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Exercises in denotational semant s 

by 

K.R. Apt & J.W. de Bakker 

ABSTRACT 

The framework of denotational semantics is used in the definition of 

the meaning of the programming concepts of assignment, sequential compo­

sition, conditionals, locality, and procedures with parameters called-by­

value and called-by-variable (as in PASC . .6i.L). The main new feature is a 

rigorous treatment of the parameter mechanisms. Corresponding proof rules 

for each of the five concepts are proposed, together with a proof rule for 

substitution, and the proofs of the soundness of these rules are offered as 

exercises (full proofs will be included in a sequel to the present paper). 

The proof rules for assignment (to a subscripted variable) and for proce­

dure calls extend previously known ones. 

KEY WORDS & PHRASES: denotational semantics, recursive pr-ocedu1,es, 

by-value, caU-by-vari.able, prog1°a:m co1'1°eetness~ 

PASCAL semantics, suhstitution., Hoare 1s ax-ioms. 

This paper is not for review; it is meant for publication elsewhere. 



EXERCISES IN DENOTATIONAL SEMANTICS 

K.R. Apt 

J • W. de Bakker 

Mathematisch Centrum, Amsterdam 

I • INTRODUCTION 

The present paper is a progress report about our work on semantics and proof theory 

of programming languages. We study a number of fundamental progrannning concepts occur­

ring e.g. in the language PASCAL, viz. assignment, sequential composition, conditionals, 

locality, and (recursive) procedures with parameters called-by-value and called-by­

variable. Our 80al is the development of a formalism which satisfies two requirements 

- Semantic adequacy: the definitions capture exactly the meaning attributed to these 

concepts in the PASCAL report. 

Mathematical adequacy: The definitions are as precise and mathematically rigorous as 

possible. 

Of course, full semantic adequacy cannot be achieved within the scope of our paper. Thus, 

we were forced to omit certain aspects of the concepts concerned. What we hope to have 

avoided, however, is any essential alteration of a concept for the sake of making it 

more amenable to formal treatment. 

Our approach follows the method of denotational semantics introduced by Scott 

and Strachey (e.g. in [12]). Moreover, we investigate the connections between denota­

tional semantics and Hoare's proof theory ([6]), insofar as pertaining to the concepts 

mentioned above. 

As main contributions of our paper we see 

- The proposal of a new definition of substitution for a subscripted variable. This 

allows an extension of Hoare's axiom for assignment to the case of assignment to a 

subscripted variable. (This idea is described in greater detail in [2].) 

- The proposal of a semantic definition and corresponding proof rule for recursive 

procedures with an adequate treatment of call-by-value and call-by-variable. (We 

believe these to be new. The proof rule is based on Scott's (or computational) in­

duction, which is well-understood for parameterless procedures, but hardly so for 

procedures with parameters. In our opinion, neither the papers of Manna et al. (e.g. 

in [10,11]) nor those of e.g. De Bakker([!]), Hoare (~7]), Hoare and Wirth ([8]), 

Igarashi, London and Luckham ([9]) give the full story on this subject.) 

It will turn out that our treatment of procedures is quite complex. However, we doubt 

whether an approach which is essentially simpler is possible. Of course, we do not claim 

that our formalism is the last word, but the programming notions involved ape intricate, 
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and we feel that essential simplification could be obtained only by changing the lan­
guage. 

The paper has the following outline: 

Section 2 gives the syntax of the various language constructs. Also, a careful defini­

tion of substitution is given which is needed for the treatment of assignment, local­

ity and parameter passing. 

Section 3 is devoted to the definition of the denotational semantics of the five types 

of statements. We introduce the semantic function M which gives meaning to a statement 

S, in a given environment£ (a mapping from variables to addresses) and store a (a map­

ping from addresses to values), yielding a new store a' : M(S)(e::,o) = a'. For assign­

ment, sequential composition and conditionals the definitions are fairly straightfor­

ward. It is also reasonably clear what to do about locality, but the treatment of pro­

cedures may be rather hard to follow. Some of the causes are: 

- When applying the usual least fixed point approach, one has to be careful with the 

types (in the set-theoretical sense) of the functions involved. 

