
AFDELING INFORMATICA

stichting

mathematisch

centrum

L.G.L.T. MEERTENS & J.C. VAN VLIET
REPA rR I NG THE PARENTHESIS' SKELETON OF
ALGOL 68 PROGRAMS: PROOF OF CORRECTNESS.

Prepub I i cation

~
MC

IW 52/75 NOVEMBER

2e boerhaavestraat 49 amsterdam

PJunte.d a.:t .:the. Ma.:the.matic..al Ce.n.:ttLe., 49, 2e. BoeJ1.ha.a.ve1i.ttr.a.a.t, Am6.:teAdam.

The. Ma.:the.ma.:U:c.ai.. Ce.n.:ttLe., 6ou.n.de.d .:the. 11-.:th 06 Fe.bll.UCVl..y 1946, ,u., a. non
pno6U ino.tltut.i..on cumlng a.:t .:the. pll.omo:tlon 06 pull.e. ma.:the.matie6 a.nd .lt6
a.ppUc.atiom. I.:t ,i.J., ;.,ponoone.d by .:the. Ne..:theJ11-a.nd6 GoveAnme.nt .:th!wu.gh .:the.
Ne..:theJ11-a.nd6 Onga.vu.zation. 6on .:the. Adva.n.c.e.me.nt 06 Pull.e. Re6e.Mc.h (Z.W.O),
by .:the. Mu.vu.upaU...:ty 06 Am;.,.:te.ll.dam, by .:the. Uvu.ve.ll.f.,Uy 06 Am6.:teAdam, by
.:the. Fne.e. Uvu.ve.ll.f.,Uy a.:t Am;.,.:teAdam, a.nd by in.dM:oue1i.

AMS(MOS) subject classification scheme (1970): 68A20, 68AIO

ACM-Computing Reviews-categories: 4.22, 5.24, 5.25

Repairing the parenthesis skeleton of ALGOL 68 programs:
*) proof of correctness

by

L.G.L.T. Meertens & J.C. van Vliet

ABSTRACT

The error-correction problem for structures of nested parentheses bears

some resemblance to the problem of finding the shortest path in a directed

graph. Not surprisingly, the algorithm for determining the optimal

"reparation" lends itself to a neat and concise (min, +)-algebraic notation,

thus permitting abstraction from the representation used in a practical

implementation. The correctness proof for this abstract algorithm may then

be given with only a few inductive assertions.

KEY WORDS & PHRASES: ALGOL 68, parenthesis structure, error-correction,

minima.x algebra~ directed graph, correctness proof,

inductive assertions.

This paper is not for review; it is meant for publication elsewhere.

0. INTRODUCTION

In ALGOL 68 an abundance of parenthesized constructs is available which

may occur nested within one another. Most of these constructs are relevant

to the range structure. Therefore, it is not uncommon for compilers to give

up if, after the first pass, the parenthesis structure of the source program

has been found incorrect. This has the unpleasant consequence that the op

portunity is lost to give further error messages that may assist in reducing

the number of runs before the program is syntactically correct.

Unavoidably, a compiler which does not give up has to impose some

"interpretation" on an incorrect source text. It is convenient, to say the

least, if this interpretation is the same for successive passes. One obvious

way to achieve this is to "correct" the source text so as to comply with the

chosen interpretation. Since the compiler cannot, of course, find out what

is correct in terms of the intention of the progrannner, we prefer the less

suggestive term "repairing" of incorrect source texts.

The way in which the repairing algorithm presented here was obtained

is remarkable enough to merit some words. Dissatisfied with an earlier

algorithm [2] , which appeared to perform similar computations over and

over, thus wasting time and space, we tried to contract similar states to

generalized ones. This resulted in an obscure network of molecular actions

connected by jumps. By studying the flow of control, we brought the net

work into a shape where the only control structures were simple selection

and repetition. In spite of its seeming simplicity, however, the algorithm

evaded our attempts to show convincingly its correctness, the bottle-neck

being the formulation of invariants and other assertions, which grew into

algorithms themselves.

A break-through occurred when we hit upon the idea of viewing the

algorithm not as manipulating a graph, but as performing operations on a

matrix representing that graph. With a suitable notation, the correctness

proof turned out to be feasible.

l • FORMULATION OF THE PROBLEM

In this paper, we concentrate on the parenthesis skeleton, i.e., the

2

succession of parentheses occurring in the source text. It is assumed that

these parentheses are numbered from I ton. Moreover, there is a predicate

"matching" which.tells if two given parentheses match each other. For the

sake of convenience, the predicate is defined on a pair of indices i and j,

I~ i < j ~ n, rather than on the parentheses themselves. As a final assump

tion, the correctness of a parenthesis skeleton is determined by the fol

lowing syntax:

correct skeleton: enclosure sequence option.

enclosure: STYLE opening parenthesis,

correct skeleton,

STYLE closing parenthesis.

