
stichting

mathematisch

centrum

DEPARTMENT OF COMPUTER SCIENCE

J.W. DE BAKKER

I W 55/76

~ORRECTNESS PROOFS FOR ASSIGNMENT STATEMENTS

Prepublication

MARCH

2e boerhaavestraat 49 amsterdam

BIBtiOTHEEK MP,THEMATISCH CENTRUM

-=AM$Tl;RDAM-

Pti.nted a:t :the Ma:themq,ti.cal CentJr.e, 49, 2e BoeJtha.a.vu.tJuuLt, Amtd:.eltdam.

The Ma:thema:t..i..cal CentJr.e, 6ounded :the 11-:th 06 FebJr..uaJLy 1946, .l6 a. non­
plr..O 6U .iru,:tltutlo n aim,i.ng a:t :the pJr..omo:Uo n o 6 pUlte ma:thema:t..i..c.6 a.nd w
a.ppUc.a:tion.6. 1:t .ii, .6poru,01r..ed by :the Ne:theJri.a.nd6 GoveJr..nment :thlr..ou.gh :the
Ne:theJri.a.nd6 01r..ga.niza:t..i..on 601r.. :the Adva.nc.ement 06 PUite RueaJLc.h (Z.W.O),
by :the Mun.iclpa.U:ty 06 A.m6:teJLdam., by :the Univell.6Uy 06 A.m6:teltdam, by
:the F1r..ee Un.ivell.6Uy a:t A.m6:teltdam, a.nd by .ind.u6:ouu.

AMS/MOS subject classification scheme (1970): 68AOS

ACM-Computing Reviews-categories: 5.24

. *) Correctness proofs for assignment statements

by

J.W. de Bakker

ABSTRACT

Correctness proofs for assignment statements are usually based on

Hoare's or Floyd's assignment axiom. We observe.that these axioms do not

apply (directly) to assignment to subscripted variables. A refined definition

of substitution for subscripted variables is proposed which preserves the

validity of Hoare's axiom, and which is used in the formulation of an ex­

tension of Floyd's axiom. For both axioms, a validity proof is given within

the framework of denotational semantics of Scott and Strachey. Moreover, it

is shown that they yield the weakest precondition and strongest postcondi­

tion, respectively.

KEY WORDS & PHRASES: assignment statement, program correctness, subscripted

variables, Hoare's assignment a:x:iom, Floyd's assignment

a:x:iom, substitution, denotational semantics, weakest

precondition, strongest postcondition

*) This paper is not for review; it is meant for publication elsewhere.

CONTENTS

1 . Introduction

2. Syntax and substitution

3. Semantics of assignment and the validity of Hoare's axiom

4. An extended version of Floyd's axiom

References

4

8

15

20

I. INTRODUCTION

Consider the assignment statement x := 1. Using either Floyd's forward

assignment axiom, or Hoare's backward assignment axiom, one may infer that

after its execution the assertion x = I holds, as might be expected. Some­

what unexpectedly, however, after executing a[s] := I, wheres is some rea­

sonably innocent subscript expression, we cannot at all be sure that the

assertion a[s] = I holds. E.g., lets= a[2], and let a[l] and a[2] both

have the value 2 before the assignment. Then, according to the usual seman­

tics of assignment as defined e.g. for ALGOL 60 or PASCAL, we have that

after a[s] := I, the assertion a[s] = 2 holds! Related is the following ob­

servation: It is widely assumed that the program x := v; v := w; w := x in­

terchanges the values of v and w. However, this is not true in general. By

way of counter example take v = a[a[I]], w = a[a[2]], and let a[l] and a[2]

have initial values 2 and I, respectively.

As far as we know, there is not yet a formal treatment available of the

problems raised by assignment to subscripted variables, The present paper

proposes a method which has as its main feature a refined definition of the

notion of substitution for subscripted variables. Before saying more about

this, let us recall the Floyd and Hoare axioms for assignment. Remember that,

for any statement Sand assertions p,q, the formula

(I. I) {p} s {q}

has the intended meaning: For each initial state a satisfying p, if S trans­

forms a to final state a' = S(cr), then a' satisfies q. Let us call p and q

in (1. I) the precondition and postcondition, respectively. Now let S be the

assignment statement x := t, with x a simple variable and tan integer ex­

pression. Moreover, for any assertion p, let p[t/x] denote the result of

substituting t for x in p, i.e., of replacing all occurrences of x in p by t.

Similarly, we define s[t/x], for s any integer expression. We have

Floyd's .forward assignment a::ciom [I]

(F)
{p} x := t {3y[p[y/x]] Ax= t[y/x]]}

(where y is some variable not occurring 1.n port)

2

Hoa.re's baakward assignment axiom [2]

(H) {p[t/x]} X :=·t {p}

Observe that Floyd's axiom assumes the precondition given and tells us

how to obtain the (strongest) postcondition, whereas Hoare's axiom assumes

the postcondition given, and enables us to obtain the (weakest) precondition.

(For the terms "strongest" and "weakest" see section 4.)

ExampZes.

By Floyd's axiom:

1.1. {x = O} x := x + 1{3y[(x = O)[y/x] A x = (x+l)[y/x]]}

or, after simplification

{x = O} x := x + 1{3y[y = 0 A x = y + l]},

from which

{x = O} x := x + l{x = 1}

follows.

