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A critical comparison of several implementations of prograrrnning languages 
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H.J. Boom & E. de Jong 

ABSTRACT 

The implementations of Algol 60, Fortran, Pascal, and Algol 68 provid­

ed on the CDC Cyber 73 of the Stichting Academisch Rekencentrum Amsterdam 

are compared on both qualitative and quantitative aspects. 
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0. INTRODUCTION 

Around the end of 1974, it was decided to carry out a comparison of 

some of the programming language implementations available on the CDC 

Cyber 73 of the Stichting Academisch Rekencentrum Amsterdam (hence-

forth known as SARA). The intention was to provide some guidance to new 

users of this system. In order to limit the scope of this study, four lan­

guages were selected for which there was general interest within the 

Mathematical Centre (MC). These were Algol 60, Algol 68, Fortran, and 

Pascal. 

It soon became clear that running computer programs and measuring 

execution times and storage consumption would tell less than half of the 

story. For most programming projects, qualitative aspects of the language 

are far more important than quantitative ones. The varying facilities avail­

able in different languages strongly affect their suitability for different 

problems. Indeed, in recent years it has become generally known that as­

sembly languages may not be the best tools to use on large systems pro­

gramming projects, even if efficiency of execution is the most important 

criterion.The code generated by a good optimizing compiler can be better 

than that produced by a good assembly language proBrammer, if the program 

is large. 

The scope of the study has therefore been extended to include various 

qualitative aspects. 

Finally, we must mention that we have found this analysis to be far 

more difficult and time-consuming than we had originally expected. It may 

well be that errors have crept into this critique, perhaps because the 

systems were themselves being changed or replaced by new versions during 

the study. If so, we would appreciate hearing of them. 

0.1. The language implementation 

Fortran is the oldest of the four languages studied. Invented during 

the J9SO's, it was the first attempt to construct an algebraic language. 

It contained very many ad hoc compromises, but achieved widespread popular­

ity because it was first. This language has affected the architecture of 
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many computer systems. 

Algol 60 was constructed around 1960. Responsibility for it was later 

taken over by IFIP Working Group 4.l. It was one of the first languages whose 

structure encouraged the so-called "structured programming", but this was not 

actually discovered until nearly a decade later. 

Algol 68 is, in some ways, a descendant of Algol 60. After long consid­

erations, the Algol Working Group decided it was time to begin work on a new 

language which would be cleaner and more complete than Algol 60 and which 

would not perpetuate the mistakes of the first attempt. When its first de­

fining Report appeared in 1968, it was seen to be quite different than 

Algol 60. Final definition of the language was not complete until its 

Revised Report appeared in 1975 [3], a very long time later indeed. 

When Working Group 2.1 produced the Algol 68 Report in 1968, there was 

a substantial dissenting minority protesting the publication of Algol 68 

at that time. Some of them insisted that the Report be made more clear and 

that an implementation be ready before the Report could be acceptable. This 

minority resigned from the Working Group when the original Algol 68 Report 

was published, and hindsight now shows that they may have been right in 

their severe criticism of the language as presented in 1968. One of them, 

Niklaus Wirth, produced another language, Pascal, shortly thereafter, per­

haps as a form of constructive criticism. By carefully limiting the scope 

of the language, he was able to define a clean, straightforward, and effi­

ciently implementable language with some severe deficiencies. It was imple­

mented and made available rather quickly on the CDC 6600. In contrast, 

Algol 68, a much richer language, took another seven years to reach any­

thing like a comparable state. 

But it is the implementation of a language that a programmer uses, and 

in his eyes the implementation becomes inseparable from the language. Each 

implementer makes his own impact on the user by various deficiencies and 

extras. Little distinction will therefore be made in the rest of this paper 

between the implementations and the languages. The following implementa­

tions were studied: 

Pascal. 

Algol 60: CDC Algol 60 version 3. 

CDC Algol 60 version 4. 



Algol 68: CDC Algol 68 version 1.0.9. 

Fortran: CDC Extended Fortran. 
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In addition, the Minnesota MNF Fortran compiler appears in the timing 

measurements, but it is not discussed elsewhere. 

I • COMPATIBILITY 

It is desirable to be able to export programs to other installations 

and to import programs from other installations. It is even more pleasant 

if those other installations can achieve reasonable communicRtion even 

though the computing machinery they possess differs greatly from that 

locally available. Such "portability" significantly increases the market 

for any program one wishes to export, and makes it possible to avoid effort 

by importing a working program instead of writing one locally. 

There are essentially two means of transporting programs. First, it 

may be possible to have them written in a generally available programming 

language. Second, it may be possible to have them clearly written in a 

language of such elegant semantics that it becomes very easy to translate 

them to one of the locally available languages by hand. Translating an 

existing program usually involves less work than writing a new one, if 

the original program is easy to understand. 

The first approach seems quite attractive, and one must choose the 

language. It is important that 

(I) the language be standard, 

(2) an implementation be locally available, and 

(3) the implementation indeed implement- the language. 

If the language does not have a unique definition with some official 

status, it is extremely unlikely that implementations on different machines 

will be even slightly compatible. For example, although nearly every large 

computer has several implementations of lisp, they differ sufficiently that 

it is not practical to use Lisp as a language for portable programming. 

If an implementation of the language is not available, it is impos­

sible to write debugged programs for export. Import is still possible if 

one is willing to convert the program by hand, but it is extremely tedious. 
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It is desirable that the local implementation implement exactly the 

standard. If it implements a subset of the standard, importing programs 

becomes difficult. If it implements a superset of the standard, it becomes 

impossible to be certain that a locally debugged program for export does 

not accidentally use a superlanguage feature. Such matters may be extremely 

subtle. An implementation may define some matter which the language defini­

tion leaves undefined, such as whether variables are initialized to any 

specific value. Initialization could be relied on without any explicit men­

tion of the fact within the program. 

If the implementation accepts some standard language features but 

assigns different semantics to them, it will be extremely difficult either 

to import or export programs. Compilers will not detect such language de­

viations in a program (the answers will merely be wrong). 

Because of practical difficulties, it will usually be necessary to 

make some small changes in a program upon transportation even if a con­

scientious attempt was made to adhere to the standard language. It is then 

of great importance that the program be readable. 

It may in some cases be easier to hand-recode a program written clear­

ly but in a locally unavailable language than to alter a confusing program 

written in a locally available language with slight deviations. 

1.1. Pascal 

Pascal is defined by a defining Report [l]. This Report is accompanied 

by an appendix describing details of the implementation on the CDC 6600. 

This implementation does appear to conform clo_sely to the Report; it appears 

that other implementations are likely to do so too. Nonetheless, it is not 

clear to what extent the Pascal implementation for the Cyber is compatible 

with implementations on other machines. Other implementations are only now 

appearing, and reports of experience with them has not yet reached a general 

audience. The Report leaves ample room for implementers to use machine­

dependent criteria such as the size of a machine word to determine a num­

ber of details. It would be reasonable if this extended to matters such as 

the precision of arithmetic, but at a number of points these limitations 

can be expected to affect program correctness severely. The followine list 



contains relevant parameters: 

- the number of significant characters in an identifier. (Extra ones 

are legal and ignored. This.can be disastrous if one attempts to 

transport a program and finds that formerly distinct identifiers 

have become identical, or vice versa.) 

- the size and coding of the character set. 
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- the number of elements permitted in a power set. (The CDC implemen-

tation permits 59. This means that a set £i char is impossible, 

because 64 characters are recognized in the character set.) 

- the number of characters in a value of type aZfa. 

Other implementations will probably find other ways to impose annoy­

ing qualitative restrictions by propagating low-level machine-dependencies 

to the level of the high-level language. Pascal provides high-le~el con­

cepts, but restricts them so that th~ programmer has to think in ma~hine 

terms. 

Whether a program violates the above constraints is a matter that can 

easily be determined at compile-time. There seems to be no reason why the 

CDC compiler should not compile code for these prohibited cases anyway, 

perhaps by using more storage for larger objects, without impairing run­

time efficiency one whit for the non-user. The CDC compiler has set an 

example of machine-dependent restrictions which we must hope other imple­

mentations will not follow. 

1.2. Algol 68 

Algol 68 is defined in the Revised Report on the Algorithmic Language 

ALGOL 68 [3], hereinafter called "the Report'1 , or "the Algol 68 report". 

This Report is virtually impossible for the uninitiated reader to under­

stand, and may be difficult even for the experienced Algol 68 programmer. 

This Report is, on the other hand, extremely precise. It even makes 

explicit at which points the implementer has freedom to make implementation 

choices. 

The CDC implementation has adhered extremely closely to the specifica-

tions in the Report. There are a number of unimportant deviations from the 

Report, and a number of minor language extensions. These are all clearly 
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mentioned in the CDC Algol 68 reference manual. 

The CDC implementation is closer to the spirit and letter of the 

Revised Report than any other implementation published for any machine that 

the authors know of. Unfortunately~ there are hardly any other complete im­

plementations in existence, and therefore this fact does not at present aid 

portability. 

The most important language deviation is concerned with the opening of 

input files. It is not possible to do this, under normal conditions, by 

using the open routine. It is clearly the intention of the Report that the 

open routine be used for this. Instead, establish must be used to provide 

the system with a number of characters per line, number of lines per page, 

etc. This is further discussed in the section on input/output. 

I. 3. Fortran 

Fortran has been standardized by ISO and ANSI. Unfortunately, the 

definition of Standard Fortran is extremely difficult to read and under­

stand. Even experts in Standard Fortran regularly discover new catches 

or properties of the language every year. Those interested in an introduc­

tion to Standard Fortran are advised to consult the Standard Fortran 

Programming manual, which contains a reprint of the standard and much 

useful advice [6,7,8,9,10]. 

The CDC implementation pretends to make a clear distinction between 

its standard subset and its nonstandard extensions. The Fortran Extended 

manual indicates this by shading descriptions of nonstandard features in 

grey. Unfortunately, when there is a deviation from the standard, only the 

extended version is described, and not the standard one. For example, 

CDC Extended Fortran accepts variable names of up to seven characters. In 

the manual, the "seven" is shaded, but it is nowhere mentioned that the 

limit in the standard language is six. 

The attempt to distinguish between the standard and the implemented lan­

guage must be praised, even though the omissions can be seriously misleading. 

On the other hand, a programmer fully cognizant of the Fortran stan­

dard can write Standard Fortran programs and have them accepted by the 

Fortran Extended compiler with only minimal change (a PROGRAM statement 
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is necessary at the beginning to describe input and output files), and 

Standard Fortran programs from elsewhere can be easily imported. A fortran 

compiler that detec~s all deviations from the standard, but still processes 

all Standard Fortran programs correctly, would need extremely complicated 

run-time checks on use and misuse of common storage, variables initialized 

in DATA statements and subsequently assigned to, and many other matters. 

To our knowledge, no such rigorously checking compilers have ever been 

written for Standard Fortran. 

The reason for placing especial emphasis on the standard for Fortran 

is that virtually every computer in the world has at least one compiler 

available which will accept a superset of Standard Fortran. This is more 

true of Fortran than of any other programming language. Writing a program 

in Standard Fortran, distasteful though it may be, or having it mechanical­

ly translated to Standard Fortran, is therefore an effective method of 

achieving machine-independence. The programmer should be warned, however, 

that Standard Fortran is probably but a small subset of the language he 

thinks of as Fortran. 

Recently, there has been work on a new Fortran standard [2]. This 

proposal has not yet been formally accepted, and the new standard has not 

yet been generally implemented. It is therefore not a useful vehicle for 

achieving portability. 

1.4. Algol 60 

Algol 60 was defined in 1962 by The Revised Report on the Algorithmic 

Language Algol 60 [5]. In recent years IFIP Working Group 2.1, the group 

which is responsible for Algol, has had second thoughts based on more than 

a decade of experience with the language, and has approved for publication 

a document [17] making minor changes to the language and clearing up a 

number of subtle confusions andambiguities in its definition. One effect 

of these changes is that the modified language [18] (which may become known as 

Algol 60.1) is actually closer to most existing Algol 60 implementations 

than that of the original Revised Report. 

The Revised Report is not an obscure document, but it is written as a 
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language definition and not as a tutorial. CDC has reprinted it in Chapter 2 

of their Algol 60 manual, together with a large number of insertions (in a 

different type face) describing deviations from the report and giving de­

tails about machine-dependent matters. The restrictions are, in general, 

those made by many implementers, and should not seriously hinder program 

portability. 

Since Algol 60.1 appears likely to supersede Algol 60, we shall here 

mention the more important incompatibilities between Algol 60.1 and CDC 

Algol version 4. The deviations from Algol 60 are abundantly clear from 

the CDC reference manual. 

Algol 60.1 provides the following standard procedures: 

abs, sign, 

sqrt, sin, cos, arctan, Zn, exp, 

inreaZ, outreaZ, 

maxreaZ, minreaZ, maxint, epsilon, entier, iabs, 

fault, stop, 

inchar, outchar, ininteger, outintegfr 

outterrninator, outstring, length. 

CDC Algol 4 provides those on the first three lines (abs to outreal), but 

does not provide the rest (maxreal to length). However, the features maxreaZ, 

maxint, epsilon, inchar, outchar, and length are provided in other forms. 

Algol 60.1 deviates in its definition of the type of intege~ exponent­

iation. If the base of the exponentiation is of integral type, and the ex­

ponent is an <integer> or a call on the function iabs, then the type of the 

result is integral, otherwise real. Algol 60.1 provides a result of type 

integral if the base and exponent are both of type integral; use of a 

negative exponent is then unlawful. 

Algol 4 does not permit the entire program to be labelled; Algol 60.1 

does. 

Algol 60.1 treat a for loop as if it were a block; the scope of any 

label preceding the loop body is thus limited to the loop, and it is impos­

sible to jump into the loop from outside. It is possible to use the same 
" 

label inside and outside the loop. Algol 4 follows the older Algol 60 rules 

on this matter, prohibiting a jump to a label inside a loop but also pro­

hibiting use of the label in the block containing the for loop. 
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The original Algol 60 report did not provide any input/output facili­

ties; it was felt that machines differed too widely to make standardized 

input/output feasible. The effect is that each implementer constructed his 

own input/output system. It is therefore advised that programmers writing 

portable programs should concentrate the input/output in a small number of 

small and simple procedures, which can easily be replaced. 

Nonetheless, there have been proposals for extended input/output sys­

tems, and CDC has implemented that of Knuth et al. [14], with modifications. 

Chapter 3 of the CDC manual contains the Knuth proposal, with modifications, 

in the same style as chapter 2. 

2. RELIABILITY 

It is not sufficient that the progrannner, with one finger on the lan­

guage definition and one on the coding sheet, can write texts which resem­

ble syntactically correct programs. He must also be able to run such a 

program on a real machine, correct any errors it might contain, and as­

certain that it does then perform reliably. 

The behaviour of the language and of the implementation has enormous 

influence on debugging. The implementation itself must reliably conform to 

specifications, the specifications must be clear, simple, and useful, and 

the language and implementation must together prevent errors and clearly 

report those which do occur. We can distinguish a number of specific re­

quirements. 

The implementation itself must work, and be fully debugged. If a pro­

gram fails, the programmer must be able to be certain that the fault lies 

with the program and not with the implementation. Nonetheless, if there are 

implementation errors, they must be well published and swiftly repaired. 

The language must actively help a progrannner to structure his programs. 

This does not mean that it must straightjacket the progrannner into one 

specific approved style of program construction; it must instead provide 

primitives that are of use in forming structure, and detecting accidental 

violations of any structure the progrannner himself imposes. The language 

must, furthermore, refrain from providing the unwary with traps. 
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{ There are more ways to structure a 

program than a man can shake a stick at. 

One man's bug is another man's 

structure. 

- Traditional} 

The implementation must then help the progrannner to find the errors 

remaining in the program. It must be possible for the implementation to 

catch all language violations. It must be highly likely that progrannner 

errors lead to such language violations, preferably ones that are detected 

at compile time. It must be easy for the progrannner to request such thorough 

checking. When an error is detected, it must be easy for the programmer to 

find it. The implementation should assist him, providing a reasonable 

amount of post-mortem information in a readable form. The implementation 

may not run amok, providing false or misleading messages or forcing the 

progrannner to wade through octal or similar core dumps. 

Complete checking has two virtues. 

First, it can signal the presence of certain program bugs, to wit, 

those which cause the program to violate language restrictions. Even if 

checking were only 98% complete, bug-detection would not be significantly 

impaired. A bug which fails to be detected by one possible but absent check 

will likely be caught by another. 

Second, it can be used in finding the error. For example, suppose one 

wishes to know at which point in a program a variable receives an anomalous 

value. It is an enormous help to know that this cannot happen through the 

use of an out-of-bounds subscript in an apparently irrelevant assignment. 

The fact of complete checking can thus be used in logical deductive reason­

ing to reduce the search domain drastically. This property is completely 

lost if checking is only 98% complete. 

The fact of complete checking, together with a selective and readable 

post-mortem dump, is often more useful than run-time tracing of jumps, 

assignments to specific variables, and the like. Complete checking, more­

over, does not have to be planned in advance; whereas the more traditional 

traces must be carefully used in further runs after a bug has been detected. 
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2.1. Pascal 

Until April, 1975, errors were found in the Pascal compiler in use at 

SARA, and new releases appeared approximately every l½ to 2 months. The 

latest release was received in August, 1975, and no errors in it have come 

to the authors' attention. It thus appears to be of reasonably solid con­

struction. This is perhaps because the current version of the compiler was 

itself written in Pascal. This makes reasonable clarity of code possible, 

and makes the compiler itself one of its own test cases. Unfortunately, 

when one examines the source code of the compiler itself, one finds it 

written in an unreadable and nearly connnent-free style. 

Identifiers may contain only 10 significant characters; extra charac­

ters may be coded, but are ignored without warning by the compiler. It is 

thus easy for a progrannner to code two apparently different identifiers and 

have the compiler misinterpret the program by failing to recognise the dif­

ference. This can be catastrophic if the two identifiers are of the same 

type, since the error can then go completely undetected. 

Syntactic error recovery is good; it is extremely rare to get two 

error messages for one single syntax error. However, missing or extra 

begins or ends can cause the compiler to fail to properly identify iden­

tifiers, which can cause much trouble. Nonetheless, the compiler rarely 

loses all track of the intended syntactic structure, and therefore it is 

possible to remove syntactic errors in relatively few runs. 

Run-time checking is incomplete. There are a number of points where 

program errors can lead to incomprehensible and undefinable chaos. Two 

serious problems are variants, and the parameters of parameters. 

A Pascal record may have "variants", which means that at various times, 

different fields may be present in the record. (The record corresponds to 

the Algol 68 structure, and the variants to united modes.) Unfortunately, 

there is no built-in check to ensure, when a field of some variant is used, 

that the variant with that field indeed does reside in the record at that 

time. This can be used for intentional or unintentional punning. As Niklaus 

Wirth says [22], assembly language programmers delight in ingeniously 

misusing features provided with honest intentions to betray the language's 

very principles. The serious high-level language user can only the lack of 



12 

security and the resulting failure to find programming errors easily. We 

have the following example of a coding trick. This is a program which prints 

the contents of the first 4000 words of memory. It could just as well have 

overwritten the first 4000 words of memory, at least until the program gets 

so far as to overwrite itself: 

program tt(output); 

type rec= record fl: integer; 

~':lse f3 : boolean Et 
true: (f4: integer); 

false ( f5 : t alfa) 

~nd; 

var a : rec; 

i : integer; 

begin write ('0') : for i := 1 to 4000 do 

begin a.f4 := i; write (' ', a.f5t); if_ i mod 10 

begin writeln; write(' ') end 

end; 

writeln 

end. 

0 then 

When writing a procedure which accepts a procedure as a parameter, 

there is no way to specify the types of the parameter to the parameter, al­

though these are usually known to the programmer. There is therefore no 

compile-time check on the compatibility of parameter type checking in such 

cases. There appears to be no run-time check either. 

Pascal does provide list processing, but does not provide a garbage 

collector. This means that storage allocation and freeing must be explicit­

ly coded by the programmer, with the attendant risk of catastrophic error. 

Storage allocation is done using the procedures new for allocation and 

dispose for freeing. If the storage freed by dispose is reused by new, 

there is danger that the now reused storage is still pointed to by a point­

er left over from its previous use. This can cause interactions between 
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independent parts of a program that are extremely difficult to diagnose. 

If the storage is not reused by new, there is no sense in using dispose at 

all, and any serious attempt to do.list processing will fail when memory 

becomes full of useless list cells that cannot be reused. 

There are indications that the version of Pascal in use at SARA may be 

a modified version that does reuse the storage. However, since there is no 

compactifying garbage collector, there may be danger.of storage fragmentation 

if allocated records are of different sizes. This means that freed pieces 

of memory may be splintered by further allocation, leaving splinters free 

storage too small for reuse. 

There seems to be no secure way of implementing the language defined 

by the Pascal report on conventional computers without going to prohibi­

tive expense, by providing tag bits on every value for dynamic type checks. 

Without such a run-time mechanism, Pascal is not type-secure. A garbage 

collector is therefore not a possibility; programmers will therefore have 

to make do with an insecure language. 

At program termination, Pascal provides a symbolic dump of the run­

time stack, including the names of variables. Unfortunately, the elements 

of arrays and records are not printed, the records allocated by new are 

not printed, and nothing at all sensible can be printed if the above­

mentioned insecure use of pointers has seriously damaged the stack. 

2.2. Algol 68 

With version 1.0.8, the CDC Algol 68 implementation had reached a rela­

tively bug-free state. Until then, it was still under development, it was 

undergoing continuous changes, and as result it was extremely buggy. Bugs are 

still found, but rarely, and are usually fixed within a few months. Most 

bugs appear to r~side in the garbage collector or the code generator, and 

their effects disappear when Algol 68 source code is replaced by different, 

but functionally identical source code.Re-coding a statement to cause diffe­

rent register assignment or changing object-time field length usually suf­

fices, but the presence of such bugs must still be considered a serious 

difficulty. 

By default, the compiler is in a state in which most language viola­

tions are caught at compile or run time.The implementation does not run 

amok (except as mentioned below). In practice, it appears that most 
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programmer errors are detected by the compiler at compile-time, usually by 

the compatibility check on modes. The errors detected in practice at run 

time are mainly of the "undefined yariable" type: the omission or misplace­

ment of initialization. Very few programmer errors indeed survive both the 

compile-time and the run-time checks. Such bug-resistance must be construed 

as a significant advantage. 

