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. *) Correctness proofs for assignment statements 

by 

J.W. de Bakker 

ABSTRACT 

Correctness proofs for assignment statements are usually based on 

Hoare's or Floyd's assignment axiom. We observe.that these axioms do not 

apply (directly) to assignment to subscripted variables. A refined definition 

of substitution for subscripted variables is proposed which preserves the 

validity of Hoare's axiom, and which is used in the formulation of an ex­

tension of Floyd's axiom. For both axioms, a validity proof is given within 

the framework of denotational semantics of Scott and Strachey. Moreover, it 

is shown that they yield the weakest precondition and strongest postcondi­

tion, respectively. 

KEY WORDS & PHRASES: assignment statement, program correctness, subscripted 

variables, Hoare's assignment a:x:iom, Floyd's assignment 

a:x:iom, substitution, denotational semantics, weakest 

precondition, strongest postcondition 

*) This paper is not for review; it is meant for publication elsewhere. 
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I. INTRODUCTION 

Consider the assignment statement x := 1. Using either Floyd's forward 

assignment axiom, or Hoare's backward assignment axiom, one may infer that 

after its execution the assertion x = I holds, as might be expected. Some­

what unexpectedly, however, after executing a[s] := I, wheres is some rea­

sonably innocent subscript expression, we cannot at all be sure that the 

assertion a[s] = I holds. E.g., lets= a[2], and let a[l] and a[2] both 

have the value 2 before the assignment. Then, according to the usual seman­

tics of assignment as defined e.g. for ALGOL 60 or PASCAL, we have that 

after a[s] := I, the assertion a[s] = 2 holds! Related is the following ob­

servation: It is widely assumed that the program x := v; v := w; w := x in­

terchanges the values of v and w. However, this is not true in general. By 

way of counter example take v = a[a[I]], w = a[a[2]], and let a[l] and a[2] 

have initial values 2 and I, respectively. 

As far as we know, there is not yet a formal treatment available of the 

problems raised by assignment to subscripted variables, The present paper 

proposes a method which has as its main feature a refined definition of the 

notion of substitution for subscripted variables. Before saying more about 

this, let us recall the Floyd and Hoare axioms for assignment. Remember that, 

for any statement Sand assertions p,q, the formula 

( I. I) {p} s {q} 

has the intended meaning: For each initial state a satisfying p, if S trans­

forms a to final state a' = S(cr), then a' satisfies q. Let us call p and q 

in (1. I) the precondition and postcondition, respectively. Now let S be the 

assignment statement x := t, with x a simple variable and tan integer ex­

pression. Moreover, for any assertion p, let p[t/x] denote the result of 

substituting t for x in p, i.e., of replacing all occurrences of x in p by t. 

Similarly, we define s[t/x], for s any integer expression. We have 

Floyd's .forward assignment a::ciom [I] 

(F) 
{p} x := t {3y[p[y/x]] Ax= t[y/x]]} 

(where y is some variable not occurring 1.n port) 
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Hoa.re's baakward assignment axiom [2] 

(H) {p[t/x]} X :=·t {p} 

Observe that Floyd's axiom assumes the precondition given and tells us 

how to obtain the (strongest) postcondition, whereas Hoare's axiom assumes 

the postcondition given, and enables us to obtain the (weakest) precondition. 

(For the terms "strongest" and "weakest" see section 4.) 

ExampZes. 

By Floyd's axiom: 

1.1. {x = O} x := x + 1{3y[(x = O)[y/x] A x = (x+l)[y/x]]} 

or, after simplification 

{x = O} x := x + 1{3y[y = 0 A x = y + l]}, 

from which 

{x = O} x := x + l{x = 1} 

follows. 

Observe that the variable yin the postcondition of (F) is used to 

store the value of x before the assignment. 

1.2. {~} x := 1{3y[(true)[y/x] A x = l[y/x]]} 

or 

{~} x := l{x = 1}. 

Thus, (F) allows us to infer that, whatever precondition we have, ~fter 

x := 1 the postcondition x = 1 always holds. 

By Hoare's axiom: 

2.1. {(x=l)[x + 1/x]} x := x + l{x = l} 

which reduces to 

{x + 1 = I} x := x + l{x = l} 

2.2. {(x=l)[l/x]} x := l{x = l} 

which simplifies to 

{l = 1} x := l{x= l}, 

again allowing us to infer that after x := 1 we necessarily have that 

X = I • 

Now let us consider the assignment statement a[s] := 1. One might be 

tempted to expect (F) or (H) to cover also assignment to subscripted vari-



ables. However, this would lead to the undesirable conclusion that, e.g., 

after a[s] := we necessarily have that a[s] = 1. In fact, if one takes 
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s = a[2], and treats a[a[2]] as a variable of the same nature as the simple 

variable x, one could, e.g., apply (H) exactly as above, obtaining 

{(a[a[2]]=1)[1/a[a[2]]]} a[a[2]] := l{a[a[2]] = l} 

which re4uces to 

{1 = l} a[a[2]] := l{a[a[2]] = l}, 

and we therefore see that a direct application, of (H) to subscripted vari­

ables leads to an invalid result. Thus, (F) and (H) cannot be simply carried 

over to assignment in general, and we can state the main goal of our paper: 

Find suitable versions of (F) and (H) which are valid for assignment to 

subscripted variables as well. 

