
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM & E. DE JONG

IW 58/76

A CRITICAL COMPARISON OF SEVERAL IMPLEMENTATIONS
OF PROGRAMMING LANGUAGES

Preprint

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

BIBUOTHEEK MAT!-:G,~,\TlSCH CENTRUM
-AMSTERDAM-

PJilnted a..t .the Ma..thema.:Uc.ai. Centlr.e~ 49, 2e BoeJt.haa.vu:tJc.atu;, Am6.teJt.dam.

The Ma..thema.:Uc.ai. Centlr.e, 6ounded .the 11-.th 06 FebJtu.all.y 1946, .Ui a. non­
pJto6U .in6.tltu.ti.on cum.ing a..t .the pJtomo:Uon 06 pUll.e ma..thema.:UC-6 and .l:t6
a.ppUc.a.:Uon6. I.t .Ui -6pon6oJte.d by .the Ne.theJri.a.nd-6 GoveJt.nment .th/tough .the
Ne.theJri.a.nd-6 OJtganiza.:Uon 6oJt .the Advanc.ement 06 PU/Le. Ruea.Jtc.h (Z .W.O) •

1\:CIS(M0S) subject classification scheme (1970): 68A30

ACM-Computing Reviews-categories: 4.6, 4.22, 4.12

*)
A critical comparison of several implementations of prograrrnning languages

by

H.J. Boom & E. de Jong

ABSTRACT

The implementations of Algol 60, Fortran, Pascal, and Algol 68 provid­

ed on the CDC Cyber 73 of the Stichting Academisch Rekencentrum Amsterdam

are compared on both qualitative and quantitative aspects.

KEYWORDS AND PHRASES: Algol 60, Fortran, Pascal, Algol 68, programming

language implementation, CDC Cyber 73

*) . . ~
This report will be submitted for publication elsewhere

0. INTRODUCTION

Around the end of 1974, it was decided to carry out a comparison of

some of the programming language implementations available on the CDC

Cyber 73 of the Stichting Academisch Rekencentrum Amsterdam (hence-

forth known as SARA). The intention was to provide some guidance to new

users of this system. In order to limit the scope of this study, four lan­

guages were selected for which there was general interest within the

Mathematical Centre (MC). These were Algol 60, Algol 68, Fortran, and

Pascal.

It soon became clear that running computer programs and measuring

execution times and storage consumption would tell less than half of the

story. For most programming projects, qualitative aspects of the language

are far more important than quantitative ones. The varying facilities avail­

able in different languages strongly affect their suitability for different

problems. Indeed, in recent years it has become generally known that as­

sembly languages may not be the best tools to use on large systems pro­

gramming projects, even if efficiency of execution is the most important

criterion.The code generated by a good optimizing compiler can be better

than that produced by a good assembly language proBrammer, if the program

is large.

The scope of the study has therefore been extended to include various

qualitative aspects.

Finally, we must mention that we have found this analysis to be far

more difficult and time-consuming than we had originally expected. It may

well be that errors have crept into this critique, perhaps because the

systems were themselves being changed or replaced by new versions during

the study. If so, we would appreciate hearing of them.

0.1. The language implementation

Fortran is the oldest of the four languages studied. Invented during

the J9SO's, it was the first attempt to construct an algebraic language.

It contained very many ad hoc compromises, but achieved widespread popular­

ity because it was first. This language has affected the architecture of

2

many computer systems.

Algol 60 was constructed around 1960. Responsibility for it was later

taken over by IFIP Working Group 4.l. It was one of the first languages whose

structure encouraged the so-called "structured programming", but this was not

actually discovered until nearly a decade later.

Algol 68 is, in some ways, a descendant of Algol 60. After long consid­

erations, the Algol Working Group decided it was time to begin work on a new

language which would be cleaner and more complete than Algol 60 and which

would not perpetuate the mistakes of the first attempt. When its first de­

fining Report appeared in 1968, it was seen to be quite different than

Algol 60. Final definition of the language was not complete until its

Revised Report appeared in 1975 [3], a very long time later indeed.

When Working Group 2.1 produced the Algol 68 Report in 1968, there was

a substantial dissenting minority protesting the publication of Algol 68

at that time. Some of them insisted that the Report be made more clear and

that an implementation be ready before the Report could be acceptable. This

minority resigned from the Working Group when the original Algol 68 Report

was published, and hindsight now shows that they may have been right in

their severe criticism of the language as presented in 1968. One of them,

Niklaus Wirth, produced another language, Pascal, shortly thereafter, per­

haps as a form of constructive criticism. By carefully limiting the scope

of the language, he was able to define a clean, straightforward, and effi­

ciently implementable language with some severe deficiencies. It was imple­

mented and made available rather quickly on the CDC 6600. In contrast,

Algol 68, a much richer language, took another seven years to reach any­

thing like a comparable state.

But it is the implementation of a language that a programmer uses, and

in his eyes the implementation becomes inseparable from the language. Each

implementer makes his own impact on the user by various deficiencies and

extras. Little distinction will therefore be made in the rest of this paper

between the implementations and the languages. The following implementa­

tions were studied:

Pascal.

Algol 60: CDC Algol 60 version 3.

CDC Algol 60 version 4.

Algol 68: CDC Algol 68 version 1.0.9.

Fortran: CDC Extended Fortran.

3

In addition, the Minnesota MNF Fortran compiler appears in the timing

measurements, but it is not discussed elsewhere.

I • COMPATIBILITY

It is desirable to be able to export programs to other installations

and to import programs from other installations. It is even more pleasant

if those other installations can achieve reasonable communicRtion even

though the computing machinery they possess differs greatly from that

locally available. Such "portability" significantly increases the market

for any program one wishes to export, and makes it possible to avoid effort

by importing a working program instead of writing one locally.

There are essentially two means of transporting programs. First, it

may be possible to have them written in a generally available programming

language. Second, it may be possible to have them clearly written in a

language of such elegant semantics that it becomes very easy to translate

them to one of the locally available languages by hand. Translating an

existing program usually involves less work than writing a new one, if

the original program is easy to understand.

The first approach seems quite attractive, and one must choose the

language. It is important that

(I) the language be standard,

(2) an implementation be locally available, and

(3) the implementation indeed implement- the language.

If the language does not have a unique definition with some official

status, it is extremely unlikely that implementations on different machines

will be even slightly compatible. For example, although nearly every large

computer has several implementations of lisp, they differ sufficiently that

it is not practical to use Lisp as a language for portable programming.

If an implementation of the language is not available, it is impos­

sible to write debugged programs for export. Import is still possible if

one is willing to convert the program by hand, but it is extremely tedious.