Observe that the variable yin the postcondition of (F) is used to

store the value of x before the assignment.

1.2. {~} x := 1{3y[(true)[y/x] A x = l[y/x]]}

or

{~} x := l{x = 1}.

Thus, (F) allows us to infer that, whatever precondition we have, ~fter

x := 1 the postcondition x = 1 always holds.

By Hoare's axiom:

2.1. {(x=l)[x + 1/x]} x := x + l{x = l}

which reduces to

{x + 1 = I} x := x + l{x = l}

2.2. {(x=l)[l/x]} x := l{x = l}

which simplifies to

{l = 1} x := l{x= l},

again allowing us to infer that after x := 1 we necessarily have that

X = I •

Now let us consider the assignment statement a[s] := 1. One might be

tempted to expect (F) or (H) to cover also assignment to subscripted vari-

ables. However, this would lead to the undesirable conclusion that, e.g.,

after a[s] := we necessarily have that a[s] = 1. In fact, if one takes

3

s = a[2], and treats a[a[2]] as a variable of the same nature as the simple

variable x, one could, e.g., apply (H) exactly as above, obtaining

{(a[a[2]]=1)[1/a[a[2]]]} a[a[2]] := l{a[a[2]] = l}

which re4uces to

{1 = l} a[a[2]] := l{a[a[2]] = l},

and we therefore see that a direct application, of (H) to subscripted vari­

ables leads to an invalid result. Thus, (F) and (H) cannot be simply carried

over to assignment in general, and we can state the main goal of our paper:

Find suitable versions of (F) and (H) which are valid for assignment to

subscripted variables as well.

The main tool for the solution of this problem is a careful analysis of

substitution for subscripted variables, leading to a new definition which

will be presented in section 2. It will turn out that (H) remains valid in

the form as given, provided that the new definition of substitution is used.

For (F) we need a somewhat more complex form which is introduced in section

4. Essentially, in order to deal with a[s] := t, we use existential quanti­

fication over two variables y and z - not occurring in p,s or t - such that

z is used to store the old value of sandy to store the old value of a[s].

A precise definition of the language we use is to be found in section 2,

and in section 3 we present its semantics - which amounts to a simple defi­

nition in the style of the denotational semantics of SCOTT & STRACHEY [5] -

together with a proof of the validity of (H). In section 4 we also prove

that the precondition and postcondition as determined by (H) and (the ex­

tended version of) (F) are indeed "weakest" and "strongest", i.e., that they

are the best one can expect, in a sense to be made precise below.

As remarked above, we have not encountered in the literature a satisfac­

tory formal treatment of assignment to subscripted variables. Some partial

treatment of the problem is to be found e.g. in IGARASHI, LONDON & LUCKEIAM [4],

4

- and presumably elsewhere - where a rule is given which amounts to a defi­

nition of substitution of the following type: Let x,y be simple variables.

Then

a[x][s/a[y]J = (if x = y thens else a[x]fi)

This rule is indeed obtainable as a special case of ours; but it does not

extend to the general case where x and y are replaced by arbitrary subscript

expressions.

ACKNOWLEDGEMENT: I am indebted to K.R. Apt and P. van Emde Boas fol' a

numbel' of helpful disaussions.

2. SYNTAX AND SUBSTITUTION

Our analysis of assignment will be presented using a language with only

a very modest syntax: We have statements (assignment statements and sequenc­

es thereof) and expl'essions (of two types: integel' and boolean) made up

from oonstants and val'iables (either simple or subsol'ipted) by simple oper­

ations like addition and multiplication for integer expressions, and con­

junction and implication for boolean expressions. For integer expressions

we moreover have the possibility of forming oonditionals. The full descrip­

tion is given in definition 2.1, in which we use a variant of BNF which

should be self-explanatory.

DEFINITION 2.1 (Syntax of simple progrannning language).

The following syntactical classes are introduced:

a. A set SV of simple Val'iables, with elements denoted by x,y, SV is

arbitrary set of symbols.

b. A set AV of al'l'ay Val'iables, with elements denoted by a, b, ••• . AV is

an arbitrary set of symbols disjoint from SV.
c. A set C of integel' oonstants, with elements denoted by n,m, •••• C is a

set of integer denotations, i.e., of certain symbolic entities suggest­

ing corresponding integers as values.

an

5

d. A set V of variables, with elements denoted by v,w, •.• , and defined as

v: := xla[s]

e. A set E of integer expressions, with elements denoted by s,t, .•• , and

defined as

s::= vlnls 1 + s 2 is 1 * s 2 1 if p then s 1 else s 2 fi

f. A set P of boolean expressions, with elements denoted by p,q, ..• , and

defined as

p::= true_lfalselp 1 A p2 lp 1 :::i p2 ls =tis> t

A set S of statements, with elements s1, s2 , ... , and defined as

S::= s1; s2 1v := t

We assume that parentheses may be used freely in our language to enhance

readability and to avoid ambiguities. We shall not bother to give any formal

specification of this.

The next definition introduces the form in which correctness of state­

ments is stated:

DEFINITION 2.2 (Correctness formulae).