It is possible to get a readable post-mortem dump from Algol 68. It 

consists of a printout of the active stack, with variable names and their 

values. The only serious security risk inherent in the implementation is 

the occasional failure of scope checking in certain situations involving 

explicit parallel processing. The scopes of procedures which arise within 

one parallel process can be confused with those which arise during another 

parallel process. Programs which do not explicitly use parallel processing 

have nothing to fear from this security risk. Avoidance of parallelism, 

furthermore, is not a severe restriction; the authors have yet to see an 

Algol 68 program using parallel processing that was not specifically writ­

ten in order to illustrate the feature or to test the compiler. 

It should be mentioned that the scope checks are looser in the imple­

mentation than in the Report, although they are still secure (except in 

connexion with parallel processing). All variables are placed on the heap 

instead of on the stack, and their storage is retrieved by garbage collec­

tion. No scope check is done upon assignment (this can save much execution 

time), but instead a scope check is performed upon procedure calls, to 

determine that the called procedure's necessary environment still exists. 

In most cases this check can be performed at compile time (but it is not 

clear whether it is indeed done then). 

2.3. Fortran 

The Fortran Extended compiler works. It is not clear whether it is 

bug-free, since the language implemented is more or less a superset of the 

standard, and it encourages a "try it and see" attitude. Matters which in 

other languages would be considered bugs are in Fortran treated as "that's 

the way it is". For example, in free-format output of integers, the com­

piler uses heuristics to determine whether a word contains a true integer, 
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or was probably intended as a character string. Its arithmetic deviates 

from what one would expect from a first or second reading of the manual 

(for example, multiplication of integers does not work if the product re­

quires more than 48 bits, although the manual clearly says that intezers of 

up to 59 bits are valid; this restriction in multiplication is mentioned 

hidden away in the third part of the manual). But, if one is willing to 

experiment, to accept unexpected limitations, and be constantly aware of 

the limitations of the machine instructions that the Fortran system will 

probably use to implement Fortran operations, it can be used. The Fortran 

system must be seen as a machine-dependent medium-level language. This is 

true of Fortran on many machines, although Fortran systems on other machines 

often have less glaring machine deficiencies to fail to hide. 

Fortran also leaves much to desire in the direction of clear, compre­

hensible programming. The almost complete absence of what have now come 

to be known as "structured programming tools" makes it unsuitable for 

building large, reliable systems. 

By inserting special statements in the source program and further spe­

cifying the compile-time "D" option, which causes them not to be ignored, 

various run-time checks, such as array subscripting checks, can be turned 

on. These statements all begin with "C$" in columns one and two, and will 

thus be processed as normal comment cards by other Fortran compilers. (The 

Minnesota Fortran compiler, which is not itself properly discussed in this 

paper, uses other conventions for these options.) Unfortunately, such checks 

are performed only where the implementers thought it convenient to do so, 

and therefore full security (such as is provided by the Watfor and Watfiv 

Fortran compilers on the IBM 360) is not provided. The most glaring ex­

ception to full subscript checking is that subscripts are not checked in 

input/output statements. Furthermore, as in Algol 3, a check is made only 

on whether the final array element is within the entire array, not whether 

each subscript is within its own proper bounds. Unfortunately, it is also 

difficult to turn run-time checking on with these "C$" statements. The 

Fortran manual appears to be very free in the placement of these debug 

statements, saying they may appear interspersed within normal Fortran 

statements. Unfortunately, this is not quite true, and there are a few 

places where debugging statements are ignored unless preceded by an extra 
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"C$ DEBUG" statement. When we attempted to check that run-time subscript 

checking did indeed occur by writing a short program with a deliberate 

subscript violation, it took us four runs before we obtained a run-time 

error message. Our sympathies go out to the programmer who actually tries 

to debug his program using the Fortran debugging package. He will not have 

the advantage of knowing the nature and location of the error beforehand. 

(Six months later, one of our colleagues pointed out that the errors 

we had made were explicitly mentioned in the reference manual; however, 

this was in a different place than we had looked to find out how to use 

the debug feature. It is a pity that the authors of the manual have not 

seen fit to describe all the various rules for placement of debug state­

ments in one single place, instead of placing various parts of tke speci­

fications differently. Cross-references could even be a help. Even if the 

documentation were to be improved, we should still regret that the rules 

for placement of debug statements are so complicated; a debugging feature 

should contribute to the solution, not to the problem.) 

Of course, since main programs and subroutines are (in principle) com­

piled separately, there is no check on parameter type compatibility. Fur­

thermore, type conversions, that are normally performed automatically in 

assignment statements, are not provided for actual rarameters, since the 

compiler does not know what the types are that a subroutine expects for 

its parameters. No run-time checks are provided for this either. 

The main use of Fortran seems to be as a low-level language in which 

it is possible to reach various features of the hardware or of the operat­

ing system directly. This is inherently machine-dependent, and the program­

mer must be aware of the ways that machine characteristics jut out in un­

expected places. 

2.4. Algol 60 

The object code from Algol 3 and 4 is usually correct; however, in the 

unusual case that it is not correct, compiler bugs are not corrected prompt­

ly by CDC. A delay of one to two years is not unusual. 

Algol 3 provides a simple option to turn on checking of array bounds, 

after which all subscripting is checked for all arrays. Unfortunately, it 
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the computed effective address lies within the array. 
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Algol 4 does not provide a simple option to turn on array-bound check­

ing; it must be specified anew for each array by placing a comment in the 

block with its declaration. This means that checks can easily be forgotten. 

On the other hand, when checking does occur, Algol 4 checks that each sub­

script lies within its proper bounds, and not just that the effective ad­

dress be in the array. 

Algol 3 and Algol 4 both have code optimizing facilities. However, the 

Q option in Algol 3 is a cruel joke on the programmer by the implementer. 

According to the manual, it will cause incorrect code to be generated: 

"If a call within a for loop changes the value of a variable accessible 

to both procedure and for loop and tha~ variable is not an actual para­

meter of the procedure, then subscript expressions in the for loop 

which depend on the variable will be evaluated incorrectly •.. " 

(p. 2-15, Algol 3 Reference Manual). 

As if the job of a programmer were not difficult enough, as if bugs were not 

persistent enough, that we have to have a compiler that introduces more of 

them! 

Algol 4 appears not to have this defect in the optimization. 

3. ARITHMETIC 

The hardware of the CDC Cyber is notorious for the poor quality of its 

arithmetic. It provides no innnediate warning of overflow, underflow, or 

serious loss of significance, and "instead yields infinite, indefinite, or 

nonsensical values and allows computation to continue. Such undetected faults 

can seriously impair the reliability of numerical results. 

It must be granted that only a finite subset of all numbers can be 

represented on a computer. Operations cannot always be performed exactly, 

since their exact values may not belong to this finite subset. Nonetheless, 

it is reasonable to require a number of properties to hold on the operations 

as implemented by the hardware. For example, one might require: 

(I) If the exact result of an operation on specific operands is 
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exactly representable on the machine, then a ·representation of that exact 

result must be produced by the machine operation. 

(2) If the mathematically exa_ct operation is monotonically increasing 

(decreasing) over some range, then the implementation shall not be decreas­

ing (increasing) over that range. 

(3) If there is no reasonable approximation to the exact result avail­

able, an error will be signalled in an effective manner. 

Further conditions, and some discussion on their necessity, have been 

described by Kuki [II]. Such properties are, in fact, more important than 

that the computed values be "close" to the true values. Many iterative 

algorithms do not require high precision, but will fail if one of these re­

quirements (such as monotonicity) is not satisfied. 

The arithmetic on the CDC Cyber fails even the first of these require­

ments. What is even more amazing, it fails to satisfy it on integer arith­

metic! The machine ostensibly provides 60-bit integers, 59 bits and a sign 

bit. It uses one's-complement arithmetic; there are therefore two represen­

tations for zero, a +O and a -0. Correct fixed point addition and subtrac­

tion operators are provided (except for overflow), but multiplication fails 

"f h d d 248 · d" · · · · i t e pro uct excee s . No error in ication is provided; the answer is 

instead just wrong. There is no fixed point divide instruction; floating 

point division must be used instead, followed by truncation to integer. 
. . . h 1 f . 1 . h 248 Division t us a so ai son integers greater tan • 

Floating-point addition and subtraction produce an unnormalized result, 

which can be separately normalized by a normalize instruction. This implies 

that under some conditions the last (significant) bit of a computed value 

is irretrievably lost. 

The Cyber appears to satisfy the second requirement except when capacity 

constraints such as the above are exceeded, but does not satisfy the third 

one properly. Depending on the operations performed, one may get a nonsensical 

result or a special value "infinity" upon overflow. In some cases, special 

"indefinite" values can be produced.If the result is nonsensical, computation 

can merrily continue, combining nonsense to beget more nonsense. If the result 

is infinite, an error interrupt is not signalled by hardware until an attempt 

is made to use the infinite value as an operand. Production of infinite or 

indefinite values is perhaps tolerable, since it is at least possible to see 

afterward that something has gone wrong, though it may no longer be easy to 

find out where. But getting nonsensical answers without warning, as happens 

when a fixed point multiplication goes out of range, is really inexcusable. 
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For reasonable reliability, a programming language implementation on 

the Cyber must find ways of compensating for these deficiencies. The results 

must be correct, not merely rapidly.computed. Unfortunately, proper software 

compensation for these hardware faults is prohibitively expensive. The most 

that is usually done is to post warnings in manuals as to the limitations 

of the implemented arithmetic. 

The reasons for the various code sequences generated by the Pascal 

compiler are discussed in [13] by Wirth. The serious user of the CDC 6600 

is strongly advised to read this paper, because its "understanding may 

prevent him from certain pitfalls which are 1nherent in the use of the 

CDC 6600". 

We have evaluated a number of expressions on the various implementa­

tions and had the results printed. Deviations from mathematically exact 

results may therefore result from inaccuracies in calculation,comparison, 

or printing. 

The results are summarized in the following table. We have used a 

number of abbreviations: 

0 = 0.000 OOEO 

O' = 0.000 OOE-295 

K = 3.13151306251402E-294 

K' = 3.1315130625140E-294 

K" = 3.131513062514E-294 

-:r = 1.56575653125702E-294 
if I = 1.5657565312570E-294 

= 1.000 OOE + 0 

= . 1000 OOE + 

- C = .999999999999996E + 0 

- e:' = .99999999999999E + 0 

= 9.9999999999999E -

I - E II = .9999999999999E + 0 

(I -
2 

C) = .999999999999993E + 0 
-976 

p = 2 
-975 

q = 2 

C = cos(O) 
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In general, the number of significant digits printed has been ignored in 

reporting these results. In the case of Pascal, Algol 60, and Algol 68, the 

default number provided by the language was used; for Fortran an explicit 

format was given. 

"q" is the smallest power of two which all the systems concerned 

could distinguish form zero. "p" is the next smaller power of two. As one 

can see, it is sometimes distinguishable from zero and sometimes not. 

Worse, properties such as 

p # 0 implies 

and 

p # 0 implies 

appear to fail! With one system, we even have 

p # 0, but 2 * p # O! 

If such properties were used in proving the correctness of a program, 

the programmer might be in for a rude surprise. Similar peculiarities arise 

with numbers near to one. 

It should be noted that Pascal provides no double precision arithmetic. 



21 

Extended 
Pascal Algol 3 Algol 4 Algol 68 Fortran MNF 

q K' K' K K' K" 

q = 0 F F F F F 

* q K' K' K K' K" 

( 1 *q) = 0 F F F F F 

p O' 1T' 1T O' 0 0 

p = 0 F F F F F F 

* p 0 0 0 0 0 0 

( 1 *p) = 0 T T T T T T 

2 * p 0 0 0 0 0 K 

(2*p) = 0 T T T T T F 

p + p K' K' K K' K K 

(p+p) = 0 F F F F F F 

* (p+p) K' K' K K' K K 

* (p+p) = 0 F F F F F F 

C 1 - € II 1 - E: 1 - E: 

C = F T T F T T 

C * C 1 - E:' ( 1-e: )2 1 - E:' (1 ·- e:)2 

C * C = F F F F F T 

4. DOCUMENTATION 

There must exist precise and readable documents describing the lan­

guage and the implementation. There must be a rigorous definition of the 

language for reference, and there must be introductions for beginners. The 

implementation manuals must clearly describe the interface with the operat­

ing system, restrictions, extensions, and other deviations from the stan-
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<lard language, and implementation decisions relating language features to 

the machine. All information necessary for use must be in the manual, and 

the user must not have to experiment to determine facts about language 

features. The documentation must be readily available, whether this be 

through bookstores or manufacturers' representatives. 

4.1. Pascal 

There is a good user's manual and defining report [l]. It appears to 

correspond closely to the implementation on the Cyber, and clearly distin­

guishes between the Standard Pascal language and implementation quirks. It 

is on sale to the public through normal channels. 

It is usually clear and explicit, except for a few guilty secrets. 

Several violations of run-time security are mentioned in this paper in 

the section on "Reliability", but the manual nowhere mentions that the lan­

guage misuse that leads to such insecurity is indeed unlawful. Apparently 

it hopes that failing to mention an unchecked restriction will prevent 

users from running into it by accident. 

The discussion of separate compilation in the Pascal user's manual 

can only be called inadequate. A few hints are given, and the bright 

thinker who is familiar with the CDC Cyber and the way things work there 

is then left to puzzle it out himself. 

[13] is essential if one wishes to know the limitations of the arith­

metic as implemented. It is unfortunate that these limitations are not 

clearly presented in chapter 13 of the Pascal user manual, which describes 

peculiarites of the Pascal 6000-3.4 implementation. 

4.2. Algol 68 

The documentation available at present is not extensive. The defining 

Report is an utterly precise definition of the language (except for its 

errors), but it is intended for language specialists, such as implementers, 

and it is not readily comprehensible to the ordinary user. A number of in­

troductions to the language have sprung up, such as [4,12,20,21]; it is 

expected that more will follow. 

The present CDC documentation describes the deviations from the stan-
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dard language, and gives information about m.atters such as separate compilation, 

input/output, extra standard identifiers, and control cards. It is not 

always clear, and occasionally appears to suffer from excessive brevity. 

4.3. Fortran 

A ridiculously large number of textbooks on Fortran are available. 

Most of them describe dialects of Fortran without mentioning that they are 

in fact dialects. Few of them mention that there is a Fortran standard 

and fewer yet indicate which features are standard. 

There exists a readable book describing the standard which contains 

a reprint of the standard [10]. 

4.4. Algol 60 

The CDC documentation for Algol 3 and for Algol 4 consists of manuals 

containing 

a reprint of the Algol 60 Report [5], with inserts in a different 

type face describing changes made to the language, and giving fur­

ther details on machine-dependent matters. 

a reprint of the ACM (Knuth) input/output proposal [14], again with 

inserts. 

a description of the various control cards involved, with explana­

tion. 

- an incomplete list of error messages. 

- a description of the internal run-time organization, with bit maps 

for the various code words used. 

a description of the main processes involved in compilation. 

In addition, many readable textbooks on Algol 60 exist, and some can 

usually be found in any technical bookstore. 

5. EXPRESSIVE POWER 

"Expressive power" 1.s the most important (and most qualitative) 

aspect of programming language design. It refers to the interaction between 
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the language, good patterns of thought, and the domain of application. It 

is slowly becoming clear that one's programming languages determine one's 

patterns of thought, limit one's ability to see elegant methods of solving 

problems, and limit the useful generality and flexibility of one's programs. 

In general linguistics, the effect of language on thought is very difficult 

to distinguish from the effect of thought on language. This is different 

from computer linguistics for several reasons. First, a programming language 

is a relatively static entity, and does not change whenever a programmer 

discovers a new programming concept. A natural language usually responds 

instantly by acquiring a new word. Second, the class of programming language 

users is enormously larger than the class of language designers; a program­

mer has much less influence on his programming language than a speaker has 

on the natural language spoken in his circle of friends. 

We shall examine expressive power from the viewpoint of structured 

programming'and general purpose languages. 

A programming language must be able to express the structure of pro­

grams written in it. The structure must be visible in the program, and not 

merely hidden in the mind of the programmer. 

"General purpose" will be understood in the following sense. It must 

be possible to adapt the programming language to various purposes, perhaps 

by the definition of procedures and data types or by the choice of variable 

names. A large program usually contains collections of primitive routines 

that implement basic operations on those special kinds of objects that the 

program deals with. Such a collection of primitive routines in effect de­

fines a specialized dialect of the programming language for the problem at 

hand. It is necessary to be able to build such specialized dialects onto a 

general-purpose language. There are many possible dialects for many dif­

ferent applications. Nonetheless, it is possible to distinguish some 

"general purpose" features. These are features which occur in many dif­

ferent dialects, or which are necessary tools for constructing dialects. 

A general purpose language must possess such features. The language de -

signer should keep them down to a small, easily understood set. Because, 

ultimately, all operations are carried out on a computer, machine opera­

tions common to many computers are usually included in general-purpose lan­

guages. 
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It is not necessary, from the viewpoint of expressive power, that the 

features provided be easy to implement. It is important that they be easy 

to use and have simple properties •. Many implementers unnecessarily compli­

cate the properties of the primitiye concepts of their language by propa­

gating machine-dependent patterns of thought upwards. This can cause much 

agony to a progrannner who finds himself required to think on two levels of 

abstraction at once - that of his dialect, and that of the machine hardware. 

These machine-dependent aspects often involve capacity constraints - limits 

on the size of a program, on the number of blocks or identifiers, and so 

forth. It is extremely important that there be no such hard limits. Such 

limits are usually imposed because an implementation has chosen fixed 

size tables or has chosen to place certain information in main storage, 

which is limited incapacity. It is important that all such limits be soft. 

Other implementation techniques should be invoked automatically when the 

limits are exceeded. Excess table information can be placed on disk or 

extended core storage, excess object code can be handled by overlay tech­

niques, etc. This will probably influence efficiency, but not (directly) 

possibility. The price can very well be worth paying if it makes it 

unnecessary to confusingly and perhaps catastrophically maim a program in 

order to make it fit after a restriction has been encountered. 

5.1. Pascal 

At first sight, Pascal seems to be singularly free of the barnacles 

usually found encrusted on a progrannning language. Further inquiry, how­

ever, leads one to conclude that the ragged collections of extra features 

that other languages bear have been replaced by ragged and inconvenient 

restrictions. 

The most important restriction in Pascal is that the sizes of all 

arrays are determined at compile time. It is therefore impossible to write 

many programs efficiently and clearly in such a way that they are indepen­

dent of the amount of data to be processed. The only way to maintain a 

program library of, say, numerical routines is to keep it in source form. 

To use a routine in the library, the user must make a copy of the source 
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code, tinker with the array bounds, and include it in his own program. If 

he wishes to call the library procedure several times, giving it arrays of 

different sizes, he must include multiple copies of the procedure, each 

with a separate name and a separate array size. In this respect, Pascal 

more restrictive than even Fortran, which at least permits a subroutine 

be told by its caller what the size of an array argument is. Needless to 

say, algorithms which rely on a procedure that recursively calls itself 

for subarrays or smaller arrays than the original parameters can not be 

cleanly expressed in Pascal. 

1.S 

to 

It is possible to parameterize array sizes at compile time, using a 

manifest constant. If this is declared once, its name can thereafter be 

used in array declarations, and the compiler will find the appropriate 

actual size at compile time. This makes it possible to localize the de­

pendency of a program on array sizes. Unfortunately, expressions such as 

N + I, where N is a manifest constant, or even 3 + I are not allowed as 

array bounds. 

There are a host of restrictions on parameters and values yielded by 

procedures. One can divide values into two classes: "normal" values, and 

"second rate" values. Normal values are those which fit into one word on 

the CDC Cyber 73 (so much for machine independence), and second-rate values 

are those which do not. In the Pascal Report, when one reads through the 

various rules and restrictions, one finds that the second-rate values are 

records and arrays. There may be some sense in making such a distinction 

between elementary and compound values. On the other hand, Pascal presumably 

does not have double precision arithmetic because double precision values 

would have to be elementary but do not fit into a single machine word. 

By experimenting with the compiler one discovers that the type alpha, 

which is a packed array of characters, can often be used as if it were 

elementary after all! It does fit into a single word on the Cyber. 

With the "normal" values, one cc>.n do anything one pleases. One can 

pass them to procedures as parameters, and one can return them as values. 

One cannot do this uith the "second-rate" values. As an example of the 

elegance of Pascal's data structures, the Pascal manual shows how complex 

numbers can be represented as records containing two real numbers each. 

It is clear, since Pascal does not rave complex numbers built in, that one 
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cannot use the usual operations+,-,*, and/ on them, and procedures 

must be written. At this point the manual forgets about the example and 

goes on to other matters. One would expect to have to write functions add, 

subtract, multiply, and divide to perform arithmetic, so as to be able to 

write an expression 

add (multiply (a, b), multiply (c, d)) 

instead of a* b + c * d. Unfortunately, (and here comes the catch) these 

procedures cannot be written either, since they would ~ave to deliver sec­

cond-rate values as function values. 

It is not clear what the language or the programmer gains from such 

inconvenience. It cannot be efficiency, since the programmer who needs these 

facilities is now required to go to complex circumlocutions to express 

what might have been simple. Since the compiler can easily distinguish be­

tween single-word values and multiple-word values at compile time, the 

nonuser of multiple-worc1 values should not need to suffer inefficiency for 

a feature he does not use. 

"Power sets" are provided as one of the means of constructing new 

types from old. Given any scalar type (except real, which is a kludge), 

one can construct its power-set type, whose values are sets of values of 

the original type. This is a very clean concept of wide generality. Unfor­

tunately, power sets are classed as normal values and must therefore fit 

within one CDC machine word. This, in turn, makes it quite clear that the 

purpose of introducing power sets was not to make available a clean and 

elegant concept for program construction, but to provide access to the 

underlying hardware bit manipulation. A power set of characters, for ex­

ample, would seem to provide an elegant way of classifying characters .. 

Instead, it is useless, because the character set contains 64 characters, 

and not 59. (Power sets are actually restricted to 59 bits instead of to 60 

to avoid having to distinguish between positive and negative zero.) 

In general, it does not pay in language design to place implementation 

restrictions to prevent certain "inefficient" features, if this forces the 

progrannner who needs them to go to even more inefficient circumlocutions 

to compensate. The only time that such a restriction can be excused is if 

the unrestricted feature would cause significant costs to nonusers. 
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Pascal does provide something resembling Cobol and PL/I style record­

directed input-output. A file consists of elements of some. single data 

type; another file may have another. data type. This type may be a record 

type, and it may be an array type. Each input or output operation transfers 

one value of the specified type, without formatting or conversion. Unlike 

Cobol, Pascal does not use the Record Manager. 

Special kludges are provided to graft page and line structure onto 

character files, and to provide a small amount of formatting on output. 

Unlike Cobol and PL/I, Pascal does not provide any types for decimal arith­

metic, and therefore the record structure cannot be used to achieve for­

matting. 