The main tool for the solution of this problem is a careful analysis of 

substitution for subscripted variables, leading to a new definition which 

will be presented in section 2. It will turn out that (H) remains valid in 

the form as given, provided that the new definition of substitution is used. 

For (F) we need a somewhat more complex form which is introduced in section 

4. Essentially, in order to deal with a[s] := t, we use existential quanti­

fication over two variables y and z - not occurring in p,s or t - such that 

z is used to store the old value of sandy to store the old value of a[s]. 

A precise definition of the language we use is to be found in section 2, 

and in section 3 we present its semantics - which amounts to a simple defi­

nition in the style of the denotational semantics of SCOTT & STRACHEY [5] -

together with a proof of the validity of (H). In section 4 we also prove 

that the precondition and postcondition as determined by (H) and (the ex­

tended version of) (F) are indeed "weakest" and "strongest", i.e., that they 

are the best one can expect, in a sense to be made precise below. 

As remarked above, we have not encountered in the literature a satisfac­

tory formal treatment of assignment to subscripted variables. Some partial 

treatment of the problem is to be found e.g. in IGARASHI, LONDON & LUCKEIAM [4], 
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- and presumably elsewhere - where a rule is given which amounts to a defi­

nition of substitution of the following type: Let x,y be simple variables. 

Then 

a[x][s/a[y]J = (if x = y thens else a[x]fi) 

This rule is indeed obtainable as a special case of ours; but it does not 

extend to the general case where x and y are replaced by arbitrary subscript 

expressions. 

ACKNOWLEDGEMENT: I am indebted to K.R. Apt and P. van Emde Boas fol' a 

numbel' of helpful disaussions. 

2. SYNTAX AND SUBSTITUTION 

Our analysis of assignment will be presented using a language with only 

a very modest syntax: We have statements (assignment statements and sequenc­

es thereof) and expl'essions (of two types: integel' and boolean) made up 

from oonstants and val'iables (either simple or subsol'ipted) by simple oper­

ations like addition and multiplication for integer expressions, and con­

junction and implication for boolean expressions. For integer expressions 

we moreover have the possibility of forming oonditionals. The full descrip­

tion is given in definition 2.1, in which we use a variant of BNF which 

should be self-explanatory. 

DEFINITION 2.1 (Syntax of simple progrannning language). 

The following syntactical classes are introduced: 

a. A set SV of simple Val'iables, with elements denoted by x,y, ... . SV is 

arbitrary set of symbols. 

b. A set AV of al'l'ay Val'iables, with elements denoted by a, b, ••• . AV is 

an arbitrary set of symbols disjoint from SV. 
c. A set C of integel' oonstants, with elements denoted by n,m, •••• C is a 

set of integer denotations, i.e., of certain symbolic entities suggest­

ing corresponding integers as values. 

an 
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d. A set V of variables, with elements denoted by v,w, •.• , and defined as 

v: := xla[s] 

e. A set E of integer expressions, with elements denoted by s,t, .•• , and 

defined as 

s::= vlnls 1 + s 2 is 1 * s 2 1 if p then s 1 else s 2 fi 

f. A set P of boolean expressions, with elements denoted by p,q, ..• , and 

defined as 

p::= true_lfalselp 1 A p2 lp 1 :::i p2 ls =tis> t 

A set S of statements, with elements s1, s2 , ... , and defined as 

S::= s1; s2 1v := t 

We assume that parentheses may be used freely in our language to enhance 

readability and to avoid ambiguities. We shall not bother to give any formal 

specification of this. 

The next definition introduces the form in which correctness of state­

ments is stated: 

DEFINITION 2.2 (Correctness formulae). 

A correctness formula is a construct of the form {p} S {q}, with p,q E P 

and SES. 

We also need a definition of syntactic equality: 

DEFINITION 2.3 (Syntactic equality). 

For s 1, s 2 EE, s 1 = s 2 iff s 1 and s 2 are the same sequence of symbols. 

Similarly for p 1 = p2 • 

Example: Assuming that C = {0,1,2, ••• }, we have that O - 0 and 1 + I 'I- 2. 

Also, a[s] = b[t] iff a = b and s = t. 

As counterpart of the notion of syntactic equality, we have that of 

semantic equaUty. Anticipating the definition given in section 3, we men­

tion already that two integer expressions sand tare semantically equal 

(written ass= tin the present section only, in section 3 we remedy this 

unsatisfactory notation) iff they result in the same value whatever initial 

values are given to the variables occurring in them. A similar definition 

applies to boolean expressions. 

Example: 0 = O, a[l+I] = a[2], x + y = y + x, if 

(true :::i false)= false. 