A correctness formula is a construct of the form {p} S {q}, with p,q E P

and SES.

We also need a definition of syntactic equality:

DEFINITION 2.3 (Syntactic equality).

For s 1, s 2 EE, s 1 = s 2 iff s 1 and s 2 are the same sequence of symbols.

Similarly for p 1 = p2 •

Example: Assuming that C = {0,1,2, ••• }, we have that O - 0 and 1 + I 'I- 2.

Also, a[s] = b[t] iff a = b and s = t.

As counterpart of the notion of syntactic equality, we have that of

semantic equaUty. Anticipating the definition given in section 3, we men­

tion already that two integer expressions sand tare semantically equal

(written ass= tin the present section only, in section 3 we remedy this

unsatisfactory notation) iff they result in the same value whatever initial

values are given to the variables occurring in them. A similar definition

applies to boolean expressions.

Example: 0 = O, a[l+I] = a[2], x + y = y + x, if

(true :::i false)= false.

= then x else y fi = x,

6

We now introduce our definition of substition. By way of preparation

consider a correctness formula {q} S {p}. Let us write - in an ad-hoc nota­

tion used only until the end of our informal explanation of the definition

of substitution - S:p for the boolean expression which is true for a given

state o if£ pis true for the state S(o). Then, clearly, we have that

{S:p} S {p} is valid. (A precise definition of the notion of validity fol­

lows in section 3.) Now taking for S the assignment statement v := t, we

obtain {(v:=t): p} v := t {p}, and we want to define p[t/v] in such a way

that (v:=t): p holds if£ p[t/v] holds. Having established this, we conclude

that {p[t/v]} v := t {p} is valid, as desired. So let us determine the ef­

fect of v := t upon the boolean expression p, in order to determine (v:=t): p.

It is natural to proceed by induction on the structure of p, using, e.g.,

(v:=t): ~ = ~, ••• ,(v:=t): pl A p2 = ((v:=t): p1) A ((v:=t): p2), ••• ,

(v:=t): (s 1=s2) = (((v:=t): s 1) = ((v:=t): s2)), ••• ,(v:=t): (s 1+s2) =

((v:=t): s 1) + (v:=t): s2 , ••• ,etc. In this way, we decompose the expression

until we encounter its variables, and accordingly we have to determine the

value of (v:=t): w, for arbitrary variables v,w. This is done in the follow­

ing case analysis:

I. Let v = x, for some simple variable x € SV.
(x:=t): X

(x:=t): y

(x:=t): a[s]

= t

= y (x¥y)

.= a[(x:=t): s]

2. let v = a[s 1J, for some a€ AV and s 1 € E.
(a[s 1J:=t):x =x

(a[s 1J := t): b[s2J = b[(a[s 1] := t): s2J (a¥b)

(a[s 1J := t): a[s 2J. This is the most interesting case. We distinguish

two subcases:

2. I. (a[s 1] := t): s2 = s] • Then

(a[s 1J := t): a[s2J = t.

2.2. (a[s 1J := t): s2 ,; s]. Then

(a[s 1 J := t): a[s2J = a[(a[s 1] := t): s2]

This explanation may help to understand the definition of substitution

which now follows:

DEFINITION 2.4 (Substition).

For any v € V and t € E.
1. p[t/v] is defined by induction on the structure of p:

true [t/v] = true, false [t/v] = false,

(p 1Ap2) [t/v] = p1[t/v] A p2 [t/v], and similarly for~,

(s 1=s2) [t/v] = (s 1[t/v] = szCt/v]), and similarly for >

2. s[t/v] is defined by induction on the structure of s:

n[t/v] = n,

(s 1+s2)[t/v] = s 1[t/v] + s2[t/v], and similarly for*,

7

(if p then s 1 else s 2 fi) [t/v] = if p[t/v] then s 1 [t/v] else szCt/v] fi

3. w[t/v] is defined by the following case analysis:

3.1. v = x, for some x E SV.
x[t/x]

y[t/x]

a[s][t/x]

= t

= y (x;.y)

a a[s[t/x]J

3.2. v = a[s 1J, for some a E AV and s 1 EE.
x[t/a[s 1JJ = x

b[s2J[t/a[s 1JJ = b[s2[t/a[s 1JJJ (a;.b)

a[s2J[t/a[s 1JJ = if s2[t/a[s 1JJ = s 1 then t else a[s2[t/a[s1JJJ fi.

Examples.

1. Let a;. b.

b[aE2]][1/a[2]] a

b[a[2][1/a[2]]] =
b[if 2[1/a[2]] = 2 then 1 else a[2[1/a[2]]] fi] =
b[if 2 = 2 then 1 else a[2] fi].

Semantically (though not syntactically) this last expression equals b[l].

2. a[a[2]][1/a[a[2]]] =
if a[2][1/a[a[2]]] = a[2] then 1 else a[a[2][1/a[a[2]]]] fi =
if(if 2 = a[2] then 1 else a[2] fi) = a[2] then 1

else a[if 2 = a[2] then 1 else a[2]fi] fi.

Observe that the last expression is semantically equal to if a[2J = 2

then a[l] else fi.

