••• ,Pg}. 

such that for each i, I~ i ~ g, G. = <W,P.,w> is a (m,n)L system. The 
l. l. 

operation is as follows: 

if there is a table P. in the set of tables P such that 
l. 

i and fare the transitive reflexive and transitive closures of G' respec­

tively. The language generated by G is defined by L(G) = {vlw fr v}. Exten­

sions are defined as before, the properties (i)-(iii) hold for G if they 

hold for every G., I ~ i ~ g, and are indicated by the appropriate capitals. 
l. 

The fact that we are dealing with a table L system using g tables is indi-

cated by prefixing T as in PDT (m,n)L system. No subscript on T means 
g g 

g 2:: I; no T means g = I. E.g., PDT
1
0L-systems are identical to PDOL systems. 

g * u * A control word u of G is an element of {1,2, ••• ,g} and v => v', v, v' E W 

* and u = i 1i 2 ••• ik E {1,2, ••• ,g} , means that 
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Languages generated by a class of XL systems constitute the family of 

XL languages. In the following we are most interested in the EPD2L (=EPDT12L) 

languages and the EPDT 21L languages. REG, CF, INDEX, DEBA, CS and RE 

denote the families of the regular languages, context free languages, index­

ed languages,DLBA languages, context sensitive languages and recursively 

enumerable languages,respectively. Some of the results of the theory which 

we shall have occasion to use later on are: 

LEMMA l.(see HERMAN & ROZENBERG, 1975) CF~ EOL z ET 20L = ETOL ~ INDEX 

LEMMA 2~ (VITANYI, 1975). Hl:l EDlL = HSPDlL = ED2L = ElL = RE where Hl:lx 

signifies the aiosure of Zo:nguage famiZy X under ietter-to-ietter homomor­

phisms and H X signifies the aiosure of language family X under ietter-to-
s 

itseZf-or-Zetter-to-A homomorphisms. On the other hand REG~ HAEPDlL where 
HAX signifies aiosure of a language famiZy X under nonerasing homomorphisms. 

LEMMA 3. (VITANYI, 1975). EX2L = EXIL 

EXlL = U EX(m,n)L 

n = 0 & m ~ 

n ~ & m = 0 

Where X denotes any of the combinations of (ii), (iii) and Tg, ~ ~ 1, 

Hence for context sensitive (table) L systems using nonterminals the 

amount of context is not important with respect to generative power, the 

only differences lie in two sided, one sided and no context. In the sequel 

we shall prove our results about EXIL systems only for EX(l,O)L systems, 

the case of EX(O,l)L system is completely analogous and gives the same 

results. 

LEMMA 4. (VAN DALEN, 1971, WOOD, 1975) EP2L = EPDT 22L = CS. 

~ 

LEMMA 5. (VITANYI, 1975). EPD2L = DLBA. 

3. CLASSIFICATION OF FAMILIES OF ETIL LANGUAGES. 

THEOREM. The famiZies of Zanguages generated by the various subaZasses 
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of ETIL systems are classified by the diagram of figure 1. SoUd arrows 

imply proper set inclusion of the lower family in the upper family; dotted 

arrows imply inclusion where properness is not known; if two of the dis~ 

played families are not connected by (a sequence of) arrows it means that 

these families are incomparable, i.e., their intersection contains nontrivial 

languages and neither family contains the other; X = Y mod A means LEX 

i ff L - {A} E Y • 

Note that all families of context sensitive table L languages obtained 

with the use of nonterminals (as distinguished in section 2) are classified 

by the displayed diagram since the results are stated in their strongest 

form and cannot be improved (except for the dotted arrow which corresponds 

to the LBA problem). But for EPDIL and EPIL all families are closed under 

nonerasing homomorphism. The proof of the theorem proceeds by a number of 

lemmas. 

LEMMA 6. EDT 21L = RE. 