Here are some stupid restrictions: 

Power sets may have only 59 elements. 

These 59 elements must each be such that ord(element) is between 0 

and 58, inclusive. 

Strings may be compared only if their length is less than 10 or a 

multiple of 10. 

Only the first 10 characters of an identifier are significant. 

5.2. Algol 68 

The expressive power of Algol 68 is adequate for normal, and much 

abnormal, programming. It obtains this power from a reasonably well-chosen 

set of primitive concepts that can be combined in an extremely free manner. 

Restrictions have been placed on combinations that might be considered 

meaningless or dangerous, but no restrictions_ of concept have arisen from 

machine-dependent considerations. 

Here are some of the primitive facilities it provides: 

- basic data types - integer, real, character, boolean, bits, bytes. 

Integers, real numbers, bits, and bytes can each be of various 

"lengths", corresponding to various precisions that may be avail­

able on real machines. 

- compound data types - structures (like Pascal records), arrays with 

bounds determined at run-time, pointers, procedures, and discrimi­

nated unions. 



- a "heap" discipline of storage allocation, as well as a roore con­

ventional block-structured stack. The heap is garbage-collected. 

- the ability to define new data types in terms of old ones. 

- the ability to redefine most ordinary operators, and to define new 

ones (the example of complex arithmetic in Pascal can be done pro-
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. 68 h ' f . h b 1 "+" " " perly in Algol , even tote point o using t e sym o s , - , 

"*", and"/" to denote the operations. On the other hand, Algol 68 

already provides complex arithmetic, so the exercise, in this case, 

is academic). 

- parallel processing. 

- formatted, unformatted, and binary input/output. 

The syntax and semantics for control structures are slightly better 

than in Algol 60 and Pascal. The most notable feature is the presence of 

"closing words", such as od at the end of a loop, and fiat the end of a 

conditional clause. These extras enable pairs of words such as do - od 
and if - fi to be used as brackets, and eliminate the vast majority of 

begins and ends present in Algol 60 and Pascal. The result is a more read­

able program. It is always clear in a syntactically correct program that a 

fi terminates a conditional clause; it is not always clear in Algol 60 

which heEin s~ould be paired with any given end. The presence of different 

kinds of brackets makes visual matching easier. 

The expressive power of Algol 68, taken as a whole, must be regarded 

as clearly superior to Fortran, Algol 60, and Pascal. However, there are 

deficiencies. 

There is no true record input/ouput, as pioneered in Cobol and propa· 

gated in PL/I, and to some measure placed into Pascal. With true record in­

put/output, the programmer specifies exactly how an input/output record should 

appear on the file, and a single input or output statement suffices to 

read the entire record into a group of variables. The layout of the record 

inside the machine is the same as that on the file - the formatting speci­

fication specifies how the variables are to be placed and accessed in main 

store, and not how information is transformed during input/output. Even 

with binary transput in Algol 68, it may be necessary to remap information, 

possibly rearranging it in a different order than that in which it resides 

in main store. Mixing character data and binary data on an Algol 68 file 
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is ,-., dubitable matter; it is standard practic·e in Cobol and PL/I. 

According to the Algol 68 Report, parallel processing is available. 

A programmer may divide his calculations among several independent parallel 

processes, which may even be run on separate CPU's. These processes may 

synchronize their occasional communications by means of special synchroni­

zation operators. Because of valid technical reasons connected with gar­

bage collection and the Cyber operating systems, the CDC implementation 

does not provide true parallel processing. The facility therefore does not 

aid one in speeding up the work by harnessing more CPU's; it does aid in 

expressing algorithms clearly that require several independent parallel 

computations. The CDC implementation is nonetheless in compliance with the 

letter of the Report on this matter. 

"Flexible" arrays constitute a seductive feature that is quite useless 

in practice. Algol 68 provides two kinds of arrays - "flexible" and "in­

flexible". The size of an inflexible array variable is fixed (at run time) 

when the variable is created. After an inflexible array variable is creat­

ed, it always retains its own constant size. It is of course still possible 

to construct other array variables of different sizes if this is desired 

(perhaps when a block is re-entered). The size of a 11 flexible 11 array vari­

able is not fixed when the variable. is created, but can change anytime 

that a new array is assigned to the array variable. The array variable will 

change its size only when an entire array is assigned to it; however, any 

attempt to assign to an individual element or group of elements will be 

checked against the array bounds in the usual way. It is a common miscon­

ception that a new element can be inserted into a flexible array simply 

by assigning a value to a previously non-exisGent element. This is not so. 

In practice, flexible arrays are nearly useless, and they could probably 

be left out of the language with little loss. 

Formatted input/output in Algol 68 is an incredibly complex subsystem which 

the casual user is advised to stay away from. It operates in the same style as 

the CDC Algol 60 formatting. In most cases, the desired results can be ob­

tained much more easily, more efficiently, and more clearly by using un­

formatted input/output and the separate routines whole, fixed, and float 

provided by the language. 
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5.3. Fortran 

In comparison with modern pro$ramm.ing languages, Fortran must be con­

sidered woefully lacking in expressive power. Its essential form was fixed 

in the 1950's, a!l~ despi_te cha"!lges~ it is still essentially the same lan­

gt;~ie as then conceived. 

Fortran is seriously lacking in convenient control and data structures, 

and it is difficult to break a program into parts, since the peculiarities 

of COMMON storage make the use of global variables difficult and hazardous. 

Subprograms may not call themselves or each 6ther recursively. This makes 

many algorithms quite difficult to code. 

Fortran was intended for programs involving simple repetitive numeri­

cal calculations,especially those involving matrices of fixed size. Rela­

tive to the state of programming language technology in the early and mid­

dle fifties, Fortran was a reasonably well-built product. Attempts to use 

Fortran for complicated problems or outside of its intended application 

area often lead to significant inefficiency and obscurity. 

On the other hand, CDC has extended Fortran to make available many of 

the facilities of the Cyber hardware and of the Scope operating system. 

Fortran is therefore often used for very small problems primarily involv­

ing communication with the operating system. 

The following is a list of various restrictions found in the Fortran 

Extended Reference Manual: 

At most 10 characters may be stored in an integer. 

At most 7 characters in an identifier (A.N.S. Fortran specifies 6). 

DO loop indices must be less than 131072. 

DO loops may be nested 50 deep. 

At most 70 characters in a stop string. 

At most 63 parameters to a subprogram or statement function. 

At most 3 subscripts for an array. 

At most 131071 words in a COMMON block. 

Maximum field width is 131071. 

At most 6 characters in a file name. 

At most 50 files. 

Record length at most 131071. 

At most 125 labelled connnon blocks. 

Unit numbers must be between I and 99 inclusive. 
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5.4. Algol 60 

The expressive power of Algol 60 must be rated good, within limits. 

The control structure is adequate, and lends itself to comprehensible code. 

The data structures are adequate for numerical processes involving arrays 

(unlike Pascal, whose compile-time array bounds present severe difficulties). 

On the other hand, if the structure of the data does not fit well into 

arrays of numbers, the data structures of Algol 68 and Pascal must be judged 

superior. 

Algol 60 has a "dangling else" difficulty. It is possible to leave 

out the else part of a conditional if it is empty. In certain nested condi-

tional statements, such as if then if then .•. else ••. , this 

causes ambiguity, since it is not clear which if the else belongs with. 

Algol 60 makes an arbitrary choice here; it may not be that intended by the 

progrannner. 

We now present two short lists of stupid restrictions. They were ob­

tained by paging through the Algol 3 and 4 reference manuals. The absence 

of a restriction from one of the two lists does not mean that the feature 

is not restricted, but simply that the restriction was not found in the 

manual. Restrictions which seem especially dangerous have been marked with 

asterisks. 

The first list pertains to Algol 3: 

Maximum length of identifiers: 256. 

* At most 2383 different identifiers in a compilation (but the identi-

fier table is usually full earlier). 

Maximum depth of block nesting: 32. 

At most 63 parameters for a procedure. 

At most 20 subscripts for an array. 

* At most 511 segments of object code of 512 words each. 

Breakpoints cannot be used in segmented mode. 

Nesting of blocks and compound statements at most 96. 

* At most 50 separately compiled procedures in segmented mode. 

At most 131072 words of object code per compilation. 

Maximum replication (in a format): 262143. 

At most 24 z's and d's before the exponent part in a number format. 

At most 4 z's and d's in the exponent ~art. 



At most 136 characters in a format item after replication. 

At most 30 variables in a call to FORMAT. 

R-L > 21 for the right and left margins of an output file. 
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It might be worth mentioning ~hat the segmented mode is not available 

at SARA. Algol 3's segmented execution works only on certain obsolete 

versions of the Scope operating system. However, the current system has a 

loader with a different method of performing segmented loading of relocatable 

object code, which has nothing at all to do with the Algol 3 "segmented" 

option. 

The following restrictions apply to Algol 4: · 

Maximum length of identifiers: 63. 

* At most 4000 different identifiers, although the table is usually full 

earlier. 

* At most 253 blocks. 

Static block nesting at most 63. 

At most 63 parameters per procedure. 

* At most 131072 words of object code per compilation. 

At most 63 subscripts for an array. 

Maximum replicator: 262143. 

At most 24 z's and d's before the exponent part in a number format. 

At most 4 z's and d's in the exponent part. 

At most 136 characters in a format item after replication. 

6. LARGE PROGRAMS 

When large programs are written, or when small programs become large 

(they inevitably do), serious logistic problems arise. The first difficul­

ty is that the program itself becomes difficult to understand because of 

its complexity. At still greater size, it becomes difficult merely to deal 

with the amounts of text involved. 

To deal with these problems, programming languages and their imple­

mentations have adopted various small-scale and large-scale structuring 

facilities and shoehorns. These may involve: 

- pleasant control structures, such as the if-then-else of Algol 60 

and loops. 
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- the ability to break a program into modules, such as procedures or 

groups of declarations. 

- the ability to use textual layout to indicate program structure 

(e.g. indentation and pagination). 

- the ability to restrict the scopes of names to those portions of 

the text where they are meaningful. 

- the ability to code large modules containing smaller modules. 

- the ability to compile modules separately, and to combine them 

subsequently. 

- the ability to manage complicated file structures containing 

source and object code in an intelligent manner. 

- shoehorns (such as overlay mechanisms) to handle object code or 

data which is too large for the address space of the machine. 

Alas, any program management facilities that make vital use of the 

file system on direct-access secondary storage have to be considered use­

less at SARA, because of the policy of scratching files after four days 

of inactivity. 

It is important to notice that it should be possible to fragment 

programs into separate compilations without having planned it beforehand, 

and without extensive rewriting. An unexpected split may become necessary 

through slow and gradual growth of an originally small program, or through 

importing programs from a larger installation. 

The use of separate compilation and other shoehorn mechanisms should 

not exclude the use of other implementation facilities, such as run-time 

debugging tools. It is precisely when a program is large that one needs 

all the debugging aids one can get. 

6.1. Pascal 

Two methods are available for managing large programs. 

First, procedures can be declared within one another, subject to the 

usual nested name scope rules. Unfortunately, this block structure does 

not permit declarations within begin-end blocks. The only "blocks" for 

deterrdning the scopes of names are procedures. Declarations can be made 

within each procedure, and are then valid throughout the procedure. Such 



nested procedure structure is adequate up to a fairly large program. It 

tends to break down only when the program itself becomes physically hard 

to manage. 

Secondly, groups of procedures can be compiled separately. It is 

possible (but not easy) to surmise from the Pascal manual how this is to 

be done. The main program, which calls the procedures, is provided with 

duI!lllly declarations of the separately com~iled procedures. Such a dunnny 

declaration is just like a normal declaration except that the body is 

replaced by the singly reserved word extern or Fortran. If Fortran is 

coded, the separately compiled program is called using Fortran linkage 

conventions (and it can thus be a Fortran routine; see the section on 

escape for complaints), and if extern is used Pascal linkage conventions 

are used. 
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To compile the external routines, a program is compiled with the "E+" 

option. The object code for each procedure will then have an entry 

point name consisting of the first seven letters of the procedure name. 

If the dummy procedure in the calling program has the same name, contac·t 

is achieved. 

When one attempts to use this mechanism, however, one begins to feel 

like a sneak thief, relying on his wits and good luck to keep things from 

going wrong. 

First, the E+ option should normally not be used if one is not in­

terested in separate compilation. If two procedures happen to have the 

same name (which is legal it they are in different ranges) they will get 

the same entry point, and the system loader will refuse to load more than 

one of them. All calls will be routed to this single one, regardless of 

the program block structure. 

Thus (as hinted in the manual) one must use the E- option, whereupon 

"a unique symbol is generated by the compiler" for each procedure. This 

would seem clear. However, if one is concerned with separate compilation, 

new phenomena occur. If one compiles a group of procedures separately, 

one might expect that one can use E+ for some of them to make them avail­

able publicly, and E- for others in the group that are to be available 

internally (perhaps one of them is a local procedure within a larger 

public one). However, as soon as one attempts this, the compiler begins 
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to generate nonunique names, contrary to promise. They are unique within 

the separate compilation, true, but they are the same "unique" external 

names generated by the compiler in the compilation of the main program 

and in every other separate compilation. 

The only way to avoid this is, despite the apparent block structure 

of Pascal, to give each procedure in the separate compilation a unique 

name and specify E+ for all of them. No checks are provided by the com­

piler for duplicate external names. It is even possible to confuse pro­

cedures in disjoint blocks, with different static nesting depths. Further­

more, none of these names may be of the form "PRCdddd" (where each "d" 

stands for a digit) (these are the names Pascal generates). 

There is no check on parameter compatibility between separately com­

piled procedures. The separate compilation method can, with care, be used 

in building large programs. However, it is virtually useless when building 

program libraries because of the array-bound restrictions. As lamented in 

the section "Expressive power", all Pascal array bounds are fixed at com­

pile time. It is therefore impossible to precompile procedures for program 

libraries for array manipulation without knowing what the users' array 

sizes are going to be (before the users have even thought of the problem 

they are going to use the library for). 

The Pascal compiler is capable of compiling itself. It itself is a 

Pascal program of some 5,000 lines. 

o.2. Algol 68 

The CDC Algol 68 compiler has already been used on a program of 2083 

lines. To compile this program takes 83 seconds of CPU time on the CYBER 73 

The orogram was not divided into senarate compilations, although this would 

have been possible. No difficulties were encountered that would indicate 

any inherent capacity limits of the compiler. The compiler used approxi­

mately 77000 (octal) words of memory during compilation. Since the compiler 

is new, there is little experience with larger programs. 

The separate comoilation mechanism seems quite adequate for the devel­

opment of some kinds of single large programs, but there are drawbacks and 

there is no adequate program library facility. In order to break a program 
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into parts to enable separate compilation, one must make a "user nrelude". 

A user prelude much resembles a program, except that a special marker is 

placed in its outer range to indicate the placement of a not-yet-provided 

"main program". In addition, procedures in procedure declarations in the 

outer range may be replaced by place markers in another way. The compila­

tion of this prelude produces two files, an object file and a symbol table. 

The missing procedures and the missing main program may then be com­

piled separately as often as desired, if the symbol table is provided to 

the compiler as well. This symbol table provides information about global 

indicators. Full unrestricted use of global identifiers is possible, and 

type-checking occurs at compile time. 

It is also possible to compile a further prelude in the hole provided 

for the main program. 

This method is quite acce~table as a means for dividing a large pro­

gram into pieces; it is not, however, adequate as a means for maintaining 

program libraries. Each such library will have to be compiled as a prelude. 

If they are compiled independently, they will cause the same storage to be 

allocated for their global variables; if they are compiled together they 

cannot be used separately. 

It is to be hoped that CDC will eventually provide a proner library 

facility for their Algol 68 compiler. 

6.3. Fortran 

The only nrogram structuring tools provided by Fortran are the DO-loop, 

the subprogram, the logical IF statement (for one-statement conditionals), 

the arithmetic statement functions, and the COMMON block. These have to be 

considered inadequate. Other small-scale tools are needed for conditional 

execution and for other kinds of loops. Algorithms involving these methods 

have to be encoded in a cumbersome way involving GO TO statements. If more 

than three or four such constructions are used in a single subprogram, it 

tends to become difficult to understand, and more subprograms must be used. 

This in itself would not be so serious if adequate communication were 

possible between clearly identified grou~s of subprograms. Unfortunately, 

there is no means of grouning subprograms together into larger modules, 



38 

and the only means of sharing values between· subprograms is to use para­

meter lists or COMMON blocks. Both mechanisms are highly error-prone. 

Since subprograms can be compiled completely independently of each other, 

no checks are performed to ensure type compatibility. If two subprograms 

do not agree as to the types or contents of parameters or COMMON blocks, 

the result is usually not an error message but complete chaos or wrong 

answers. 

When a subprogram reaches about 200 lines, its internal structuring 

tends to break down; by the time a program reaches about 2000 lines, the 

hierarchy in its subprograms has usually become unclear. 

Fortran Extended supports the same overlay mechanism as does Algol 4. 

6.4. Algol 60 

The conditional and loop control mechanisms and compound statements 

enable programs of 50 to 100 lines to be easily readable. Block structure 

and procedures extend this to 500-3000 line programs. 

After this, no further syntactic aids are provided. 

To enable truly gigantic programs to be compiled, separate compila­

tion and libraries are available. To enable them to be executed, Algol 3 

provides segmented execution, (but not with current versions of the Scope 

operating system, which can accomplish it independently of the Algol 3 

"segmented" option), and Algol 4 provides overlays. 

Unfortunately, separate compilation is more restrictive than in 

Fortran. In particular, 

- only procedures may be compiled separately. 

- there is no facility (such as Fortran's CoIIllllon storage) to enable 

separately compiled procedures to share coIIllllon global variables. 

Parameters can very quickly become unwieldy, and moreover, there 

may be only 63 of them. 

- in Algol 3, numbers, not names, must be assigned to separately 

compiled procedures, and they must be referred to by number. This 

is unwieldy. Algol 4 permits names. 
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7. COMMUNICATION WITH THE OPERATING ENVIRONMENT 

For a programming language to be useful for general use, it must have 

a decent operating-system interface. This means that those options in the 

operating system which might reasonably be expected to match with language 

features must indeed interact harmoniously. The most important areas in­

volve fault detection, input/output, and interactiveness. 

The implementation must cause errors detected by the operating system 

to be signalled to the progranrrner in a reasonable way. It must not give up 

on error recovery and readable nost-mortem activity simply because the 

operating system has detected the error instead of the language implemen­

tation. 

The implementation should be capable of accepting and producing the 

various kinds of files that the operating system sunports. On the Cyber 73 

under Scope 3.4, these supported file types are implemented by the "Record 

Manager".In addition, SARA provides an encoding for paper tapes as se­

quences of 12-bit characters. (Since line length is not always clearly 

defined on paper tape, it may be difficult to use the Record Manager for 

such files.) Furthermore, another form of 12-bit character files is recog­

nized by some of the line printers as representing a character set of more 

than 64 characters. The Record Manager understands 6-bit characters only; 

it can therefore be difficult to recognize 12-bit characters. Most of the 

languages discussed here do not. 

The implementation must be able to produce object code that is suit­

able for interactive use. Many implementations have a buffering problem: 

in a question-answer sequence between a user and the program, some systems 

require the user to provide the next line of input before giving him the 

response to his previous line. Furthermore, an interactive system often 

has difficulty with programs using large amounts of memory and exhibiting 

poor localitv of reference. Since the CDC Cyber has no paging mechanism, 
- j 

poor locality of reference cannot be a problem; on the other hand, large 

memory consumption can significantly reduce system performance. At SARA, 

there is a limit of 60000 (octal) words of storage for an interactive 

nrogram. 
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7.1. Pascal 

All Pascal input/output files must reside on disk. Card reader and 

printer files are acceptable because the operating system, Scope, auto­

matically spools them via disk. Magnetic tape files are not available to 

Pascal programs; they must first be copied to disk (and afterwards copied 

back) using a system utility. This causes the length of every ta~e record 

to be rounded upwards to a multiple of sixty bits, which may be tolerable 

on input, but probably not on output. 

Pascal does not use the Record Manager. In one blow this eliminates 

most of the file types accepted by most other systems on the Cyber. Mag­

netic tapes would probably have been available if the Record Manager had 

been used: the problem is one of buffer length, and the Record Manager is 

willing to manage its own buffer length correctly. 

The Pascal implementation recognizes two kinds of files: "character 

files" and "other files". Character files have the type "fiZe of character";. 

the other files have the type "file of othertype", where "othertype" stands 

for some ?ther type. Conceptually, Pascal sees these files as sequences of 

values of the given type, without arbitrary boundaries. On the other hand, 

character files are used for character input-output from the card reader 

and printer, and this imposes further structure on them. Now and then, be­

tween otherwise normal characters, an "end of line" or an "end of page" 

may occur. On output files for the line printer, the operating system re­

quires the program to prefix a carriage-control character to each line to 

indicate whether it is to appear at the top of the page. This responsibi­

lity is faithfully handed over to the programmer by Pascal, and thenforses 

him to treat print files differently from all other kinds of character 

files. (End of line already makes character files different from other 

files.) There is an obscure procedure called "newpage" mentioned in the 

Pascal manual, which is supposed to cause further output to begin on a new 

page; it is, however, not clear how it interacts with the programmer­

supplied carriage-control character. 

It is possible to get Pascal to read every bit of a disk file. To do 

this, one declares the file to be of a type which fills entire words even­

ly, for example: 



file !!i. packed array [0 .• 59] 9f_ booi 

file !!I packed array [0 •• 4] 9f_ 0 .. 4095 
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Other types are of course possible (subject to a number of peculiarities), 

and the choice of type can be used to provide some elementary structure 

for the file. The first type mentioned above will give easy access to in­

dividual bits; whereas the second provides twelve-bit bytes. 

On the other hand, not everything reasonable will work. "file 9f_ set 

of 0 .• 59", for example, is rejected by the compiler because it exceeds the 

maximum number of elements in a set (0 .. 58 is allowed, but does not have the 

desired meaning). "file of packed array [1..15] !!I 0 .. 255, which one might 

consider to indicate 15 bytes of eight bits packed into every two machine 

words (most 9-track tape files look like this) will not work, although 

it is proper Pascal. Pascal refuses to split an element of a packed array 

across a word boundary, and insists on leaving unused bits of padding in 

each word and using an extra word fort.he fifteenth byte. This completely 

defeats the purpose of the exercise. It may be said in defence of .Pascal 

that its data structures were never intended to be used in this Cobol-like 

manner. 

So-cal led !!connected" f,iles, which are "connected" to time-sharing 

terminals, suffer from a one-line lag. Pascal makes the end-of-file test 

available to the user before he reads the next (possible nonexistent)line. 