8

Using example 2, and anticipating the theorem stating the validity of

(H) with the new definition of substitution, let us see what happens to the

first example of section I. Suppose we want to find out under which precon­

dition we can be sure that the assignment a[a[2]] := I yields postcondition

a[a[2]] = I. (Above we noted that the identically true predicate is not suf­

ficient.) We obtain the following instance of (H):

{(a[a[2]] = I)[I/a[a[2]]]} a[a[2]] :=

or, using example 2 just given,

{if a[2] = 2 then a[I] else

a[a[2]] := I

{a[a[2]] = I}

fi = I}

{a[a[2]] = I}

and it should be clear that the precondition if a[2] = 2 then a[I] = I else

~ fi does indeed imply that, after a[a[2]] := I, the postcondition

a[a[2]] = I holds.

Observe that Hoare's axiom does not enable us to find the (strongest)

postcondition for precondition true, i.e., we are not yet in the position

to give a formal derivation of the situation after a[a[2]] := 1 in this

case. This will have to wait till section 4 which brings the extended ver­

sion of Floyd's forward axiom.

3. SEMANTICS OF ASSIGNMENT AND THE VALIDITY OF HOARE'S AXIOM

In this section we define the meaning of the various programming con­

structs as introduced in section 2. Moreover, we define the notion of va­
lidity of a correctness formula, and we show that Hoare's axiom is valid.

The method used for our semantical definitions is in the spirit of the

so-called "denotational semantics" as advocated by SCOTT & STRACHEY - e.g.

in [5] -, which is best characterized as a systematic process of associating

various mathematical objects - sets, functions and the like - with the lin­

guistic constructs in our language. More specifically, we define a number of

mappings which prescribe a value for the elements of each major syntactic

class: integer expressions including variables, boolean expressions, and

statements.

As our starting point we take three sets of values:

- A: a set of add.Pesses, with elements denoted by a, a 1, •••

- 1: a set of integers, with elements denoted byµ, v, ••• •

- {T, F}: a set of truth-values, with the two elements T and F.

Furthermore, we give a name to the mappings from A to 1:

r = (A+ 1), is called the set of stores with elements denoted by

CJ, CJ 1, ••••

9

Meaning will be provided to integer expressions in Eby mapping them to

1, to boolean expressions in P by mapping them to {T, F} and to statements

in S by mapping them tor. First, however, we have to clarify the role of

the set A. Roughly, the idea is that we map each variable in V to an address

in A - which mapping we call the enviro'YITTlent e - and then use the store CJ

to find the value v stored in a. For simple variables this gives no problem,

and we have the picture

€ CJ x~a--+v

where x E SV, a EA, v E 1, e E Env (the set of all environments) and CJ Er.

For subscripted variables ars] the situation is more complicated, as we

shall discuss presently. Before doing this, we already mention that below

we shall model the assignment x := t as an action which changes the store

CJ into CJ' in the following way: For each a' I a= e(x), CJ' remains the same

as CJ, but CJ'(x) is set toµ, whereµ is the intege+ resulting from evaluating

tin the (old) store CJ.

Now what about E for subscripted variables a[s]? We cannot directly

define E for such arguments. Instead, we first have to evaluates, yielding

an integer v, and then we apply E to the pair (a,v). Moreover, in evaluating

s we need the current environment and store in order to evaluate the vari­

ables occurring ins. Altogether, we obtain the •situation defined below, in

which we use the terminology of Zeft-hand-1.JaZues and right-hand-1.JaZues as

introduced originally in STRACHEY [6]. Let

- Env = ((SV u(AVxI)) +A)

10

i.e.; each£€ Env is a mapping defined either on simple variables x € SV,
or on pairs (a,v) with. a€ AV and v € 1. As a result,£ produces an ad­

dress a. Furthermore,£ is required to satisfy the following uniqueness

condition: E(x) = E(y) if£ x = y, E(x) I E(a,v) for all x, a and v, and

E(a,v) = E(b,µ) if£ a= bandµ= v.

- R: (E+(Envxr+I))

For each integer expressions€ E, R determines its right-hand.-vaZue,
which is an integer and which depends on the current environment and

store: R(s)(E,cr) = v, for some v € I.
- L: (V+(Envxr+A))

For each variable v € V, L determines its Zeft-hand-vaZue, which is an

address and which also depends on£ and a: L(v)(E,cr) = a, for some a e A.
- T: (P+(Envxr+{T, F}))

For each boolean expression p € P, T determines its value which is a

truth-value, depending on£ and a: T(p)(E,cr) €{T, F}.

The definitions of L, Rand Tare given in

DEFINITION 3.1 (Semantics of expressions).