= then x else y fi = x, 
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We now introduce our definition of substition. By way of preparation 

consider a correctness formula {q} S {p}. Let us write - in an ad-hoc nota­

tion used only until the end of our informal explanation of the definition 

of substitution - S:p for the boolean expression which is true for a given 

state o if£ pis true for the state S(o). Then, clearly, we have that 

{S:p} S {p} is valid. (A precise definition of the notion of validity fol­

lows in section 3.) Now taking for S the assignment statement v := t, we 

obtain {(v:=t): p} v := t {p}, and we want to define p[t/v] in such a way 

that (v:=t): p holds if£ p[t/v] holds. Having established this, we conclude 

that {p[t/v]} v := t {p} is valid, as desired. So let us determine the ef­

fect of v := t upon the boolean expression p, in order to determine (v:=t): p. 

It is natural to proceed by induction on the structure of p, using, e.g., 

(v:=t): ~ = ~, ••• ,(v:=t): pl A p2 = ((v:=t): p1) A ((v:=t): p2), ••• , 

(v:=t): (s 1=s2) = (((v:=t): s 1) = ((v:=t): s2)), ••• ,(v:=t): (s 1+s2) = 

((v:=t): s 1) + (v:=t): s2 , ••• ,etc. In this way, we decompose the expression 

until we encounter its variables, and accordingly we have to determine the 

value of (v:=t): w, for arbitrary variables v,w. This is done in the follow­

ing case analysis: 

I. Let v = x, for some simple variable x € SV. 
(x:=t): X 

(x:=t): y 

(x:=t): a[s] 

= t 

= y (x¥y) 

.= a[(x:=t): s] 

2. let v = a[s 1J, for some a€ AV and s 1 € E. 
(a[s 1J:=t):x =x 

(a[s 1J := t): b[s2J = b[(a[s 1] := t): s2J (a¥b) 

(a[s 1J := t): a[s 2J. This is the most interesting case. We distinguish 

two subcases: 

2. I. (a[s 1] := t): s2 = s] • Then 

(a[s 1J := t): a[s2J = t. 

2.2. (a[s 1J := t): s2 ,; s]. Then 

(a[ s 1 J := t): a[s2J = a[(a[s 1] := t): s2] 

This explanation may help to understand the definition of substitution 

which now follows: 



DEFINITION 2.4 (Substition). 

For any v € V and t € E. 
1. p[t/v] is defined by induction on the structure of p: 

true [t/v] = true, false [t/v] = false, 

(p 1Ap2) [t/v] = p1[t/v] A p2 [t/v], and similarly for~, 

(s 1=s2) [t/v] = (s 1[t/v] = szCt/v]), and similarly for > 

2. s[t/v] is defined by induction on the structure of s: 

n[t/v] = n, 

(s 1+s2)[t/v] = s 1[t/v] + s2[t/v], and similarly for*, 
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(if p then s 1 else s 2 fi) [t/v] = if p[t/v] then s 1 [t/v] else szCt/v] fi 

3. w[t/v] is defined by the following case analysis: 

3.1. v = x, for some x E SV. 
x[t/x] 

y[t/x] 

a[s][t/x] 

= t 

= y (x;.y) 

a a[s[t/x]J 

3.2. v = a[s 1J, for some a E AV and s 1 EE. 
x[t/a[s 1JJ = x 

b[s2J[t/a[s 1JJ = b[s2[t/a[s 1JJJ (a;.b) 

a[s2J[t/a[s 1JJ = if s2[t/a[s 1JJ = s 1 then t else a[s2[t/a[s1JJJ fi. 

Examples. 

1. Let a;. b. 

b[aE2]][1/a[2]] a 

b[a[2][1/a[2]]] = 
b[if 2[1/a[2]] = 2 then 1 else a[2[1/a[2]]] fi] = 
b[if 2 = 2 then 1 else a[2] fi]. 

Semantically (though not syntactically) this last expression equals b[l]. 

2. a[a[2]][1/a[a[2]]] = 
if a[2][1/a[a[2]]] = a[2] then 1 else a[a[2][1/a[a[2]]]] fi = 
if(if 2 = a[2] then 1 else a[2] fi) = a[2] then 1 

else a[if 2 = a[2] then 1 else a[2]fi] fi. 

Observe that the last expression is semantically equal to if a[2J = 2 

then a[l] else fi. 
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Using example 2, and anticipating the theorem stating the validity of 

(H) with the new definition of substitution, let us see what happens to the 

first example of section I. Suppose we want to find out under which precon­

dition we can be sure that the assignment a[a[2]] := I yields postcondition 

a[a[2]] = I. (Above we noted that the identically true predicate is not suf­

ficient.) We obtain the following instance of (H): 

{(a[a[2]] = I)[I/a[a[2]]]} a[a[2]] := 

or, using example 2 just given, 

{if a[2] = 2 then a[I] else 

a[a[2]] := I 

{a[a[2]] = I} 

fi = I} 

{a[a[2]] = I} 

and it should be clear that the precondition if a[2] = 2 then a[I] = I else 

~ fi does indeed imply that, after a[a[2]] := I, the postcondition 

a[a[2]] = I holds. 