4

It is desirable that the local implementation implement exactly the

standard. If it implements a subset of the standard, importing programs

becomes difficult. If it implements a superset of the standard, it becomes

impossible to be certain that a locally debugged program for export does

not accidentally use a superlanguage feature. Such matters may be extremely

subtle. An implementation may define some matter which the language defini­

tion leaves undefined, such as whether variables are initialized to any

specific value. Initialization could be relied on without any explicit men­

tion of the fact within the program.

If the implementation accepts some standard language features but

assigns different semantics to them, it will be extremely difficult either

to import or export programs. Compilers will not detect such language de­

viations in a program (the answers will merely be wrong).

Because of practical difficulties, it will usually be necessary to

make some small changes in a program upon transportation even if a con­

scientious attempt was made to adhere to the standard language. It is then

of great importance that the program be readable.

It may in some cases be easier to hand-recode a program written clear­

ly but in a locally unavailable language than to alter a confusing program

written in a locally available language with slight deviations.

1.1. Pascal

Pascal is defined by a defining Report [l]. This Report is accompanied

by an appendix describing details of the implementation on the CDC 6600.

This implementation does appear to conform clo_sely to the Report; it appears

that other implementations are likely to do so too. Nonetheless, it is not

clear to what extent the Pascal implementation for the Cyber is compatible

with implementations on other machines. Other implementations are only now

appearing, and reports of experience with them has not yet reached a general

audience. The Report leaves ample room for implementers to use machine­

dependent criteria such as the size of a machine word to determine a num­

ber of details. It would be reasonable if this extended to matters such as

the precision of arithmetic, but at a number of points these limitations

can be expected to affect program correctness severely. The followine list

contains relevant parameters:

- the number of significant characters in an identifier. (Extra ones

are legal and ignored. This.can be disastrous if one attempts to

transport a program and finds that formerly distinct identifiers

have become identical, or vice versa.)

- the size and coding of the character set.

5

- the number of elements permitted in a power set. (The CDC implemen-

tation permits 59. This means that a set £i char is impossible,

because 64 characters are recognized in the character set.)

- the number of characters in a value of type aZfa.

Other implementations will probably find other ways to impose annoy­

ing qualitative restrictions by propagating low-level machine-dependencies

to the level of the high-level language. Pascal provides high-le~el con­

cepts, but restricts them so that th~ programmer has to think in ma~hine

terms.

Whether a program violates the above constraints is a matter that can

easily be determined at compile-time. There seems to be no reason why the

CDC compiler should not compile code for these prohibited cases anyway,

perhaps by using more storage for larger objects, without impairing run­

time efficiency one whit for the non-user. The CDC compiler has set an

example of machine-dependent restrictions which we must hope other imple­

mentations will not follow.

1.2. Algol 68

Algol 68 is defined in the Revised Report on the Algorithmic Language

ALGOL 68 [3], hereinafter called "the Report'1 , or "the Algol 68 report".

This Report is virtually impossible for the uninitiated reader to under­

stand, and may be difficult even for the experienced Algol 68 programmer.

This Report is, on the other hand, extremely precise. It even makes

explicit at which points the implementer has freedom to make implementation

choices.

The CDC implementation has adhered extremely closely to the specifica-

tions in the Report. There are a number of unimportant deviations from the

Report, and a number of minor language extensions. These are all clearly

6

mentioned in the CDC Algol 68 reference manual.

The CDC implementation is closer to the spirit and letter of the

Revised Report than any other implementation published for any machine that

the authors know of. Unfortunately~ there are hardly any other complete im­

plementations in existence, and therefore this fact does not at present aid

portability.

The most important language deviation is concerned with the opening of

input files. It is not possible to do this, under normal conditions, by

using the open routine. It is clearly the intention of the Report that the

open routine be used for this. Instead, establish must be used to provide

the system with a number of characters per line, number of lines per page,

etc. This is further discussed in the section on input/output.

I. 3. Fortran

Fortran has been standardized by ISO and ANSI. Unfortunately, the

definition of Standard Fortran is extremely difficult to read and under­

stand. Even experts in Standard Fortran regularly discover new catches

or properties of the language every year. Those interested in an introduc­

tion to Standard Fortran are advised to consult the Standard Fortran

Programming manual, which contains a reprint of the standard and much

useful advice [6,7,8,9,10].

The CDC implementation pretends to make a clear distinction between

its standard subset and its nonstandard extensions. The Fortran Extended

manual indicates this by shading descriptions of nonstandard features in

grey. Unfortunately, when there is a deviation from the standard, only the

extended version is described, and not the standard one. For example,

CDC Extended Fortran accepts variable names of up to seven characters. In

the manual, the "seven" is shaded, but it is nowhere mentioned that the

limit in the standard language is six.

The attempt to distinguish between the standard and the implemented lan­

guage must be praised, even though the omissions can be seriously misleading.

On the other hand, a programmer fully cognizant of the Fortran stan­

dard can write Standard Fortran programs and have them accepted by the

Fortran Extended compiler with only minimal change (a PROGRAM statement

7

is necessary at the beginning to describe input and output files), and

Standard Fortran programs from elsewhere can be easily imported. A fortran

compiler that detec~s all deviations from the standard, but still processes

all Standard Fortran programs correctly, would need extremely complicated

run-time checks on use and misuse of common storage, variables initialized

in DATA statements and subsequently assigned to, and many other matters.

To our knowledge, no such rigorously checking compilers have ever been

written for Standard Fortran.

The reason for placing especial emphasis on the standard for Fortran

is that virtually every computer in the world has at least one compiler

available which will accept a superset of Standard Fortran. This is more

true of Fortran than of any other programming language. Writing a program

in Standard Fortran, distasteful though it may be, or having it mechanical­

ly translated to Standard Fortran, is therefore an effective method of

achieving machine-independence. The programmer should be warned, however,

that Standard Fortran is probably but a small subset of the language he

thinks of as Fortran.

Recently, there has been work on a new Fortran standard [2]. This

proposal has not yet been formally accepted, and the new standard has not

yet been generally implemented. It is therefore not a useful vehicle for

achieving portability.

1.4. Algol 60

Algol 60 was defined in 1962 by The Revised Report on the Algorithmic

Language Algol 60 [5]. In recent years IFIP Working Group 2.1, the group

which is responsible for Algol, has had second thoughts based on more than

a decade of experience with the language, and has approved for publication

a document [17] making minor changes to the language and clearing up a

number of subtle confusions andambiguities in its definition. One effect

of these changes is that the modified language [18] (which may become known as

Algol 60.1) is actually closer to most existing Algol 60 implementations

than that of the original Revised Report.

The Revised Report is not an obscure document, but it is written as a

8

language definition and not as a tutorial. CDC has reprinted it in Chapter 2

of their Algol 60 manual, together with a large number of insertions (in a

different type face) describing deviations from the report and giving de­

tails about machine-dependent matters. The restrictions are, in general,

those made by many implementers, and should not seriously hinder program

portability.