1. L(x)(E,cr) = E(x)

L(a[s])(E,cr) = E(a,R(s)(E,cr))

2. R(v)(E,cr) = cr(L(v)(E,cr))

R(n)(E,cr) = v, where vis the integer "suggested" by the integer

constant n

R(s 1+s 2)(E,cr) = pZus (R(s 1)(E,cr), R(s2)(E,cr)), where pZus has the usual

mathematical meaning

R(s 1*s)(E,cr) is defined similarly
2 fR(s 1)(E,cr), if T(p)(E,cr) = T

R(if p then s 1 else s 2 fi) = 1
lR(s2)(£,cr), if T(p)(E,cr) = F

3. T(true)(E,cr) = T

T(false)(E,cr) = F

T(p 1Ap 2)(E,cr) = (T(p 1)(£,cr) & T(p2)(£,cr)),

where"&" has the usual meaning of conjunction of truth-values

T(p 1~p2)(£,cr) = ~T(p 1)(E,cr),. T(p2)(£,cr)),

where"-." has the usual meaning of implication between truth-values

T(s 1=s2)(£,cr) = (R(s 1)(E,cr) = R(s 2)(£,cr)),

n

where the right-most equality sign has the usual meaning of equality

between integers

T(s 1>s2)(e,cr) is defined similarly.

ExampZes.

1. Let e(a,1) = a 1, e(a,2) = a2, cr(a1) = 2, cr(a2) = 1. Let us, for conve­

nience's sake, assume that 1,2, ••• are elements both of C and 1. Then . .
R(a[a[l]])(e,cr) = cr(L(a[a[l]])(e,cr)) =

cr(e(a,R(a[l])(e,cr))) = cr(e(a,cr(L(a[l])(e,cr)))) =

cr(e(a,cr(e(a,R(l)(e,cr))))) = cr(e(a,cr(e(a,1)))) =

cr(e(a,cr(a 1))) = cr(e(a,2)) = cr(a2) = 1.

2. Let e(x) = a 1, e(y) = a2, e(z) = a3 , cr(a1) = 3, cr(a2) = 2, cr(a3) = 1.

Then

T(x+y=z)(e,cr) = (R(x+y)(e,cr) = R(z)(e,cr)) = .

(pZus(R(x)(e,cr), R(y)(e,cr)) = R(z)(e,cr)) = · ·

(pZus(cr(e(x)), cr(e(y))) = cr(e(z))) =

(pZus(3,2)=1) = (5=1) = F.

For the definition of the meaning of a statement, we need a new piece

of notation:

DEFINITION 3.2 (Variants of the store).

Let cr € E, a€ A, v € 1. Then cr{~/a} is a new store defined as follows:

__ {v , if a = a '
cr{v /a}(a')

cr(a), if a-;. a'

Thus, cr' = cr{v/a} is like cr, but for the fact that cr'(a) is set to v.

In the sequel we shall use the easy lemma:

LEMMA 3.3.

a. cr{v 1/a}{v 2/a} = cr{v 2/a}

b. cr{v 1/a 1}{v2/a2} = cr{v 2/a2}{v 1/a 1}, for a 1 -;. a2•

Proof. Obvious. 0

We now define a mapping M:(S+(EnvxE+E)) which gives a meaning to state­

ments.

BIBllOTHEEK MATHEMATISCH CENTRUM
--AMSTERDAM--

12

DEFINITION 3.4 (Semantics of statements).

l. M(v:=t) (e:,cr) = cr{R(t)(e:,cr)/L(v)(e:,cr)}

2. M(s 1;s2)(e:,cr) = M(s2)(e:,M(s 1)(e:,cr)).

In words, an assignment statement v := t changes the store by updating its

value in the left-hand-value of v with the right-hand-value oft.

Example. Let e:(x) = a 1, e:(y) = a2, e(z) = a3 , cr(a2) = 3, cr(a3) = 2. We cal­

culate M(x:=y; y:=z; z:=x)(e,cr) as follows:

M(x:=y; y:=z; z:=x)(e:,cr) =

M(z:=x)(e, M(x:=y; y:=z)(e,cr)) =

M(z:=x)(e, M(y:=z)(e, M(x:=y)(e,cr))) =

M(z:=x)(e, M(y:=z)(e,cr{R(y)(e,cr)/(L(x)(e,cr)})) =

M(z:=x)(e, M(y:=z)(e,cr{3/a 1})) =

M(z:=x)(e,cr{3/a 1}{2/a2}) =

cr{3/a 1}{2/a2}{R(x)(e,cr{3/a1}{2/a2}/

L(z)(e,cr{3/a 1}{2/a2})} =

cr{3/a 1}{2/a2}{3/a3},

and we see that we have indeed effectuated an interchange of the values

of the simple variables y and z. (We leave to the reader the calculations

for the case that y and z are replaced by a[a[l]] and a[a[2]].)

Finally, we define the notion of validity, which applies to boolean ex­

pressions p and to correctness formulae {p} S {q}.

DEFINITION 3.5 (Validity).

1. A boolean expression pis satisfied by a pair (e,cr) if£ T(p)(e,cr) = T.

A correctness formula {p} S {q} is satisfie4 by (e:,cr) if£

[T(p)(e,cr) • T(q)(e, M(S)(e,cr))J = T.

2. A boolean expression pis valid - denoted by I= p - if£ pis satisfied

by all (e,cr). A correctness formula {p} S {q} is valid - denoted by

l={p} S {q} - if£ {p} S {q} is satisfied by all (e,cr).

Examples

1. The informal notion of semantic equality between integer expressions s

and t, and between boolean expressions p and q - as used in section 2

- can now be stated formally as well: s = t (informally) if£ I= s = t,

and p = q (informally) iff l=(p~q) A (q~p).