This is very reasonable. Unfortunately, Scope refuses to give end-of-file 

information until an attempt is made to read the possibly nonexistent line. 

Pascal therefore reads an extra line ahead internally. This is not objection­

able in batch, but it is intolerable during time-sharing. It would have been 

better to wait for the programmer to issue the end-of-file test before read­

ing ahead internally. 

7.2. Algol 68 

Algol 68 uses the Record Manager for its input and output, but it does 

not support all normal Record Manager file or record types. Only those kinds 

of files explicitly mentioned in the Algol 68 users' manual are supported. 

This appears to be because the Algol 68 implementation may move the 

input/output buffers during garbage collection, and then update the Record 
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Manager's tables accordingly. It appears, however, that the Record Manager 

occasionally maintains pointers other than those advertised in its docu­

mentation. The Algol 68 run-time system has not been debugged to handle 

input/output situations outside its specifications. Other record types may 

therefore work anyway if the Record Manager deals with them in a sufficient­

ly uniform manner; this is not guaranteed. 

The Algol 68 compiler and its object programs can both be run inter­

actively under Intercom. The field length required fits into that tolerated 

at the SARA installations; however, since it requires more storage than the 

default field length, an EFL (Extend Field Length) must be given. 

There is a peculiar incompatibility between the Algol 68 input/output 

system in the Report and that implemented. In most places where a program­

mer might expect to open a file by using open (according to the Report), 

the implementation requires that establish must be used instead. This is 

to inform the Algol 68 input/output of the maximum number of characters 

per line, the maximum number of lines per page, and the maximum number of 

pages. These must be provided by establish the first time that a file is 

accessed from a run of an Algol 68 program; thereafter the Algol 68 system 

remembers the data, and an open is required instead. 

The Algol 68 system attempts to recover from operating-system-detected 

faults and to produce the normal diagnostic traceback anyway. Occasionally 

(such as when the escape mechanism is used to call a Fortran routine) it 

may fail to do this, presumably because of temporary non-adherence to its 

internal conventions. 

7.3. Fortran 

When working on the CDC Cyber, one rapidly gets the feeling that CDC 

in some way gives a preferred status to Fortran. New system features re­

ceive kludges for use with Fortran more often than with other languages. 

The other languages and compilers are then adapted to fit the Fortran con­

ventions. Implementers of other languages therefore often provide a special 

interface for calling Fortran subroutines. Ttis interface can fai1 if the 

Fortran subroutine attempts any input, since its input-output subsystem 

may not have been initialized. 
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Fortran, when calling subroutines, uses a Return Jump instruction, 

after placing the address of the parameter list in register Al (and thus 

the address of the first parameter. in register XI). The return Jump in­

struction places the return address in the called program itself, and 

transfers control to the word after the word in which it places the re­

turn address. This calling sequence is the closest thing there is in Scope 

to a standard subroutine linkage convention. (It is, of course, useless 

for recursion; therefore, it is not used by languages which do permit re­

cursion). 

Fortran accepts the normal operating-system file structures, as de­

fined by the Record Manager. It does not support the so-called 12-bit PE 

files for printing on an extended character-set printer. In fact, it uses 

the 6-bit 63-character display code that is normal in Scope. 

CDC Fortran formatted input/output is as slow as it is in most Fortran 

systems. Extra nonstandard BUFFER IN and BUFFER OUT statements have been 

provided to enable progrannners who are willing to do bit-fiddling to 

perform relatively fast and raw input and output. 

The Record Manager has a special interface that enables its routines 

to be called directly using the Fortran linkage conventions. This is none­

theless somewhat awkward, since Fortran does not have convenient data­

structuring facilities for describing the various system tables. Routines 

are therefore provided to fill in the various tables, given their addres­

ses and strings describing the desired fields. Since storage allocation 

is left to the programmer, and is not checked by the system, the resulting 

communication can be tricky and insecure. Among the four languages we are 

comparing here, however, Fortran is the only one who provides complete 

access to the Record Manager, although it does it by completely bypassing 

the rest of its input/output system. 

7.4. Algol 60 

Algol 3 and Algol 4 have different interfaces with the operating sys­

tem. They will therefore be discussed separately. 
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7.4.1. Algol 3 

Algol 3 does not use the Record Manager. It processes Z-type files, 

with or without carriage control, which are the kinds of files that Scope 

uses for card reader, terminal, and printer input/ output. Algol 3 provides 

a version of the so-called Knuth (or ACM) proposal, which handles format­

ting and provides procedures for input/output. In practice, The Algol 3 

input/output system is abysmally slow, taking up unreasonable amounts of 

CPU time. It is not clear whether this is a fault of the implementation or 

of the specifications. 

No random-access input/output is provided. The only thing remotely 

resembling it is a pair of procedures WRITE ECS and READ ECS for copying 

data between main store and ECS (extended core store). 

When an Algol 3 program is used with a terminal, entire lines are 

transmitted as soon as they are complete. There is a one-line delay. 

Algol 3 provides a segmentation mechanism for programs which would 

otherwise be too large for main memory. If this segmentation option is 

requested, object code is divided into segments, each of at most 512 words. 

There may be at most 511 segments. A segmented object program must be run 

under the control of the Algol 3 compiler, and then segments are loaded 

into memory as required, and removed again when the storage is required 

for other segments or for the run-time stack. This segmented mode is, 

however, not available under current versions of the Scope operating 

system. Instead, a segmenting option is provided by the normal relocating 

loader which has nothing to do with Algol 3's "segmented" option. 

Since Algol 3 programs refer to files by channel numbers, some mechan­

ism 1.s needed to indicate the correspondence between channel numbers and 

files. This is the "channel card". An Algol 3 program requires one for 

each input/output file it uses (except for a standard input channel 60 

for INPUT, and a standard output channel 61 for OUTPUT). The channel 

control cards do not form part of the Scope control card record; they are 

instead read from INPUT by the Algol 60 run-time system. For each channel 

used one must specify the channel number and its file name. One may also 

specify other parameters such as the maximum line width, the maximum page 

length, the number of spaces between numbers in standard format, the length 
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of physical records, buffering, whether the channel is to be used with the 

procedures GET ARRAY or PUT ARRAY, and the density and parity for magnetic 

tape. 

Some of these parameters are parameters which can also be specified or 

respecified by the program itself. 

7.4.2. Algol 4 

Algol 4 uses the Record Manager for its input and output, and is there­

fore directly compatible with more of the recording modes available under 

Scope than Algol 3. Unfortunately, the channel card is still required to­

specify the correspondence between logical unit (channel) number and file 

names, but the other options are quite different. Most of the options on 

the channel card have been replaced by corresponding options on the Record 

Manager's file card, which does appear with the other control cards and 

not on the INPUT file. It is unfortunate that Algol 4 did not see fit to 

abolish the channel card entirely, although it does provide limited 

compatibity with Algol 3. The correspondence between channel number and 

file name could have been accomplished by the Record Manager LFN (logical 

file name) parameter. The other necessary leftovers are the length of a page 

(which the Algol 60 program can specify anew anyway), the presence or absence 

of carriage control characters, and the file type (word-addressible, indexed 

sequential, or sequential). It seems strange that a matter such as file type 

is not specified in the program but is left to a mandatory channel card at 

execution; if a user specifies it wrongly, the program would not be likely 

to function at all reasonably. It is not likely that the programmer would 

fail to know the file type when writing the program, because he must use 

different procedures for performing operations on files of different types. 

The Algol 4 input/output system is also abysmally slow. 

Algol 4 provides random access input/output in the form of word­

addressible and indexed-sequential files. Unfortunately, the keys for the 

indexed-sequential file are restricted to integers. 

Algol 4 provides an explicit planned overlay mechanism for segmenting 

large programs. Comments in various blocks identify the blocks as being 

overlays. Overlays form a tree structure with a nesting depth of 2. 
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8. ESCAPE 

Sometimes it is necessary for a programmer to escape from the program­

ming language in order to code a small part of the program in an other lan­

guage. This is usually done 

- in order to improve efficiency, 

- in order to use subroutines already written in another language, or 

- in order to gain access to system facilities not supported by the 

run-time system of the language. 

It is clear that the practicality of a language implementation for 

large projects depends in part on the nature of the escape facilities, and 

on the frequency with which the escape facilities are necessary. 

Such a method of escape is usually done by providing a mechanism for 

calling assembly language routines. Systems providing this usually adver­

tise this as calling Fortran routines, in order to convince former Fortran 

users that they will not have to rewrite all their old subroutine libraries. 

An assembler language program then masquerades as a Fortran program by using 

the same linkage conventions. 

Some compilers for high-level languages provide another scheme for 

escape. They permit the programmer to specify the machine instructions to 

be generated for each use of an operator or procedure when he declares the 

operator or procedure. This method is especially good for operations that 

can be implemented by a few machine instructions in line. 

We also have the following questions: 

- Does the implementation use normal operating-system interfaces for 

calling other subroutines? 

- Does the operating system suggest any normal subroutine-linkage con­

vention? If not, one can hardly blame the language. 

- Can the programmer establish communication with the operating system 

concerning matters not or poorly built into the implementation? 

- Does the language support the standard operating-system overlay 

mechanism? 
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8.1. Pascal 

Pascal makes it possible to call subprograms written in Fortran. Such 

a Fortran subprogram must have a procedure declaration in the Pascal pro­

gram, except: that the procedure body is replaced by the reserved word 

"Fortran". It is of course possible to write the called subroutine in 

any language that supports Fortran linkage conventions appropriately, 

including Compass, the assembly language. 

Unfortunately, there are some restrictions. If the Fortran subroutine 

expects a function or subroutine as parameter, then it must be provided a 

Fortran function or subroutine as parameter. It is not possible to provide 

a Pascal function; Pascal and Fortran have different linkage conventions, 

and neither is willing to provide the necessary interface for procedure 

parameters. One cannot even get around this by writing the alien procedure 

in Compass; the Pascal compiler perform a compile-time check to enforce 

the restriction. 

If one has a Fortran routine which accepts an array of adjustable di­

mensions, as in 

SUBROUTINE X(N, A(N)) 

DIMENSION A(N), 

one must still declare it with fixed dimensions in the Pascal program. This 

is a direct consequence of the general Pascal restriction on array bounds, 

and it makes it impossible to call that one Fortran routine with Pascal 

arrays of different sizes from within one Pascal program. In this respect 

Pascal is actually less powerful than Fortr~n. 

There is one other peculiarity with arrays as parameters. In Fortran, 

arrays are stored with the first subscript varying most rapidly; in Pascal, 

the last subscript varies most rapidly. Arrays are thus effectively trans­

posed when Pascal hands them over to Fortran: A Pascal 6 by 4 array will 

be accepted in Fortran as a 4 by 6 array (transposed). 

There are also peculiarities with complex numbers, since Pascal does 

not support them. In Pascal, a complex number must be represented as a 

record with two fields. Since it is a record, if it is passed as parameter 

it must be as a variable, and it cannot be yielded as a function value. 

This rather severely restricts the use of Fortran complex number library 

functions. 
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8.2. Algol 68 

The Algol 68 compiler provides two means of escape. 

The first is the declaration of a separately compiled routine which is 

written in another language. To call such a routine, it is necessary to pro­

vide the Algol 68 compiler with its entry-point name and the entry-point 

name of an interface module. An interface module is already provided for 

calling Fortran. 

It is of course also possible to write Compass routines that directly 

conform to the Algol 68 linkage conventions. 

The second means of escape is the so-called "ICF macros". The letters 

"ICF" stand for "Intermediate Code File". In the standard prelude, which 

defines all the basic Algol 68 operations and was itself compiled by the 

Algol 68 compiler, these ICF macros are used to provide the semantics for 

operations such as addition, and shift left. These ICF instructions re­

semble machine instructions, but do not specify registers or storage al­

location. Each ICF instruction can be considered to produce a value when 

executed, and the programmer is provided with a means to specify which 

values are to be used in which later instructions. When a program contains 

a primitive operation which has been defined by an ICF macro, the ICF macro 

is expanded in-line into an intermediate code file. A later scan provides 

reasonably efficient storage and register assignment. 

ICF macros can be used by the programmer instead of escape via sepa­

rate compilation, although they appear to be intended as an internal 

compiler mechanism. If the prograrrnner does this, he can in theory obtain codE 

as efficient as that which the compiler itself produces, but there are draw­

backs. Misuse of ICF code can impair reliability and error detection. The 

ICF macros are mentioned but not documented in the versions·of the 

CDC Reference manual we have seen so far. 

One serious problem with escaping to other programming languages is 

that Algol 68 takes over storage management within the entire user main 

storage area. It performs its own stack and heap administration within this 

area~ Communicating with programs written in other languages (such as Pascal 

and Algol 60) which also manage storage within the user main storage area 

may therefore be practically impossible. The various run-time systems will 

engage in a storage-allocation war. 
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8.3. Fortran 

Escape to machine and operating-system facilities other than those 

provided or consumed by Fortran is done by writing Compass subroutines 

with Fortran linkage conventions. Although no means are provided for call­

ing Algol 60, Algol 68, or Pascal programs from Fortran, convenient means 

are nonetheless provided for calling Fortran programs from Algol 4, Algol 

68, and Pascal programs. It is not possible to pass foreign-language pro­

cedures as parameters to Fortran subprograms and expect to be able to call 

them from the Fortran subprograms. 

It is possible to bypass the Fortran input/output system and call the 

Record Manager directly from a Fortran program. 

Fortran does support the operating-system standard overlay mechanism 

(as does Algol 4). 

8 4. Algol 60 

The Algol 3 separate-compilation facility can be used to escape 

from the Algol 3 system, by writing Compass programs that match the Algol 3 

procedure calling conventions. These conventions are complicated. There 

exist Compass macros to reduce the. effort, but these are also complicated. 

An entire chapter of the Algol 3 manual is dedicated to describing them. 

Since parameter passing and procedure calling are seriously expensive 

features in Algol 3, simply recoding a small routine in Compass is not 

likely to increase its efficiency significantly. 

When the escape facilities are used with Algol 3, it is usually to 

perform input/output of an unusual nature or-to gain efficiency. For example, 

KUMAL 3, a program library for numerical mathematics available from the 

;-1athematical Centre, Amsterdam, uses Compass routines for elementary row 

c,perations on matrices. To use the Record Manager, it is necessary to use 

the escape mechanism. Algol 3 itself does not. 

In Algol 4, the situation is different. Algol 4 provides a mechanism 

to specify that separately compiled routines use Fortran linkage conven­

tions. Since the Record Manager and other system components are often writ­

ten to match this linkage convention, escape to such other systems can be 

done more conveniently than from Algol 3. It is not necessary to write a 
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Compass conversion routine to translate Algol calls to Fortran calls; the 

Algol 4 compiler takes it on itself to use the proper linkage conventions. 

The linkage conventions for Algol 3 and Algol 4 are incompatible. 

9. COSTS 

It is necessary that one be able to afford the language one uses. In 

some ways, the presence of a feature may make language use more expensive. 

since work may be necessary to implement it. Contrariwise, the implementer, 

with the hard machine at his disposal, may well do a better job than the 

language user who has only the programming language. Suc.h a feature, if 

present and used, may reduce the costs from what they were without it. If 

one needs dynamic arrays, one needs dynamic arrays, no matter what kind of 

triangular hashed fixed-length tables the language may provide. If the lan­

guage does not provide dynamic arrays, the programmer must construct his 

own for his own dialect, and he may do much worse than the implementer 

could have, because he does not have proper tools at his disposal. 

It is therefore not possible to divide language features into ''ex­

pensive" and "cheap" i-·ithout considering the purposes for which they are 

used. Costs must be judged by the user, relative to his budget, his problem, 

and his experience. 

It is of interest to indicate the cost imposed by various kinds of 

language use .. These costs often arise from the overall quality of the im­

plementation, instead of from any specific feature. It is also possible, 

however, that the demands imposed on the implementation by a specific 

feature increase the costs of other features, even when that specific 

feature is not used in a particular program. Garbage collection is a good 

example of this. The presence of a garbage collector for storage manage­

ment in Algol 68 means that the rest of the Algol 68 system has to take 

appropriate precautions to ensure that the garbage collector can interpret 

storage layouts. The compiler cannot tell whether the garbage collector will 

actually be invoked by any particular program; therefore these precautions 

are always taken. 

Four programs were written to provide information about costs: 

Ackermann's function, to test recursion. 

Cyclotomic polynomials, as a typical program. 

Various input/output tests. 



Feature timing, to give an approximate idea of the costs of various 

statements of the language. 
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Not all the timing measurements are equally reliable. A change of 

operating system occurred while the measurements were being made, and the 

clock on the new system (Scope 3.4.4) was much less accurate than the old 

one (Scope 3.4.1). The new clock has a tendency to remain stuck on a single 

value during many calls to the clock routine, and then to spontaneously 

jump to a new value by a step of between two to fifty-eight milliseconds 

(actual measurements!). There is a resulting uncertainty of this order of 

magnitude in every timing measurement performed under the new system. The 

only way around this is to increase the time the program takes to run, 

possibly by using a loop that executes it a hundred times, but this can get 

excessively expensive. (Since the above was written, SARA has replaced the 

3.4.4 clock routine with the older, more reliable one. Clock jumps are now 

back down to one or two milliseconds). 

All of the languages measured here use the same operating-system 

clock. They vary in their documentation, however, as to their claims to 

precisio~Algol 68 claims to produce microsecond accuracy, Pascal and 

Algol 60 claim millisecond accuracy and Fortran claims centisecond accuracy. 

Readers wishing to see additional statistics should consult [15] and 

[ I 6]. 

The following abbreviations are used throughout this section: 

ch 

7ch 

full subscript checking, or, in Pascal, range limit checking. 

No subscript checking. 

pch Partial checking, i.e., it is checked that final array­

element addresses are within the array, but the individual 

subscripts are not checked against their individual bounds. 

In addition, compiler options are occasionally mentioned in the form 

in which they must be specified to the compiler. 

9. I Ackermann's Function 

Ackennann' s function has been proposed by Wichmann [ 23, 24 J as a benchmark 

for systems programi'ling languages. Its calculation by a straightforward algo­

rithm involves much procedure calling and comparison, but little computa-
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tion. The function is computed by a recursive procedure coded according to 

the following algorithm: 

Ack (m,n) = 

if ID 0 then n + I 

elif n = 0 then Ack (m-1,l) 

else Ack (m-1, Ack(m,n-1)) 

fi 

Since Fortran does not provide recursion, it was left out of this test. The 

time per (recursive) call of the function and the number of words placed 

on the stack for each call were measured, the latter by examining core 

dumps. 

average 
system options time per call words 

(µs) per call 

Pascal ch 33 10 

Algol 3 ch 478 21 

Algol 4 ch 488 18 

, ch , O= 2 , x= 0 ? 17 

Algol 68 ch 63 7 

,ch,z 62 7 

These times were computed by measuring the time taken to compute 

Ack(J,i) for various values of i, and dividing by the (known) number of 

recursive calls this implies. The value of i was raised sufficiently high 

to force convergence of the average time; the above average times are 

precise to the microsecond. 

9.2 A hundred and fifty cyclotomic polynomials 

The various compilers were tested using a real program, at least one 

version of which had been originally written for a purpose other than that 
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of testing the compiler. The program choosen was one which symbolically com­

putes and prints out the first one hundred and fifty cyclotomic polyno­

mials. Various measurements were made on jobs compiling and running this 

program in various languages: 

Job cost: the cost of the entire job, as judged by the SARA accounting 

routines. 

Job CP: the amount of CP (central processor) time taken by the job. 

compile CP: the CP time taken to compile the program, if reported by the 

compiler. 

execution CP: the CP time taken to execute the program, as measured by 

the program itself. 

calculation CP: the CP time taken to calculate the coefficients of the 150 

cyclotomic polynomials. 

IO CP: the CP time taken to format and print the answers. 

compile FL: the amount of main storage required by the compiler to compile 

the program, if reported by the compiler. 

The following abbreviations are used in the table: 

ch full subscript checking. 

pch partial subscript checking: the final array element must be 

within the array, but each subscript is not checked indiv­

idually. 

7ch no subscript checking. 

exec execution. 

calc calculation. 

The options actually given to the compiler to achieve various forms 

of checking are shown as well. 
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compiler options check'. job job compile exec calc I /0 ~ompile 
cost CP CP CP CP CP FL 

Pascal T+ ch 3.85 I 4. I 65 I. I 84 12.514 9.781 2.733 41412 
T- 7ch 2.91 I0'.465 1. 070 8.934 6.290 2.644 41412 

A68 ch 18. 18 61.259 6.125 51.813 31.870 19.943 53600 
z ch 17.97 60.566 7.096 50.237 30.807 19.425 53600 
A 7ch 13.09 43,244 5.907 34.046 15.446 18.600 53600 
A,Z 7ch 14.25 46.978 7.625 35.946 16.254 19.692 53600 

Algol 3 pch 16.54 56.576 3. 272 52.512 31.466 21.046 
0 pch 17.03 58.032 4.708 52.516 30.900 21.616 
N 7ch 15.31 52.892 2.994 49.112 28.134 20.978 

O,N 7ch 15.25 52.426 4.094 47.544 26.527 21.017 

Algol 4 c=3[X=O] ch 30.28 87.841 3.806 8 I. 296 57.889 23.407 
[X=O] 7ch 16.20 46.165 3.837 39. 487 1 7. I 7 4 22.313 

O= I ,X=O 7ch 16.20 45.968 4.016 39.413 17.784 21.629 
0=2,X=O 7ch 15.35 43.340 4.069 36.435 15.288 21. 207 

FTN OPT=O,D pch 17.94 45.583 1.910 40.888 36.470 4.418 
OPT=O 7ch 6.45 13.740 1. 393 IO. 169 6.351 3.818 
OPT=l 7ch 5.30 1 1 • 036 I. 564 7.333 3.785 3.548 
OPT=2 7ch 5.25 11. I 33 2.156 6.784 3. I 37 3.647 

MNF D ch 5.82 16.304 0.898 12.410 9. I 21 3.289 45200 
lch 4.48 12.306 o. 596 8.414 5.444 2.970 45000 

Algol 4 X=O,c=3,0=0 ch 30.38 88.223 3.872 8 I . 72 I 5 7 • 808 23.913 
X= 1, O=O 7ch 18.31 52.462 3.990 45.979 23.593 22.386 
X=O, O=O 7ch 1 6. 1 9 46. 153 4.062 39.447 17.302 22. 145 
X=I 0=2 7ch 15.33 43.416 4.176 36.741 14.916 2 I. 825 
X=O,c=3,0=2 ch ( I. 59) (3. 208) compiler crash in pass 5 



The MNF compiler appears to perform subscript checking remarkably 

rapidly. This is because of a trick. If a subscript is a do-loop index, 

the subscript check may be performed on the limits of the do loop instead 

of on the subscript itself. The check is thus performed twice, once each 

on the initial and final limits in the do-loop, and it is not performed 

within the loop at all. This check will catch invalid programs as well as 

the more usual check on the subscript itself, and is much more efficient. 