The notion of call-by-variable (the FORTRAN call-by-reference) requires a somewhat 

mixed action to be taken: When the actual parameter (which has to be a variable) is 

subscripted, the subscript is evaluated first, and then a process of substitution of 

the modified actual for the formal is invoked. 

- The possibility of clash of variables has to be faced. (Cf. the ALGOL 60 report, 

sections 4.7.3.2 (Example:~ int E; proc P(x); int x;~ .•. ~; •.. P(x+I) ... ~) and 4.7.3.3 

(Example: ~ int x; proc P;E_ ..• x ... ~; .. ·E. int x; ... P .• -~· •• ~).) These problems are not 

exactly the same as encountered in mathematical logic; in particular, they cannot 

simply be solved by appropriate use of the notions of free and bound occurrence and 

of substitution, as customary in logic. 

Section 4 introduces the proof-theoretical framework. It contains the "Exercises in 

denotational semantics": For each type of statement, a corresponding axiom or proof 

rule is given, and it is required to show its soundness. Also, a modest attempt at 

dealing with substitution is included. In fact, for two rules (sequential composition 

and conditionals) the proof is easy, for the assignment axiom we refer to [2], whereas 

the remaining three cases should, at the moment of writing this, be seen as conjectures 

since we do not yet have fully worked out proofs available. However, we are confident 

that the rules, perhaps after some minor modifications, will turn out to be sound. 

It may be appropriate to add an indication of the restrictions we have imposed 

upon our investigation. There are a few minor points (such as: only one procedure de­

claration, i.e., not a simultaneous system; only one parameter of each of the two types, 

etc.). Next, things we omitted but which we do not consider essentially difficult (such 

as type information in declarations) and, finally, a major omission: We have no func­

tion designators in expressions, nor do we allow procedure identifiers as parameters. 

There is a vast amount of literature dealing with the same issues. Many of the 

papers take an operational approach, defining semantics in terms of abstract machines. 
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justification of the least fixed point dpproac.t! to recursion {to be given along the 

lines of De H.akker LI 1). Mat1y others take their starting point in some powerful matlu:.~­

matical system (universal algebra, category the,ny), but tend ti'., Lli.l short of a treat-

t we must confess not to be abi(, to follow their treatment of procedures and param-

e· passing. There are also a fevi.r pdpers dealing 1Arit~1 the relationship between seman-

and proof theory, such as Donahue [4~, Cook :3J and Gorelick [5] .. Again, tt1e ap-

1n.-.,ach of these papers differs from the present o:Ho" E .. g.,. the first one omits trent­

m nt or recursion, and the other two treat locality 1n a way which differs from ours 

(cf. t, block rule in our scctl,on 4). On the other l·h1nd, we recommend the papers by 

Cno~ .u Gorelick for a discussion of substitution, a topic tv which we pay little 

\•;e resent a language which is essential Ly a si.~bset of PASCAL, though there are 

"'"" nllt tional variants introduced in order to fad litate the presentation. W€ start 

,,it I t lw following classes of symbols: 

6 

p 

a, b, .•• } 

F ,r technical reasons which will become clear below (def. 2.1, def. 3.3), we 

,ssum, some well-ordering of these four sets • 

.Jsing a self-explanatory variant of BNF, we now define the classes V (,im•[,:,b>J), 

V (with elements v,w, ... ) v: := xia[tJ 

IE (with elements r,s,t, ... ) t: := vinittt 2 it 1.,t 2 i if p then t 1 ~ t 2 fi 

BE (with elements p,q, ••• ) p· ·= .. , f 1 . ' ' ' '-, ~l~it1=t 2 1t 1>t 2 1p .::-p,,p 1 \p2: P 

s (with elements s,s0 , ••• ) s· ·= v:=t l S ;S. ! if p then S else s.2 fi i 
I 2--- -- !---

begin~ x; S end:P(t,v). 

l. We shall use the notation t 1 t~ (p 1:p2 , s1~s 2) to indicate that c1 and t 2 (p 1 and 

p2 , s1 and s2) are identical sequences of symbols. 