Here, of course, a STYLE-opening-parenthesis and a STYLE-closing-parenthesis

match. It should be noted that this formulation does not require that the

two sets of marks representing opening and closing parentheses, are disjoint.

(There are several problems in bringing ALGOL-68's parentheses in this frame

work; for the time being, however, we abstract from these complications.)

A "reparation" consists of the marking of a number of parentheses such that

deletion of these parentheses from the skeleton results in a correct-skeleton.

(Whether in practice these parentheses will be actually deleted or matching

ones should be inserted, is a matter which falls outside the scope of this

paper.)

An "optimal reparation" is a reparation which marks the least possible

number of parentheses. The problem is to determine an optimal reparation

of a given parenthesis skeleton.

A "segment" of a skeleton may be coded as a pair of integers (a, b), with

0 ~a~ b ~ n, and then comprises the parentheses numbered from a+l to b

(so the whole skeleton is given by (0, n) and each segment (a, a) is empty).

It is called "neutral" if it may be produced by the above syntax for correct

skeleton.

The "error value" of a segment 1.s the smallest number of parentheses that

3

has to be deleted from it in order to neutralize it.

Obviously, there is a connection between the error value of the segment

(O, n) and the ·optimal reparation. In the sequel, we concentrate on algo

rithms for determining the error value; an optimal reparation is then easily

obtained as a byproduct.

2. ERROR VALUE AS SHORTEST PATH

In order to determine the error value of a segment, we may proceed as

follows:

If the segment is empty, its error value is 0.

Otherwise, draw an arc over each parenthesis and label it with a length of

I. Moreover, for each pair of matching parentheses, determine the error

value of the (shorter) segment enclosed between these parentheses and draw

an arc over the whole segment, including the matching parentheses, labelled

with that error value, Then the error value of the segment is the length

of the shortest path obtainable by following arcs from the beginning to the

end, where the length of a path is the sum of the lengths of the individual

arcs involved. An example is given in figure I.

4

Fig. I. A segment with error value I. It can

be neutralized by deleting the marked parenthesis.

Obviously, the error value of a neutral segment is O, and the arcs of the

shortest path parse it as a sequence of enclosures. That in general the

4

error value, say e, determined by this procedure is correct may easily be

proved (by induction on the length of the segments) by observing, first,

that a neutral segment may indeed be obtained by deleting all parentheses

jumped over in a single-parenthesis arc and by neutralizing in the same way

all inner segments of larger arcs-which leads obviously to the deletion

of exactly e parentheses--and, second, that each neutralizing action deleting

d parentheses dete-r:mines a path of length d, so e ~ d.

It can be seen that this procedure consists of the construction of an

acyclic directed graph whose edges (the arcs) are labelled with the length

of the shortest path in a subgraph. It is not difficult to formulate it as

an algorithm which avoids recomputing the error value of subsegments. How

ever, further optimizations are possible (and desirable), and for the purpose

of establishing the correctness of these optimizations a different represen

tation is introduced.

3. (min, +)-ALGEBRAIC NOTATION

A convenient way to express algorithms for finding the shortest path

in a directed graph is to represent the graph by a matrix. Let each edge

of the graph be labelled with a length (a nonnegative real--or, in our

application, integral·--number). In order to obtain a uniform process, un

connected vertices are considered connected by an edge of length 00 , so that

the set of possible lengths is given by {x E lR: x ~ O} u {00 }. Also, each

vertex is connected to itself by an edge of zero length. Now we can repre

sent the graph as an (n+l) x (n+l) matrix A by numbering the vertices from

0 ton and taking as entry A[i, j] the length of the edge from vertex i to

vertex j. An example of a graph and its matrix representation is given in

figures 2a and 2b.

Fig. 2a. A directed graph.

0 2 3 4

0 0 7 co co 00

00 0 00 6 00

2 00 4 0 00

3 00 00 00 0 00

4 2 00 0 00 0

Fig. 2b. Matrix representation of the

graph in fig. 2a.

5

The most important operations on lengths are: taking their minimum and

taking their sum. For these operations we introduce the following notation:

For two lengths x and y, the minimum of x and y is

denoted x + y and their sum is denoted xx y, where,
*) of course, x + oo =co+ x = x and xx oo =cox x = co.

It is easily checked that the operations+ and x obey the laws of commuta

tivity, associativity and even distributivity, reason why this notation is

called algebraic:

X + y = y + X

X + (y + z) = (x + y) + z

X X y = y X X

X X (y X z) = (X X y) X z

X X (y + z) = X X y + X X z

From the identities x + 00 =xx O = x and xx CX) = co

'
it is seen that 00

takes the role of the zero element and O that of the unity element.

For indices, "+ 11 retains its conventional meaning. It will always be
clear from the context which operation is intended.