Unfortunately, it will catch some valid programs as well, such as the 

following one: 

DIMENSION A(I 0) 

DO 3 I= 1, 50 
IF (I.GT.8) GO TO 6 
•.••• A (I) 

3 CONTINUE 

6 
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The versions of the program in the different languages are not iden­

tical, since the languages offer different possibilities. To make a fair 

judgement of a language, it is of course necessary to write the program in 

such a way that it fits the language. The language differences have effects 

on efficiency and on style; it is worthwhile studying the programs them­

selves as well as the execution times. The most notable differences are 

discussed below. 

9.2.1. Algol 68 

Polynomials are represented as arrays of ~coefficients by values of 

the mode pol, which is defined by 

mode pol = flex [0:0] int. 

This enables us to treat polynomials as single objects, and makes it pos­

sible to use only as much storage for a polynomial as is indicated by its 

degree. Individual coefficients can be altered in a polynomial without the 

cross-talk that might result if the mode ref [ J int had been used in-

stead. The operators"*" and "over" have been defined to operate on poly­

nomials, so that the resulting expressions involving polynomial arithme­

tic will have the same form as normal arithmetic expressions. 
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In order to determine good points at which to break output lines, the 

standard procedure char number was used. This procedure reports the current 

position on an output line. If the. program has come too near to the end of 

the line for another term of a polynomial to fit, it changes to a new line 

with pleasing indentation. 



'BEGIN. #CYCLOTOMISCHE POLYNOMEN# 

'REAL' Pl:=CLOCK,P2,P3,P4; 
"MODE' 'POL'= 'FLEX' (0:0) 'INT'; 
'INT. K=l50; 
[l:K] 'POL' PHI; 
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'PROC. F= ( . INT. N) 'REF. 'POL.: # X**N - 1 # 
'BEGIN' 'HEAP' [0:N] 'INT' FX; 

FX[N]:=l;FX[0]:=-l; 
'FoR· I 'To' N-1 ·co· FX[I):=0 ·oo·; 
FX 

'END. # OF F # ; 

•op' *=( 'REF' 'POL' A,B) 'REF' 'POL': 
'BEGIN' 'INT' N='ups' A,M= 0 UPB' B; 

'HEAP' [0:M+N] 'INT' D; 

# A*B t 

°FOR' I 'FROM' 0 'To' M+N 'Do' D[I):=0 ·oo'; 

'FOR' I 'FROM' N 'sy' -1 ·To' 0 LWB 0 A 
·co, °FOR. J °FROM, M 'sy, -1 'TO, 'LWB. B 

·co· D[I+J]+:=A[I)*B[J] 'OD' 
·oD ·; 

D 
'END , # OF * I ; 

'op' ·ovER 0 =('REF' 'POL' A,B) 0 REF 0 'POL': 
0 BEGIN° 'INT' M:='ups' B; 

'WHILE' B[M]=0 'co~ M-:=l ·oo·; 
0 INT 0 J= 0 UPB 0 A - M; 
0 HEAP. (0 :J] 0 INT, D; 

#A/Bi 

'FOR' I ·.FROM" 0 ·To· J 'Do" D(I]:=0 ·oo·; 

°FOR 0 N 'FROM" ·ups· A 0 BY 0 -1 °T0° M 
·co· 0 IF 0 A[N]/=0 

0 THEN° 0 IF 0 A[N] 0 MOD 0 B[M]/=0 

·oo ·; 
D 

0 END 0 # OF 'OVER"# 

0 THEN° PRINT("DELING GAAT NIET OP") 
°FI.; 
0 INT° K=A[N] 0 0VER' B[M] , J=N-M; 
°FOR 0 I 'FROM" J 'TO' N 
·co· A[I]-:=K*B[I-J] ·oo·; 
D[J]:=k 
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'END. 

'FOR' I 'To· K 
·oo· 'POL' G;G[0]:=l; 

'FOR' J 'To' I 'OVER' 2 
·oo. 'IF' I 'MOD' J=0 

'THEN' G:=G*PHI[J] 
'FI' 

·oo ·; 
PHI[I]:=F(I) ·ovER' G 

·oo ·; 

P2:=CLOCK; 

P3:=CLOCK; 

PRINT((NEWLINE,"DE EERSTE ",WHOLE(K,0) ," CYCLOTOMISCHE ", 
"POLYNOMEN",NEWLINE)); 

• FOR , I • TO • K 
·oo • 

·oo ·; 

PRINT((NEWLINE,NEWLINE,"PHI",WHOLE(I,0) ," ")); 
'FOR' J 'FROM' 0 ·To· ·ups· PHI[I] 
·oo· 'IF' PHI[I] [J]/=0 

'THEN' 'IF' CHAR NUMBER(STAND OUT)>l28 
'THEN, PRINT ( (NEWLINE," ")) 
'FI.; 
PRINT ( (WHOLE (PHI [I] [J] , 0) , "X", WHOLE (J, 0) , n ") ) 

P4:=CLOCK; 

·To' 5 ·oo. PRINT (NEWLINE) ·oo.; 
PRINT(("REKENTIJD: ",FIXED(P2-Pl,0,6) ," SEC.",NEWLINE)); 
PRINT(("UITVOERTIJD: ",FIXED(P4-P3,0,6) ," SEC.",NEWLINE)); 
PRINT(("TOTALE TIJD: ",FIXED(P4-Pl,0~6) ," SEC.",NEWLINE)) 



PHI103 lX0 
1X22 
1X42 
1X62 
1X82 
1Xl02 

PHI104 1X0 

PHI105 1X0 
1X32 

PHI106 1X0 
1X20 
-1X39 

PHI107 1X0 
1X22 
1X42 
1X62 
1X82 
1Xl02 

PHI108 1X0 

lXl 1X2 lXJ 1X4 lXS lX6 1X7 1X8 1X9 1Xl0 lXll 1X12 1Xl3 1Xl4 lXlS 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21 
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41 
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 1X61 
1X63 1X64 1X65 1X66 1X67 lX68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81 
1X83 1X84 1X85 lX86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01 

-1X4 1X8 -1Xl2 1X16 -1X20 1X24 -1X28 1X32 -1X36 1X40 -1X44 1X48 

lXl 1X2 -lXS -1X6 -2X7 -1X8 -1X9 1Xl2 lXlJ 1X14 lXlS 1Xl6 1Xl7 -1X20 -1X22 -1X24 -1X26 -1X28 lXJl 
lX33 1X34 lXJS 1X36 -1X39 -1X40 -2X41 -1X42 -1X43 1X46 1X47 1X48 

-lXl 1X2 -1X3 1X4 -lXS 1X6 -1X7 1X8 -1X9 1Xl0 -lXll 1X12 -1X13 1Xl4 -lXlS 1Xl6 -1Xl7 1Xl8 -1X19 
-1X21 1X22 -1X23 1X24 -1X25 1X26 -1X27 1X28 -1X29 1X30 -1X31 1X32 -1X33 1X34 -lXJS 1X36 -1X37 1X38 

1X40 -1X41 1X42 -1X43 1X44 -1X45 1X46 -1X47 1X48 -1X49 1X50 -lXSl 1XS2 

lXl 1X2 · lXJ 1X4 lXS 1X6 1X7 1X8 1X9 1X10 lXll 1X12 1X13 1X14 lXlS 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21 
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30. lXJl 1X32 lXJJ 1X34 lXJS 1X36 1X37 1X38 1X39 1X40 1X41 
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 lXSJ 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 1X61 
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 . 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81 
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01 

1Xl03 1Xl04 1Xl05 1Xl06 

-1Xl8 1X36 

V, 
1.0 
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9.2.2. Pascal 

Pascal does not permit variable array bounds, and it was therefore 

necessary to use the maximum size of polynomials, 150, for all arrays 

which might contain polynomials. This, of course, causes a significant 

waste of storage. The rather large array of results is thereby doubled 

in size. The number of array elements actually used by a polynomial has 

been placed in element -1 of each array. This limit is used during multi­

plication and division to save execution time. 

It is not possible to redefine operators in Pascal, and therefore pro­

cedures were written instead to perform mutiplication and division. These 

procedures produce their computed results in parameters, because Pascal pro­

hibits yielding an array as function value. 

A number of global variables have been declared. We would have prefer­

red to declare these variables locally in the blocks where they are used, 

but Pascal does not permit this. The variable declarations have therefore 

been moved to the procedure headings. 

Pascal does not provide a procedure to determine the current position 

in an output line. It was therefore necessary to maintain an independent 

counter to determine this. Producing output with reasonable layout was 

therefore marginally more difficult than in Algol 68. 



PROGRAM CYCLPOL(OUTPUT); 
(*ST-*) 

(*CYCLOTOMISCHE POLYNOMEN*) 

VAR I,Pl,P2,P3,P4:INTEGER; 

PROCEDURE HOOFDPROGRAMMA; 

CONST K=l50; 
TYPE POL=ARRAY(-1 •. K] OF INTEGER; 
VAR I,J,C,H:INTEGER; G,FX:POL; PHI:ARRAY[l •• K] OF POL 

PROCEDURE F(N:INTEGER;VAR P:POL); 
VAR !:INTEGER; 
BEGIN P(-1] :=N;P[0]:=-l;P[N] :=l; 

FOR I:=l TO N-1 DO P[I]:=0 
END ( * OF F *) ; 

PROCEDURE MULPOL(VAR A,B:POL); 
VAR I,J,M,N:INTEGER; 

C:POL; 
BEGIN M:=A(-1] ;N:=B[-1); 

A(-1] :=M+N; 
FOR I:=i TOM DO C[I] :=A[I]; 

FOR I:=0 TO M+N DO A[I):=0; 

FOR I:=0 TOM 
DO FOR J:=0 TON 

DO A[I+J] :=A[I+J]+C[I]*B[J] 

END (* OF MULPOL *) ; 

PROCEDURE DIVPOL(VAR A,B,C:POL); 
VAR M,I,J,KK,N:INTEGER; 
BEGIN M:=B[-1]; 

WHILE B[M]=0 DO M:=M-1; 

J:=A(-1]-M; 
FOR I:=0 TO J DO C[I] :=0; 
c (-1 l : =J; . 
FOR N:=A[-1] DOWNTO M 
DO IF A[N]<>0 

TH.EN BEGIN J: =N-M; 
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(* X**N - 1 *) 

(* A:=A*B *) 

( * C: =A/B *) 

IF A[N] MOD B[M]<>0 
THEN WRITELN(, DELING GAAT NIET OP'); 
KK:=A[N] DIV B(M]; 

END 
END (* OF DIVPOL *) 

FOR I:=N DOWNTO J 
DO A(I]:=A[I]-KK*B[I-J]; 
C[J] :=KK 
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BEGIN FOR I:=l TOK 
DO BEGIN G[-1] :=0;G[0] :=l; 

FOR J:=l TO I DIV 2 
DO IF I MOD J=0 

END; 

THEN MULPOL(G,PHI[J]); 
F(I,FX); 
DIVPOL(FX,G,PHI[I]); 

P2:=CLOCK; 

P3:=CLOCK; 

WRITELN( 'lDE EERSTE ',K:l,, CYCLOTOMISCHE POLYNOMEN') ;WRITELN; 
FOR I:=l TOK 
DO BEGIN WRITELN;WRITELN;WRITE(' PHI',I:l,' '); 

C:=10; 
FOR J:= 0 TO PHI [I] [-1] 
DO IF PHI [I] [J] <>0 

THEN BEGIN IF C>l28 THEN BEGIN WRITELN;C:=10; 

END 
END; 

BEGIN Pl:=CLOCK; 
HOOFDPROGRAMMA; 
P4:=CLOCK; 

END 

FOR I:=l TO 5 DO WRITELN; 

WRITE(' ') 
END; 

WRITE(PHI[I][J]:l,'x',J:l,· '); 
H:=10; 
WHILE J>=H DO BEGIN C:=C+l ;H:=H*l0 END; 
IF PHI [I] [J] <0 THEN C:=C+6 

ELSE C:=C+S 

WRITELN(' REKENTIJD: ·,P2-Pl:6,' MSEC.'); 
WRI'f•ELN(. UITVOERTIJD: ·,P4-P3:6,· MSEC •. ); 
WRITELN ( , TOT ALE TIJD: , , P4-Pl: 6, . MSEC .. ) 
END. 



PHI103 1X0 
1X22 
1X42 
1X62 
1X82 
1Xl02 

PHI104 1X0 

PHI105 1X0 
1X32 

PHI106 1X0 
1X20 
-1X39 

PHI107 1X0 
1X22 
1X42 
1X62 
1X82 
1Xl02 

PHI108 1X0 

lXl 1X2 1X3 1X4 lXS 1X6 1X7 1X8 1X9 1Xl0 lXll 1Xl2 1Xl3 1Xl4 1Xl5 1Xl6' 1Xl7 1Xl8 1Xl9 1X20 1X21 
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41 
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 lX'&l 
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81 
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01 

-1X4 1X8 -1Xl2 1Xl6 -1X20 1X24 -1X28 1X32 -1X36 1X40 -1X44 1X48 

lXl 1X2 -lXS -1X6 -2X7 -1X8 -1X9 1Xl2 1Xl3 1Xl4 lXlS 1Xl6 1Xl7 -1X20 -1X22 -1X24 -1X26 -1X28 1X31 
1X33 1X34 1X35 1X36 -1X39 -1X40 -2X41 -1X42 -1X43 1X46 1X47 1X48 

-lXl 1X2 -1X3 1X4 -lXS 1X6 -1X7 1X8 -1X9 1Xl0 -lXll 1Xl2 -1Xl3 1Xl4 -lXlS 1Xl6 -1Xl7 1Xl8 -1Xl9 
-1X21 1X22 -1X23 1X24 -1X25 1X26 -1X27 1X28 -1X29 1X30 -1X31 1X32 -1X33 1X34 -1X35 1X36 -1X37 1X38 

1X40 -1X41 1X42 -1X43 1X44 -1X45 1X46. -1X47 1X48 -1X49 1X50 -lXSl 1X52 

lXl 1X2 1X3 1X4 lXS 1X6 1X7 lXS 1X9 1Xl0 lXll 1Xl2 1Xl3 1Xl4 1Xl5 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21 
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41 
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 1X55 1X56 1X57 1X58 1X59 1X60 1X61 
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81 
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 -· 1X97 1X98 1X99 1Xl00 1X10l 

1Xl03 1Xl04 1Xl05 1Xl06 

-1Xl8 1X36 

Q'\ 
w 
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9.2.3. Algol 60 

It is impossible to declare new data types or for arrays to have arrays 

as elements in Algol 60. The result is that polynomials have been placed 

as rows in a two-dimensional array. The -1st element of each row once again 

indicates the number of rows in actual use. To give a procedure a specific 

row of this array as parameter, the entire array is handed over, together 

with an integer specifying which row is meant. 

The procedures for multiplication and division must once again yield 

their results in output parameters. 

Unlike in Algol 68 and Pascal, in Algol 60 it is difficult to let the 

field width for printing a number depend on the number, even with "expensive" 

Knuthput. We therefore chose a fixed field width and used it for all 

exponents. The result is that the output is slightly less readable, since 

the "x" is separated from the exponent by spaces. Once more, we have used 

an independent counter to determine the position on the output line. 



"BEGIN" 

11 COMMENT 11 CYCLOTOMISCHE POLYNOMEN 

"INTEGER" K ; 
"REAL" Pl,P2,P3,P4 

Pl := CLOCK 

K := 150 ; 

"BEGIN" 
"INTEGER" I,J,C; 
"INTEGER" "ARRAY" PHI[l:K,-1:K] 
"COMMENT" "CHECKON" PHI ; 

"PROCEDURE" F(N,P) "VALUE" N ; "INTEGER" N 
"COMMENT" X**N - l ; 

"INTEGER" "ARRAY" P 
"COMMENT" "CHECKON" P 

"BEGIN" 
"INTEGER" I ; 
P[-1] := N P[0] := -1 ; P[N] := l ; 
"FOR" I := 1 "STEP" l "UNTIL" N - l "DO" P[I] := 0 

"END" OFF; 

"PROCEDURE" MUL(A,B,T) 
"COMMENT" A:=A*B ; 

"BEGIN" 

"VALUE" T ; "INTEGER" T 

"INTEGER" "ARRAY" A,B 
"COMMENT" "CHECKON" A,B 

"INTEGER" I,J,M,N ; 
"INTEGER" "ARRAY" C[0:A[-l]] 
"COMMENT" "CHECKON" C ; 
M :=A[-1] ; N := B[T,-1] ; 
A[-1] := M + N ; 
"FOR" I:= 0 "STEP" 1 "UNTIL" M "DO" C[I] := A[I] ; 

"FOR" I := 0 "STEP" 1 "UNTIL" M + N "DO" A[I] := 0 ; 

"FOR" I := 0 "STEP" 1 "UNTIL" M 
"DO" "FOR" J := 0 "STEP" 1 "UNTIL" N 

II DO II A [ I + J l : = A [ I + J l + C [ I l * B [ T , J l 

"END" OF MOL; 

"PROCEDURE" DIV(A,B,C,T) 
"COMMENT" C[T, ] :=A/B ; 

"VALUE" T ; "INTEGER" T 

"INTEGER" "ARRAY" A,B,C 
"COMMENT" "CHECKON" A,B,C 

65 
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"BEGIN" 
"INTEGER" M,I,J,KK,N; 
M := B[-1] ; I := 1 ; 
"FOR" I :=I+ 1 "wHILE" B[M] = 0 "DO" M := M - 1 

J := A(-1] - M; 

"FOR" I := 0 "STEP" 1 "UNTIL" J "DO" C [T, I] := 0 ; 
C[T,-1] := J ; 

8 FOR" N :=A(-1) "STEP" -1 "UNTIL" M 
8 DO" "IF" A[N] ·= 0 

"THEN" "BEGIN" 

8 END" OF DIV; 

J := N - M; 
"IF" A[N] // B[M] • B[M] •= A[N] 
"THEN" OUTPUT(61,"(""("DELING GAAT ")", 

"("NIET OP")"")"); 
KK := A[N] // B[M] ; 
"FOR" I := N "STEP" -1 "UNTIL" J 
"DO" A[I] := A[I] - KK * B[I - J]; 

C [T ,J] := KK 
"END" 

"FOR" I := 1 "STEP" 1 "UNTIL" K 
"DO" "BEGIN" 

"INTEGER" "ARRAY" G,FX[-1:I] 
"COMMENT" "CHECKON" G,FX; 
G(-1) := 0 ; G[0] := 1 ; 
"FOR" J := 1 "STEP" 1 "UNTIL" I// 2 
"DO" "IF" I// J * J = I 

"THEN" MUL(G,PHI,J); 

F(I,FX) ; 
DIV(FX,G,PHI,I) 

"END" ; 



P2 :=CLOCK: 

P3 :=CLOCK: 

OUTPOT(61,"(""("DE EERSTE ")",2ZD,"(" CYCLOTOMISCHE ")", 
"("POLYNOMEN")",//")",K): 

"FOR• I := 1 "STEP" 1 "UNTIL" K 
. •oo• "BEGIN" 

P4 :=CLOCK: 

OUTPUT ( 61, 11 ( "/ /, 11 ( H PHI") " 1 2ZD3B 11 ) " , I) : 
C := 10 : 
•FOR" J := 0 "STEP" 1 "UNTIL" PHI[I,-1) 
•oo" "IF" PHI[I,J] ·= 0 

•END" 

"THEN" "BEGIN" 
"IF" C > 129 
"THEN" "BEGIN" 

OUTPUT(61,"("/,9B")"): 
C := 10 

"END" : 
OUTPUT(61,"("+D,"("X")",2ZDB")", 

PH I [ I , J) , J) : 
C := C + 7 

"END" 

OUTPUT(61,"("7/,"("REKENTIJD: ")",ZD.6D,"(" SEC.")"")",P2-Pl): 
OUTPUT(61," ("/," ("UITVOERTIJD: ")" ,ZD.6D," (" SEC.")"")" ,P4-P3): 
OUTPUT(61,"("/,"("TOTALE TIJD: ")",ZD.6D,"(" SEC.")"")",P4-Pl) 

"END" 
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PHI103 

PHI104 

PHI105 

PHI106 

PHI107 

PHI108 

+lX 0 +lX 1 +lX 2 +lX 3 +lX 4 +lX 5 +lX 6 +lX 7 +lX 8 +lX 9 +lX 10 +lX 11 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17 
+lX 18 +lX 19 +lX 20 +lX 21 +lX 22 +lX 23 +lX 24 +lX 25 +lX 26 +lX 27 +lX 28 +lX 29 +lX 30 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35 
+lX 36 +IX 37 +lX 38 +lX 39 +lX 40 +lX 41 +lX 42 +lX 43 +lX 44 +lX 45 +lX 46 +lX 47 +lX 48 +lX 49 +lX 50 +lX 51 +lX 52 +lX 53 
+lX 54 +lX 55 +lX 56 +lX 57 +lX 58 +lX 59 +lX 60 +lX 61 +lX 62 +lX 63 +lX 64 +lX 65 +lX 66 +lX 67 +lX 68 +lX 69 +lX 70 +lX 71 
+IX 72 +lX 73 +lX 74 +lX 75 +lX 76 +lX 77 +lX 78 +lX 79 +lX 80 +lX 81 +lX 82 +lX 83 +lX 84 +lX 85 +lX 86 +lX 87 +lX 88 +lX 89 
+lX 90 +lX 91 +lX 92 +lX 93 +lX 94 +lX 95 +lX 96 +lX 97 +lX 98 +lX 99 +1Xl00 +1Xl01 +1Xl02 

+lX 0 -lX 4 +lX 8 -lX 12 +lX 16 -IX 20 +lX 24 -lX 28 +lX 32 -lX 36 +lX 40 -lX 44 +lX 48 

+lX 0 +lX 1 +lX 2 -lX 5 -lX 6 -2X 7 -lX 8 -lX 9 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17 -lX 20 -lX 22 -lX 24 -lX 26 
-lX 28 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35 +lX 36 -lX 39 -lX 40 -2X 41 -lX 42 -lX 43 +IX 46 +lX 47 +IX 48 

+IX 0 -lX 1 +lX 2 -IX 3 +lX 4 -lX 5 +lX 6 -lX -7 +lX 8 -lX 9 +lX 10 -lx 11 +lX 12 -lX 13 +lX 14 -lx 15 +lX 16 -lx 17 
+lX 18 -lX 19 +lX 20 -IX 21 +lX 22 -lX 23 +lX 24 -lX 25 +IX 26 -lX 27 +lX 28 -lX 29 +lX 30 -lX 31 +lX 32 -lX 33 +lX 34 -IX 35 
+lX 36 -IX 37 +lX 38 -lX 39 +lX 40 -lX 41 +lX 42 -lX 43 +lX 44 -lX 45 +lX 46 -lX 47 +lX 48 -lX 49 +lX 50 -lX 51 +lX 52 

+lX 0 +lX 1 +lX 2 +lX 3 +lX 4 +lX 5 +lX 6 +lX 7 +lX 8 +lX 9 +lX 10 +lX 11 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17 
+IX 18 +lX 19 +lX 20 +lX 21 +IX 22 +lX 23 +lX 24 +lX 25 +lX 26 +lX 27 +lX 28 +lX 29 +lX 30 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35 
+lX 36 +lX 37 +lX 38 +lX 39 +lX 40 +lX 41 +lX 42 +lX 43 +lX 44 +lX 45 +lX 46 +lX 47 +lX 48 +lX 49 +lX 50 +lX 51 +lX 52 +lX 53 
+lX 54 +lX 55 +lX 56 +lX 57 +lX 58 +lX 59 +lX 60 +lX 61 +lX 62 +lX 63 +lX 64 +lX 65 +lX 66 +lX 67 +lX 68 +lX 69 +lX 70 +lX.71 
+lX 72 +lX 73 +lX 74 +lX 75 +lX 76 ,+lX 77 +lX 78 +lX 79 +lX 80 +lX 81 +lX 82 +lX 83 +lX 84 +lX 85 +lX 86 +lX 87 +lX 88 +lX 89 
+lX 90 +lX 91 +lX 92 +lX 93 +lX 94 +lX 95 +lX 96 +lX 97 +lX 98 +lX 99 +1Xl00 +1Xl01 +1Xl02 +1Xl03 +1Xl04 +1Xl05 +1Xl06 

+lX 0 -lX 18 +lX 36 

O'\ 
00 
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9.?..4. Fortran 

As in Algol 60, the polynomials have once more been placed in an array. 