Observe that Hoare's axiom does not enable us to find the (strongest) 

postcondition for precondition true, i.e., we are not yet in the position 

to give a formal derivation of the situation after a[a[2]] := 1 in this 

case. This will have to wait till section 4 which brings the extended ver­

sion of Floyd's forward axiom. 

3. SEMANTICS OF ASSIGNMENT AND THE VALIDITY OF HOARE'S AXIOM 

In this section we define the meaning of the various programming con­

structs as introduced in section 2. Moreover, we define the notion of va­
lidity of a correctness formula, and we show that Hoare's axiom is valid. 

The method used for our semantical definitions is in the spirit of the 

so-called "denotational semantics" as advocated by SCOTT & STRACHEY - e.g. 

in [5] -, which is best characterized as a systematic process of associating 

various mathematical objects - sets, functions and the like - with the lin­

guistic constructs in our language. More specifically, we define a number of 



mappings which prescribe a value for the elements of each major syntactic 

class: integer expressions including variables, boolean expressions, and 

statements. 

As our starting point we take three sets of values: 

- A: a set of add.Pesses, with elements denoted by a, a 1, ••• 

- 1: a set of integers, with elements denoted byµ, v, ••• • 

- {T, F}: a set of truth-values, with the two elements T and F. 

Furthermore, we give a name to the mappings from A to 1: 

r = (A+ 1), is called the set of stores with elements denoted by 

CJ, CJ 1, •••• 
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Meaning will be provided to integer expressions in Eby mapping them to 

1, to boolean expressions in P by mapping them to {T, F} and to statements 

in S by mapping them tor. First, however, we have to clarify the role of 

the set A. Roughly, the idea is that we map each variable in V to an address 

in A - which mapping we call the enviro'YITTlent e - and then use the store CJ 

to find the value v stored in a. For simple variables this gives no problem, 

and we have the picture 

€ CJ x~a--+v 

where x E SV, a EA, v E 1, e E Env (the set of all environments) and CJ Er. 

For subscripted variables ars] the situation is more complicated, as we 

shall discuss presently. Before doing this, we already mention that below 

we shall model the assignment x := t as an action which changes the store 

CJ into CJ' in the following way: For each a' I a= e(x), CJ' remains the same 

as CJ, but CJ'(x) is set toµ, whereµ is the intege+ resulting from evaluating 

tin the (old) store CJ. 

Now what about E for subscripted variables a[s]? We cannot directly 

define E for such arguments. Instead, we first have to evaluates, yielding 

an integer v, and then we apply E to the pair (a,v). Moreover, in evaluating 

s we need the current environment and store in order to evaluate the vari­

ables occurring ins. Altogether, we obtain the •situation defined below, in 

which we use the terminology of Zeft-hand-1.JaZues and right-hand-1.JaZues as 

introduced originally in STRACHEY [6]. Let 

- Env = ((SV u(AVxI)) +A) 
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i.e.; each£€ Env is a mapping defined either on simple variables x € SV, 
or on pairs (a,v) with. a€ AV and v € 1. As a result,£ produces an ad­

dress a. Furthermore,£ is required to satisfy the following uniqueness 

condition: E(x) = E(y) if£ x = y, E(x) I E(a,v) for all x, a and v, and 

E(a,v) = E(b,µ) if£ a= bandµ= v. 

- R: (E+(Envxr+I)) 

For each integer expressions€ E, R determines its right-hand.-vaZue, 
which is an integer and which depends on the current environment and 

store: R(s)(E,cr) = v, for some v € I. 
- L: (V+(Envxr+A)) 

For each variable v € V, L determines its Zeft-hand-vaZue, which is an 

address and which also depends on£ and a: L(v)(E,cr) = a, for some a e A. 
- T: (P+(Envxr+{T, F})) 

For each boolean expression p € P, T determines its value which is a 

truth-value, depending on£ and a: T(p)(E,cr) €{T, F}. 

The definitions of L, Rand Tare given in 

DEFINITION 3.1 (Semantics of expressions). 

1. L(x)(E,cr) = E(x) 

L(a[s])(E,cr) = E(a,R(s)(E,cr)) 

2. R(v)(E,cr) = cr(L(v)(E,cr)) 

R(n)(E,cr) = v, where vis the integer "suggested" by the integer 

constant n 

R(s 1+s 2)(E,cr) = pZus (R(s 1)(E,cr), R(s2)(E,cr)), where pZus has the usual 

mathematical meaning 

R(s 1*s )(E,cr) is defined similarly 
2 fR(s 1)(E,cr), if T(p)(E,cr) = T 

R(if p then s 1 else s 2 fi) = 1 
lR(s2)(£,cr), if T(p)(E,cr) = F 

3. T(true)(E,cr) = T 

T(false)(E,cr) = F 

T(p 1Ap 2)(E,cr) = (T(p 1)(£,cr) & T(p2)(£,cr)), 

where"&" has the usual meaning of conjunction of truth-values 

T(p 1~p2)(£,cr) = ~T(p 1)(E,cr),. T(p2)(£,cr)), 

where"-." has the usual meaning of implication between truth-values 

T(s 1=s2)(£,cr) = (R(s 1)(E,cr) = R(s 2)(£,cr)), 
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where the right-most equality sign has the usual meaning of equality 

between integers 

T(s 1>s2)(e,cr) is defined similarly. 