2. Whenever convenient, we shall i.:se parentheses to enhance readability or to avoid 

ambiguity. Syntactic specification of this is umitted. 

3. (Variables) Note that we have sir,;p:,;. variables (x,y,z,u) and 21,bsc:r•ft~":ci variables 

(a[t],b[sJ, ••• ), and that an arbitrary variabJt, v may b,0 both simple or subscripted. 
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4. (Expressions) The syntax nf If and BE has beea kept simple on inrr~H·t;:-:-,e,. A r.1.inor e:1,;;­

tension would be to introduce ndditionul operatinns. On th1, other brnd, the indu­

sion of functions designato:-s 'hfi thi:i IE or SE prt:"surn.ably \l.rould cc,nst:i tut>2 ;a n~:.ajcr 

extension, requiring substantial additional analysis below. 

5 .. (Statements) In S we huve: assignment, seqt;e:1tial comp ... 1sition., condit.ion11ls 1 b.lnc.ks, 

and procedure calls,. The l~:ist two cases rt:-.-quire furthr.=r c~;r:nreent: 

6. (Biocks) We restrict ourselves to declarations of simpk variables without type in­

formation"' This is motivat~d by our wish to treat declarations t"Jn1y in scifar :.~s 

needed for the analysis of parameter passing. 

( 2. l) 

with the following conventions 

(a) p E r, x,y e: sv, sot s, with X t- y. 
( S) s0 is the pi'oc•2d:<1'e bcdy, x the formal value p.:1 ra;;ieter, y the formal variable 

parameter. 

(y) In a caU P(t,v), t is the actual (, IE) corresponding to the formal x, and 

v (EV) corresponds toy. 

(c) The declaration (2. l) is assumed to be "globally" available; a call P(t,v} al­

ways refers to (2.l) as corresponding declaration. 

(In PASCAL, one would write for (2.l): 

procedure P(x:integer,var v:integer);S ). 
-· 0 

Ex tens ion to a treatment of sys terns of declarations is reasonably st raightfor-

ward (see e.g. [JJ), and omitted here mainly for reasons of space; extension to 

any number of (value and variable) parameters 1s trivial. 

Subst·itution plays an important role below, both 1n semantics and proof theory 

(assignment, loca 1 i ty, parameter mechanisms). In particular, we define 

S[v/xJ: substitute the (arbitrary) variable v for the simple variable x in S; 

s[t/v] and p[t/v]: substitute the integer expression t for the variable v 1n s or p. 

The first kind of substitution is defined in the standard way using the notions of free 

and bound occurrence of a simple variable in a statement (An occurrence of x in Sis 

bound whenever it is within a substatement of S of the form begin~ x;S 1 end. All 

other occurrences of x in Sare free.) The second kind of substitution, which includes 

the case of substitution for a s;ihscz,£pte3 variable, was introduced in De Bakker [2]. 

We refer to that paper for a detailed account of this, in particular of its application 

in proving correctness of assignment statements. 

DEFINITION 2.l. (Substitution in a statement) 

a. (w:=t)[v/x] = (w[v/x]:=t[v/x]) 

b. (S 1;s2)[v/x] = (S 1[v/x];S 2[v/xJ) 



c. (if p then s1 else s2 fi)[v/x] = if p[v/x] then s1[v/x] else s2[v/x] fi 

d. (begin~ z;S ~)[v/x] _ begin~ z;S end, if x : z 

begin~ z;S[v/x] end, if x t z and z does not occur 

free in v 

begin~ z';S[z' /z][v/x] end, if x t z and z occurs 

free in v, where z' is the first variable t x not occur­

ring free in v or S 

e. P(t,w)[v/x] = P(t[v/x],w[v/x]). 