Since Algol 60.1 appears likely to supersede Algol 60, we shall here

mention the more important incompatibilities between Algol 60.1 and CDC

Algol version 4. The deviations from Algol 60 are abundantly clear from

the CDC reference manual.

Algol 60.1 provides the following standard procedures:

abs, sign,

sqrt, sin, cos, arctan, Zn, exp,

inreaZ, outreaZ,

maxreaZ, minreaZ, maxint, epsilon, entier, iabs,

fault, stop,

inchar, outchar, ininteger, outintegfr

outterrninator, outstring, length.

CDC Algol 4 provides those on the first three lines (abs to outreal), but

does not provide the rest (maxreal to length). However, the features maxreaZ,

maxint, epsilon, inchar, outchar, and length are provided in other forms.

Algol 60.1 deviates in its definition of the type of intege~ exponent­

iation. If the base of the exponentiation is of integral type, and the ex­

ponent is an <integer> or a call on the function iabs, then the type of the

result is integral, otherwise real. Algol 60.1 provides a result of type

integral if the base and exponent are both of type integral; use of a

negative exponent is then unlawful.

Algol 4 does not permit the entire program to be labelled; Algol 60.1

does.

Algol 60.1 treat a for loop as if it were a block; the scope of any

label preceding the loop body is thus limited to the loop, and it is impos­

sible to jump into the loop from outside. It is possible to use the same
"

label inside and outside the loop. Algol 4 follows the older Algol 60 rules

on this matter, prohibiting a jump to a label inside a loop but also pro­

hibiting use of the label in the block containing the for loop.

9

The original Algol 60 report did not provide any input/output facili­

ties; it was felt that machines differed too widely to make standardized

input/output feasible. The effect is that each implementer constructed his

own input/output system. It is therefore advised that programmers writing

portable programs should concentrate the input/output in a small number of

small and simple procedures, which can easily be replaced.

Nonetheless, there have been proposals for extended input/output sys­

tems, and CDC has implemented that of Knuth et al. [14], with modifications.

Chapter 3 of the CDC manual contains the Knuth proposal, with modifications,

in the same style as chapter 2.

2. RELIABILITY

It is not sufficient that the progrannner, with one finger on the lan­

guage definition and one on the coding sheet, can write texts which resem­

ble syntactically correct programs. He must also be able to run such a

program on a real machine, correct any errors it might contain, and as­

certain that it does then perform reliably.

The behaviour of the language and of the implementation has enormous

influence on debugging. The implementation itself must reliably conform to

specifications, the specifications must be clear, simple, and useful, and

the language and implementation must together prevent errors and clearly

report those which do occur. We can distinguish a number of specific re­

quirements.

The implementation itself must work, and be fully debugged. If a pro­

gram fails, the programmer must be able to be certain that the fault lies

with the program and not with the implementation. Nonetheless, if there are

implementation errors, they must be well published and swiftly repaired.

The language must actively help a progrannner to structure his programs.

This does not mean that it must straightjacket the progrannner into one

specific approved style of program construction; it must instead provide

primitives that are of use in forming structure, and detecting accidental

violations of any structure the progrannner himself imposes. The language

must, furthermore, refrain from providing the unwary with traps.

IO

{ There are more ways to structure a

program than a man can shake a stick at.

One man's bug is another man's

structure.

- Traditional}

The implementation must then help the progrannner to find the errors

remaining in the program. It must be possible for the implementation to

catch all language violations. It must be highly likely that progrannner

errors lead to such language violations, preferably ones that are detected

at compile time. It must be easy for the progrannner to request such thorough

checking. When an error is detected, it must be easy for the programmer to

find it. The implementation should assist him, providing a reasonable

amount of post-mortem information in a readable form. The implementation

may not run amok, providing false or misleading messages or forcing the

progrannner to wade through octal or similar core dumps.

Complete checking has two virtues.

First, it can signal the presence of certain program bugs, to wit,

those which cause the program to violate language restrictions. Even if

checking were only 98% complete, bug-detection would not be significantly

impaired. A bug which fails to be detected by one possible but absent check

will likely be caught by another.

Second, it can be used in finding the error. For example, suppose one

wishes to know at which point in a program a variable receives an anomalous

value. It is an enormous help to know that this cannot happen through the

use of an out-of-bounds subscript in an apparently irrelevant assignment.

The fact of complete checking can thus be used in logical deductive reason­

ing to reduce the search domain drastically. This property is completely

lost if checking is only 98% complete.

The fact of complete checking, together with a selective and readable

post-mortem dump, is often more useful than run-time tracing of jumps,

assignments to specific variables, and the like. Complete checking, more­

over, does not have to be planned in advance; whereas the more traditional

traces must be carefully used in further runs after a bug has been detected.

1 1

2.1. Pascal

Until April, 1975, errors were found in the Pascal compiler in use at

SARA, and new releases appeared approximately every l½ to 2 months. The

latest release was received in August, 1975, and no errors in it have come

to the authors' attention. It thus appears to be of reasonably solid con­

struction. This is perhaps because the current version of the compiler was

itself written in Pascal. This makes reasonable clarity of code possible,

and makes the compiler itself one of its own test cases. Unfortunately,

when one examines the source code of the compiler itself, one finds it

written in an unreadable and nearly connnent-free style.

Identifiers may contain only 10 significant characters; extra charac­

ters may be coded, but are ignored without warning by the compiler. It is

thus easy for a progrannner to code two apparently different identifiers and

have the compiler misinterpret the program by failing to recognise the dif­

ference. This can be catastrophic if the two identifiers are of the same

type, since the error can then go completely undetected.

Syntactic error recovery is good; it is extremely rare to get two

error messages for one single syntax error. However, missing or extra

begins or ends can cause the compiler to fail to properly identify iden­

tifiers, which can cause much trouble. Nonetheless, the compiler rarely

loses all track of the intended syntactic structure, and therefore it is

possible to remove syntactic errors in relatively few runs.

Run-time checking is incomplete. There are a number of points where

program errors can lead to incomprehensible and undefinable chaos. Two

serious problems are variants, and the parameters of parameters.

A Pascal record may have "variants", which means that at various times,

different fields may be present in the record. (The record corresponds to

the Algol 68 structure, and the variants to united modes.) Unfortunately,

there is no built-in check to ensure, when a field of some variant is used,

that the variant with that field indeed does reside in the record at that

time. This can be used for intentional or unintentional punning. As Niklaus

Wirth says [22], assembly language programmers delight in ingeniously

misusing features provided with honest intentions to betray the language's

very principles. The serious high-level language user can only the lack of

12

security and the resulting failure to find programming errors easily. We

have the following example of a coding trick. This is a program which prints

the contents of the first 4000 words of memory. It could just as well have

overwritten the first 4000 words of memory, at least until the program gets

so far as to overwrite itself:

program tt(output);

type rec= record fl: integer;

~':lse f3 : boolean Et
true: (f4: integer);

false (f5 : t alfa)

~nd;

var a : rec;

i : integer;

begin write ('0') : for i := 1 to 4000 do

begin a.f4 := i; write (' ', a.f5t); if_ i mod 10

begin writeln; write(' ') end

end;

writeln

end.