2. Consider the following special case of (H): I= {x = O} x := x + 1

{x = l}. We show its validity, i.e., we show that Ve,a[T(x=O)(e,a)

13

.,. T(x=l)(e, M(x:=x+l)(e,a))J, or Ve,a[T(x=O)(e,a) =) T(x=l)(e,a{R(x+l)

(e,a)/L(x)(e,a)}J. We distinguish two cases: (i) a(e(x)) # O. Then

T(x=O)(e,a) = F, and the implication is trivially true.

(ii) o(e(x)) = O. Then T(x=O)(e,a) = T, and we have T(x=l)(e,a{R(x+l)

(e,o)/L(x)(e,a)}) = T(x=l)(e,a{l/e(x)}) =

(R(x)(e,a{l/e(x)}) = R(l)(e,a{l/e(x)})) = (o{l/e(x)}(e(x)) = 1) =

(1=1) = T.

This closes our list of semantic definitions, and we are sufficiently

prepared for the proof of our first theorem:

THEOREM 3.6 (VaZidity of Hoare's axiom). For eaah p € P, v € V and t € E:

I= {p[t/v]} v := t{p}.

Proof. We have to show: Ve,o[T(p[t/v])(e,a).,. T(p)(e,a{R(t)(e,a)/L(v)(e,a)})J.

Let us put a= L(v)(e,a) and v = R(t)(e,o).It is sufficient to prove that

Ve,a[T(p[t/v])(e,a) = T(p)(e,a{v/a})J. By a straightforward argument by in­

duction on the structure of p we reduce this to the proof of Ve,a

[R(s[t/v])(e,a) = R(s)(e,a{v/a})J. Again proceeding by induction, now on the

structure of s, we have to show that Ve,a[R(w [t/v])(e,a) = R(w)(e,a{v/a})J.

We consider only the case that w = a[s 1J, v = a[s2J, for some a€ AV and

s 1, s2 € e, the various other cases being even simpler. So we have to show,

by the definition of substitution:

(3. 1) =

or, by the semantic definitions, both

(3.2)

and

Ve,a[(R(s 1[t/a[s2JJ)(e,a) = R(s2)(e,o)),..

(v = R(a[s 1J)(e,a{v/a}))J

14

(3.3)
V£,a[(R(s 1[t/a[s2JJ)(E,a) I R(s2)(£,a)) •

(R(a[s 1[t/a[s2JJJ)(E,a) = R(a[s 1])(£,a{v/a}))J

First we consider (3.2). By the induction hypothesis, this reduces to:

VE,a[(R(sl)(E,a{v/a}) = R(s2)(e,o)) .. (v=o{v/a}(E(a,R(sl)(E,o{v/a}))))J,

and the desired result is obtained as follows: By the definition of

a, a= £(a,R(s2)(e,o)). Now put a'= e(a,R(s 1)(e,a{v/a})). We have

a{v/a}(a') = v if a= a', and a= a' iff R(s2)(e,o) = R(s 1)(£,a{v/a}), using

definition 3.2 and the uniqueness condition on£:

Next, we prove (3.3). Let a I a'. We have

Also,

R(a[s 1[t/a[s2JJJ)(E,a) =

a(£(a,R(s 1[t/a[s2JJ)(E,a))) =

a(E(a,R(s 1)(£,o{v/a})))

(ind. hyp.)

R(a[s 1J)(E,a{v/a}) =

a{v/a}(E(a,R(s 1)(£,a{v/a}))) = (ala')

a(E(a,R(s 1)(£,a{v/a})))

Together, these two derivations establish (3.3), thus completing the proof

of theorem 3.6. D

Remark. One might wonder about the role of the environment£, which remains

invariant throughout the calculations. Indeed, properties if statements con­

sisting of sequences of assignments only, may be proven without taking the

environment into account. However, we have preferred to include£ into our

semantic model since the environment - store duality yields a better pic­

ture of actual implementations. Moreover, for the treatment of some of the

more difficult programming concepts the environment is certainly necessary,

witness the problems raised e.g. by the axiomatic treatment of parameter

passing in HOARE & WIRTH [3].

4. AN EXTENDED VERSION OF FLOYD' S AXIOM

In section l we introduced Floyd's forward assignment axiom, which we

now write as

(4. 1) != {p} x := t {3y[p[y/x] Ax= t[y/x]}

(where y is a variable not occurring in port)

15

Properly speaking, this is syntactically illegal, since we have not yet

introduced th1~ 3x-notation for boolean expressions. In order to remedy this,

we extend the definitions of the previous sections with

DEFINITION 4.1 (Extended boolean expressions).

1. For any p E P and x E SV, 3x[p] belongs to P.
2. T(3x[p])(E,a) =Tiff there exists v EI such that T(p)(E,a{v/E(x)}) = T.

Employing this definition, it is not difficult to prove (4.1). We omit

the proof here, since we do give the proof of the extension of (4.1) for

assignments a[s] := t.

Before prE?senting this extension, we devote a brief discussion to the

notions of weakest precondition and strongest postcondition. Consider the

general correctness formula {p} S {q}. The reader should realize that,

trivially, we have that both I= {false} S {p} and I= {p} S {true}. Usually,

we are interested in pre- and postconditions which are best possible, in

the sense of the following definition

DEFINITION 4.2 (Weakest precondition and strongest postcondition).