DEFINITION 2.2. (Substitution in an expression) 

a. The definitions of s[t/v] and p[t/v] are straightforwardly reduced by formula induc­

tion to that of w[t/v], for some w EV. 
b. We distinguish two cases: v = x, and v = a[s]. 

(a) x[t/x] = t, y[t/x] = y (xty), a[s][t/x] = a(s[t/x]] 

(S) x[t/a[s]]= x, b[s'][t/a[s]] = b[s'[t/a[s]J] (atb), 

a[s'][t/a[s]J - if s'[t/a[s]J = s then t else a[s'[t/a[s]]] fi. 

Examples 

I. (begin~ y; x:=a[y]; P(x+y+z, a[x]) end)[y/x] _ 

begin~ y'; y:=a[y']; P(y+y'+z, a[y]) ~-

2. x[l/a[a[I]]] = x, b[2][1/a[a[I]]] = b[2], 

a[a[2]][1/a[a[2]]] _ if(if 2 = a[2] ~ I else a[2] fi) a[2] 

then I else a[if 2 = a[2] then I else a[2] fi] fi. 

Observe that the last expression is semantically (section 3) (though not syntactic-

cally) equal to if a[2] 2 then a[I] else f i. 

3. DENOTATIONAL SEMANTICS 

For any two sets K, L, let (K-+ L) ((K - L)) denote the set of all functions part 
(all partiaZ functions) from K to L. 

We define the meaning M of the various types of statements in our language yield­

ing, for SES, as a result a partial function M(S) operating on an environment-store 

pair yielding a new store: M(S)(E,o) = o'. 

As starting point we take the set A= {a,s, ••• } of addresses and the set I= 
{v,µ, ••• } of integers. Again, we assume these to be well-ordered. Let E = {o,o', ••• } be 

the set of sto:r-es, i.e. E = (A ➔ 1), and let Env = {E,E' , ••• } be the set of envii•on­

ments, i.e., of certain partial, I - I functions from SV u (AVxI) to A. More specifi­

cally, we require that each Eis defined on a finite subset of SV, and on all elements 

AV x I. Thus, for each x E SV, E(x) EA may be defined, and for each at AV and v EI, 

E(a,v) is defined. (For a subscripted variable a[s], ifs has the current value v, 

E(a,v) yields the address corresponding to a[s]. The assumption that E(a,v) is always 

defined stems from the fact that we study (explicit) declarations of simple variables 

only. Array variables may be considered as (implicitly) declared globally.) Next, we 
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introduce 

For each t € IE its right-hand value R(t) (£,o) € I, 
For each V € V its left-hand value L(v)(E:,o) € A, 
For each p € BE its value T(p)(E,cr).,; {T,F}. 

DEFINITION 3. I. 

a. R(v)(E,cr) = cr(L(v)(E:,cr)), R(n)(E,cr) = v (where vis the integer denoted by the 

integer constant n), R(t 1+t2)(e,o) = plus (R(t 1)(£,cr),R(t2)(£,cr)), ••• ,R(if p then 

t I else t 2 fi) (E,O) 

= { R(t 1)(E,cr), if T(p) (E,cr) = T 

R(t2 )(e,cr), if T(p) (E,cr) F 

b. L(x)(E:,cr) = E:(x), L(a[s])(E,o) E(a,R(s) (£ ,cr)) 

c. T(~)(e,cr) = T, •.• ,T(t 1=t2)(e,cr) = equal (R(t 1)(£,o),R(t2)(£,cr)), ••. , 

T(p 1::,p 2)(e,cr) = (T(p 1)(E:,o) • T(p 2)(E:,o)), 

where"•" denotes implication between the truth-values in {T,F}, ••• 

For the definition of assignment we need the notion of variant of a store o: We 

write o{v/a} for the store which satisfies: cr{v/a}(a) = v, and, for a' fa, o{v/a}(a') 

o(a'). 