0 then

When writing a procedure which accepts a procedure as a parameter,

there is no way to specify the types of the parameter to the parameter, al­

though these are usually known to the programmer. There is therefore no

compile-time check on the compatibility of parameter type checking in such

cases. There appears to be no run-time check either.

Pascal does provide list processing, but does not provide a garbage

collector. This means that storage allocation and freeing must be explicit­

ly coded by the programmer, with the attendant risk of catastrophic error.

Storage allocation is done using the procedures new for allocation and

dispose for freeing. If the storage freed by dispose is reused by new,

there is danger that the now reused storage is still pointed to by a point­

er left over from its previous use. This can cause interactions between

13

independent parts of a program that are extremely difficult to diagnose.

If the storage is not reused by new, there is no sense in using dispose at

all, and any serious attempt to do.list processing will fail when memory

becomes full of useless list cells that cannot be reused.

There are indications that the version of Pascal in use at SARA may be

a modified version that does reuse the storage. However, since there is no

compactifying garbage collector, there may be danger.of storage fragmentation

if allocated records are of different sizes. This means that freed pieces

of memory may be splintered by further allocation, leaving splinters free

storage too small for reuse.

There seems to be no secure way of implementing the language defined

by the Pascal report on conventional computers without going to prohibi­

tive expense, by providing tag bits on every value for dynamic type checks.

Without such a run-time mechanism, Pascal is not type-secure. A garbage

collector is therefore not a possibility; programmers will therefore have

to make do with an insecure language.

At program termination, Pascal provides a symbolic dump of the run­

time stack, including the names of variables. Unfortunately, the elements

of arrays and records are not printed, the records allocated by new are

not printed, and nothing at all sensible can be printed if the above­

mentioned insecure use of pointers has seriously damaged the stack.

2.2. Algol 68

With version 1.0.8, the CDC Algol 68 implementation had reached a rela­

tively bug-free state. Until then, it was still under development, it was

undergoing continuous changes, and as result it was extremely buggy. Bugs are

still found, but rarely, and are usually fixed within a few months. Most

bugs appear to r~side in the garbage collector or the code generator, and

their effects disappear when Algol 68 source code is replaced by different,

but functionally identical source code.Re-coding a statement to cause diffe­

rent register assignment or changing object-time field length usually suf­

fices, but the presence of such bugs must still be considered a serious

difficulty.

By default, the compiler is in a state in which most language viola­

tions are caught at compile or run time.The implementation does not run

amok (except as mentioned below). In practice, it appears that most

14

programmer errors are detected by the compiler at compile-time, usually by

the compatibility check on modes. The errors detected in practice at run

time are mainly of the "undefined yariable" type: the omission or misplace­

ment of initialization. Very few programmer errors indeed survive both the

compile-time and the run-time checks. Such bug-resistance must be construed

as a significant advantage.

It is possible to get a readable post-mortem dump from Algol 68. It

consists of a printout of the active stack, with variable names and their

values. The only serious security risk inherent in the implementation is

the occasional failure of scope checking in certain situations involving

explicit parallel processing. The scopes of procedures which arise within

one parallel process can be confused with those which arise during another

parallel process. Programs which do not explicitly use parallel processing

have nothing to fear from this security risk. Avoidance of parallelism,

furthermore, is not a severe restriction; the authors have yet to see an

Algol 68 program using parallel processing that was not specifically writ­

ten in order to illustrate the feature or to test the compiler.

It should be mentioned that the scope checks are looser in the imple­

mentation than in the Report, although they are still secure (except in

connexion with parallel processing). All variables are placed on the heap

instead of on the stack, and their storage is retrieved by garbage collec­

tion. No scope check is done upon assignment (this can save much execution

time), but instead a scope check is performed upon procedure calls, to

determine that the called procedure's necessary environment still exists.

In most cases this check can be performed at compile time (but it is not

clear whether it is indeed done then).

2.3. Fortran

The Fortran Extended compiler works. It is not clear whether it is

bug-free, since the language implemented is more or less a superset of the

standard, and it encourages a "try it and see" attitude. Matters which in

other languages would be considered bugs are in Fortran treated as "that's

the way it is". For example, in free-format output of integers, the com­

piler uses heuristics to determine whether a word contains a true integer,

15

or was probably intended as a character string. Its arithmetic deviates

from what one would expect from a first or second reading of the manual

(for example, multiplication of integers does not work if the product re­

quires more than 48 bits, although the manual clearly says that intezers of

up to 59 bits are valid; this restriction in multiplication is mentioned

hidden away in the third part of the manual). But, if one is willing to

experiment, to accept unexpected limitations, and be constantly aware of

the limitations of the machine instructions that the Fortran system will

probably use to implement Fortran operations, it can be used. The Fortran

system must be seen as a machine-dependent medium-level language. This is

true of Fortran on many machines, although Fortran systems on other machines

often have less glaring machine deficiencies to fail to hide.

Fortran also leaves much to desire in the direction of clear, compre­

hensible programming. The almost complete absence of what have now come

to be known as "structured programming tools" makes it unsuitable for

building large, reliable systems.

By inserting special statements in the source program and further spe­

cifying the compile-time "D" option, which causes them not to be ignored,

various run-time checks, such as array subscripting checks, can be turned

on. These statements all begin with "C$" in columns one and two, and will

thus be processed as normal comment cards by other Fortran compilers. (The

Minnesota Fortran compiler, which is not itself properly discussed in this

paper, uses other conventions for these options.) Unfortunately, such checks

are performed only where the implementers thought it convenient to do so,

and therefore full security (such as is provided by the Watfor and Watfiv

Fortran compilers on the IBM 360) is not provided. The most glaring ex­

ception to full subscript checking is that subscripts are not checked in

input/output statements. Furthermore, as in Algol 3, a check is made only

on whether the final array element is within the entire array, not whether

each subscript is within its own proper bounds. Unfortunately, it is also

difficult to turn run-time checking on with these "C$" statements. The

Fortran manual appears to be very free in the placement of these debug

statements, saying they may appear interspersed within normal Fortran

statements. Unfortunately, this is not quite true, and there are a few

places where debugging statements are ignored unless preceded by an extra

16

"C$ DEBUG" statement. When we attempted to check that run-time subscript

checking did indeed occur by writing a short program with a deliberate

subscript violation, it took us four runs before we obtained a run-time

error message. Our sympathies go out to the programmer who actually tries

to debug his program using the Fortran debugging package. He will not have

the advantage of knowing the nature and location of the error beforehand.