Because all Fortran arrays have a lower bound of 1 instead of -1, array ele­

ments have all been shifted over by two places. The first element of each 

row gives the upper bound of the array elements used. 

Polynomial multiplication and division is once more done in subroutines, 

but this time the language requires array bounds to be passed as parameters, 

in order to use them in DIMENSION statements. In Fortran, it is less easy 

to localize dependency on the number of polynomials computed to one place 

in the program, since each array dimension must be specified as an integral 

constant, and a manifest constant such as Pascal uses is not permitted. 

The routine for producing output is considerably more complicated than 

in the other three languages, since Fortran starts a new line for each out­

put statement. The values to be printed must therefore be selected before­

hand and placed in a buffer, so that an implied DO loop in an output state­

ment can write them all neatly. The repetition mechanisms of the FORMAT 

statement can be used to determine proper line breakage. Field widths are 

constant again; it is as difficult to let the width of a number depend on 

its value as in Algol 60. 
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C$ DEBUG 
C$ ARRAYS 

PROGRAM CYPO (OUTPUT,TAPE 6=0UTPUT) 
C CYCLOTOMISCHE POLYNOMEN 

IMPLICIT INTEGER (A-0). 
COMMON/Ll/P2,P3 
K=l50 
Pl=SECOND (T) 
CALL PROC(K) 
P4=SECOND(T) 
WRITE(6,3R P2-Pl,P4-P3,P4-Pl 

3 FORMAT(S(/) ,* REKENTIJD: *,F9.6,* SEC.*,/,* UITVOERTIJD: *,F9.6,* 
CSEC.*,/,* TOTALE TIJD: *,F9.6,* SEC.*) 

STOP 
-END 

SUBROUTINE PROC(K) 
INTEGER G(l52) ,FX(l52) ,PHI(l50,152) ,COEF(l51) ,POW(l51) 
COMMON/Ll/P2,P3 
Kl=K+2 
DO 50 I=l,K 

G(l)=2 
G(2)=1 
IF (I.EQ.l) GO TO 45 

I2=I/2 
DO 40 J=l,I2 

IF (I/J*J.NE.I) GO TO 40 
CALL MUL(G,PHI,J,K,Kl) 

40 CONTINUE 
45 CALL F(I,FX,Kl) 
50 CALL DIV(FX,G,PHI,I,K,Kl) 

P2=SECOND(T) 

P3=SECOND(T) 
WRITE(6,20) K 

20 FORMAT(*lDE EERSTE *,13,* CYCLOTOMISCHE POLYNOMEN*//) 
DO 62 I=l,K 

Jl=PHI(I,l) 
L=0 
DO 61 J=2,Jl 

IF (PHI(I,J) .EQ. 0) GO TO 61 
L=L+l 
COEF(L)=PHI(I,J) 
POW(L)=J-2 

61 CON'I'INUE 
WRITE(6,60) I, (COEF(J) ,POW(J) ,J=l,L) 

60 FORMAT(lH0,*PHI*,I3,3X,10(18(I2,lHX,I3,lH )/lH ,9X)) 
62 CONTINUE 

RETURN 
END 



SUBROUTINE F(N,P,Kl) 
C X**N - 1 

INTEGER P (Kl) 
P(l)=N+2 
P(2)=-l 
Nl=N+l 
DO 10 I=3,Nl 

10 P(I)=0 
P(N+2)=1 
RETURN 
END 

SUBROUTINE MUL(A,B,T,K,Kl) 
C A:=A*B[T, ] 

INTEGER A,B,T,C 
DIMENSION A(Kl) ,B(K,Kl),C(l52) 
M=A (1) 
N=B(T,l) 
L=M+N-2 
A(l)=L 
DO 70 I=2,M 

70 C(I)=A(I) 
DO 80 I=2,L 

80 A(I)=0 
DO 90 I=2,M 

DO 90 J=2,N 
90 A(I+J-2)=A(I+J-2)+C(I)*B(T,J) 

RETURN 
END 

SUBROUTINE DIV(A,B,C,T,K,Kl) 
C C [T, ] : =A/B 

IMPLICIT INTEGER (A-Z) 
INTEGER A(Kl) ,B(Kl) ,C(K,Kl) 
M=B(l) 

100 IF (B(M) .NE.0) GO TO 110 
M=M-1 
GO TO 100 

110 J=A(l)-M+2 
Al=A(l) 
DO 120 I=2,J 

120 C(T,I)=0 
C(T,l)=J 
DO 130 Nl=M,Al 

N=Al+M-Nl 
IF (A(N) .EQ.0) GO TO 130 

J=N-M+2 
IF (A(N)/B(M)*B(M).NE.A(N)) PRINT 140 

140 FORMAT(* DELING GAAT NIET OP*) 
KK=A(N)/B(M) . . 
DO 150 I=J,N 

150 A(I)=A(I)-KK*B(I-N+M) 
C(T,J)=KK 

130 CONTINUE 
RETURN 
END 
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PH 1103 lX 0 lX 1 lX 2 lX 3 lX 4 lX 5 lX 6 IX 7 lX 8 lX 9 lX 10 lX 11 
lX 18 lX 19 lX 20 lX 21 lX 22 lX 23 lX 24 lX 25 lX 26 IX 27 lX 28 lX 29 
lX 36 lX 37 lX 38 lX 39 lX 40 IX .41 lX 42 lX 43 lX 44 lX 45 lX 46 lX 47 
lX 54 lX 55 lX 56 lX 57 lX 58 IX 59 IX 60 IX 61 IX 62 IX 63 IX 64 IX 65 
lX 72 lX 73 IX 74 IX 75 lX 76 IX 77 lX 78 IX 79 IX 80 lX 81 lX 82 lX 83 
lX 90 lX 91 lX 92 IX 93 IX 94 lX 95 IX 96 lX 97 IX 98 IX 99 1Xl00 1Xl01 

PHI104 lX 0 -lX 4 lX 8 -IX 12 lX 16 -lX 20 lX 24 -IX 28 IX 32 -IX 36 IX 40 -lX 44 

PHI105 lX 0 lX 1 lX 2 -IX 5 -lX 6 -2X 7 -IX 8 -IX 9 lX 12 lX 13 lX 14 lX 15 
-IX 28 lX 31 lX 32 lX 33 lX 34 lX 35 lX 36 -lX 39 -IX 40 -2X 41 -IX 42 -lX 43 

PHI106 IX 0 -IX 1 lX 2 -lX 3 IX 4 -lX 5 lX 6 -IX 7 lX 8 -lX 9 lX 10 -lX 11 
lX 18 -lX 19 lX 20 -IX 21 lX 22 -lX 23 lX 24 -IX 25 lX 26 -IX 27 IX 28 -IX 29 
lX 36 -IX 37 IX 38 -lX 39 lX 40 -IX 41 IX 42 -IX 43 IX 44 -IX 45 IX 46 -IX 47 

PHI107 lX 0 lX 1 lX 2 lX 3 lX 4 lX 5 lX 6 lX 7 lX 8 IX 9 lX 10 lX 11 
lX 18 lX 19 lX 20 lX 21 lX 22 lX 23 lX 24 lX 25 lX 26 lX 27 lX 28 lX 29 
lX 36 lX 37 lX 38 lX 39 lX 40 lX 41 lX 42 lX 43 lX 44 lX 45 lX 46 lX 47 
lX 54 IX 55 lX 56 lX 57 lX 58 lX 59 lX 60 lX 61 lX 62 lX 63 lX 64 lX 65 
lX 72 lX 73 lX 74 lX 75 lX 76 lX 77 lX 78 lX 79 lX 80 lX 81 lX 82 lX 83 
lX 90 lX 91 lX 92 IX 93 lX 94 , lX 95 lX 96 lX 97 lX 98 lX 99 1Xl00 1Xl01 

PHI108 lX 0 -IX 18 lX 36 

lX 12 lX 13 lX 14 lX 15 lX 16 lX 17 
lX 30 lX 31 lX 32 lX 33 IX 34 lX 35 
lX 48 lX 49 lX 50 lX 51 IX 52 lX 53 
lX 66 IX 67 IX 68 IX 69 lX 70 lX 71 
lX 84 lX 85 lX 86 IX 87 IX 88 lX 69 
1Xl02 

IX 48 

lX 16 IX 17 -IX 20 -lX 22 -IX 24 -IX 26 
lX 46 lX 47 lX 48 

lX 12 -lX 13 lX 14 -lX 15 lX 16 -IX 17 
lX 30 -IX 31 lX 32 -IX 33 lX 34 -IX 35 
lX 48 -IX 49 lX 50 -lX 51 lX 52 

lX 12 lX 13 lX 14 lX 15 lX 16 lX 17 
lX 30 lX 31 lX 32 lX 33 lX 34 lX 35 
IX 48 IX 49 lX 50 lX 51 lX 52 lX 53 
lX 66 lX 67 lX 68 lX 69 lX 70 lX 71 
lX 84 IX 85 lX 86 lX 87 IX 88 1x·99 
1Xl02 1Xl03 1Xl04 1Xl05 1Xl06 

..... 
N 
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9.3. Input/output 

It is frequently necessary for a program to perform input/output, and 

quite often character by character. We have therefore run a number of pro­

grams to do such operations with various variations. 

Several progrannning languages do not provide true character input/ output 

and one is instead forced to read an entire line at a time and write extra 

code to pick it apart. 

The test performed was to copy the first 200 lines of the file A68DOC 

to the OUTPUT file. A68DOC contained the documentation for the CDC Algol 68 

compiler; it is a character file with varyinglength lines. If a language 

is unable to represent varying length lines faithfully to the program-

mer and must instead pad all lines to some fixed length (such as 80 

characters), then the extra CPU time wasted will be charged against is, 

and not against another language which avoid~ processing nonexistent 
characters. 

In each language, language features were found or procedures written 

to read and write single characters, one character in or out for each call. 

In Pascal, single character input-output is provided directly by the 

language. It was therefore used directly in the run labelled "c". In the run 

"cs", Pascal's string output was used. Pascal does not provide string input 

on character files. 

In Algol 68, single character input/output is provided by the language, 

but is absurdly slow. There appears to be a large fixed overhead associated 

with each input/output operation that is independent of the amount of in­

put or output to be performed. Reading or printing an entire line takes 

only about twice as much time as reading or printing a single character. 

Three tests were therefore performed on Algol 68, 

"c" - use the language's character i/o. 

"s" - use the language's string i/o, reading and writing entire 

lines at a time. 

"scs" - write character i/o procedures which use the string i/o 

internally, and then use these procedures to copy the file. 

In Fortran, no character i/o is provided by the language. An input 

operation always processes an entire line, and if the entire line is not 
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completely read, the rest of it is simply lost. Therefore, it was decided 

to read 80 characters from each line, in the hope that this would be 

sufficient. The fact that it was necessary to hope already shows a defi­

ciency in Fortran. It turned out that A68DOC indeed did contain a few lines 

that were longer than 80 characters, but these were, fortunately, not among 

the first 200. The following tests were performed on Fortran. In each case, 

entire lines were read and written; and no character-at-a-time procedures 

were used: 

"Al" - the format BOAi was used with formatted i/o. 

"AJO" - BAIO was used with formatted i/o. 

In Algol 60, we again used various methods. 

"char" - the character i/o routines "in character" and "out character" 

were used. 

II SA" - the format "SA" was used to read and write blocks of 8 

characters at a time. 

"A" the "A" format was used to read and write single characters. 

It was felt that the presence or absence of array-bound checking 

would make little difference to the measured results, since in these pro­

grams 

(I) little array bound checking needs to be done, and 

(2) Extended Fortran refuses to perform array-bound checking on 

input/output operations even if asked to. 

The execution times are as follows: 

CP time per line 

(milliseconds) 

Pascal ch C 2.8 
cs 7.3 

Algol 68 C 245 
scs 100 
s 50 

Fortran Al 27.5 
AIO 5.0 

MNF Al 25.5 
AIO 5.0 
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Algol 3 pch char 115 

A 260 

8A .40 

Algol 4 7ch char 2,05 

A 330 

8A 55 

It is possible that experienced users of each language may have found 

sneaky ways to reduce character i/o times; however, a casual user is about 

as likely to strike upon such special techniques as the authors were. 

9.4. Feature timings 

I 

We also performed a number of runs in order to determine how efficient­

ly various classes of language features are implemented. To do this for each 

language feature, a loop of the form 

for i := 1 until 10000 do test statement; 

was timed. From this the time taken by an empty loop 

for i := 1 until 10000 do; 

is subtracted, and the result divided by the number of iterations. The re­

sults appear in the accompanying tables. 

WICHMANN [15 J has obtained, by actual measurement, the frequencies in 

which Algol 60 features are used during Algol 60 program execution in real 

life. These frequencies have been used here to compute weighted averages 

of the various feature timings. These averages should not be taken too 

seriously, though, because 

- Patterns of usage in different progrannning languages are likely to 

differ; something often used in one language may be used hardly at 

all in another. 

- The tests themselves differ slightly from those performed by 

Wichmann. 

Loop optimization in a compiler can cause the feature timings to 

go awry. 

In any case, to determine what was actually timed, the program list­

ings should be examined. The Pascal and Fortran timings were run with loops 
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of 50,000 iterations, whereas the Algol 60 and Algol 68 timings were done 

with runs of 10,000 iterations. Timings were performed on a CDC Cyber 73 

(functionally equivalent to a twin CPU CDC 6400 or a CDC 6500) under Scope 

3.4.1. An attempt was made to repeat some of the timings under Scope 3.4.4, 

but the CPU interval timer had become sufficiently irregular on the newer 

system that this attempt had to be abandoned. It is reasonable to suppose, 

however, that the CPU itself has not changed in speed with the change to a 

new version of the operating system. Some of the Algol 68 timings were made 

under Scope 3.4.4 with the old system's clock, which provided reasonable 

precision. 

All times are given in microseconds. The digit after the decimal point 

should not be considered significant, but is provided in case the reader 

wishes to use statistical noise reduction techniques. The precision of the 

figures can be judged by examining them for internal consistency. They 

reflect a compromise between the costs of performing tests and the impreci­

sion of the clock. 



9.4.l. Pascal timings 

ch ,ch 

3.2 3.0 
6.9 3.8 
3.2 2.9 
4.6 4.5 
8.9 8.7 
9.1 8.6 
I. 7 2.0 
9.4 9.5 
3.6 3.6 

I 1.4 10.3 
19.5 14.3 
3.7 3.6 
6.9 4.2 
9.3 10.4 
9.0 8.8 

14.0 14.7 
251. I 249. 5 

9.1 5.1 
14.6 8.6 
20.l 9.2 

X:=l. l 
X:=11 
X:=Y 
X:=Y+Z 
X:=Y*Z 
X:=Y/Z 
K:=11 
K: =ROUND (1 • 1) 
K:=L+M 
K:=L*M 
K:=L DIV M 
K:=L 
X:=L 
L:=ROUND(Y) 
X:=SQR(Y) 
X:=SQR(Y)*Y 
X:=EXP(Z*LN(Y)) 
E[J]:=L 
E2[J,FJ:=L 
E3[J,F,GJ:=L 
L:=E[JJ 
VAR A:REAL;~EGIN A:=3.14 END 
VAR A:ARRAY[l •• 1] OF REAL;BEGIN A[l]:=2.72 END 
VAR A:ARRAY[l •• 500] OF REAL;BEGIN A[23]:=7. 8 END 
VAR A:ARRAY[l •• 1,1 •• 1] OF REAL;BEGIN A[l,1]:=4.65 END 
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9.9 5.7 
18.8 18.2 
19.l 18.4 
19.2 18.3 
19.7 18.3 
18.8 18.l 
17.3 17.2 
13.4 7.5 

VAR A:ARRAY[l..1,l..1,1..1] OF REAL;BEGIN A[l,1,1]:=l.7 END 
LABEL 1 ; BEGIN GOTO I; I : END . 

134. I 129. 9 
129.2 127.l 

5.2 3.9 
131.3 128.5 
126.7 126.5 
93.3 93.2 

134.7 133.2 
16.8 11.5 
10.7 6.7 
18.7 18.7 
23.5 22.9 
27. I 27. 2 
28.7 28.9 
6.8 6.8 

CASE J OF I : END 
X:=SIN(Y) 
X:=COS(Y) 
X:=ABS(Y) 
X:=EXP(Y) 
X:=LN(Y) 
X:=SQRT(Y) 
X:=ARCTAN(Y) 
IF Y>O THEN X:=l ELSE IF Y=O THEN X:=O ELSE X:=-1 
X:=TRUNC(Y) 
PO 
Pl (X) 
P2(X, Y) 
P3(X,Y,Z) 
LOOP OF FOR I:=l TON DO; 

12.5 10.9 MIXTURE 

ch: range checking is performed. 

,ch: no range checking is performed. 
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PROGRAM TIMER(OUTPUT); 
(* TIMER (PASCAL EXECUTION TIME,IDEA WICHMANN)*) 

CONST N=50000;M=ll;Y=l.l;Z=l.l; 

VAR I,J,F,G,EP,K,L,T:INTEGER;P,Q,C,FSUM,S,RELFREQ,LOAD,TYD,X:REAL; 
TT,FREQ:ARRAY[l .. 42] OF REAL;E:ARRAY[l .. l] OF INTEGER; 
E2:ARRAY[l .• l,l •. 1] OF INTEGER;E3:ARRAY[l .. l,l •• l,l •. l] OF INTEGER; 

PROCEDURE SAVE;BEGIN EP:=EP+l;TT[EP] :=(Q-P-C)/N END; 

PROCEDURE NOTE; 
BEGIN EP:=EP+l;RELFREQ:=FREQ[EP]*FSUM;TYD:=1E3*TT[EP]; 

LOAD:=RELFREQ*TYD;S:=S+LOAD; 
WRITELN; 
WRITE (' ',RELFREQ: 5: 3 ,LOAD: 6: l ,TYD: 7: 1,. '); 

END; 

PROCEDURE P0;BEGIN X:=3.14 END; 
PROCEDURE Pl(X:REAL) ;BEGIN X:=2.71 END; 
PROCEDURE P2(X,Y:REAL) ;BEGIN X:=1.25 END; 
PROCEDURE P3(X,Y,Z:REAL) ;BEGIN Z:=5.6 END; 
PROCEDURE Ql;VAR A:REAL;BEGIN A:=3.14 END; 
PROCEDURE Q2;VAR A:ARRAY[l .. l] OF REAL;BEGIN A[l] :=2.72 END; 
PROCEDURE Q3;VAR A:ARRAY[l .. 500] OF REAL;BEGIN A[23] :=7.8 END; 
PROCEDURE Q4;VAR A:ARRAY[l .. 1,1 .. 1] OF REAL;BEGIN A(l,l] :=4.65 END; 
PROCEDURE QS;VAR A:ARRAY(l .. 1,1 .. 1,l •. l] OF REAL; 

BEGIN A[l,1,1] :=l. 7 END; 
PROCEDURE Q6;LABEL l;BEGIN GOTO l;l: END; 

PROCEDURE EXTRAl; 
BEGIN 

P:=CLOCK;FOR I:=l TO N DO X:=1.1; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=11; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=Y; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=Y+Z; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=Y*Z; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=Y/Z; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO K:=11; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO K:=ROUND(l.l); 
Q::cCLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO K:=L+M; 
Q:=CLOCK;SAVE; 

P:=CLOCK;F'OR I:=l TO N DO K:=L*M; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO K:=L DIV M; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO K:=L; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=L; 
Q:=CLOCK;SAVE; 
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P:=CLOCK;FOJR I:=l TO N DO L:=ROUND(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=SQR(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=SQR.(Y) *Y; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=EXP(Z*LN(Y)); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FO.R I:=l TO N DO E[J]:=L; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO E2[J,F] :=L; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO E3[J,F,G] :=L; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO L:=E[J]; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO Ql; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO Q2; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR· I:=l TO N DO Q3; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO Q4; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO QS; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO Q6; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO CASE J OF 1: END; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=SIN (Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=COS(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l·TO N DO X:=ABS(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=EXP(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X: =LN (Y) ; 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=SQRT(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO X:=ARCTAN(Y); 
Q:=CLOCK;SAVE; 

P:=CLOCK;FOR I:=l TO N DO IF Y>0 THEN X:=l 
ELSE IF Y=0 THEN X:=0 

ELSE X:=~l; 

Q:=CLOCK;SAVE; 
P:=CLOCK;FOR I:=l TO N DO X:=TRUNC(Y); 

Q:=CLOCK;SAVE; 
P:=CLOCK;FOR I:=l TO N DO P0; 

Q:=CLOCK;SAVE; 
P:=CLOCK;FOR I:=l TO N DO Pl (X); 