Using the notations and definitions introduced sofar, it is not difficult to de­

fine the meaning of the first three types of statements. We shall use the convention 

that M(S)(e,o) is undefined whenever Eis undefined on some variable which occurs free 

in Sor s 0 • A similar convention applies to L, Rand T. 

DEFINITION 3.2. (Assignment, sequential composition, conditionals) 

a. M(v:=t)(e,o) = o{R(t)(E,o)/L(v)(E,o)} 

b. M(s 1;s2 )(E,o) = M(s 2 )(E,M(s 1)(e,cr)) 

if T(p) (E,O) 

if T(p) (E,cr) 

T 

F. 

For blocks and procedure calls, some further preparations are required. First of 

all, we require that, for each£, A\ range(e) is infinite. Moreover, for each e, each 

y.,; SV not in the domain of E, and each a.,; A not in the range of E, we use the nota­

tion E: u <y,a> for the extension of E defined also on y (and yielding there a). This 

allows us to give 

DEFINITION 3.3. (Blocks) 

M(begin new x;S end)(E,o) M(S[y/x])(E:u<y,a>,cr), where y is the first variable in SV 

not in the domain of E, and a is the first address in A not in the range of E, 

The last - and most difficult - case is that of procedure calls. Complications are 

- The standard least fixed point treatment of recursion can be given only in terms of 

a somewhat hybrid entity: a function which expects linguistic objects (elements of 

IE and V) as arguments, and yields an element of (Enx x E ---+-t E) as value. par 
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- The possibility that the actual parameter t has (free·) t)1:curnmce:- of the· formal ::,;, 

- The concept of call-by-variable which, contrary to ca11-by-namt·~, dcJ;:S nr;::,t allow 

straight for,.,.rard substitution but requires prior t?valua t i(~,n of the~- subscript in c,u;,e 

the actual is a subscripted variable. 

Let us consider the declaration P • .~7 x • v~r y 

will contain "inner" recursive calls of P, i.e., 

Let us use, for any S S, the notation S[P ... XJ for t:h, result of replacing all cccurrences 

of P in S by X, where X is an element of the set )( = {X, Y, ••• : of p.t•oc~edure 1!1_n~:,:iblce. 

This result is no longer an element of S, but it is easy to extend the definition of 

S yielding S containing both S and a 11 elements of the form S[ P-,){]. 
ext · 

We shall define the meaning of the procedure P to be an element of a certain sub-

set of the set H cl£. ((IfxV) (Env ,::: --- ::)). In fact, we consider the subset H. part · · v1 
consisting of those elements r, of II which are ,'m·-i~'.l::Ze z',:t-':lI'i,;:w, i.e., which satisfy 

n(t[y/x],v[y/x])(2u<y,u>,a) = r(t[y'/x],v[y'/x])(Eu•y',a>,o), for all y,y' which do not 

occur free in t, v or s 0 • Furthermore, we order Hvi by putting r:, ::._ n' iff Vt,v[ dt,v) 

:c n'(t,v)]. Let e,e', ... be elements of the set (X-•Hvi).Thus,itismeaningfultowrite 

e(X)(t,v)(s,o) = c'. For each e" (X-.f/vi) and each Sext (Sext' we define a mapping 

M(e)(S ) in the following wav: 
ext · 

- For S of one of the first four tvpes, /HO)(S ) is the obvious 1illalogue of M(S). 
ext • ext 

E.g., /,l(8)(v:=t) = l!(v:=t), .•. ,,\1(8)(~ ~ x;S ~)(€,a)= /l(f3)(S[y/x])(cu<y,,:i>,;::), 

where y = .•. and a= ••• 

- M(B)(X(t,v)) = B(X)(t,v). 

Actually, we shall mostly use e's of the special form e 
= n, <X,n>(Y) is undefined for X t Y. 

<X,n>, where we have <X,n>(X) 

Let, for¢ a monotone element of (H. ➔ H .), µ<!> be the least fixed point of 
Vl Vl 

the least element of Hvi satisfying ¢(µ¢) = w:L Let us, finally, write b new x,y;S e 

as short hand for~~ x;~ ~ y;S ~~•provided that x t y. 

