
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

IW 56/76

A SPACE-SAVING TECHNIQUE FOR ASSIGNING ALGOL 68
MULTIPLE VALUES

Prepub I ication

~
MC

JULI

2e boerhaavestraat 49 amsterdam

ATlSCH CENTRUM
BIBUOTHEEK MATHEM .

__:....-AMSTERDAM-

PJunted a.t .the Ma.themati.c.ai. Cen,t,ie, 49, 2e BoeJLha.a.ve6.:tJtaat, Am-6:teJr.dam.

The Ma.themati.c.ai. Cen:tlr.e, 6ou.nded :the 11-.th 06 Feb1r..u.a1Ly 1946, -l6 a. non
p1r..06U .i.n6U,;tu,ti.on cu.m,i.ng a.t .the pJtomo.tion 06 pU/Le ma.themati.CA a.nd -lt6
a.pp.U.c.a.tlon6. I:t -l6 .6pon601r..ed by :the Nethelli.a.n.d!, GoveJr..nment :th!r..ough :the
Ne:theJli.a.n.d.6 O11..ga.nizati.on 6011.. :the Adva.nc.ement o 6 PU/Le Re6 ea.11..c.h (Z. W. 0) ,
by :the Mwu.upa.U:ty o 6 Am.6:te11..da.m, by :the Un.i.v eMUy o 6 Am.6:te11..da.m, by
:the F1r..ee. Un.i.vvu,Uy a.t Am-6:teJr.dam, a.nd by .i.ndu6:tJr1.e6.

AMS(MOS) subject classification scheme (1970): 68AIO, 68A20

A space-saving technique for assigning ALGOL 68 multiple values*)

by

L.G.L.T. Meertens

ABSTRACT

A simple technique is described which circumvents the necessity of

creating an extra copy when assigning multiple values (arrays) in ALGOL 68,

even if the destination and the source overlap in memory.

KEY WORDS & PHRASES: ALGOL 68, optimization.

*) Th' ' f ' ' ' f bl' ' 1 h is paper is not or review; it is meant or pu ication e sew ere.

I. INTRODUCTION

The straightforward way of elaborating an assignation d :=sin an·

ALGOL 68 implementation is (VAN WIJNGAARDEN et al. [1]):

• elaborate the destination d and the sources, yielding a name N and

a value V;

• assign the value V to the name N.

In many cases, the elaboration of swill consist of the creation of a

copy on the working stack of an already existing value V. This value is as

signed to N by copying it once more into the memory location(s) whose ad

dress is given by N. In most of these cases, simple compile-time optimiza

tion techniques permit a translation which does not make the extra copy on

the working stack and instead copies the source directly into the memory

location(s) of the destination (BRANQUART et al. [2]).

Such an optimization is of special interest if a multiple value (array)

is being assigned, since an extra copy of a large multiple value might take

up more space than is available. A multiple value might be copied by setting

up a loop copying the individual elements one by one. However, a difficulty

is encountered here: the destination and the source may overlap in memory.

An example: After the declaration [1 : 3, 1 : 3] REAL a, consider the

assignation a[,3] := a[l,], which must assign the first row of a to the

third column. Simple-minded application of the optimization would result in

code amounting to

a[l, 3] := a[l, 1];

a[2, 3] := a[l, 2];

a[3,3J := a[l,3].

But this is wrong! The original value of a[l,3] is superseded before it is

assigned to a[3,3]. Performing the assignments in reverse order would give

the correct results in this case, but it is not difficult to construct ex

amples where neither the "normal" nor the reverse order will do. (For ex

ample, after the declaration [1: 3, 1 : 3, 1 : 3] REAL b, the assignation

b[2, , J := b[, , 2].)

A technique which can be applied at run time to determine a safe order

2

for assigning the elements is presented below. The use of this technique may

entail some overhead in execution time. It assumes that the destination is

not "flexible", so that the old value it refers to occupies the same amount

of space as the new value it is to receive*.

2. PRELIMINARIES

A multiple value of n dimensions has a descriptor of the form

((i1,u1), (i2,u2), ••• ,(in,un)), where ii and ui are'the i-th lower and upper

bounds. If u. < i. for any i, then the descriptor is "flat". This case must
1, 1,

be treated as a special case, because of the so-called ghost element, but

there is no need to make any actual copy. Otherwise, the multiple value has

(u1 - i 1 + 1) x (u2 - i 2 + 1) x ••• x (un - in+ 1) elements, each of which

is selected by a specific "index" (:ra1, ••• ,:ran), where i. ~ :ra. :,;; u .•
1, 1, 1,