ExampZes. 

1. Let e(a,1) = a 1, e(a,2) = a2, cr(a1) = 2, cr(a2) = 1. Let us, for conve­

nience's sake, assume that 1,2, ••• are elements both of C and 1. Then . . 
R(a[a[l]])(e,cr) = cr(L(a[a[l]])(e,cr)) = 

cr(e(a,R(a[l])(e,cr))) = cr(e(a,cr(L(a[l])(e,cr)))) = 

cr(e(a,cr(e(a,R(l)(e,cr))))) = cr(e(a,cr(e(a,1)))) = 

cr(e(a,cr(a 1))) = cr(e(a,2)) = cr(a2) = 1. 

2. Let e(x) = a 1, e(y) = a2, e(z) = a3 , cr(a1) = 3, cr(a2) = 2, cr(a3) = 1. 

Then 

T(x+y=z)(e,cr) = (R(x+y)(e,cr) = R(z)(e,cr)) = . 

(pZus(R(x)(e,cr), R(y)(e,cr)) = R(z)(e,cr)) = · · 

(pZus(cr(e(x)), cr(e(y))) = cr(e(z))) = 

(pZus(3,2)=1) = (5=1) = F. 

For the definition of the meaning of a statement, we need a new piece 

of notation: 

DEFINITION 3.2 (Variants of the store). 

Let cr € E, a€ A, v € 1. Then cr{~/a} is a new store defined as follows: 

__ {v , if a = a ' 
cr{v /a}(a') 

cr(a), if a-;. a' 

Thus, cr' = cr{v/a} is like cr, but for the fact that cr'(a) is set to v. 

In the sequel we shall use the easy lemma: 

LEMMA 3.3. 

a. cr{v 1/a}{v 2/a} = cr{v 2/a} 

b. cr{v 1/a 1}{v2/a2} = cr{v 2/a2}{v 1/a 1}, for a 1 -;. a2• 

Proof. Obvious. 0 

We now define a mapping M:(S+(EnvxE+E)) which gives a meaning to state­

ments. 

BIBllOTHEEK MATHEMATISCH CENTRUM 
--AMSTERDAM--
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DEFINITION 3.4 (Semantics of statements). 

l. M(v:=t) (e:,cr) = cr{R(t)(e:,cr)/L(v)(e:,cr)} 

2. M(s 1;s2)(e:,cr) = M(s2)(e:,M(s 1)(e:,cr)). 

In words, an assignment statement v := t changes the store by updating its 

value in the left-hand-value of v with the right-hand-value oft. 

Example. Let e:(x) = a 1, e:(y) = a2, e(z) = a3 , cr(a2) = 3, cr(a3) = 2. We cal­

culate M(x:=y; y:=z; z:=x)(e,cr) as follows: 

M(x:=y; y:=z; z:=x)(e:,cr) = 

M(z:=x)(e, M(x:=y; y:=z)(e,cr)) = 

M(z:=x)(e, M(y:=z)(e, M(x:=y)(e,cr))) = 

M(z:=x)(e, M(y:=z)(e,cr{R(y)(e,cr)/(L(x)(e,cr)})) = 

M(z:=x)(e, M(y:=z)(e,cr{3/a 1})) = 

M(z:=x)(e,cr{3/a 1}{2/a2}) = 

cr{3/a 1}{2/a2}{R(x)(e,cr{3/a1}{2/a2}/ 

L(z)(e,cr{3/a 1}{2/a2})} = 

cr{3/a 1}{2/a2}{3/a3}, 

and we see that we have indeed effectuated an interchange of the values 

of the simple variables y and z. (We leave to the reader the calculations 

for the case that y and z are replaced by a[a[l]] and a[a[2]].) 

Finally, we define the notion of validity, which applies to boolean ex­

pressions p and to correctness formulae {p} S {q}. 

DEFINITION 3.5 (Validity). 

1. A boolean expression pis satisfied by a pair (e,cr) if£ T(p)(e,cr) = T. 

A correctness formula {p} S {q} is satisfie4 by (e:,cr) if£ 

[T(p)(e,cr) • T(q)(e, M(S)(e,cr))J = T. 

2. A boolean expression pis valid - denoted by I= p - if£ pis satisfied 

by all (e,cr). A correctness formula {p} S {q} is valid - denoted by 

l={p} S {q} - if£ {p} S {q} is satisfied by all (e,cr). 