At last, we have enough background to give 

DEFINITION 3.4. (Procedure calls) Assume the declaration (2. l ). Then M(P(t,v))" (,:¢)(t,v), 

where¢ is the following (monotone) function: 

<!> 1.n • \t,v • /.!(<X,n>) 

(begin ~ u 1 ,u2;u 1 :=t;u2 :=s; 

s0[P+X][u/xJ[vJyJ end) 

where u ,u? are the first two variables not occurring free int, v or s0 , 
I - df. df. 

where if v _ z for some z E. SV, thens c u.1 and v 1 = z, 

Av I - - I df. d df. r 7 wher~ if v _ a[rJ for some a E and r, t, t1en s ran v 1 "- a,u2 _ .• 



Exa,-,,.,Zc. Consider the declaration 

P • i)aZ x • ·;).,2.P y• i! x:: 2 tben P(7.,y) else if x: then 

i:+i+l ;P(x-l ,a[yJ) else y:~O fi fi . 

Then M ( P ( x+ 5), a[ i J) ) ~ {i_d, J ( x+ 5, a[ i l) , whe rt, WE: have, e.g. , 

and 

Hn) (x+5,a[i]) 

then 

4. APPLICATIONS TO PROOF THEORY 

else 

,: 2 thE·n !'(7,y) else if u 1 = l then 

fi fie). ---

We introduce the kernel of a system of axioms and pr,rnf rules to show the corrs:ct­

ness of programs in our PASCAL-like language, and offer as exercises the proofs of 

the soundness of these axioms and rules. 

The formal system is taken from Hoare's axiomatic treatrn,,nt C6,7]) of the induc­

tive assertion method. (Subsequent elaboration of his system may !:le round e.g. in [8.] 

and [9].) 

What we view as our extension of the theory as previously developed, 1s the fol­

lowing: 

- An extension of Hoare's axiom of assignment to the case of assignment to a subscript­

ed variable 

- A rule for recursive procedures which extends Scott's induction principle to proce­

dures with call-by-value and call-by-variable parameters. 

Let p,q E BE, S E S • A col"reetness form1,:,i is a construct of the form { p}S{qJ. 
ext • 

Arbitrary correctness formulae are denoted by y, 11 ,y', ... , and finite sets f' 

y } of such formulae are cal led a.,,,,--z'oms. Outermost oarenthes is in { Y 1, •.. , y } are seme-n . . n 

times omitted. 

The proof rules of our system are of the following two forms: 

(4.2) 

DEFINITION 4. l • 

a. M(e)(r) holds iff M(e)(y) holds for each y c r. 
M(e)({p}S{q}) holds iff for all E defined on all free variables of p,q,S and s0 , 

and for all o, we have T(p)(c,c) =o- T(q)(s,1He)(S)(£,c)). 



b. r is valid iff M( )(r) holds for all 

c . .;J. is sound i.ff, for a 1 ,:,, /.1( 

d. ➔ r2 is sound iff soundness of 'I 

.:. 

ies 

implies validity of 

We now present the axioms and proof rules for the fiv,; types N statements and, 

moreover, a proof rule deal with substitution. ( ible to refine the lsst 

rule (see [3,SJ ; however, in the form as 

meaningful application of the procedure rule.) 

it is sufficiently powerful to allow 

p[t/v]r v:=t {p}. 

This axiom, though syntactically identical to Hoare' s assignment axiom, is in 

fact an extension of it since it also covers assignment to 

Example: {if a[2] = 2 then a[ l] = I 

see [2]. 

else true fi · 

Composition 

Con.di t £ona Zs 

p}S 1{q},{q}S2{r, 

{p}S 1 ;S/r} 

{pAq}S 1{r ,{pA,q}S 21r} 

These two rules are easily seen to be sound. 

Blocks 
{p} S[y/x] {q} 

{p} begin new x;S end {q} 

in p, q, Sor s0 • 

ed variables. 