PROOF. By lemma 2 Hl:I EDIL =RE.Let G = <W,P,w,VT> be an EDlL system and 

h: v; + v* a letter-to-letter homomorphism. Assume without loss of general­

ity that Wn V = 0. Construct the EDT2IL system G' = <W' ,{PI, P2},w,V> as 

follows. 

w' = w u vu {F} with Fi w u V; 

PI = Pu {(x,a) + F I (x,a) 4 (W u L\l) X W} 

p2 = {(x,a) + h(a) I (x,a) E (VT u {A}) X VT} 

u {(x,a) + F I (x,a) 4 (VT u {A}) X VT} 

The reader can satisfy himself easily that E(G') = h(E(G)). □ 

By lemma 2 and Lemma 6 it follows that RE= ED2L = EDT21L = HI:I EDlL = 
= H PDlL. In (VAN DALEN, 1971) it is proved that EP2L =CS.By the working 

s 
space theorem (SALOMAA, 1974) or the usual LBA simulation argument it fol-

lows that EPTIL =CS.WOOD, 1975, proved that EPDT 22L =CS.We now come td 

the main result: 
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LEMMA 7. EPDT2IL = EPIL = CS 

PROOF. According to PENTTONEN, 1975, left context sensitive grannnars (or 

more restrictedly, generative grannna~s with production rules of the form 

AB ➔ AS or B ➔ 13 where A and Bare nonterminals and 13 is a nonempty string 

over the terminals and nonterminals) suffice to generate all context sensi~ 

tive languages. 

Claim. EPIL = CS· 

Proof of Claim. Since EP2L = CS we only have to prove CS s EPlL. 

Let G = <VN,VT,P,S> be a grannnar with nonterminals VN, terminals VT, the 

production rules in P of the form AB+ AS or B ➔ 13 where A,B EVN and 

13 E (VNuVT)+, and starting symbol SE VN. Construct an EPIL system 

G' = <W' ,P' ,w' ,VT► as follows. 

W' = VN u VN u VT u {F}, VN ={AI A EVN} and VN' VN, VT and {F} are pair­

wise disjoint. w' =Sand P' is defined by: 

(1) (x,A) 

(2) 
+ A} 
+A 

(3) (A,B) + 13 

(4) (x,B) + 13 

(5) (A,B) + F 

(6) (x,F) + F 

(7) (x,a) ➔ a 

for all A EVN and all x E W' u {A} 

if AB + Af3 E p and A E VN, BE VN 

if B+SEP and X E (W'u{A}) - VN 

for all A,B E VN 

for all X E W' u {A} 

for all a€ VT and x E W' u {A} 

(i) Clearly,if S? v and v Ev; then there is a twice as long derivation 

* S ~ v. Therefore L(G) s E(G'). 

(ii) 
G' 

* * Suppose SC' v and v E VT. Because of (6) at no step of the derivation 

(5) was used: no adjacent barred nonterminals occurred in a word of 

the derivation. 

Therefore, 1'f S =>- h f h = v O G' v 1 G' v2 G' ... G' vk = v t en or eac 
derivation step v. ~, v. 1, 0 ~ i < k, there are 

1 G 1+ 
* U. , u. , ••• ,u. E (VNuVT) such that either 1 = 1 or 

11 12 11 
u. ~ u. ~ ••• ~Gu. where u. and u. are equal to v. and 

11 G 12 G 11 11 11 1 

all bars removed from the nonterminals, respectively. Hence 

E(G') C t(G). ,. -

v. 1 with 
1+ 

* S G v and 
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By (i) and (ii) E(G') = L(G) and in view of the cited result of PENTTONEN, 

1975, this proves the claim. 

Above we noted that EPTIL s CS and by the claim it therefore suffices 

to prove EPlL S EPDT21L to prove the lemma. Let G = <W,P,w,VT> be an EPlL 

system with W = {a1, a2, ••• ,an} and P defined by: 

()..,a.) -+ aOjO (a. ,a.) -+a .. 
J 1. J l.JO 

-+ ao~ 1 -+ a.· 1 J 1.J 

-+a. 
0Jnoj -+ a .. 

1.Jn • . l.J 

for 1 :,; i, j ::,; n. 