Examples 

1. The informal notion of semantic equality between integer expressions s 

and t, and between boolean expressions p and q - as used in section 2 

- can now be stated formally as well: s = t (informally) if£ I= s = t, 

and p = q (informally) iff l=(p~q) A (q~p). 



2. Consider the following special case of (H): I= {x = O} x := x + 1 

{x = l}. We show its validity, i.e., we show that Ve,a[T(x=O)(e,a) 
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.,. T(x=l)(e, M(x:=x+l)(e,a))J, or Ve,a[T(x=O)(e,a) =) T(x=l)(e,a{R(x+l) 

(e,a)/L(x)(e,a)}J. We distinguish two cases: (i) a(e(x)) # O. Then 

T(x=O)(e,a) = F, and the implication is trivially true. 

(ii) o(e(x)) = O. Then T(x=O)(e,a) = T, and we have T(x=l)(e,a{R(x+l) 

(e,o)/L(x)(e,a)}) = T(x=l)(e,a{l/e(x)}) = 

(R(x)(e,a{l/e(x)}) = R(l)(e,a{l/e(x)})) = (o{l/e(x)}(e(x)) = 1) = 

(1=1) = T. 

This closes our list of semantic definitions, and we are sufficiently 

prepared for the proof of our first theorem: 

THEOREM 3.6 (VaZidity of Hoare's axiom). For eaah p € P, v € V and t € E: 

I= {p[t/v]} v := t{p}. 

Proof. We have to show: Ve,o[T(p[t/v])(e,a).,. T(p)(e,a{R(t)(e,a)/L(v)(e,a)})J. 

Let us put a= L(v)(e,a) and v = R(t)(e,o).It is sufficient to prove that 

Ve,a[T(p[t/v])(e,a) = T(p)(e,a{v/a})J. By a straightforward argument by in­

duction on the structure of p we reduce this to the proof of Ve,a 

[R(s[t/v])(e,a) = R(s)(e,a{v/a})J. Again proceeding by induction, now on the 

structure of s, we have to show that Ve,a[R(w [t/v])(e,a) = R(w )(e,a{v/a})J. 

We consider only the case that w = a[s 1J, v = a[s2J, for some a€ AV and 

s 1, s2 € e, the various other cases being even simpler. So we have to show, 

by the definition of substitution: 

(3. 1) = 

or, by the semantic definitions, both 

(3.2) 

and 

Ve,a[( R(s 1[t/a[s2JJ)(e,a) = R(s2)(e,o)),.. 

(v = R(a[s 1J)(e,a{v/a}))J 
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(3.3) 
V£,a[(R(s 1[t/a[s2JJ)(E,a) I R(s2)(£,a)) • 

(R(a[s 1[t/a[s2JJJ)(E,a) = R(a[s 1])(£,a{v/a}))J 

First we consider (3.2). By the induction hypothesis, this reduces to: 

VE,a[(R(sl)(E,a{v/a}) = R(s2)(e,o)) .. (v=o{v/a}(E(a,R(sl)(E,o{v/a}))))J, 

and the desired result is obtained as follows: By the definition of 

a, a= £(a,R(s2)(e,o)). Now put a'= e(a,R(s 1)(e,a{v/a})). We have 

a{v/a}(a') = v if a= a', and a= a' iff R(s2)(e,o) = R(s 1)(£,a{v/a}), using 

definition 3.2 and the uniqueness condition on£: 

Next, we prove (3.3). Let a I a'. We have 

Also, 

R(a[s 1[t/a[s2JJJ)(E,a) = 

a(£(a,R(s 1[t/a[s2JJ)(E,a))) = 

a(E(a,R(s 1)(£,o{v/a}))) 

(ind. hyp.) 

R(a[s 1J)(E,a{v/a}) = 

a{v/a}(E(a,R(s 1)(£,a{v/a}))) = (ala') 

a(E(a,R(s 1)(£,a{v/a}))) 

Together, these two derivations establish (3.3), thus completing the proof 

of theorem 3.6. D 

Remark. One might wonder about the role of the environment£, which remains 

invariant throughout the calculations. Indeed, properties if statements con­

sisting of sequences of assignments only, may be proven without taking the 

environment into account. However, we have preferred to include£ into our 

semantic model since the environment - store duality yields a better pic­

ture of actual implementations. Moreover, for the treatment of some of the 

more difficult programming concepts the environment is certainly necessary, 

witness the problems raised e.g. by the axiomatic treatment of parameter 



passing in HOARE & WIRTH [3]. 

4. AN EXTENDED VERSION OF FLOYD' S AXIOM 

In section l we introduced Floyd's forward assignment axiom, which we 

now write as 

( 4. 1) != {p} x := t {3y[p[y/x] Ax= t[y/x]} 

(where y is a variable not occurring in port) 
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Properly speaking, this is syntactically illegal, since we have not yet 

introduced th1~ 3x-notation for boolean expressions. In order to remedy this, 

we extend the definitions of the previous sections with 

DEFINITION 4.1 (Extended boolean expressions). 