For any p E P and SES

1. wp(S,p) is the weakest precondition of S with respect top iff it

satisfies both

(i) I= {wp(S,p)} S {p}

(ii) For all r, if I= {r} S {p}, then I= r::, wp(S,p).

2. sp(S,p) is the strongest postcondition of S with respect top iff it

satisfies both

)6

(i) I= {p} S {sp(S,p)}

(ii) For all r, if I= {p} S {r}, then I= sp(S,p) ~ r.

It is not difficult to prove that the precondition from HOAR.E'S assign­

ment axiom is indeed the weakest:

THEOREM 4.3. For eaah v € V, t € E, p[t/v] is the weakest preaondition of

v := t with respeat top.

Proof. By theorem 3.6, p[t/v] satisfies clause l(i) of definition 4.2. To

prove l(ii), assume I= {r} v := t {p}, for some r. By the validity definition

we have

Ve,cr[T(r)(e,cr),. T(p)(e,cr{R(t)(e,cr)/L(v)(e,cr)}J

and by the proof of theorem 3.6, this is equivalent to

Ve,cr[T(r)(e,cr),. T(p[t/v])(e,cr)J

i.e. to

I= r ~ p [t/v]. □

We now return to the problem of extending (4.1). Let us, by way of in­

troduction, first consider the case that p = true and t = n, for some n € C.

We want to find the strongest q such that I={~} a[s] := n {q}. We list

some possibilities for q which are successively stronger, until the desired

strongest postcondition is found.

- q =true.This is clearly too weak.

- q = 3z[a[z] = n], where z is used to store the old value of s. This is

an improvement, but not yet strong enough.

- q = 3y,z[a[s[y/a[z]JJ = n], where y and z are variables not occurring ins,

and where z is used to store the old value of sandy the old value of

a[s]. This is already much better, but still insufficient.

- q = 3y,z[a[s[y/a[z]JJ = n A s[y/a[z]] = z], where y and z do not occur

ins. This is the desired solution. Again, z stores the old value of s

and y of a[s]. However, we also have that s[y/a[z]] = z, as indicated:

Evaluating s in the new store .. (i.e., after performing the assignment

a[s] := n) but making sure that a, indexed by the old value of s, is set

toy, should result in the old value of s, i.e., in z.

Generalizing this argument to arbitrary p and t, we arrive at the de­

sired extension of Floyd's axiom:

THEOREM 4.4. (Extension of Floyd's axiom). For each s,t € E, p € P, a€ AV

I= {p} a[s] := t {3y,z

17

(4. 2) [p[y/a[z]J A z = s[y/a[z]J A a[z] = t[y/a[z]JJ}

(where y and z do not occur in p,s or t)

Moreover, the postcondition in (4.2) is strongest in the sense of defini­

tion 4.2.

Before presenting the proof of the theorem, we first discuss the example

of the beginning of section I.

Example. Let p = (a[1]=2 A a[2]=2), s = a[2], and t =I.We then obtain as

instance of the postcondition of (4.2):

3y,z[(a[1]=2 A a[2]=2)[y/a[z]] A

z = a[2][y/a[z]J A

a[z] = l[y/a[z]JJ

By the definition of substitution, this reduces to

3y,z[if I= z then y else a[l] fi =-2 A

if 2 = z then y else a[2] fi = 2 A

z = if 2 = z then y else a[2] fi A

a[z] = I]

Comparing the second and third boolean expression in the conjunction, we

see that we must take z = 2, and the whole expression reduces to

3y[a[l] = 2 A y = 2 A y = 2 A a[2] = I], which is in turn equivalent to

a[I] = 2 A a[2] =I.From this we obtain, among other facts, that

a[a[2]] = 2, as desired,

18

As a slight variant of this example, we take p = ~, t = 1, and

s = a[2] in (4.2), and obtain

I= {true} a[a[2]] := 1 {3y,z[z = if z = 2 then y else a[2] fi A a[z] = 1}.

The postcondition of this formula, which-may be simplified to

a[2] = 1 v a[a[2]] = 1, provides the answer to the question posed at the

end of section 2.

Proof of theorem 4.4.

A. First we prove (4.2). Let a= e:(a,R(s)(e:,a)), v = R(t)(e:,a). By defini­

tions 3.5 and 4.1, we have to show

(4.3)

Ve:,a 3µ 1, µ2

[T(p)(e:,a).,.

T(p[y/a[z]] A z = s[y/a[z]] A

a[z] = t[y/a[z]J)(e:,a{v/a}{µ1 /e:(y)}{µ 2/e:(z)})J

Now take any (e:,a), and let µ1 = a(e:(a,µ 2)), µ2 = R(s)(e:,a). Furthermore,

assume T(p)(e:,a) and let us write a"' for a{ v/a}{ µ 1 /€(y) }{ µ2/€(z)}. Using

a = e:(a, µ2) and a(€(a, µ2)) = µ 1, we obtain a"' { µ1 /€(a, µ2)} =

a{µ 1/e:(y)}{µ 2/e:(z)}, using the definitions and lennna 3.3. Let us abbreviate

a{µ 1/e:(y)}{µ 2/e:(z)} to a". We show that the three consequences in (4.3)

hold:

(i) T(p[y/a[z]J)(e:,a'") =(cf.the proof of the theorem 3.6)

T(p)(e:,a"'{R(y)(e:,a"')/L(a[z])(e:,a"')}) =

T(p)(e:,a"'{µ 1/e:(a,µ 2)} =

T(p) (e:,a") = (y and z do not occur in p)

T(p)(e:,a), which holds by assumption.