6

It is useful to keep also the following facts in mind:

If x + y = z then z ~ x and z ~ y; moreover, z = x or z = y.

If x ~ y, then x + y = x.

4. ·MATRIX OPERATIONS

Using this notation, we can now also define "addition" and "multipli

cation" for matrices:

A + B is defined by (A + B)[i, j J = A[i, j] + B[i, j J.
A X B is defined by (A X B)[i, j] = I A[i, k] X B[k, j],

k
where the summation I is performed using the + operation

introduced in section 3.

As is to be expected, matrix addition is associative and commutative, matrix

multiplication is associative but not commutative, and together the opera

tions are distributive. Also, the matrix I having entries O on the main

diagonal and entries 00 elsewhere, satisfies Ix A= Ax I= A, and so serves

·as the identity matrix. From the fact that all matrices have entries O on

the main diagonal, it also follows that I+ A= A.

The powers of a matrix can be defined, as usual, by AO= I,

Ai+I = Ai x A. The most important operation, for our purposes, is given by

* 0 I n A =A +A + ••. +A.

This can be interpreted as: A*[i, j] is the length of the shortest path

from i to j by taking 0, l, ••• or n steps. Since the shortest path between

any two vertices in a graph with n+l vertices consists of at most n edges,

A*[i, j] is the length of the shortest path from i to j. The operation*

is usually called "transitive closure".

From I + A = A, it follows that Ai+ Ai+l + +An=

Ai (I + A) An i +An= Ai+I n * An. X + . . . + = A X A+ ... + + A , so A =

In the graphs of our application, there never is an edge from i to j

if i > j, so the lower triangles of the matrices are filled with 001 s.

(This is equivalent to the statement that the graphs are not only acyclic,

but also topologically sorted.) This property, which is preserved by the

* operations+, x and , will be tacitly assumed from now on. (In fact, in

the algorithm no reference is ever made to an element A[i, j] with i > j.)

From this. property we derive

LEMMA I. A*[i, j]•depends only on the sub-matrix A[i j, i j J.

PROOF. Since A*= An, it suffices to prove that (Ax B)[i, j] depends only

on A[i : J, i : j] and B[i: j, i : j].

n
(AX B)[i, j] = l A[i, k] X B[k, j] =

k=O

j
l A[i, k] X B[k, j],

k=i

7

since all terms with i > k or k > j have a factor equal to 00 and, therefore,

do not contribute to the sum.

. * n *c. . J Since A =A, A i, J can be expressed as

where the summation is performed over all (n+l)-tuples (pk) with

i =Po~ P1 ~ Pz ~ ~ pn-l ~ pn = j. Since A[x, x] = O, the unit element

of multiplication, factors with equal indices may be omitted, so we obtain

A*[i, j] = l l A[i, pl] x ... x A[pm-1' j],
m (p)

where the summation is performed over all (m+l)-tuples (pk) with

i =Po< P1 < .•. < pm-I <pm= j, form~ 2 and, form= I, over

i =Po~ p1 = J. (We need~ here, rather than<, since, otherwise, all

factor:, would be omitted from the product if i == J, leaving "nothing" to be

summed.) In the sequel, whenever the above notation is used, the summation

convention mentioned here is understood.

For the sum of the terms of the above summation, but now excluding the

term A[i, j], the notation

8

*)· will be used • So we have

For i = j or i+l 7 j, no (pk) satisfies the conditions of the summation

convention, so in that case A+[i, j] = 00 , from which we also conclude that

then A*[i, j] = A[i, j].

h + . Forte operation, we can prove

* * LEMMA 2. If A [p, q] = B [p, q] foP aZZ p, q with i ~ p ~ q ~ j, with the

possible exception of p = i and q = j, then A+[i, j] = B+[i, j].

+[. PROOF. A 1, j J = I I
m~2 (p)

I I (A[i, P1 J
+[. + A 1,

m~2 (p)

I I A*[i, pl J X ... X

m~2 (p)

I I <I
m~2 (p) m'

l l B[i, p~] X

m~2 (p")
• • • X

A[i, pl] X X A[p I' j] ~ ... m-

P1]) X (A[pm-1' j] + j]) ... X + A [p I' m-

* j] I I B*[i, pl] A [p I' = X . .. X
m- m~2 (p)

B[p" j]
m-1'

=

*
B [pm-I'

(The unequalities are all special cases of x ~ x + y). Similarly, we find
+[. . J +[. . J +[. . J +[. . J B 1, J ~ A 1 , J , so A 1 , J = B 1, J •

+ . The A, thus defined,
matrix representation
technical reasons.

d . f + + . . oes not satis y I+ A =A, so it is not the
of a graph. It is purely introduced for proof-

j J =

5. NOTATIONS FOR INDUCTIVE ASSERTIONS AND VERIFICATION RULES

The correctness proof of the algorithm is given by inserting a number

of assertions in the text and by verifying next a number of verification

conditions, generated by verification rules. These rules have been chosen

such that the.number of inserted assertions is limited.