Q:=CLOCK;SAVE; 
P:=CLOCK;FOR I:=l TO N DO P2(X,Y); 

Q:=CLOCK;SAVE; 
P:=CLOCK;FOR I:=l TO N DO P3(X,Y,Z); 

Q:=CLOCK;SAVE; 
END; 
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PROCEDURE EXTRA2; 
BEGIN 

NOTE;WRITE('X:=1.1'); 
NOTE;WRITE('X:=11'); 
NOTE;WRITE('X:=Y'); 
NOTE;WRITE('X:=Y+Z'); 
NOTE;WRITE('X:=Y*Z'); 
NOTE;wRITE('X:=Y/Z'); 
NOTE;WRITE('K:=11'); 
NOTE;WRITE('K:=ROUND(l.l) '); 
NOTE;WRITE('K:=L+M'); 
NOTE;WRITE('K:=L*M'); 
NOTE;WRITE('K:=L DIV M'); 
NOTE;WRITE('K:=L'); 
NOTE;WRITE('X:=L'); 
NOTE;WRITE('L:=ROUND(Y) '); 
NOTE;WRITE('X:=SQR(Y) '); 
NOTE;WRITE('X:=SQR(Y)*Y'); 
NOTE;WRITE('X:=EXP(Z*LN(Y)) '); 
NOTE;WRITE('E[J] :=L'); 
NOTE;WRITE('E2[J,F):=L'); 
NOTE;WRITE('E3[J,F,G) :=L'); 
NOTE;WRITE( 'L:=E[J) '); 
NOTE;WRITE('VAR A:REAL;BEGIN A:=3.14 END'); 
NOTE;WRITE('VAR A:ARRAY[l •• l) OF REAL;BEGIN A[l):=2.72 END'); 
NOTE;WRITE('VAR A:ARRAY[l •• 500) OF REAL;BEGIN A[23):=7.8 END'); 
NOTE;WRITE('VAR A:ARRAY[l •• 1,1 •. 1) OF REAL;BEGIN A[l,l):=4.65 END'); 
NOTE;WRITELN( 'VAR A:ARRAY[l..1,1..1,1. .1) OF REAL;'); 

WRITE(' BEGIN A[l,1,1):=l.7 END'); 
NOTE;WRITE('LABEL !;BEGIN GOTO l;l: END'); 
NOTE;WRITE('CASE J OF 1: END'); 
NOTE;WRITE( 'X:=SIN(Y) '); 
NOTE ;WRITE ( 'x: =COS (Y) '); 
NOTE ;\mITE ( 'x: =ABS (Y) '); 
NOTE;WRITE( 'X:=EXP(Y) '); 
NOTE;WRITE( 0 X:=LN(Y} '); 
NOTE;WRITE( 0 X:=SQRT(Y) 0

); 

NOTE;WRITE( 0 X:=ARCTAN(Y) '); 

NOTE;WRITE( 0 IF Y>0 THEN X:=l ELSE IF Y=0 THEN X:=0 ELSE X:=-1 '); 
NOTE ;WRITE ( 'x: =TRUNC (Y) '); 
NOTE;WRITE('P0'); 
NOTE;WRITE('Pl(X}'); 
NOTE ;WRI'I·E ( 0 P2 (X, Y) . ) ; 
NOTE;WRITE('P3(X,Y,Z) '); 
NOTE;WRITE('LOOP OF FOR I:=l TON DO;'); 

END; 



BEGIN 
L:=ll;E[l):=ll;FSUM:=0; 

FOR I:=l TO 42 DO 
CASE I OF 
l,3:FREQ[IJ:=10000; 

2:FREQ[I):=7000; 
4:FREQ[I):=26682; 
5:FREQ[I):=31210; 
6:FREQ[IJ:=11000; 
7:FREQ[IJ:=3000; 

8,14:FREQ[IJ:=500; 
9:FREQ[IJ:=4300; 

10:FREQ[I):=4978; 
ll:FREQ[IJ:=480.9; 
12:FREQ[I):=5000; 
13:FREQ[IJ:=4000; 
15:FREQ[IJ:=2780; 
16:FREQ[I):=309; 
17:FREQ[IJ:=442; 

18,21:FREQ[IJ:=23795; 
19:FREQ[I]:=15963; 
20:FREQ[IJ:=296; 
22:FREQ[I}:=0.0; 

23,24:FREQ[I):=59; 
25:FREQ[I):=39; 
26:FREQ[IJ:=0.73; 
27:FREQ[IJ:=2010; 
28:FREQ[IJ:=94; 
29:FREQ[IJ:=1020; 
30:FREQ[IJ:=1490; 
31:FREQ[IJ:=1390; 
32:FREQ[IJ:=831; 
33:FREQ[IJ:=644; 
34:FREQ[IJ:=1750; 
35:FREQ[I]:=591; 
36:FREQ[I]:=81.9; 
37:FREQ[IJ:=909; 
38:FREQ[I]:=788; 

39,40:FREQ[I] :=2316; 
41:FREQ[I]:=6053; 
42:FREQ[IJ :=17800; 

END; 

FOR I:=l TO 42 DO FSUM:=FSUM+FREQ[I); 
FSUM:=42/FSUM; 

C:=0;FOR EP:=l TO 10 DO 
BEGIN P:=CLOCK;FOR I:=l TON DO; 

Q:=CLOCK;C:=C+(Q-P) 
END; 

C:=C/10;TT[42}:=C/N;EP:=0;J:=l;F:=l;G:=l; 

EXTRA!; 
WRITELN; 
WRITELN(' PASCAL EXECUTION TIME'); 
WRI'l'ELN; 
WRITELN(' FREQ WEIGHT TIME STATEMENT'); 
EP:=0;S:=0; 
EXTRA2; 
S:=S/42; 
WRITELN;WRITELN; 
wRITELN(' 1.000·,s:6:l,S:7:l,' MIXTURE'); 
END. 

, 81 
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9.4.2 Algol 68 timings 

ch 

4.9 
5.5 
6. 1 

10.0 
14.8 
13.4 
4.6 
8.9 
8.0 

14.3 
18. 1 
6.5 
6.6 

10.8 
35.8 
39.9 

301. 7 
53.3 
76.9 

I 01. 9 
58.5 
22.6 

220.0 
1303.5 
258.9 
305.7 

2.0 
70.4 

166.5 
159.9 

6.6 
128.8 
165.7 
113. 4 
l 66. I 

7.5 
13.7 
52.4 
46.8 
50.3 
54.5 
6.5 

JI. 6 

ch,Z 

3.6 
4.3 
6.2 
9.5 

12.6 
14. 1 
5.8 

10.3 
7.6 

14. 1 
18.5 
5.4 
6.7 

10.8 
35.5 
41. 1 

305.4 
50.2 
74.5 

100.6 
56.7 
20.8 

224.6 
1386.7 
269.4 
316.0 

0.5 
73.9 

170.3 
167.7 

6. 1 
135.8 
165.3 
110.6 
171.0 

7. I 
14.7 
51.4 
45.6 
49. I 
51. 9 
7. I 

30.5 

A 

4.8 
6.2 
6.6 

11.7 
14.0 
13.5 
3.5 
8.9 
7.3 

14.9 
19. I 
5.8 
6.5 

10.6 
34.6 
40. 1 

302.5 
23.7 
39.8 
51. 9 
25.2 
21.4 

220.2 
1365.9 
273.9 
316.8 

1.2 
73.0 

173.9 
169.8 

7.6 
134.8 
167. 1 
113. 7 
170.7 

7.9 
15. I 
52.9 
47.8 
52. I 
54.7 
6.5 

22.6 

A,Z 

4.5 
4.8 
5.6 

10.2 
13.7 
14. 1 
4. 1 
8.7 
7.7 

13.6 
17.4 
6.0 
6.0 

10. 1 
36.4 
41.4 

294.3 
23.5 
37.6 
51. 9 
23.7 
19.4 

215. 1 
1288.2 
256.5 
312.4 

0.8 
69.2 

1 71 . 1 
168.7 

6.4 
133.7 
163.2 
109. I 
177. 2 

7.6 
14.3 
52.4 
45.0 
48.4 
51.4 
6.8 

2 I. 7 

ch: Array subscript checking is performed 

X:=l .1 
X:= 11 
X:=Y 
X:=Y+Z 
X:=Y*Z 
X:=Y/Z 
K:= 11 
K:= ROUND I. I 
K:=L+M 
K:=L*M 
K:=L OVER M 
K:=L 
X:=L 
L:= ROUND Y 

X:=Y**3 
X:=EXP(Z*LN(Y)) 
E[JJ :=L 
E2[J,F]:=L 
E3[J,F,G]:=L 
L:=E[J] 
REAL A:=3. 14 ;A 
[1:1] REAL A:=(2.72);A 
[1:500] REAL A;A[23]:=7.8 
[1:1,1:1] REAL A:=((4.65));A 
[ I : I , 1 : I , 1 : 1 ] REAL A:= ( ( ( 1 . 7))) ;A 
ABCD;ABCD: SKIP 
PROC SS= VOID :PQ;SS;PQ: SKIP 
X:=SIN(Y) 
X:=COS(Y) 
X:=ABS Y 
X:=EXP(Y) 
X:=LN(Y) 
X:==SORT(Y) 
X:=ARCTAN(Y) 
X:=SIGN Y 
X:=ENTIER Y 
PO 
Pl (X) 
P2(X,Y) 
P3(X,Y,Z) 
LOOP OF TON DO 

MIXTURE 

A: No array subscript checking is performed 

Z: some extra object code optimization is performed (apparently with little 
effect). 



#TIMER (ALGOL68 EXECUTION TIME,IDEA WICHMANN) # 
'BEGIN, 

'INT' I,J::=l,F:=l,G:=l,EP, 'INT' N=50000; 
'REAL' P,Q,C,FSUM,S,RELFREQ,LOAD,TIME; 
[1:42] 'REAL, TT,FREQ; 

'PROC' SAVE='voro': (EP+:=l;TT[EP] :=(Q-P-C)/N); 

'PROC, NOTE= C [ 1 'CHAR, STAT) ·vorn,: 
(EP+:=l;RELFREQ:=FREQ[EP]*FSUM;TIME:=1E6*TT[EP]; 
LOAD:=RELFREQ*TIME;S:=S+LOAD; 
PRINT((NEWLINE,FIXED(RELFREQ,6,3), 

FIXED(LOAD,7,1) ,FIXED(TIME,8,1) ," ",STAT)) 

'INT' K,L, 'INT M=ll; 
'REAL' X,Y:=1.1,Z:=l.l; 
[1:11 ·rn~r· E, (1:1,1:1] 'INT' E2, [l:l,1:1,1:l] 'INT' E3; 

'PROC' P0='VOID":x:=3.14; 
'PROC. Pl== ('REF, 'REAL, X) ·vorn,: X: =l. 25; 
'PROC' P2==( 'REF' 'REAL' X,Y) ·vorn':Y:=1.4; 
'PROC' P3==('REF' 'REAL' X,Y,Z) ·voro':z:=5.6; 

L:=E[l] :=Jll;FSUM:=0; 

'PRoc· XX=('INT' N) 'REAL': 
'CASE' N 'IN' 10000, 7000,10000,26682,31210, 

11000,3000,500,4300,4978,480.9,5000, 
4000,500,2780,309,442,23795,15963,296, 
23795,0,59,59,39,.7J,2010,94,1020,1490, 
1390,831,644,1750,591,81.9,909,788, 
2316,2316,6053,17800 

'ESAC,; 

'FOR' I ·~w· 42 ·oo' FREQ[I] :=XX(I) ;FSUM:=FSUM+FREQ[I] ·oo'; 

FSUM:=42/FSUM; 
PRINT((NEWLINE,"ALGOL68 EXECUTION TIME",NEWLINE,NEWLINE, 

" FREQ WEIGHT TIME STATEMENT",NEWLINE)); 

C : = 0 ; • TO , 10 
·oo, p: =CLOCK; 'TO, N ·oo, 'SKIP, ·oo,; 

Q:=CLOCK;C:=C+(Q-P) 
·oo · ;: 

C/:=10;TT[42] :=C/N;EP:=0; 

P:=CLOCK;'To' N 'oo· X:=1.1 'oo'; 
Q:=CLOCK;SAVE; 
P:=CLOCK; 'To' N 'oo' X:=11 ·oo'; 

Q:=CLOCK;SAVE; 
P:=CLOCK; 0 TO' N 'oo' X:=Y ·oo'; 

Q:=CLOCK;SAVE; 
P:=CLOCK; 0 TO' N 'oo' X:=Y+Z ·oo·; 

Q:=C:LOCK;SAVE; 
P:=CLOCK; 0 TO' N 'co' X:=Y*Z ·oo'; 

Q:=CLOCK;SAVE; 
P:=CLOCK; 0 TO' N 'oo' X:=Y/Z ·oo'; 

Q:=C:LOCK;SAVE; 
P:=CLOCK; 0 TO' N ·oo· K:=11 'oo·; 

Q:=CLOCK;SAVE; 
P:=CLOCK; 0 TO' N 'oo' K:='ROUND' 1.1 ·oo·; 

Q:=CLOCK;SAVE; 
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P:=CLOCK; "TO" N ·oo· K:=L+M ·oo·; 
Q: =CLOCK; Sil.VE; 

P:=CLOCK; 0 T0° N ·oo· K:=L*M ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO" N ·oo· K:=L 'OVER'. M ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 1 T0° N ·oo· K:=L ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO" N ·oo· X:=L ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; ··ro· N ·oo· L:= 0 ROUND 0 y ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO" N ·oo· X:=Y**2 ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 1 T0° N ·oo· X:=Y**3 ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; ··ro· N ·oo· X:=EXP(Z*LN(Y)) ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· E[J]:=L ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO" N ·oo· E2[J,F] :=L ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 'To' N ·oo· E3[J,F,G] :=L ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· L:=E[J] ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· 0 REAL 0 A:=3.14;A ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· [1:1] 0 REAL' A:=(2.72);A ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· [1:500] 0 REAL 0 A;A[23] :=7.8 ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· [1:1,1:1] 0 REAL 0 A:=((4.65));A ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· [l:l,l:l,1:1] 'REAL' A:=(((l.7)));A ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO" N ·oo· ABCD;ABCD: 0 SKIP' ·oo:; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· 0 PROC 0 SS= 0 VOID 0 :PQ;SS;PQ: 0 SKIP 0 ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; ·To· N ·oo· X:=SIN(Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 'To" N ·oo· X:=COS(Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 T0° N ·oo· X:= 0 ABS' y ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· X:=EXP(Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· X:=LN(Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· X:=SQRT(Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· X:=ARCTAN(Y) ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; 0 TO° N ·oo· X:= 0 SIGN° y ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· X:="ENTIER 0 y ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· P0 ·oo'; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· Pl(X) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· P2(X,Y) ·oo·; 
Q:=CLOCK;SAVE; 

P:=CLOCK; "To· N ·oo· P3(X,Y,Z) ·oo·; 
Q:=CLOCK;SAVE; 

EP:=0;S:=0; 



NOTE("X:=1.1"); 
NOTE("X:=11"); 
NOTE("X:=Y"); 
NOTE("X:=Y+Z"); 
NOTE("X:=Y*Z"); 
NOTE("X:=Y/Z"); 
NOTE ( "K: = 11") ; 
NOTE("K:='ROUND' 1.1"); 
NOTE("K:=L+M"); 
NOTE("K:=L*M"); 
NOTE("K:=L 'OVER' M"); 
NOTE ("K: =L"); 
NOTE ( II X: =L") ; 
NOTE("L:='ROUND' Y"); 
NOTE("X:=Y**2"); 
NOTE("X:=Y**3"); 
NOTE ("X:=EXP (Z*LN (Y)) "); 
NOTE ( II E [ J l : = L II ) ; 

NOTE("E2[J,F] :=L "); 
NOTE("E3[J,F,G]:=L "); 
NOTE("L:=E[J]"); 
NOTE(" 'REAL. A:=3.14;A"); 
NOTE("[l:l] 'REAL' A:=(2.72);A"); 
NOTE("[l:500] 'REAL' A;A[23] :=7.8 "); 
NOTE (" [ 1: 1 , 1: 1] 'REAL • A:= ( ( 4. 6 5) ) ; A") ; 
NOTE("[l:1,1:1,1:l] 'REAL' A:=(((l.7)));A"); 
NOTE("ABCD;ABCD: 'SKIP'"); 
NOTE(" 'PRoc· SS='VOID':PQ;SS;PQ: 'SKIP'"); 
NOTE ("X: ==SIN (Y) "); 
NOTE("X:=COS(Y)"); 
NOTE("X:=ABS Y"); 
NOTE("X:=EXP(Y)"); 
NOTE("X:=LN(Y)"); 
NOTE("X:=SQRT(Y)"); 
NOTE("X:=ARCTAN(Y)"); 
NOTE("X:=SIGN Y "); 
NOTE("X:=ENTIER Y "); 
NOTE("P0"'); 
NOTE("Pl(X) "); 
NOTE ( "P 2 ( X, Y) ") ; 
NOTE ( "P 3 1[ X, Y , Z) " ) ; 
NOTE("LOOP OF 'To· N ·oo· "); 

S/:=42; 
PRINT((NEWLINE,NEWLINE,"+l ",FIXED(S,7,1) ,FIXED(S,8,1), 

" MIXTURE",NEWLINE)) 

'END. 
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9.4.3.J Fortran Extended timings 

D,OPT=O OPT=O OPT=I OPT=2 
pch 7ch 7ch 7ch 

3.9 4.0 3.3 J.0 X= I. I 
2.9 3.0 3.2 3.5 X=I I 
2.9 3.5 3.0 I.I X=Y 
6.0 5.9 5.8 1.2 X=Y+Z 

10.2 10.6 9.5 I. 2 X=Y*Z 
10.2 10.3 9.5 J.3 X=Y/Z 

J.9 3. I J.7 2. I K=I I 
3.8 3.7 3.7 2.9 K=I. I 
5. I 5.9 4.5 J. 4 K=L+M 

10.3 10.6 9.8 J.3 K=L*M 
13.9 13.7 13.0 J.4 K=L/M 
2.9 3.8 3.2 J.9 K=L 
3.8 3.7 3.6 2.7 X=L 
3.9 4.0 4. I 3.2 L=Y 
9. I 8. I 8.2 6.3 K=Y**2 

13.8 14.3 14.2 13.3 X=Y**3 
233.9 235.0 222.8 223.4 X=Y**Z 
40.6 5.5 3.2 I.I E(J)=L 
50.4 7.7 3. I J.3 E2(J,F)=L 
67.0 8.9 3.3 J. 2 E3(J,F,G)=L 
41. 2 5.0 3.3 3.2 L=E(J) 
8.5 8.6 13.3 13.9 SUBROUTINE A=3.14 END 
9.0 8.6 13.9 13.9 SUBROUTINE REAL A(I) A(l)=2.72 END 
8.9 8.6 14.4 13.6 SUBR. REAL A(500) A(23)=7.8 END 
8.2 8.6 13.5 13.8 SUBR. REAL A(l,I) A(J ,1)=4.65 END 
9.0 8.4 14.0 13.6 SUBR. REAL A(l,1,1) A(l,1,1)= 1.7 END 
5.7 4.9 9.5 10.0 SUBROUTINE GOTO 26 26 END 
8.2 7.7 I J.O 10.5 GOTO (127,227) ,J 127 CONTINUE 

135.7 136.4 133.4 131. 2 X=SIN(Y) 
132. 7 131 .6 126.9 126.9 X=COS(Y) 

10.3 10.5 3.8 2.6 X=ABS(Y) 
98.4 98.0 89.7 89.6 X=EXP(Y) 

129.8 128.7 125.2 125.6 X=ALOG(Yr 
77.1 77.3 72. 7 72.6 X=SQRT(Y) 

134.6 135.7 13 I. I 131 .8 X=ATAN(Y) 
15.3 I 5. 2 I 2. 2 12.0 X=O IF(Y.GT.0) X=I IF (Y.LT.O) X=-1 
13.0 12.6 4.8 3.7 X=INT(Y) 
8.7 8.5 13.8 13. 7 CALL PO 

36.0 36.9 21. 7 22.7 CALL Pl (X) 
53.3 52.7 21. 6 21.7 CALL P2(X,Y) 
69.8 69.9 21. 4 21.9 CALL P3(X,Y,Z) 
7.4 7.5 2.5 2.5 LOOP OF DO 40 I=I ,N 40 CONTINUE 

23. I I 2. 7 9.2 6.3 MIXTURE 



7ch: no subscript checking 

pch: partial checking 

87 

The figures given above for OPT=2 connot be trusted, since the 

optimizer may well be capable of ~emoving part of the calculation being 

measured out of the loop. The suspiciously low timings for some statements 

suggest that this may have happened. CDC provides their own measurements 

of the Fortran mathematics routines in [19]. 
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PROGRAM TIMER(OUTPUT,TAPE6=0UTPUT) 
C TIMER (FORTRAN EXECUTION TIME , IDEA WICHMANN) 

COMMON/Ll/EP,TT(42)/L2/O,P,C,N/L3/RELFREQ,FREQ(42) ,FSUM,LOAD,TIJD, 
CS,Bl,B2,B3,B4/L4/X . 