It is assumed here that selection makes use of a linear address calcu-

lation method, so that the address a corresponding to an index (:ra1, ••• :ran)

is given by some formula of the form

Moreover, it will be assumed that the last subscript runs fastest. More pre

cisely, if we take the lexicographic ordering on the indices, defined by

(,,,) (, , ') . ff , ~1,:ra2,···,:ran < :ra1,:ra2,···,:ran 1 :ral < :ral or

:ral = T'l and (:ra2,···,:ran) < (:ra2,···,:ra~),

then the mapping (:ra1,: •• ,:ran) ~ c + :ra1 x d1 + ••• + :ran x

tonic increasing.

d is strictly monon

*If the destination is flexible and the old value occupies less space than

the new one, it can be shown that no overlap can occur. It is not clear how

this fact can be used. If the old value takes at least as much space, the

technique described here could be used. In that case there should be a means

to release the extra space.

This property holds, for example, if, for each newly created multiple

value, d1, ..• ,d are chosen to satisfy d ~ 1 and n n

3

d. 1 = (u. - z. + 1) x d. for i = n, n-1, ... ,2. It is left invariant by all ~- ~ ~ ~

operations on multiple values provided by ALGOL 68 (slicing, selecting and

rowing). If matrix transportation were added, it would no longer hold!

Adapting the technique to the case where the first subscript runs fastest

should present no problems.

3. THE TECHNIQUE

For the assignment to be defined, the multiple values corresponding to

the destination and the source must have the same descriptor

((Z1, u1), ... ,(Zn, un)). Let the respective address calculation vectors be

(c,d1, .•• ,dn) and (a',d1, ... ,d~). The following algorithm assigns the ele

ments one by one in a safe order:

FOR r 1 FROM z1 TO u1
DO

OD;

FOR r FROM Z TO u n n n
DO INT A= c + r 1 x d1

OD

INT p = c' + r x d' 1 1
IF A< p THEN assign

+ ••• + r x d, n n
+ ••• + r x d'; n n
(A,p) FI

FOR r 1 FROM u1 BY -1 TO z1
DO

OD.

FOR r
n

FROM u BY -1 TO Z n n
DO INT A = c + r 1 x d1 + ... + rn x dn,

OD

INT p = c' + r 1 x d1' + •.. + r x d'· n n'
IF A> p THEN assign (A,p) FI

4

It can be seen that the algorithm consists of two nested loops. The

first one runs through the indices in ascending order and performs the

assignments of those individual elements for which the direction of trans

port in memory is from high to low; whereas the second one runs through the

indices in descending order and performs the assignments in the opposite

direction.

Remark: The computations involved in the address calculations can be

optimized in an obvious way; they are here presented as they are only for

the sake of clarity.

4. CORRECTNESS PROOF

Let A(I) and p(I) denote the addresses corresponding to an index

I= (r1, ... ,1~n). The algorithm defines a sequence of statements

assign (A(I1), p(I1));

assign (A(I2), p(I2));

assign (A(I), p(I)).
z z

Each index gets its turn, either in the first or in the second nested

loop, depending on whether A(Ik) < p(Ik) or A(Ik) > p(Ik). Those indices for

which A(Ik) := p(Ik) are left out; in that case the copying is a durrnny ac

tion.

Let the indices which get their turn in the first nested loop be

I 1, ... ,Im (so that those getting their turn in the second one are

Im+l''"''Iz).
We have

I > I >
~1 ~2 > I ,

z

A(Ik) > p(Ik) fork> m,

if A(I) < A(I'), then I< I',

if p(I) < p(I'), then I< I'.

5

It must be shown that an address which occurs both as that of a source

element and as that of a destination element is first used as source and

thereafter only as destination. More formally, we must show:

if p(Is) = A(It) for some sand t, thens< t.

We distinguish four cases:

Case A: s s m and t s m.

We have p(I) = A(It) < p(It), so I < It, and therefore s < t. s s

Case B: s s m and t > m.

It inunediately follows thats< t.

Case C: s > m and ts m.

From p(Is) = A(It) < p(It), we deduce Is< It.

From A(Is) > p(Is) = A(It), we deduce Is> It.

Clearly, this is impossible, so this case cannot arise.

Case D: s > m and t > m.

We have p(Is) = A(It) > p(It), so Is> It, and therefore s < t.

REFERENCES

[I] V.AN WIJNGAARDEN, A., B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,

M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS &,R.G. FISKER (eds),

Revised Report on the AZgorithmia Language ALGOL 68, Acta

Informatica 1 (1975) 1-236.

[2] BRANQUART, P., J.-P. CARDINAEL, J. LEWI, J.-P. DELESCAILLE & M. VA.i.~BEGIN,

An optimized translation proaess and its appZiaation to ALGOL 68,

Lecture Notes in Computer Science 38, Springer Verlag, Berlin

etc., 1976.