9

Each assertion is enclosed between {and}. Compound assertions are

written, e.g., {A, B, C}, meaning {A AB AC}. If A is an assertion, then

A~ (v:= e) stands for A withe substituted for v. This substitution should

be taken intentionally rather than literally. For example, if A stands for

a[4] x y = z, then A~ (a[2 x 2]:= x + l) stands for (x + I) x y = z.

In a series, the statements are not separated by go-on-symbols, but by

assertions. The correctness of a series is checked by verifying the correct

ness of each statement with respect to its surrounding assertions, or, in

the notation of the verification rules:

{A
0

} s
1

{A
1

} ••• {A } S {A}:
p-1 p p

Ill O O , {A I} S {A } • p- p p

For the other types of statements occurring in our algorithm, we have the

following verification rules:

{A} v:= e {B}: {A} {B ~ (v:= e)}.

{A} if C then s
1

else s2 fi {B}:

{A, C} s
1

{B}, {A, -i C} s
2

{B}.

{A} for v from f by -I tot {B} do Sod {C}:

f 2': t-1,

{A} {B ~ (v:= f)},

{ B ' V :,:; f ' V 2': t } s { B ~ (V : = v- I) } '

{B ~ (v:= t-1)} {C}.

These rules have to be applied repeatedly, until the case is reached where

no statement separates the assertions (as in the rule for assignations).

The verification condition is then that the first assertion ("antecedent") ,.

implies the second one ("consequent"). It should be remarked that the last

rule given is not the most general one, but that it is tailored to the loop

clause with a step of -I and with f ~ t-1. Also, the rule for the condition

al-clause is only given for clarity's sake; it plays no role in the proof.

(Of course, these rules are related to those of Hoare's axiomatic method

[I], but instead of deriving correctness of the whole text by bottom-up

application of ru~es, verification conditions are generated by top-down

application.)

In order to benefit more fully from the rule for assignations, a collateral

assignation, like

is used, with the syntactic position of a statement. It will only be used

if v 1 :#: v2 and e
1

does not depend on v2 nor e2 on v 1, or, in other words,

only if A<: (v 1 := e
1

, v 2:= e2) =A<: (v1 := e 1) <: (v2 := e 2) =
A<: (v2 := e2) <: (v1 := e

1
). Furthermore,

V l. E [p

is used, with the meaning

V := e.
q q

6. THE ALGORITHM

In order that an algorithm for determining the error value can be

formally proved correct, a more formal definition of error value is needed.

Using the (min, +)-algebraic notation, we can write:

error value[i, j] = q*[i, j], where

Q[i, j J =

Oif1.=j,

if i+l = j,
q*[i+l, j-1] if i+l < j A matching(i+l, j),

oo otherwise.

I I

Obviously, Q is the matrix representation of the graph introduced in section

2, where the edges are directed from left to right. That' the recursion in

this definition· is well grounded follows from Lemma I, using induction on

J - i.

The algorithm computes, column by column, a matrix R such that R = Q.

It runs, to a first level of approximation, as follows:

R[O, OJ:= 0

{R[O : O, 0: OJ= Q[O

for i from I by I ton

o, 0 OJ}

{R[O: i-1, 0: i-IJ = Q[O: i-1, 0

do Addition of parenthesis(i) od

{R[O : n, 0 : nJ = Q[O: n, 0: nJ}

* R:= R

{R = q*}.

i-IJ}

It is the part "Addition of parentheses(i)" that will be worked out further.

The verification condition for this part, using the obvious equivalent for

a step +I of the loop-clause rule given above, is

{R[O : i-1, 0: i-IJ = Q[O

Addition of parenthesis(i)

i-1, 0

{R[O : i, 0: iJ = Q[O : i, 0 iJ}.

i-JJ, i ~ I, i ~ n}

For simplicity, within this part I ~ i ~ n will be taken as a global fact,

so there is no need to drag it along all through the proof.

The correctness proof given below uses the notations R', Q' and R. These
i

notations are introduced to let the proof do double duty; for the time

being, they should be read as R, Q and R, respectively.

Let RQ stand for

R'[O : i-1, 0 i-IJ = Q'[O: i-1, 0: i-IJ

and PT for

R'[j : i, iJ = Q'[j i. iJ,

V k E [1 : j J: T[k] +
J *- * I R[k, zJ X R [z, i-1 J = R [k, i-1 J.

z=k+l i i l.

12

(In view of the fact that the lower triangles are understood to contain

entries 00 , RQ can be considered a convenient abbreviation for:

R'[p, q] = Q;[p, q] for all p, q such that O ~ p ~ q ~ i-1.)