INTEGER I,J,F,G,N,EP,K,L,M,E(l) ,E2(1,l) ,E3(1,l,l) ,B1,B2,B3,B4 
REAL P,Q,C,FSUM,S,RELFREQ,LOAD,TIJD,X,Y,Z,T,TT,FREQ 
DATA FREQ/10000.,7000.,10000.,26682.,31210.,11000.,3000.,500., 

C4300.,4978.,480.9,5000.,4000.,500.,2780.,309.,442.,23795.,15963., 
C296.,23795.,0.,59.,59.,39.,.73,2010.,94.,1020.,1490.,1390.,831., 
C644.,1750. ,591.,81.9,909.,788.,2316.,2316.,6053.,17800./ 

N=50000 $M=ll $Y=l.l $Z=l.l 
L=ll $E(l)=ll $FSUM=0. 
J=l $F=l $G=l 
DO 10 I=l,42 

10 FSUM=FSUM+FREQ(I) 
FSUM=42./FSUM 
PRINT 15 

15 FORMAT(8X,*FORTRAN EXECUTION TIME (50000 KEER) *//) 
PRINT 16 

16 FORMAT(* FREQ WEIGHT . TIME STATEMENT*,/) 
C=0. 
DO 20 EP=l,10 
P=SECOND(T) 
DO 30 I=l,N 

30 CONTINUE 
Q=SECOND(T) 

20 C=Q-P+C 
C=C/10. $TT(42)=C/N $EP=0 
P=SECOND(T) 
DO 100 I=l,N 

100 X=l.l 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 101 I=l,N 

101 X=ll 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 102 I=l,N 

102 X=Y 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 103 I=l,N 

103 X=Y+Z 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 104 I=l,N 

104 X=Y*Z 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 105 I=l,N 

105 X=Y/Z 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 106 I=l,N 

106 K=ll 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 107 I=l,N 

107 K=l.l 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 108 I=l,N 
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108 K=L+M 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO Hl9 I=l,N 

109 K=L*M 
O=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 110 I=l,N 

110 K=L/M 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 111 I=l,N 

111 K=L 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 112 I=l,N 

112 X=L 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 113 I=l,N 

113 L=Y 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 114 I=l,N 

114 X=Y**2 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 115 I=l,N 

115 X=Y**3 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 116 I=l,N 

116 X=Y**Z 
O=SECOND(T) $CALL SAVE 

C$ TRACE SUBSCRIPTS 
P=SECOND(T) 
DO 117 I=l,N 

117 E(J)=L 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 118 I=l,N 

118 E2(J,F)=L 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 119 I=l,N 

119 E3(J,F,G)=L 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 120 I=l,N 

120 L=E(J) 
Q=SECOND(T) $CALL SAVE 

C$ NO TRACE SUBSCRIPTS 
P=SECOND(T) 
DO 121 I=l,N 

121 CALL Ql 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 122 I=l,N 

122 CALL Q2 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 123 I=l,N 
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123 CALL Q3 
Q=SECOND{T) $CALL SAVE 
P=SECOND{T) 
DO 124 I=l,N 

124 CALL Q4 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 125 I::::l,N 

125 CALL Q5 
Q::::SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 126 I=l,N 

126 CALL Q6 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 127 I=l,N 
GOTO (127,227) ,J 

127 CONTINUE 
227 Q=SECOND(T) $CALL SAVE 

P=SECOND(T) 
DO 128 I=l,N 

128 X=SIN (Y) 
Q::::SECOND(T) $CALL SAVE 
P::::SECOND(T) 
DO 129 I=l,N 

129 X=COS(Y) 
Q=SEC:OND(T) $CALL SAVE 
P=SEC:OND(T) 
DO 130 I=l,N 

130 X=ABS(Y) 
Q=SEC:OND(T) $CALL SAVE 
P=SEC:OND(T) 
DO 1311 I=l,N 

131 X=EXP(Y) 
Q=SEC:OND(T) $CALL SAVE 
P=SEC:OND(T) 
DO 1312 I=l,N 

132 X=ALOG(Y) 
Q=SEC:OND(T) $CALL SAVE 
P=SEC:OND ('I') 
DO 1313 I=l,N 

133 X=SQRT(Y) 
Q=SEC:OND(T) $CALL SAVE 
P=SEC:OND(T) 
DO 134 I=l,N 

134 X=ATJl,N (Y) 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 135 I=l,N 
X=0 
IF (Y.GT.0) X=l 

135 IF (Y.LT.0) X=-1 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 136 I=l,N 

136 X=IN'l: (Y) 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 137 I=l,N 

137 CALL P0 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 138 I=l,N 



138 CALL Pl(X) 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 139 I=l,N 

139 CALL P2(X,Y) 
Q=SECOND(T) $CALL SAVE 
P=SECOND(T) 
DO 140 I=l,N 

140 CALL P3(X,Y,Z) 
Q=SECOND{T) $CALL SAVE 
EP=0. $8=0. 
Bl="X=l.l" $B2=" " $B3=" " $B4=" " $CALL NOTE 
Bl="X=ll" $CALL NOTE 
Bl="X=Y" $CALL NOTE 
Bl="X=Y+Z" $CALL NOTE 
Bl="X=Y*Z" $CALL NOTE 
Bl="X=Y/Z" $CALL NOTE 
Bl="K=ll" $CALL NOTE 
Bl="K=l.l" $CALL NOTE 
Bl="K=L+M" $CALL NOTE 
Bl="K=L*M" $CALL NOTE 
Bl="K=L/M" $CALL NOTE 
Bl="K=L" $CALL NOTE 
Bl="X=L" $CALL NOTE 
Bl="L=Y" $CALL NOTE 
Bl="X=Y**2" $CALL NOTE 
Bl="X=Y**3" $CALL NOTE 
Bl="X=Y**Z" $CALL NOTE 
Bl="E{J)=L" $CALL NOTE 
Bl="E2{J,F)=L" $CALL NOTE 
Bl="E3(J,F,G)=" $B2="L" $CALL NOTE 
Bl="L=E{J)" $B2=" " $CALL NOTE 
8l="SUBROUTINE" $B2=" A=3.14 EN" $83="D" $CALL NOTE 
8l="SUBROUTINE" $B2=" REAL A{l)" $B3=" A{l)=2.72" $84=" END" 
CALL NOTE 
8l="SUBR. REAL" $B2=" A(500) "$B3="A{23)=7.8" $B4=" END" 
CALL NOTE 
Bl="SUBR. REAL" $B2=" A{l,l) " $B3="A{l,1)=4.6" $B4="5 END" 
CALL NOTE 
Bl="SUBR. REAL" $B2=" A{l,1,1)" $B3="A{l,l,l)=" $84="1.7 END" 
CALL NOTE 
Bl="SUBROUTINE" $B2=" GOTO 26" $B3=" 26 END" $B4=" " $CALL NOTE 
Bl="GOTO (127," $B2="227) ,J" $B3=" 127 CONTI" $B4="NUE" 
CALL NOTE 
8l="X=SIN{Y)" $B2=" " $83=" " $84=" " $CALL NOTE 
Bl="X=COS(Y)" $CALL NOTE 
Bl="X=ABS(Y)" $CALL NOTE 
Bl="X=EXP(Y)" $CALL NOTE 
Bl="X=ALOG(Y)" $CALL NOTE 
Bl="X=SQRT(Y)" $CALL NOTE 
8l="X=ATAN(Y)" $CALL NOTE 
Bl="X=0 IF(Y." $82="GT.0) X=l" $B3="IF (Y.LT.0" $B4=") X=-1" 
CALL NOTE 
Bl="X=INT(Y)" $82=" " $83=" " $84=" " $CALL NOTE 
Bl="CALL P0" $CALL NOTE 
Bl="CALL Pl(X)" $CALL NOTE 
Bl="CALL P2(X," $B2="Y)" $CALL NOTE 
Bl="CALL P3(X," $82="Y,Z}" $CALL NOTE 
Bl="LOOP OF" $B2="0O 40 I=l," $B3="N 40 CON" $B4="TINUE" 
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CALL NOTE 
S=S/42. 
WRITE(6,200) S,S 

200 FORMAT(lH //* l.000*,2F7.l,* _MIXTURE*,/) 
STOP 
END 
SUBROUTINE P0 
COHMON/L4/X 
1=3.14 
RETURN 
END 
SUBROUTINE Pl (X) 
X=l.25 
RETURN 
END 
SUBROUTINE P2(X,Y) 
Y=l.4 
RETURN 
END 
SUBROUTINE P3(X,Y,Z) 
Z=S.6 
RETURN 
END 
SUBROUTINE SAVE 
CO~JION/Ll/EP,TT(42)/L2/Q,P,C,N 
EP=EP+l 
TT(EP)=(Q-P-C)/N 
RETURN 
END 
SUBROUTINE NOTE 
COMMON/Ll/EP,TT(42)/L3/RELFREQ,FREQ(42),FSUM,LOAD,T!JD,S,Bl,32,B3, 

CB4 
REAL LOAD 
EP=EP+l 
RELFREQ=FREQ(EP)*FSUM 
TIJD=l.E6*TT(EP) 
LOAD=RELFREQ*TIJD 
S=S+LOAD 
~RITE(6,25) RELFREQ,LOAD,TIJD,Bl,B2,B3,B4 

25 FOR~.AT(lH ,F6.3,2F7.l,2X,4Al0) 
RETURN 
END 
SUBROUTINE Ql 
A=3.14 
RETURN 
END 
SUB,WUTINE Q2 
REAL A(l) 
A(l)=2.72 
RETURN 
END 



SUBROUTINE 03 
REAL A(500) 
A(23)=7.8 
RETURN 
END 
SUBROUTINE 04 
REAL A(l,1) 
A(l,1)=4.65 
RETURN 
END 
SUBROUTINE 05 
REAL A(l,1,1) 
A(l,1,1)=1.7 
RETURN 
END 
SUBROUTINE 06 
GOTO 26 

26 RETURN 
END 
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9.4.3.2. MNF 

The MNF 

survey. 

check 
D 
. 7 

3.8 
.7 

3.2 
7.0 
6.3 
2.0 
3.2 
I. 3 
6.3 

10.7 
. 7 

3.2 
2.6 
8.2 

14.5 
203.0 

.9 
I. 3 

.9 
1.3 

20.2 
20.6 
20.3 
20.2 
20.5 
16.4 
9.7 

129.7 
136.0 

3.8 
98. 2 

l I 8. I 
93.6 

l 01. 8 
19. 4 
5.9 

20.8 
29.G 
32.0 
34.2 
2.4 

8. I 

timings 

Fortran 

,check 

.9 
3.3 
I .3 
3.3 
6.4 
6.3 
2.2 
3.2 

. 8 
6.4 

10.9 
. 9 

3. I 
2.7 
8.0 

14.3 
202.7 

.8 
I. 3 
I.I 
1.3 

20.5 
20.4 
20.5 
21. 4 
20.6 
16.9 
9.4 

129.6 
135.3 

3.9 
97.8 

I I 7. 9 
93.2 

I O I . I 
20.3 
5.8 

20.0 
29.1 
3 I. 2 
34.8 

2.5 

8. I 

compiler has not been discussed extensively in this 

X= I . I 
X=I I 
X=Y 
X=Y+Z 
X=Y*Z 
X=Y/Z 
K=l I 
K= I. I 
K=L+M 
K=L*M 
K=L/M 
K=L 
X=L 
L=Y 
X=Y**2 
X=Y**3 
X=Y**Z 
E(J)=L 
E2(J ,F)=L 
E3(J,F,G)=L 
L=E(J) 
SUBROUTINE A= 1 .. 4 END 
SUBROUTINE REAL A(I) A(l)=2.72 END 
SUBR. REAL A(500) A(23)=7.8 END 
SUBR. REAL A(l,I) A(l,1)=4.65 END 
SU BR . REAL A ( I , I , I ) A ( I , I , I ) = I . 7 END 
SUBROUTINE GOTO 26 26 END 
GOTO (127,227),J 127 CONTINUE 
X=SIN(Y) 
X=COS(Y) 
X=ABS(Y) 
X=EXP(Y) 
X=ALOG(Y) 
X=SQRT(Y) 
X=ATAN(Y) 
X=O IF(Y.GT .0) X=I IF (Y. LT. 0) X=-1 
X=INT(Y) 
CALL PO 
CALL PI (X) 
CALL P2(X,Y) 
CALL P3(X,Y,Z) 
LOOP OF DO 40 I=I ,N 40 CONTINUE 

MIXTURE 



9.4.4. Algol 60 timings 

3pch 3,ch 4ch 4,ch 

2.9 
4.8 
I.I 
5.4 
8.6 

11.3 
2. I 
3.3 
6.2 

11.2 
15.2 
4.0 
4.5 
7.8 

11.3 
17.9 

342. I 
21.9 
36. 1 
48.2 
21. 5 
85.6 

159.2 
158.6 
180.3 
213.4 

2.6 
6. I 
2.8 
4.4 

12.7 
8.7 
4.3 
5.8 
6.4 
9.7 

14.4 
21.6 

,4. 9 
7.4 

10.8 
19.4 

346.2 
13.7 
31.0 
40.3 
17.9 
87.6 

155.1 
151 . 3 
170.7 
205.9 

2.2 
5.3 
5.3 
5.3 
9.2 

11.6 
5.3 
8.5 
2. 1 

14.6 
21.0 
5.9 
2.4 
8.4 

I I. 7 
I 3. 1 

252.9 
58.5 
89. 1 

114.7 
58.4 
62.7 

143.6 
142.5 
175.6 
208.4 

6.2 
3.5 
2.9 
6.4 
9.3 

11.9 
3.0 

12.5 
4. 1 
9.9 

26.3 
2.6 
4.3 
9.5 
8. I 

15.6 
260. I 

9.7 
20.4 
31.8 
10.8 
66.6 

144.2 
I 44. I 
168.9 
202.8 

I 8. 7 I 7. 0 21 • 0 20. 6 
123.0 128.3 107.2 112.8 
178.3 176.6 135.5 137.1 
177.8 175.0 130.3 131.1 

6.6 5.1 5.9 5.2 
175.8 178.5 132.7 135.3 
1 71 • 7 172. 9 I 27. 2 1 28. 8 
136.4 137.2 89.6 92.5 
181.2 179.0 133.5 135.6 

10.4 10.8 20.9 19.2 
71.7 70.0 11.6 12.3 

212.7 212.1 256.3 266.8 
250.5 250.9 331.8 330.9 
291.7 289.9 406.5 409.5 
331.8 328.9 489.9 483.6 
39.7 39.6 25.9 26.7 

34.9 34.0 50.4 35.3 

X:= 1. 1 
X:= 'l 1 
X:= y 
X:= Y + Z 
X:= Y * Z 
X:= Y / Z 
K:= 11 
K:= 1. 1 
K:= L + M 
K:= L * M 
K:= L I I M 
K:= L 
X:= L 
L:= y 
X:= Y ** 2 
X:= Y ** 3 
X:= Y ** Z 
E [J ]:= L 
E2LI,F]:= L 
E3[J,F,GJ:=L 
L:= E [JJ 
'BEGIN' 'REAL' A; A:=3. 14 'END' 
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'BEGIN' 'ARRAY' A[l:1]; A[l]:=2.72 'END' 
'BEGIN' 'ARRAY' A [I: 500] ; A [23] : =7. 8 'END' 
'BEGIN' 'ARRAY' A[l:1,1:1]; A[l,I]:=4.65 'END' 
'BEGIN' 'ARRAY' A[l:l,l:1,1:l]; A[l,1,1]:=l.7 
'END' 
'BEGIN' 'GOTO' ABCD; ABCD: 'END' 
'BEGIN' 1 SWITCH' SS :=PQ ;' GOTO I SS [l]; PQ: 'END 1 

X:= SIN(Y) 
X:= COS(Y) 
X:= ABS(Y) 
X:= EXP(Y) 
X:= LN(Y) 
X:= SQRT(Y) 
X:= ARCTAN(Y) 
X:= SIGN(Y) 
X:= ENTIER(Y) 
PO 
Pl (X) 
P2(X, Y) 
P3(X,Y,Z) 
LOOP OF 'FOR'I:=l 'STEP'l 'UNTIL'N'DO'; 

MIXTURE 
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3: Algol 60 version 3. 

4: Algol 60 version 4. 

pch: partial check: it is checked that final array-element addresses are 

within the array. 

ch: each subscript is checked against its proper bounds. 

7ch: no subscript checking is done. 



TITLE: TIMER (ALGOL60 EXECUTION TIME, IDEA WICHMANN) 
AUTHOR: SARA, VELDHUYZEN, 740401. 
LAST MODIFIED AT 760202. 
"BEGIN" 

"INTEGER"I,J,F,G,N,EP; 
"REAL" P,Q,C,FSUM,S,RELFREQ,LOAD,TIME; 
"REAL" "ARRAY" TT,FREQ[l:42]; 

"PROCEDURE" SAVE;"BEGIN" EP:=EP+l; TT[EP]:=(Q-P-C)/N "END"; 

•PROCEDURE" WRITE(STAT); "STRING" STAT; 
"BEGIN" EP:= EP+l;RELFREQ:=FREQ[EP]*FSUM;TIME:= 6*TT[EP]; 

LOAD:=RELFREQ*TIME; S:=S+LOAD; -
OUTPUT(61," ("/ ,ZD.3D,2 (4ZD.D) ,2B")" ,RELFREQ,LOAD,TIME,STAT) 

"END"; . 

•INTEGER" K,L,M; 
•REAL" X,Y,Z; 
"INTEGER""ARRAY"E[l:l] ,E2[1:l,l:l] ,E3[1:l,l:l,1:l]; 

"PROCEDURE" P0; X:=3.14; 
"PROCEDURE" Pl (X); "VALUE"X; "REAL"X; X:=1.25; 
"PROCEDURE" P2(X,Y); "VALUE"X,Y; "REAL"X,Y; Y:=1.4; 
"PROCEDURE" P3(X,Y,Z); "VALUE"X,Y,Z; "REAL';X,Y,Z; Z:=5.6; 

Y:=Z:=1.1; L:=M:=E[l]:=11; I:=J:=F:=G:=l; FSUM:=0; 

"FOR"X:=10000,7000,10000,26682,31210,11000,3000,500,4300,4978, 
480.9,5000,4000,500,2780,309,442,23795,15963,296, 
23795,0,59,59,39,.73,2010,94,1020,1490, 
1390,831,644,1750,591,81.9,909,788,2316,2316, 
6053,17800 "DO""BEGIN"FREQ[I]:=X;FSUM:=FSUM+X;I:=I+l"END"; 

FSUM:=42/FSUM; 

OUTPUT(61,"("/,16B,"("ALGOL60 EXECUTION .TIME")",2/, 
"(" FREQ WEIGHT TIME STATEMENT")",/")•); 

N:=10000; 

C:=0;"FOR"EP:=l"STEP"l"UNTIL"l0"DO" 
"BEGIN" 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO"; 
Q:= CLOCK; C:= C+(Q-P) 
"END"; 
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C:=Cll0; TT[42]:=CIN; EP:= 0; 

P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= 1.1; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= 11; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= Y; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y + Z; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y * Z; 
O:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y I Z; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= 11; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"D0° K:= 1.1; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L + M; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L * M; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L II M; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= L; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" L:= Y; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** 2; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** 3; 
Q:= CLOCKi SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** Z; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E [J] : = L; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E2[J,F]:= L; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E3[J,F,G]:= L; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" L:= E [J]; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" "BEGIN" "REAL" A; 

A:=3.14 "END"; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:l]; 

A [1] :=2. 72 "END"; 



Q:= CLOCK; SAVE; 
P:=CLOCK;"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:500]; 

A[23] :=7.8 "END"; 
Q:= CLOCK; SAVE; 
P:=CLOCK; 

"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:1,1:1]; 
A [ 1 , 1 ] : = 4 • 6 5 " END" ; 

Q:= CLOCK; SAVE; 
P:=CLOCK; 
"FOR" I: =l" STEP" l "UNTIL"N"DO" "BEGIN"" ARRAY" A [ 1: 1, 1: 1, 1: 1] ; 

A[l,1,1]:=l.7 "END"; 
Q:= CLOCK; SAVE; 
P:=CLOCK;"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""GOTO"ABCD;ABCD: "END"; 
Q:= CLOCK; SAVE; 
P:= CLOCK; 

"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""SWITCH"SS:=PQ;"GOTO"SS[l] ;PQ:"END"; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SIN(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= COS(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ABS(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= EXP(Y); 
Q:= CLOCK; SAVE;· 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= LN(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SQRT(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ARCTAN(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SIGN(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ENTIER(Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P0; 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" Pl(X); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P2(X,Y); 
Q:= CLOCK; SAVE; 
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P3(X,Y,Z); 
Q:= CLOCK; SAVE; 

EP:=0., S:=0; 
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WRITE("("X:= l.1") 11 ); 

WRITE("("X:= 11 11 ) 11 ); 

WRITE("("X:= Y")"); 
WRITE (" ( 11 X: = Y + Z 11 ) 11 ) ; 

WRITE("("X:= Y * Z")"); 
WRITE(" ( 11 X:= Y / Z11 ) "): 

WRITE("("K:= 11 11 ) 11 ); 

WRITE (" ( "K: = 1.1 11 ) 11 ) ; 

WRITE ( II ( II K: = L + M") II) ; 
WRITE( 11 ( 11 K:= L * M11 ) 11 ); 

WRITE("( 11 K:= L // M11 )"); 

WRITE("("K:= L")"); 
WRITE("("X:= L")"); 
WRITE("("L:= Y")"); 
WRI'l'E(" ("X:= Y ** 2") "); 
WRITE("("X:= Y ** 3")"); 
WRITE("( X:= Y ** Z")"); 
WRITE(" ( E[J] := L") "); 
WRITE("( E2[J,F]:= L")"); 
WRITE("( E3[J,F,G]:= L")"); 
WRITE("{ L:= E[J]")"); 
WRITE("( 'BEGIN' 'REAL' A; A:=3.14 'END'")"); 
WRITE("{ 'BEGIN' 'ARRAY' A[l:l]; A[l]:=2.72 'END.")"); 
WRITE("{ 'BEGIN' 'ARRAY. A[l:500); A[23]:=7.8 'END'")"); 
WRITE("( 'BEGIN' 'ARRAY' A[l:1,1:1); A[l,l]:=4.65 'END'")"); 
WRITE("( 'BEGIN. 'ARRAY. A[l:1,1:1,1:1); A[l,1,1]:=l.7 'END'")"); 
WRITE(."{ 'BEGIN' 'GOTO' ABCD; ABCD: 'END'")"); 
WRITE ( ( 'BEGIN. ·swITCH ·ss:=PQ; 'GOTO ·ss [1] ;PQ: 'END'") 11 ): 

WRITE( ( X:= SIN(Y)")"); 
WRITE( ( X:= COS(Y)~)"): 
WRITE( ("X:= ABS(Y)")"); 
WRITE( ( X:= EXP(Y)")"); 
WRITE( ( X:= LN(Y) ") "); 
WRITE( ( X:= SQRT(Y)")"); 
WRITE( ( X:= ARCTAN(Y)")"); 
WRITE( ( X:= SIGN(Y)")"); 
WRITE( ( X:= ENTIER(Y)")"); 
WRITE ( ( P0") ") ; 
WRITE ( ( II Pl (X) ")II) ; 
WRITE( ("P2(X,Y)")"); 
WRITE( ("P3(X,Y,Z)")"); 
WRITE { { "LOOP OF 'FOR ·1: =l ·sTEP ·1 'UNTIL 'N 'DO.;")"): 

S:=S/42; 
OUTPUT(61,"("2/,ZD.3D,2(4ZD.D) ,2B,"{"MIXTURE")",/ 11 ) 11 ,l,S,S) 
"END" 
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10. Conclusions 

Two of the language implementations surveyed seem to be the most 

appropriate for general prograrmning: Algol 68 and Pascal. Pascal should be 

considered if efficiency of input and output is crucial. Algol 68 is better 

if the program is logically complex and especially if it deals in complicated 

data structures, because of its greater internal run-time security. If sizes 

of arrays are to be chosen at run-time, as is necessary for many numerical 

applications, Algol 68 should be chosen above Pascal. 
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