(Six months later, one of our colleagues pointed out that the errors

we had made were explicitly mentioned in the reference manual; however,

this was in a different place than we had looked to find out how to use

the debug feature. It is a pity that the authors of the manual have not

seen fit to describe all the various rules for placement of debug state­

ments in one single place, instead of placing various parts of tke speci­

fications differently. Cross-references could even be a help. Even if the

documentation were to be improved, we should still regret that the rules

for placement of debug statements are so complicated; a debugging feature

should contribute to the solution, not to the problem.)

Of course, since main programs and subroutines are (in principle) com­

piled separately, there is no check on parameter type compatibility. Fur­

thermore, type conversions, that are normally performed automatically in

assignment statements, are not provided for actual rarameters, since the

compiler does not know what the types are that a subroutine expects for

its parameters. No run-time checks are provided for this either.

The main use of Fortran seems to be as a low-level language in which

it is possible to reach various features of the hardware or of the operat­

ing system directly. This is inherently machine-dependent, and the program­

mer must be aware of the ways that machine characteristics jut out in un­

expected places.

2.4. Algol 60

The object code from Algol 3 and 4 is usually correct; however, in the

unusual case that it is not correct, compiler bugs are not corrected prompt­

ly by CDC. A delay of one to two years is not unusual.

Algol 3 provides a simple option to turn on checking of array bounds,

after which all subscripting is checked for all arrays. Unfortunately, it

does not check whether each subscript is within bounds, but only whether

the computed effective address lies within the array.

17

Algol 4 does not provide a simple option to turn on array-bound check­

ing; it must be specified anew for each array by placing a comment in the

block with its declaration. This means that checks can easily be forgotten.

On the other hand, when checking does occur, Algol 4 checks that each sub­

script lies within its proper bounds, and not just that the effective ad­

dress be in the array.

Algol 3 and Algol 4 both have code optimizing facilities. However, the

Q option in Algol 3 is a cruel joke on the programmer by the implementer.

According to the manual, it will cause incorrect code to be generated:

"If a call within a for loop changes the value of a variable accessible

to both procedure and for loop and tha~ variable is not an actual para­

meter of the procedure, then subscript expressions in the for loop

which depend on the variable will be evaluated incorrectly •.. "

(p. 2-15, Algol 3 Reference Manual).

As if the job of a programmer were not difficult enough, as if bugs were not

persistent enough, that we have to have a compiler that introduces more of

them!

Algol 4 appears not to have this defect in the optimization.

3. ARITHMETIC

The hardware of the CDC Cyber is notorious for the poor quality of its

arithmetic. It provides no innnediate warning of overflow, underflow, or

serious loss of significance, and "instead yields infinite, indefinite, or

nonsensical values and allows computation to continue. Such undetected faults

can seriously impair the reliability of numerical results.

It must be granted that only a finite subset of all numbers can be

represented on a computer. Operations cannot always be performed exactly,

since their exact values may not belong to this finite subset. Nonetheless,

it is reasonable to require a number of properties to hold on the operations

as implemented by the hardware. For example, one might require:

(I) If the exact result of an operation on specific operands is

18

exactly representable on the machine, then a ·representation of that exact

result must be produced by the machine operation.

(2) If the mathematically exa_ct operation is monotonically increasing

(decreasing) over some range, then the implementation shall not be decreas­

ing (increasing) over that range.

(3) If there is no reasonable approximation to the exact result avail­

able, an error will be signalled in an effective manner.

Further conditions, and some discussion on their necessity, have been

described by Kuki [II]. Such properties are, in fact, more important than

that the computed values be "close" to the true values. Many iterative

algorithms do not require high precision, but will fail if one of these re­

quirements (such as monotonicity) is not satisfied.

The arithmetic on the CDC Cyber fails even the first of these require­

ments. What is even more amazing, it fails to satisfy it on integer arith­

metic! The machine ostensibly provides 60-bit integers, 59 bits and a sign

bit. It uses one's-complement arithmetic; there are therefore two represen­

tations for zero, a +O and a -0. Correct fixed point addition and subtrac­

tion operators are provided (except for overflow), but multiplication fails

"f h d d 248 · d" · · · · i t e pro uct excee s . No error in ication is provided; the answer is

instead just wrong. There is no fixed point divide instruction; floating

point division must be used instead, followed by truncation to integer.
. . . h 1 f . 1 . h 248 Division t us a so ai son integers greater tan •

Floating-point addition and subtraction produce an unnormalized result,

which can be separately normalized by a normalize instruction. This implies

that under some conditions the last (significant) bit of a computed value

is irretrievably lost.

The Cyber appears to satisfy the second requirement except when capacity

constraints such as the above are exceeded, but does not satisfy the third

one properly. Depending on the operations performed, one may get a nonsensical

result or a special value "infinity" upon overflow. In some cases, special

"indefinite" values can be produced.If the result is nonsensical, computation

can merrily continue, combining nonsense to beget more nonsense. If the result

is infinite, an error interrupt is not signalled by hardware until an attempt

is made to use the infinite value as an operand. Production of infinite or

indefinite values is perhaps tolerable, since it is at least possible to see

afterward that something has gone wrong, though it may no longer be easy to

find out where. But getting nonsensical answers without warning, as happens

when a fixed point multiplication goes out of range, is really inexcusable.

19

For reasonable reliability, a programming language implementation on

the Cyber must find ways of compensating for these deficiencies. The results

must be correct, not merely rapidly.computed. Unfortunately, proper software

compensation for these hardware faults is prohibitively expensive. The most

that is usually done is to post warnings in manuals as to the limitations

of the implemented arithmetic.

The reasons for the various code sequences generated by the Pascal

compiler are discussed in [13] by Wirth. The serious user of the CDC 6600

is strongly advised to read this paper, because its "understanding may

prevent him from certain pitfalls which are 1nherent in the use of the

CDC 6600".

We have evaluated a number of expressions on the various implementa­

tions and had the results printed. Deviations from mathematically exact

results may therefore result from inaccuracies in calculation,comparison,

or printing.

The results are summarized in the following table. We have used a

number of abbreviations:

0 = 0.000 OOEO

O' = 0.000 OOE-295

K = 3.13151306251402E-294

K' = 3.1315130625140E-294

K" = 3.131513062514E-294

-:r = 1.56575653125702E-294
if I = 1.5657565312570E-294

= 1.000 OOE + 0

= . 1000 OOE +

- C = .999999999999996E + 0

- e:' = .99999999999999E + 0

= 9.9999999999999E -

I - E II = .9999999999999E + 0

(I -
2

C) = .999999999999993E + 0
-976

p = 2
-975

q = 2

C = cos(O)

20

In general, the number of significant digits printed has been ignored in

reporting these results. In the case of Pascal, Algol 60, and Algol 68, the

default number provided by the language was used; for Fortran an explicit

format was given.