The part "Addition of parenthesis(i)" may then be written as follows:

{RQ}

R[i-1 i]:= (1, O), V k E [I

{RQ, PT i; (j:= i-1)}

for j from i-1 by -1 to

{RQ, PT}

i-2]: T[k]:= 00 , T[i-1]:= 0

do R[j-1, iJ := (matching(j, i) I T[j] I 00),

V k E [l : j-1 : T[k]:= T[k] + R[k, j] x T[j]

od i

{ RQ i; (i : = i + I) }

7. VERIFICATION

By applying the verification rules, performing substitutions and

simplifying the result where appropriate, we obtain the following five

verification conditions, each time followed by a proof of the non-obvious

parts:

VI: {RQ} {RQ, (R'[i-1 i, i] = Q'[i-1 i, i]) i; (R[i-1 i, i]:= (I, 0)),

i-1
[l i-2]: I z] * * V k E 00 + R[k, X R [z, i-1] = R [k, i-1 J,

z=k+l i 1 i

i-1
0 + I R[i-1, z] * X R [z, i-1] = *c· R 1-I, i-1]}.

z=1 1 i i

Since R' =Rand Q' = Q, the assertion R'[i-1 1, i] = Q'[i-1 : i, i]

stands for R[i-1

(I , O) for R[i-1

i, i] = Q[i-1 : i, i], which, after substitution of

1, i], reads as (1, O) = Q[i-1 : i, i]. That

Q[i-1, i] = 1 and Q[i, i] = 0 follows immediately from the definition of Q.

13

~*[k, i-1] can be written as I l R[k, p1J x ••• x R[p _1, i-1].
1 m (p) i i m
Since k < i-1, we have k < p

1
for each Pi also. By sunnning first over each

Pi= z, k < z ~ i-1 and factoring out R[k, z], we obtain
i

i-1
* i-1] I R[k, z] <I I R[z, Pz] ~[pm-I' R [k, = X X ... X i-1])

1 z=k+l 1 m (p) i 1

i-1

I R[k, z] * i-1]. X R [z,
z=k+l 1 i

(The term 00 appearing 1n VI does not contribute to the sum.)

Since ?*[i-1, i-1] = 0 and O + x = 0 for any x, the last component of VI 's
l.

consequent holds also.

V2: i - I :?: 1-1 .

This follows from the global fact that l ~ i ~ n.

V3: {RQ, PT<; (j:= i-1)} {RQ, PT<; (j:= i-I)}.

V4: {RQ, R' [j 1, i] = Q'[j : i, i],

J * * V k E [I : j J: T[k] + I R[k, z] X R [z, i-1 J = R [k, i-1],
z=k+l 1 1 1

J ~ i-1, j :?: I}

{RQ:, (R'[j-1, iJ = Q'[j-1, iJ) <; (R[j-1, i]:= (matching(j,i) I T[j] l- 00)),

R'[j 1, i] = Q'[j 1, i],

V k E [I j-1]: T[k] + R[k, j] x T[j] +
j-I
I * R[k, z] x R [z, i-1] =

1 z=k+I i 1

* R [k, i-1]}.
1

From T[j] + I R[j, z] x R*[z, i-1] = R*[j, i-1], we deduce
z=j+I 1 1 1

T[j] = R*[j, i-1] (the sunnnation is empty).
i

Since R' =Rand Q' = Q, we have to show

=

14

Q[j-1, i] = (matching(j, i) I T[j] I 00).

Using T[j] = R*[j, i-1], R =Rand R[O i-1, 0 i-1] = Q[O i-1, 0 i-1]
i i

(RQ), we obtain the condition

Q[j-1, i] = (matching(j, i) I q*[j, i-1] I 00),

which follows immediately from the definition of Q.

The last component of V4's consequent follows from the third component of

its antecedent, together with T[j] = R*[j, i-1].
i

VS: {R'[O: i-1, 0 : i-1] = Q'[O: i-1, 0: i-1],

R'[O : i, i] = Q'[O : i, i],

Vk E [I, Ol: ... }

{R'[O : i, 0 : i] = Q'[O i, 0 i]}.

8. OPTIMIZATION OF THE ALGORITHM

Just like a graph may be represented by a matrix, we may represent

a matrix by a graph. Usually, the graph representation is more efficient

if the matrix is sparse, i.e., contains many elements equal to 00 • Since

the matrices occurring in the process are sparse indeed, a graph represen

tation is used in the algorithm on a lower level of abstraction, where a

matrix A is represented by associating with parenthesis j, say, the set

E(A, j) of pairs (i, A[i, j]) with i < j and A[i, j] < 00 • So, in this re

presentation, the arcs as in figure I are pointing backwards rather than

forwards. Logically, this is indifferent, but the effect is that the con

crete implementation of the abstract algorithm is much more efficient than

it would be otherwise. For exampl~, the assignation

V k E [I

is implemented as

j-1]: T[k]:= T[k] + R[k, j] x T[j]
i

V (k, e) E E(R, j): T[k]:= T[k] +ex T[j].
i

15

It may be seen that the graph representation, for sparse matrices R, is not

only more efficient in space, but also in time. i

Now we can· make the following observation. Our algorithm computes

R = Q, but we are not so much interested in Q, but rather in q*. For that

reason, any R such that R* = q* will serve our purpose equally well. Hope-

fully, such an R can be made sparser even than Q.