(ii) R(s[y/a[z]J)(e:,a"') =

R(s)(e:,a"'{µ 1/e:(a,µ 2)}) =

R(s)(e:,a") = (y and z do not occur ins)

R(s)(e:,a) = µ2 = R(z)(e:,a"').

(iii) R(t[y/a[z]])(e:,a"') = R(a[z])(e:,a"'). This is shown similar to (ii).

B. We prove that the postcondition of (4.2) is the strongest possible. Let

us use the abbreviation p0 = (p[y/a[z]] A z = s[y/a[z]] A a[z] = t[y/a[z]J).

Take any r such that I= {p} a[.s] := t {r} holds. We show that then

19

I= 3y,z[p0J ~ r follows. Let a and v be as in part A. Using the various de­

finitions, what we have to show amounts to

VE,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J =:>

V£,cr[T(3y,z[p0J)(E,cr) =:> T(r)(E,cr)J

Equivalently, we have to show

V£0 ,cr0[V£,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J A

3µ1,µ2[T(po)(£,cro{µl/£(y)}{µ2/£(Z)})J .. T(r)(Eo,cro)J

V£0,cro,µ1,µ2[V£,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J A T(po)(Eo,cro)

=:> T(r)(Eo,cro)J

So take any £0 ,cr0 ,µ 1,µ 2 and let us assume(*):

V£,cr[T(p)(E,cr) => T(r)(E,cr{v/a})J and T(p0)(£0 ,cr0 "). To show T(r)(£0 ,cr0).

We use (*),with£= £0 , cr = cr01 {µ 1/£0(a,µ 2}. From T(p0)(£0 ,cr0) we obtain

(i) T(p[y/a[z]J)(£0,cr0 11), or, equivalently,

T(p)(Eo, 0 o~µl/£0(a,µ2)})

(ii) R(z)(Eo,cro) = R(s[y/a[z]])(Eo,cro'), or equivalently,

µ2 = R(s)(Eo,cro'{µl/£0(a,µ2)}

(iii) R(a[z])(Eo,cro') = R(t[y/a[z]J)(Eo,cro'), or equivalently,

cro'(Eo(a,µ2)) = R(t)(Eo,cro{µl/£0(a,µ2)}).

From (i) and the definitions of£ and cr, we obtain that T(p)(E,cr)holds.

Thus, using(*), T(r)(£,cr{v/a}) follows. Also, we have, by the definition

of a, a= E(a,R(s)(E,cr)) = E(a,R(s)(E,cro'{µl(Eo(a,µ2)})) =

E(a,µ 2), where the last equality follows from (ii). Hence,

cr{v/a} = cr0'{µ 1/£(a,µ 2)}{v/a} = cr01 {v/a}, by lemma 3.3. From (iii) we derive

that cro'(a) = ao'(Eo(a,µ2)) = R(t)(Eo,cro'{µl/£0(a,µ2)}) = R(t)(E,cr) = v.

Thus, cr0'{v/a} = 0 01 • Finally, we have that T(r)(£0 ,cr0) = (y and z not in r)

T(r)(Eo,cro') = T(r)(Eo,cro'{v/a})= T(r)(E,cr{v/a}, and the desired result

follows, since T(r)(E,cr{v/a})was already shown to have the value T.

This completes the proof of part Band, therefore, of theorem 4.4. D

20

REFERENCES

[1] FLOYD, R.W., Assigning meanings to programs, in Proc. of a Symposium in

Applied Mathematics Vol. 19 - Math. Aspects of Computer Science

(J.T. Schwarz, ed.), p. 19-32. AMS (1967).

[2] HOARE, C.A.R., An a.xiomatic basis for computer programming, C.ACM, 12

(1969), p. 576-580.

[3] HOARE, C.A.R. & N. WIRTH, An a.xiomatic definition of the programming

Zanguage PASCAL, Acta Inf. I (1973), p. 335-355.

[4] IGARASHI, S., R.L. LONDON & D.C. LUCKHAM, Automatic Program Verification

I: A LogicaZ Basis and its IrrrpZementation, Acta Inf. i (1975),

p. 145-182.

[5] SCOTT, D. & c. STRACHEY, Towards a mathematicaZ semantics for computer

Zanguages, in Proc. of the Symp. on Computers and Automata

(J. Fox, ed.), p. 19-46, Polytechnic Inst. of Brooklyn (1971).

[6] STRACHEY, c., Towards a fo:rrmaZ semantics, in Proc. IFIP Working Conf. on

Formal Language Description Languages (T.B. Steel, Jr., ed.),

p. 198-220, North-Holland Publ. Company (1966).

,,., S~"' ~"''" tr>."""-,,,
I;," : ,, ... ,.,t ,'-,," •,J