"q" is the smallest power of two which all the systems concerned

could distinguish form zero. "p" is the next smaller power of two. As one

can see, it is sometimes distinguishable from zero and sometimes not.

Worse, properties such as

p # 0 implies

and

p # 0 implies

appear to fail! With one system, we even have

p # 0, but 2 * p # O!

If such properties were used in proving the correctness of a program,

the programmer might be in for a rude surprise. Similar peculiarities arise

with numbers near to one.

It should be noted that Pascal provides no double precision arithmetic.

21

Extended
Pascal Algol 3 Algol 4 Algol 68 Fortran MNF

q K' K' K K' K"

q = 0 F F F F F

* q K' K' K K' K"

(1 *q) = 0 F F F F F

p O' 1T' 1T O' 0 0

p = 0 F F F F F F

* p 0 0 0 0 0 0

(1 *p) = 0 T T T T T T

2 * p 0 0 0 0 0 K

(2*p) = 0 T T T T T F

p + p K' K' K K' K K

(p+p) = 0 F F F F F F

* (p+p) K' K' K K' K K

* (p+p) = 0 F F F F F F

C 1 - € II 1 - E: 1 - E:

C = F T T F T T

C * C 1 - E:' (1-e:)2 1 - E:' (1 ·- e:)2

C * C = F F F F F T

4. DOCUMENTATION

There must exist precise and readable documents describing the lan­

guage and the implementation. There must be a rigorous definition of the

language for reference, and there must be introductions for beginners. The

implementation manuals must clearly describe the interface with the operat­

ing system, restrictions, extensions, and other deviations from the stan-

22

<lard language, and implementation decisions relating language features to

the machine. All information necessary for use must be in the manual, and

the user must not have to experiment to determine facts about language

features. The documentation must be readily available, whether this be

through bookstores or manufacturers' representatives.

4.1. Pascal

There is a good user's manual and defining report [l]. It appears to

correspond closely to the implementation on the Cyber, and clearly distin­

guishes between the Standard Pascal language and implementation quirks. It

is on sale to the public through normal channels.

It is usually clear and explicit, except for a few guilty secrets.

Several violations of run-time security are mentioned in this paper in

the section on "Reliability", but the manual nowhere mentions that the lan­

guage misuse that leads to such insecurity is indeed unlawful. Apparently

it hopes that failing to mention an unchecked restriction will prevent

users from running into it by accident.

The discussion of separate compilation in the Pascal user's manual

can only be called inadequate. A few hints are given, and the bright

thinker who is familiar with the CDC Cyber and the way things work there

is then left to puzzle it out himself.

[13] is essential if one wishes to know the limitations of the arith­

metic as implemented. It is unfortunate that these limitations are not

clearly presented in chapter 13 of the Pascal user manual, which describes

peculiarites of the Pascal 6000-3.4 implementation.

4.2. Algol 68

The documentation available at present is not extensive. The defining

Report is an utterly precise definition of the language (except for its

errors), but it is intended for language specialists, such as implementers,

and it is not readily comprehensible to the ordinary user. A number of in­

troductions to the language have sprung up, such as [4,12,20,21]; it is

expected that more will follow.

The present CDC documentation describes the deviations from the stan-

23

dard language, and gives information about m.atters such as separate compilation,

input/output, extra standard identifiers, and control cards. It is not

always clear, and occasionally appears to suffer from excessive brevity.

4.3. Fortran

A ridiculously large number of textbooks on Fortran are available.

Most of them describe dialects of Fortran without mentioning that they are

in fact dialects. Few of them mention that there is a Fortran standard

and fewer yet indicate which features are standard.

There exists a readable book describing the standard which contains

a reprint of the standard [10].

4.4. Algol 60

The CDC documentation for Algol 3 and for Algol 4 consists of manuals

containing

a reprint of the Algol 60 Report [5], with inserts in a different

type face describing changes made to the language, and giving fur­

ther details on machine-dependent matters.

a reprint of the ACM (Knuth) input/output proposal [14], again with

inserts.

a description of the various control cards involved, with explana­

tion.

- an incomplete list of error messages.

- a description of the internal run-time organization, with bit maps

for the various code words used.

a description of the main processes involved in compilation.

In addition, many readable textbooks on Algol 60 exist, and some can

usually be found in any technical bookstore.

5. EXPRESSIVE POWER

"Expressive power" 1.s the most important (and most qualitative)

aspect of programming language design. It refers to the interaction between

24

the language, good patterns of thought, and the domain of application. It

is slowly becoming clear that one's programming languages determine one's

patterns of thought, limit one's ability to see elegant methods of solving

problems, and limit the useful generality and flexibility of one's programs.

In general linguistics, the effect of language on thought is very difficult

to distinguish from the effect of thought on language. This is different

from computer linguistics for several reasons. First, a programming language

is a relatively static entity, and does not change whenever a programmer

discovers a new programming concept. A natural language usually responds

instantly by acquiring a new word. Second, the class of programming language

users is enormously larger than the class of language designers; a program­

mer has much less influence on his programming language than a speaker has

on the natural language spoken in his circle of friends.

We shall examine expressive power from the viewpoint of structured

programming'and general purpose languages.

A programming language must be able to express the structure of pro­

grams written in it. The structure must be visible in the program, and not

merely hidden in the mind of the programmer.

"General purpose" will be understood in the following sense. It must

be possible to adapt the programming language to various purposes, perhaps

by the definition of procedures and data types or by the choice of variable

names. A large program usually contains collections of primitive routines

that implement basic operations on those special kinds of objects that the

program deals with. Such a collection of primitive routines in effect de­

fines a specialized dialect of the programming language for the problem at

hand. It is necessary to be able to build such specialized dialects onto a

general-purpose language. There are many possible dialects for many dif­

ferent applications. Nonetheless, it is possible to distinguish some

"general purpose" features. These are features which occur in many dif­

ferent dialects, or which are necessary tools for constructing dialects.

A general purpose language must possess such features. The language de -

signer should keep them down to a small, easily understood set. Because,

ultimately, all operations are carried out on a computer, machine opera­

tions common to many computers are usually included in general-purpose lan­

guages.

25

It is not necessary, from the viewpoint of expressive power, that the

features provided be easy to implement. It is important that they be easy

to use and have simple properties •. Many implementers unnecessarily compli­

cate the properties of the primitiye concepts of their language by propa­

gating machine-dependent patterns of thought upwards. This can cause much

agony to a progrannner who finds himself required to think on two levels of

abstraction at once - that of his dialect, and that of the machine hardware.