Now, if we look at figure 3a, we see a skeleton where an arc is found

of at most error value ax bx I, given the fact that the two inner segments

indicated by" ••• " have error values of a and b, respectively. This arc

corresponds to a finite entry in Q. As can be seen from figure 3b, however,
. . * * . this entry is superfluous in R if we are only interested in R = Q, since

the entry in R* for this segment is already at most ax bx I. Moreover,

the two paths correspond to different interpretations (indicated by marking

the incorrect brace with an asterisk), and of these, from a human point of

view the one in figure 3b is preferable to that in figure 3a.

[J

Fig. 3a. A segment with error value$ ax bx I.

b

a b ~'

(\ ' \\
[]

Fig. 3b. A different way of exhibiting that the

segment in figure 3a has error value$ ax bx I.

16

In order to implement the improvement suggested by these considerations,

we merely have to redefine the meaning of R:

R[p, q]
l.

i

p+l = q and matching(q, i) or equal(q, i),

q] otherwise.

Here, "equal" is any predicate such that matching(i, j) and equal(k, j)

implies matching(i, k) for i < k.

The same algorithm with the same verification conditions as in the

* * preceding section applies now, but R' has now to be read as R and Q' as Q.

Obviously, the verification itself goes through at all places where no use

1.s made of the meaning of R', Q' or R, so only the two places where this
i

1.s not the case have to be rechecked.

The first occasion is in the verification of VI. As we have seen 1.n

section 4, from the identity A*[i, j] = A[i, j] + A+[i, j].it follows that

A*[i, j] = A[i, j] if i = j or i+l = j. Consequently, the meaning of

R'[i-1 * i, i] is indifferent to R' standing for R or for R. The analogous

result holds for Q'[i-1 : i, i], so the verification of VI is left intact.

The second occasion is in V4, where we now have to verify (taking the

essential part, and using T[j] = R*[j, i-1]):

{R*[o . i-1, .
R*[j i,

{(R*[j-1, i]

Using R* = R + R+ and q*

0

i]

=

i

. i-1 J . = *c · o · J Q O : 1.-l, : 1.-l ,

= q*[j : i, i]' j $ i}
*c. Q J-1' i]) <: (R[j-1, i] :=

(matching(j, i) I R*[j, i-1] I 00))}.

l.

+ = Q + Q, the consequent can be written as

(matching(j, i) I ~*[j, i-1] I 00) + R+[j-1, i] =
l.

Q[j-1, i] + Q+[j-1, i].

* * Since R [p, q] = Q [p, q] for all p, q such that j-1 s p sq s i, with

the possible exception of p = j-1 and q = i, we have, from Lennna 2,

R+[j-1, {] = Q+[j-1, i]. From the definition of Q, we have Q[j-1, i] =

(matching(j, i) I q*[j, i-1] I 00). Using these identities, we may rewrite

the consequent as

(matching(j, i)

(matching(j, i)

*c· ~ J'
1.

q*[j'

i-1]

i-l J

) +[. . J
00 + Q J-1, 1. =

oo) + Q+[j-1, i].

If, matching(j, i), the truth of this assertion is obvious. We there£ore

concentrate on the case where matching(j, i), and have to show

*c · · 1 J +c · 1 · J *c · · 1 J +c · · J R J, 1.- + Q J-, 1. = Q J, 1.- + Q J-1, 1. •

1.

It is sufficient to establish the existence of a value x, such that

since in that case we find

*c. R J, i-1] + +[. Q J-1' i] =
* . R [J, i-1] + (x + +[.

Q J-1' i]) =
1. i

(R*[j, i-1] + x) +[. + Q J-1' i] = *c. R J' i-1] +[. + Q J-1, i] =
1.

The second equation involving x suggests that x should be taken as large

as possible. From the first equation, we see that we can take for x the

sum of those terms in

R*[j, i-1] = I I R[j, P1 J X ... X R[p I, i-1]
(p) m-m

which have "disappeared" in

*c· i-1] I I R[j, P1 J ~[pm-I' i-1 J R J' = X ... X

1. m (p) i 1.

17

18

by the transition from R to~- These terms must involve some factor
l.