1. For any p E P and x E SV, 3x[p] belongs to P. 
2. T(3x[p])(E,a) =Tiff there exists v EI such that T(p)(E,a{v/E(x)}) = T. 

Employing this definition, it is not difficult to prove (4.1). We omit 

the proof here, since we do give the proof of the extension of (4.1) for 

assignments a[s] := t. 

Before prE?senting this extension, we devote a brief discussion to the 

notions of weakest precondition and strongest postcondition. Consider the 

general correctness formula {p} S {q}. The reader should realize that, 

trivially, we have that both I= {false} S {p} and I= {p} S {true}. Usually, 

we are interested in pre- and postconditions which are best possible, in 

the sense of the following definition 

DEFINITION 4.2 (Weakest precondition and strongest postcondition). 

For any p E P and SES 

1. wp(S,p) is the weakest precondition of S with respect top iff it 

satisfies both 

(i) I= {wp(S,p)} S {p} 

(ii) For all r, if I= {r} S {p}, then I= r::, wp(S,p). 

2. sp(S,p) is the strongest postcondition of S with respect top iff it 

satisfies both 
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(i) I= {p} S {sp(S,p)} 

(ii) For all r, if I= {p} S {r}, then I= sp(S,p) ~ r. 

It is not difficult to prove that the precondition from HOAR.E'S assign­

ment axiom is indeed the weakest: 

THEOREM 4.3. For eaah v € V, t € E, p[t/v] is the weakest preaondition of 

v := t with respeat top. 

Proof. By theorem 3.6, p[t/v] satisfies clause l(i) of definition 4.2. To 

prove l(ii), assume I= {r} v := t {p}, for some r. By the validity definition 

we have 

Ve,cr[T(r)(e,cr),. T(p)(e,cr{R(t)(e,cr)/L(v)(e,cr)}J 

and by the proof of theorem 3.6, this is equivalent to 

Ve,cr[T(r)(e,cr),. T(p[t/v])(e,cr)J 

i.e. to 

I= r ~ p [t/v]. □ 

We now return to the problem of extending (4.1). Let us, by way of in­

troduction, first consider the case that p = true and t = n, for some n € C. 

We want to find the strongest q such that I={~} a[s] := n {q}. We list 

some possibilities for q which are successively stronger, until the desired 

strongest postcondition is found. 

- q =true.This is clearly too weak. 

- q = 3z[a[z] = n], where z is used to store the old value of s. This is 

an improvement, but not yet strong enough. 

- q = 3y,z[a[s[y/a[z]JJ = n], where y and z are variables not occurring ins, 

and where z is used to store the old value of sandy the old value of 

a[s]. This is already much better, but still insufficient. 

- q = 3y,z[a[s[y/a[z]JJ = n A s[y/a[z]] = z], where y and z do not occur 

ins. This is the desired solution. Again, z stores the old value of s 

and y of a[s]. However, we also have that s[y/a[z]] = z, as indicated: 



Evaluating s in the new store .. (i.e., after performing the assignment 

a[s] := n) but making sure that a, indexed by the old value of s, is set 

toy, should result in the old value of s, i.e., in z. 

Generalizing this argument to arbitrary p and t, we arrive at the de­

sired extension of Floyd's axiom: 

THEOREM 4.4. (Extension of Floyd's axiom). For each s,t € E, p € P, a€ AV 

I= {p} a[s] := t {3y,z 
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(4. 2) [p[y/a[z]J A z = s[y/a[z]J A a[z] = t[y/a[z]JJ} 

(where y and z do not occur in p,s or t) 

Moreover, the postcondition in (4.2) is strongest in the sense of defini­

tion 4.2. 

Before presenting the proof of the theorem, we first discuss the example 

of the beginning of section I. 

Example. Let p = (a[1]=2 A a[2]=2), s = a[2], and t =I.We then obtain as 

instance of the postcondition of (4.2): 

3y,z[(a[1]=2 A a[2]=2)[y/a[z]] A 

z = a[2][y/a[z]J A 

a[z] = l[y/a[z]JJ 

By the definition of substitution, this reduces to 

3y,z[if I= z then y else a[l] fi =-2 A 

if 2 = z then y else a[2] fi = 2 A 

z = if 2 = z then y else a[2] fi A 

a[z] = I] 

Comparing the second and third boolean expression in the conjunction, we 

see that we must take z = 2, and the whole expression reduces to 

3y[a[l] = 2 A y = 2 A y = 2 A a[2] = I], which is in turn equivalent to 

a[I] = 2 A a[2] =I.From this we obtain, among other facts, that 

a[a[2]] = 2, as desired, 
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As a slight variant of this example, we take p = ~, t = 1, and 

s = a[2] in (4.2), and obtain 

I= {true} a[a[2]] := 1 {3y,z[z = if z = 2 then y else a[2] fi A a[z] = 1}. 

The postcondition of this formula, which-may be simplified to 

a[2] = 1 v a[a[2]] = 1, provides the answer to the question posed at the 

end of section 2. 

Proof of theorem 4.4. 