These machine-dependent aspects often involve capacity constraints - limits

on the size of a program, on the number of blocks or identifiers, and so

forth. It is extremely important that there be no such hard limits. Such

limits are usually imposed because an implementation has chosen fixed

size tables or has chosen to place certain information in main storage,

which is limited incapacity. It is important that all such limits be soft.

Other implementation techniques should be invoked automatically when the

limits are exceeded. Excess table information can be placed on disk or

extended core storage, excess object code can be handled by overlay tech­

niques, etc. This will probably influence efficiency, but not (directly)

possibility. The price can very well be worth paying if it makes it

unnecessary to confusingly and perhaps catastrophically maim a program in

order to make it fit after a restriction has been encountered.

5.1. Pascal

At first sight, Pascal seems to be singularly free of the barnacles

usually found encrusted on a progrannning language. Further inquiry, how­

ever, leads one to conclude that the ragged collections of extra features

that other languages bear have been replaced by ragged and inconvenient

restrictions.

The most important restriction in Pascal is that the sizes of all

arrays are determined at compile time. It is therefore impossible to write

many programs efficiently and clearly in such a way that they are indepen­

dent of the amount of data to be processed. The only way to maintain a

program library of, say, numerical routines is to keep it in source form.

To use a routine in the library, the user must make a copy of the source

26

code, tinker with the array bounds, and include it in his own program. If

he wishes to call the library procedure several times, giving it arrays of

different sizes, he must include multiple copies of the procedure, each

with a separate name and a separate array size. In this respect, Pascal

more restrictive than even Fortran, which at least permits a subroutine

be told by its caller what the size of an array argument is. Needless to

say, algorithms which rely on a procedure that recursively calls itself

for subarrays or smaller arrays than the original parameters can not be

cleanly expressed in Pascal.

1.S

to

It is possible to parameterize array sizes at compile time, using a

manifest constant. If this is declared once, its name can thereafter be

used in array declarations, and the compiler will find the appropriate

actual size at compile time. This makes it possible to localize the de­

pendency of a program on array sizes. Unfortunately, expressions such as

N + I, where N is a manifest constant, or even 3 + I are not allowed as

array bounds.

There are a host of restrictions on parameters and values yielded by

procedures. One can divide values into two classes: "normal" values, and

"second rate" values. Normal values are those which fit into one word on

the CDC Cyber 73 (so much for machine independence), and second-rate values

are those which do not. In the Pascal Report, when one reads through the

various rules and restrictions, one finds that the second-rate values are

records and arrays. There may be some sense in making such a distinction

between elementary and compound values. On the other hand, Pascal presumably

does not have double precision arithmetic because double precision values

would have to be elementary but do not fit into a single machine word.

By experimenting with the compiler one discovers that the type alpha,

which is a packed array of characters, can often be used as if it were

elementary after all! It does fit into a single word on the Cyber.

With the "normal" values, one cc>.n do anything one pleases. One can

pass them to procedures as parameters, and one can return them as values.

One cannot do this uith the "second-rate" values. As an example of the

elegance of Pascal's data structures, the Pascal manual shows how complex

numbers can be represented as records containing two real numbers each.

It is clear, since Pascal does not rave complex numbers built in, that one

27

cannot use the usual operations+,-,*, and/ on them, and procedures

must be written. At this point the manual forgets about the example and

goes on to other matters. One would expect to have to write functions add,

subtract, multiply, and divide to perform arithmetic, so as to be able to

write an expression

add (multiply (a, b), multiply (c, d))

instead of a* b + c * d. Unfortunately, (and here comes the catch) these

procedures cannot be written either, since they would ~ave to deliver sec­

cond-rate values as function values.

It is not clear what the language or the programmer gains from such

inconvenience. It cannot be efficiency, since the programmer who needs these

facilities is now required to go to complex circumlocutions to express

what might have been simple. Since the compiler can easily distinguish be­

tween single-word values and multiple-word values at compile time, the

nonuser of multiple-worc1 values should not need to suffer inefficiency for

a feature he does not use.

"Power sets" are provided as one of the means of constructing new

types from old. Given any scalar type (except real, which is a kludge),

one can construct its power-set type, whose values are sets of values of

the original type. This is a very clean concept of wide generality. Unfor­

tunately, power sets are classed as normal values and must therefore fit

within one CDC machine word. This, in turn, makes it quite clear that the

purpose of introducing power sets was not to make available a clean and

elegant concept for program construction, but to provide access to the

underlying hardware bit manipulation. A power set of characters, for ex­

ample, would seem to provide an elegant way of classifying characters ..

Instead, it is useless, because the character set contains 64 characters,

and not 59. (Power sets are actually restricted to 59 bits instead of to 60

to avoid having to distinguish between positive and negative zero.)

In general, it does not pay in language design to place implementation

restrictions to prevent certain "inefficient" features, if this forces the

progrannner who needs them to go to even more inefficient circumlocutions

to compensate. The only time that such a restriction can be excused is if

the unrestricted feature would cause significant costs to nonusers.

28

Pascal does provide something resembling Cobol and PL/I style record­

directed input-output. A file consists of elements of some. single data

type; another file may have another. data type. This type may be a record

type, and it may be an array type. Each input or output operation transfers

one value of the specified type, without formatting or conversion. Unlike

Cobol, Pascal does not use the Record Manager.

Special kludges are provided to graft page and line structure onto

character files, and to provide a small amount of formatting on output.

Unlike Cobol and PL/I, Pascal does not provide any types for decimal arith­

metic, and therefore the record structure cannot be used to achieve for­

matting.

Here are some stupid restrictions:

Power sets may have only 59 elements.

These 59 elements must each be such that ord(element) is between 0

and 58, inclusive.

Strings may be compared only if their length is less than 10 or a

multiple of 10.

Only the first 10 characters of an identifier are significant.

5.2. Algol 68

The expressive power of Algol 68 is adequate for normal, and much

abnormal, programming. It obtains this power from a reasonably well-chosen

set of primitive concepts that can be combined in an extremely free manner.

Restrictions have been placed on combinations that might be considered

meaningless or dangerous, but no restrictions_ of concept have arisen from

machine-dependent considerations.

Here are some of the primitive facilities it provides:

- basic data types - integer, real, character, boolean, bits, bytes.

Integers, real numbers, bits, and bytes can each be of various

"lengths", corresponding to various precisions that may be avail­

able on real machines.

- compound data types - structures (like Pascal records), arrays with

bounds determined at run-time, pointers, procedures, and discrimi­

nated unions.

- a "heap" discipline of storage allocation, as well as a roore con­

ventional block-structured stack. The heap is garbage-collected.

- the ability to define new data types in terms of old ones.