R[pk-l' pk] f ![pk-I' pk] (and, therefore, ~[pk-I' pk]= oo, so the

does disappear indeed). This implies, by th~ definition of R, that
i

pk-I= pk~l and matching(pk, i) or equal(pk' i).

term

Taking together the terms having a fixed factor R[z-1, z] in common, we

obtain

X = L z L R[j, p1] x ••• x R[z-1, z] x ••• x R[pm-I' i-1] =
m (p)

<I L R[j' Pj]
m' (p')

x • • • x R[p' , 1 , z- I J) x R[z-1 , z J x
m -

x (L L R[z, pj] x ••• x R[p~'-I' i-1]) =
m f (p I)

R*[j, z-1] x R*[z-1, z] x R*[z, i-1] -

q*[j, z-1 J x q*[z-1, z] x q*[z, i-1 J = q*[j, z-1 J x I x q*[z, i-1 J.

If matching(z, i), Q[z-1, i] = q*[z, i-1]. Also, Q[j-1, j] = I, so

x = q*[j, z-1] x I x q*[z, i-1] =
z

Q[j-1, j] x q*[j, z-1] x Q[z-1, i] =

Q[j-1, j] x <I l Q[j, p1J x ••• x Q[pm-I' z-1]) x Q[z-1, i] ~
m (p)

L L Q[j-1, pl] x
m~2 (p)

x Q[p I' i] = Q+[j-1, i].
m-

Similarly, if equals(z, i), which implies matching(j, z), we find

x = q*[j, z-1] x I x q*[z, i-1] =
z

Q[j-1, z] x q*[z, i-1] x Q[i-1, i] ~ Q+[j-1, i].

So, if matching(z, i) or equals(z, i), x + Q+[j-1, i] = Q+[j-1, i].
z

Since xis the sum of all these xz' we have

This completes the verification of the algorithm under the optimization

introduced by the new definition of R.
i

9. FURTHER OPTIMIZATIONS

Another quite important optimization can be obtained if we can dis

tinguish between opening and closing parentheses. Let predicates "maybe

opening parenthesis" and "maybe closing parenthesis" be defined with the

properties:

if-, maybe opening parenthesis(i), then-, matching(i, k)

for all k > i;

if-, maybe closing parenthesis(i), then-, matching(k, i)

for all k < i.

19

Two adjacent parentheses, with indices p and p+I, say, may be omitted from

the skeleton without change to the error value, if

matching(p, p+I),

,maybe closing parenthesis(p) and

,maybe opening parenthesis(p+l).

This can be proved as follows:

Take any reparation of the skeleton. First, we show that there is another

reparation, which is at least as good, in which neither p nor p+l is marked.

For, suppose that both are marked. Obviously, unmarking both gives a

better reparation.

If, on the other hand, only one is marked, say k, the other one must match,

in some parse of the correct skeleton obtained by deleting all marked

parentheses, a third one. Let these matching parentheses be i and j.

From the properties of the predicates given above, it follows that

i < k < j. But this situation corresponds exactly to that treated in the

previous ,.section (see figures 3a and 3b), and the reparation obtained by

20

transferring the mark from k to i or j--whichever is appropriate-~is just

as good.

Now, there is an obvious one-one correspondence between reparations in

which neither p nor p+l is marked, and reparations of the skeleton obtained

by omitting p and p+l, and this correspondence preserves the number of

marked parentheses. From this, the claim follows immediately.

After omitting parentheses p and p+l, two parentheses which were not

yet adjacent may become so, and may possibly be omitted together also.

By repeating this process, we obtain an "extract" of the skeleton on which

the repairing algorithm has to be performed. This extract can be determined

by a simple stack algorithm:

stacks:= empty;

for i to n

do if (s = empty I false I
matching(top(s), i) A

od.

-, maybe closing parenthesis (top(s)) A

,maybe opening parenthesis(i))

then pop(s)

else push(s, i)

fi

At the end, the stack contains the extract. For those wishing to give a

correctness proof: the essential invariant is

error value (skeleton[O: n]) =

error value (stack+ skeleton[i : n]).

The importance of the optimization of only subjecting the extract to the

repairing algorithm becomes obvious if the classes of "maybe opening"

and "maybe closing" parentheses are disjoint. In that case, a correct

skeleton has an empty extract, so that the whole repairing process takes

linear time.