A. First we prove (4.2). Let a= e:(a,R(s)(e:,a)), v = R(t)(e:,a). By defini­

tions 3.5 and 4.1, we have to show 

(4.3) 

Ve:,a 3µ 1, µ2 

[T(p)(e:,a).,. 

T(p[y/a[z]] A z = s[y/a[z]] A 

a[z] = t[y/a[z]J)(e:,a{v/a}{µ1 /e:(y)}{µ 2/e:(z)})J 

Now take any (e:,a), and let µ1 = a(e:(a,µ 2)), µ2 = R(s)(e:,a). Furthermore, 

assume T(p)(e:,a) and let us write a"' for a{ v/a}{ µ 1 /€(y) }{ µ2/€(z)}. Using 

a = e:(a, µ2) and a(€(a, µ2)) = µ 1, we obtain a"' { µ1 /€(a, µ2)} = 

a{µ 1/e:(y)}{µ 2/e:(z)}, using the definitions and lennna 3.3. Let us abbreviate 

a{µ 1/e:(y)}{µ 2/e:(z)} to a". We show that the three consequences in (4.3) 

hold: 

(i) T(p[y/a[z]J)(e:,a'") =(cf.the proof of the theorem 3.6) 

T(p)(e:,a"'{R(y)(e:,a"')/L(a[z])(e:,a"')}) = 

T(p)(e:,a"'{µ 1/e:(a,µ 2)} = 

T(p) (e:,a" ) = (y and z do not occur in p) 

T(p)(e:,a), which holds by assumption. 

(ii) R(s[y/a[z]J)(e:,a"') = 

R(s)(e:,a"'{µ 1/e:(a,µ 2)}) = 

R(s)(e:,a") = (y and z do not occur ins) 

R(s)(e:,a) = µ2 = R(z)(e:,a"'). 

(iii) R(t[y/a[z]])(e:,a"') = R(a[z])(e:,a"'). This is shown similar to (ii). 

B. We prove that the postcondition of (4.2) is the strongest possible. Let 

us use the abbreviation p0 = (p[y/a[z]] A z = s[y/a[z]] A a[z] = t[y/a[z]J). 

Take any r such that I= {p} a[.s] := t {r} holds. We show that then 
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I= 3y,z[p0J ~ r follows. Let a and v be as in part A. Using the various de­

finitions, what we have to show amounts to 

VE,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J =:> 

V£,cr[T(3y,z[p0J)(E,cr) =:> T(r)(E,cr)J 

Equivalently, we have to show 

V£0 ,cr0[V£,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J A 

3µ1,µ2[T(po)(£,cro{µl/£(y)}{µ2/£(Z)})J .. T(r)(Eo,cro)J 

V£0,cro,µ1,µ2[V£,cr[T(p)(E,cr) =:> T(r)(E,cr{v/a})J A T(po)(Eo,cro) 

=:> T(r)(Eo,cro)J 

So take any £0 ,cr0 ,µ 1,µ 2 and let us assume(*): 

V£,cr[T(p)(E,cr) => T(r)(E,cr{v/a})J and T(p0)(£0 ,cr0 "). To show T(r)(£0 ,cr0). 

We use (*),with£= £0 , cr = cr01 {µ 1/£0(a,µ 2}. From T(p0)(£0 ,cr0 ) we obtain 

(i) T(p[y/a[z]J)(£0,cr0 11 ), or, equivalently, 

T(p)(Eo, 0 o~µl/£0(a,µ2)}) 

(ii) R(z)(Eo,cro) = R(s[y/a[z]])(Eo,cro'), or equivalently, 

µ2 = R(s)(Eo,cro'{µl/£0(a,µ2)} 

(iii) R(a[z])(Eo,cro') = R(t[y/a[z]J)(Eo,cro'), or equivalently, 

cro'(Eo(a,µ2)) = R(t)(Eo,cro{µl/£0(a,µ2)}). 

From (i) and the definitions of£ and cr, we obtain that T(p)(E,cr)holds. 

Thus, using(*), T(r)(£,cr{v/a}) follows. Also, we have, by the definition 

of a, a= E(a,R(s)(E,cr)) = E(a,R(s)(E,cro'{µl(Eo(a,µ2)})) = 

E(a,µ 2), where the last equality follows from (ii). Hence, 

cr{v/a} = cr0'{µ 1/£(a,µ 2)}{v/a} = cr01 {v/a}, by lemma 3.3. From (iii) we derive 

that cro'(a) = ao'(Eo(a,µ2)) = R(t)(Eo,cro'{µl/£0(a,µ2)}) = R(t)(E,cr) = v. 

Thus, cr0'{v/a} = 0 01 • Finally, we have that T(r)(£0 ,cr0) = (y and z not in r) 

T(r)(Eo,cro') = T(r)(Eo,cro'{v/a})= T(r)(E,cr{v/a}, and the desired result 

follows, since T(r)(E,cr{v/a})was already shown to have the value T. 

This completes the proof of part Band, therefore, of theorem 4.4. D 
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