Construct an EPDT21L system G' = <W',{P
1

, P2},w,VT> defined by: 

where k = max{n .. I O:,; i::::; n and O·< j::,; n}; X =Xu {A} and 
l.J A 

X = {a I a EX} for XE {W, WA, W, WA, W, WA}; Fis a new letter. 

p 1: (y,(a.' a. ) ) -+ (a. ' a. ) 
11 1.2 l.J 12 

(y,(a. , a. ,i)) -+ <a. , a. , i) 
1. I 12 11 1.2 

(y,(~. , = i)) ca. , = i) a. , -+ a. , 
1.1 12 11 1.2 

(y,(~., = i)) (a. , = i) a. ' 
-+ a. , 

i 1 1.2 1.1 1.2 

For ally E W' u {A}, a. E W,, a. E Wand i such that O:,; i:,; k. 
1.1 /\. 1.2 

(.,.)-+ F if(.,.) is not in the above list. 

(a. , a. ) -+ (a. , a. ) 
1.1 1.2 l.} 1.2 

(A,(a. , a. )) -+ (a. , a:. , O) 
1.1 1 2 1.1 1.2 

( (~ . , ~ . , i) , ( a . , a . )) -+ ( a . , a . , o ) 
1 1 1 2 1 3 1 4 1 3 1 4 

(x,(a. , a. )) -+ (a. , a. ) 
l.J 1 2 1.1 12 

(y,(a:. , a:. , i))-+ (a. , a. , remainder ((i+l)/(n .. +l))) 
1.1 1 2 1.1 1.2 l.Jl-2 



(y,(~. ' 
l.J 

(z,(a. , 
i1 

i)) 

i)) 

+ ca. , 
i I 

= a. , i) 
l.2 

for all a. E W~, a. , a. , a. E W, 
l.J A ].2 J.3 J.4 

x EWA x Wu (WAxWuWAxW) x {O, l, ••• ,k}, 

y E ~AX i:j' X {O, l, ••• ,k}, z EWA X w X {O, l, ••• ,k}. 

(.,.) + F if Fis not in the above list. Suppose 

a. . . • 
l. l. J n-1 n n 

Then 

under the controlword 

Hence 

E(G) C E(G '). 

9 

Now suppose that v *' z and v, z E w* and no intermediate word in the deri­

vation belongs to W*. According to the productions the last table applied 

must have been P2 and the word v' it was applied to belongs to 

(W x W x {O, I, 2, ••• ,k})* since otherwise F would occur in z. But the only 
A 

way to derive such a v' by application of tables P 1 and P 2 under the given 

assumptions yields a v ' such that if v 't, z then v G z as careful scrutiny 

of the production rules shows. [In fact if u = u'2 then under the assumptions 

Hence E(G') S E(G) which together with the previous implication shows 

E(G') = E(G). 0 
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The inclusion relations between RE, CS, DLBA, CF, REG, EDIL, EPDIL and HAEPDIL 
I 

can be found in VITANYI, 1975. The connected parts of the diagram from ETOL 

downwards follow by various combinations of Lennna 3.2 and Theorems 6.4-6.7 

from NIELSEN et. al., 1975. ETOL has deterministic tape complexity O(n) and 

therefore ETOL s DLBA; since moreover ETOL is a full AFL and DLBA is not 

the inclusion is strict, VAN LEEUWEN, 1975. The only thing remaining to be 

shown is: 

LEMMA 8. X and Y are incomparable for all X and Y such that X E {EDlL, 

EPDlL, HAEPDlL} and YE {ETOL, EDTOL}. 

, 

PROOF. REG! X (VITANYI, 1975), but according to the established part of the 

diagram REG$ Y. By definition EPDOL S X n Y (EPDOL is not displayed in the 

diagram). Since the homomorphic closure of Xis equal to RE (by the fact 

that H PDlL = RE) and the homomorphic closure of Y is contained in ETOL (by s . -
definition and the fact that ETOL is a full AFL) there are languages in X 

which are not in Y. Hence X and Y have a nonempty intersection and neither 

contains the other. D 
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