A final optimization is found by observing that

Addition of parenthesis(i)

may be written

if maybe closing parenthesis(i)

then Addition of parenthesis(i)

else Addition of parenthesis(i)

fi,

21

where, in the else part, the piece of program as developed in section 6

may be greatly simplified, resulting in an overall improvement in speed of

about a factor of 2. For, in that case, matching(j, i) cannot hold, so

the assignation to R[j-1, i] can be simplified to R[j-1, i]:= 00 •

Since then the values of Tare no longer used, the assignations to elements

of T can be omitted. Factoring out the common start of the then- and the

else-part, and performing an obvious abbreviation, we now have obtained

(writing again go-on-symbols):

R[i - I : i , iJ : = (l , 0) ;

if maybe closing parenthesis(i)

then V k E [I : i-2]: T[k]:= 00 , T[i-1]:= 0;

for J from i-1 by -1 to I

do R[j-1, i]:= (matching(j, i) T T[j] I 00),

V k E [I j-1]: T[k]:= T[k] + R[k, j] x T[j]

od

else V k E [0

fi.

1

i-2]: R[k, i]:= oo

Under the representation discussed in section 8, the above else-part entails

no action at all.

IO. APPLICATION TO ALGOL 68.

The parenthesized constructs of ALGOL 68 are:

BIBLIOTHEEK M;\THE,1/,T:sc:1 c:::!T;:1!",!
•--P.f'viSTErlDAtv,--

22

begin

(

[

$

)

]

$

end if •.• then

case • . . 1.n

{elif

{ouse

then ••• }* {else ••. } fi -- --
in ••. }* {out •.. } esac

< •.. I ··· {I: ... I ... }* {I ... })
{for ... } {from .•. } {by ••. } {to ..• } {while ... } do od

* Here, { ..• } means an optional part, and{ ••• } means an arbitrary number of

repetitions.

A first complication lies in the double nature, closing and opening,

of such parentheses as then. It is easily overcome by considering these

as a pair of different parentheses, one closing followed by one opening.

Another problem stems from the use of one symbol I with two meanings,

I. and I t' An easy way out is to consider incorrect constructions like 1.n OU

(. . . I ... I ... I ...) correct in terms of the parenthesis structure,

and to postpone detection of this error to the actual parsing phase. A

more sophisticated soluuion is to adapt the definition of Q and the compu

tation of the elements of Tin such a way that the corresponding incorrect

path will not be constructed.

The fact that$ occurs both as opening and as closing parenthesis

presents no problem, since the repairing algorithm is perfectly able to

deal with such cases. It only means that two $'s do not simply cancel each

other in determining the extract (section 9). However, in almost all cases

it can be determined from the innnediate context if a given$ is an opening

or a closing parenthesis.

a)

b)

The final complication is best explained by an example:

while+ loc-:!... dos od; +log~ dos od;

while+ log-:!._ dos od; + loc ~dos od.

In line a,+ loc vis an enquiry-clause, whereas~ is a void-mode-indication

and log an operator with a cast as operand, so the parenthesis structure is

that suggested by (while do od) (do od). In line b,-:!... is the void-mode

indication, and the parenthesis structure corresponds to (while (do od)

do od). So the question matching(i, j) for these parentheses depends on

the context of parenthesis j. Fortunately, the decision can be taken on the

basis o& the two tokens preceding the parenthesis: In the context Aµ~,

23

where 1r is from, by, to, while or do, 1r is an opening parenthesis only,

if and only if µ is one of the tokens

, begin if then elif else

case in ouse out while do (I :

or ifµ is a bold-TAG-token or void-token and A is not one of the tokens

loc ref) J proc flex.

In [2], the term "parenthesis" was used for a wider class of symbols,

which also comprised", ~'#,co, comment, pr and pragmat. The algorithm

presented here assumes that the skeleton of these "state switchers" has

already been repaired. An efficient algorithm is given in [3].

It is possible to adapt the present algorithm in such a way that it can

deal with this wider class of parentheses, but this would result in a great

loss of efficiency since then, in general, the extracts from section 9 be

come much longer.

II. SPEED OF THE PROCESS

From the algorithm it should be obvious that the time taken by the

process has an upper bound of the form O(n3). We have not been able to

derive sharper bounds. However, we have determined an empirical formula

approximating the times needed for some actual skeletons by an imple

mentation of the algorithm written in ALEPH and run on a CYBER 73. These

skeletons were obtained by generating, with a random process, correct

skeletons and deleting its parentheses with a probability E. In total,

184 skeletons were generated, with n varying from 200 to 2000 and E from

0 to .I, and a formula of the form t = c
1
Epnq + c

2
n was fitted to the

results. A good fit was obtained by

t = .0013 E· 82n
2

•5 + .65 n msec.

A typicq,l observed time, for n = 1000 and E = .01, is t = 1449 msec.

24

REFERENCES

[1] HOARE, C.A.R., An axiomatic basis for computer programming, Comm.

ACM _!2 (1969) 576-580.

[2] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing the parenthesis skeleton

of ALGOL 68 programs, Report IW 2/73, Mathematical Centre,

Amsterdam (1973).

[3] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing the state switcher

skeleton of ALGOL 68 programs, Report IW 15/74, Mathematical

Centre, Amsterdam (1974).

ONTVANGEN