]=I}. For details 

This rule was first given in Hoare 7. It is not so easy to grasp all its conse­

quences. Let us point out, e.g., that the fact that it leaves declaration (2.1) un­

affected ensures that 1n a program such as < P <= V,U' x • :iaZ. y • 

E,~ z; ••• P(t,v) ••• ~ ... ~>, aclashbetweenthe global z of the procedure body, 

and the local z valid at the moment of call, is avoided. (As we see it, this problem 

is incorrectly dealt with in [3,5].) 

Pr>ocedure calls. Assume (2. l), and let s0 have the form as described before definition 

3.4. Assume we want to prove {p} P(t,v) {q). Let Pod~. p, q0 df. q, t 0 d~. t, v0 dt, v. 



1 pl J X ( t ,, v l ) : q , ; , ••• , 1 p ) X ( t , v ) i qn) , . n n n 

the v. 
l 
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Observe that the pi, qi, i • l, ... ,n, are assertions about the innep calls, where­

as the p0 , q0 are assertions about the outer call. Therefore, the p0 , q0 do not play a 

part in the induction hypothesis. One should also observe that the rule remains valid 

when the formulae {pi} P(ti,vi) {qi}, i = l, ... ,n, are added to its conclusion (i.e. 

to {p0 } P(t0 ,v0 ) {q 0}). 

Su.bstitzttion X • ·•,-i7 y • S fplSfq1. 
I,; L ,.._. 0' ~ J ' • 

P • (var x · vaZ y • s0)[v/u],{p[v/u]}S[v/u]{q[v/u]} 

We hope that the notation in this rule - which extends the definitions given so­

far - is self-explanatory: Above the line, calls of Prefer to declaration (2.1), but 

below they refer to the declaration P • (var x • vaZ 

extension of def. 2.1 is assumed. 

v • S )rviuJ where a natural .. 0 I., t ~, 

We are confident that the proofs of the soundness of the block rule, the procedure 

call rule and the substitution rule, will offer no difficulties. 



REFERENCES 

l. De Bakker, J.W., Least; 

Theory, Lecture Notes 1r1 Comput1;;r Sciencfc 

Springer 0975). 

2. De Bakker, J.W., Co:t•rec:ness 

Mathematisch Centrum (!976). 

, Report Hi 55/76, 

3. Cook, S.A., Axiomatic a:nd 

Report no. 79, Univers of Toronto (1975 

4. Donahue, J.E., The mathcrr.ati(~az seno:ntit•e 

c}onstf'ucts, in Proc. Syrup. 

p.353-370, IRIA (1975). 

5. Gorelick, G.A., A co,rpZete axiomatic> syste/?7 

Programs, 

and non-recu:rsive ph,t11'a:ms, Technical Report no. 75, University of Toronto 

(1975). 

6. Hoare, C.A.R., An axiomatic basis 

p.576-580 (1969). 

mantics of Algorithmic Languages, Lecture Notes in Mathematics l 

(E. Engeler, ed.), p.102-116, Springer (1971). 

8. Hoare, C.A.R. & N. Wirth, An a.riomatic 

PASCAL, Acta Inf. 1_, p.335-355 (1973). 

o .. f the 

9. Igarashi, S., R.L. London & D.C. Luckham, Autcmatie pi>og:ram 

aaZ basis and its implementation, Acta Inf. i, p.145-182 (!975). 

IO. Manna, Z., S. Ness & J. Vuillemin, Inductive methods 

programs, C.ACM ~. p.491-502 (!973). 

I l. Manna, Z. & J. Vuillemin, Fix:point approach to the theor•y of 

p.528-536 (1972). 

12. Scott, D. & C. Strachey, Towa:rds a matherr.at-it~az semantiae fi:n• compute?' 

C.ACM J.2, 

in Proc. of the Symp. on Computers and Automata (J. Fox, ed.), p.19-46, 

Polytechnic Inst. of Brooklyn (1971). 