- the ability to redefine most ordinary operators, and to define new

ones (the example of complex arithmetic in Pascal can be done pro-

29

. 68 h ' f . h b 1 "+" " " perly in Algol , even tote point o using t e sym o s , - ,

"*", and"/" to denote the operations. On the other hand, Algol 68

already provides complex arithmetic, so the exercise, in this case,

is academic).

- parallel processing.

- formatted, unformatted, and binary input/output.

The syntax and semantics for control structures are slightly better

than in Algol 60 and Pascal. The most notable feature is the presence of

"closing words", such as od at the end of a loop, and fiat the end of a

conditional clause. These extras enable pairs of words such as do - od
and if - fi to be used as brackets, and eliminate the vast majority of

begins and ends present in Algol 60 and Pascal. The result is a more read­

able program. It is always clear in a syntactically correct program that a

fi terminates a conditional clause; it is not always clear in Algol 60

which heEin s~ould be paired with any given end. The presence of different

kinds of brackets makes visual matching easier.

The expressive power of Algol 68, taken as a whole, must be regarded

as clearly superior to Fortran, Algol 60, and Pascal. However, there are

deficiencies.

There is no true record input/ouput, as pioneered in Cobol and propa·

gated in PL/I, and to some measure placed into Pascal. With true record in­

put/output, the programmer specifies exactly how an input/output record should

appear on the file, and a single input or output statement suffices to

read the entire record into a group of variables. The layout of the record

inside the machine is the same as that on the file - the formatting speci­

fication specifies how the variables are to be placed and accessed in main

store, and not how information is transformed during input/output. Even

with binary transput in Algol 68, it may be necessary to remap information,

possibly rearranging it in a different order than that in which it resides

in main store. Mixing character data and binary data on an Algol 68 file

30

is ,-., dubitable matter; it is standard practic·e in Cobol and PL/I.

According to the Algol 68 Report, parallel processing is available.

A programmer may divide his calculations among several independent parallel

processes, which may even be run on separate CPU's. These processes may

synchronize their occasional communications by means of special synchroni­

zation operators. Because of valid technical reasons connected with gar­

bage collection and the Cyber operating systems, the CDC implementation

does not provide true parallel processing. The facility therefore does not

aid one in speeding up the work by harnessing more CPU's; it does aid in

expressing algorithms clearly that require several independent parallel

computations. The CDC implementation is nonetheless in compliance with the

letter of the Report on this matter.

"Flexible" arrays constitute a seductive feature that is quite useless

in practice. Algol 68 provides two kinds of arrays - "flexible" and "in­

flexible". The size of an inflexible array variable is fixed (at run time)

when the variable is created. After an inflexible array variable is creat­

ed, it always retains its own constant size. It is of course still possible

to construct other array variables of different sizes if this is desired

(perhaps when a block is re-entered). The size of a 11 flexible 11 array vari­

able is not fixed when the variable. is created, but can change anytime

that a new array is assigned to the array variable. The array variable will

change its size only when an entire array is assigned to it; however, any

attempt to assign to an individual element or group of elements will be

checked against the array bounds in the usual way. It is a common miscon­

ception that a new element can be inserted into a flexible array simply

by assigning a value to a previously non-exisGent element. This is not so.

In practice, flexible arrays are nearly useless, and they could probably

be left out of the language with little loss.

Formatted input/output in Algol 68 is an incredibly complex subsystem which

the casual user is advised to stay away from. It operates in the same style as

the CDC Algol 60 formatting. In most cases, the desired results can be ob­

tained much more easily, more efficiently, and more clearly by using un­

formatted input/output and the separate routines whole, fixed, and float

provided by the language.

31

5.3. Fortran

In comparison with modern pro$ramm.ing languages, Fortran must be con­

sidered woefully lacking in expressive power. Its essential form was fixed

in the 1950's, a!l~ despi_te cha"!lges~ it is still essentially the same lan­

gt;~ie as then conceived.

Fortran is seriously lacking in convenient control and data structures,

and it is difficult to break a program into parts, since the peculiarities

of COMMON storage make the use of global variables difficult and hazardous.

Subprograms may not call themselves or each 6ther recursively. This makes

many algorithms quite difficult to code.

Fortran was intended for programs involving simple repetitive numeri­

cal calculations,especially those involving matrices of fixed size. Rela­

tive to the state of programming language technology in the early and mid­

dle fifties, Fortran was a reasonably well-built product. Attempts to use

Fortran for complicated problems or outside of its intended application

area often lead to significant inefficiency and obscurity.

On the other hand, CDC has extended Fortran to make available many of

the facilities of the Cyber hardware and of the Scope operating system.

Fortran is therefore often used for very small problems primarily involv­

ing communication with the operating system.

The following is a list of various restrictions found in the Fortran

Extended Reference Manual:

At most 10 characters may be stored in an integer.

At most 7 characters in an identifier (A.N.S. Fortran specifies 6).

DO loop indices must be less than 131072.

DO loops may be nested 50 deep.

At most 70 characters in a stop string.

At most 63 parameters to a subprogram or statement function.

At most 3 subscripts for an array.

At most 131071 words in a COMMON block.

Maximum field width is 131071.

At most 6 characters in a file name.

At most 50 files.

Record length at most 131071.

At most 125 labelled connnon blocks.

Unit numbers must be between I and 99 inclusive.

32

5.4. Algol 60

The expressive power of Algol 60 must be rated good, within limits.

The control structure is adequate, and lends itself to comprehensible code.

The data structures are adequate for numerical processes involving arrays

(unlike Pascal, whose compile-time array bounds present severe difficulties).

On the other hand, if the structure of the data does not fit well into

arrays of numbers, the data structures of Algol 68 and Pascal must be judged

superior.

Algol 60 has a "dangling else" difficulty. It is possible to leave

out the else part of a conditional if it is empty. In certain nested condi-

tional statements, such as if then if then .•. else ••. , this

causes ambiguity, since it is not clear which if the else belongs with.

Algol 60 makes an arbitrary choice here; it may not be that intended by the

progrannner.

We now present two short lists of stupid restrictions. They were ob­

tained by paging through the Algol 3 and 4 reference manuals. The absence

of a restriction from one of the two lists does not mean that the feature

is not restricted, but simply that the restriction was not found in the

manual. Restrictions which seem especially dangerous have been marked with

asterisks.

The first list pertains to Algol 3:

Maximum length of identifiers: 256.

* At most 2383 different identifiers in a compilation (but the identi-

fier table is usually full earlier).

Maximum depth of block nesting: 32.

At most 63 parameters for a procedure.

At most 20 subscripts for an array.

* At most 511 segments of object code of 512 words each.

Breakpoints cannot be used in segmented mode.

Nesting of blocks and compound statements at most 96.

* At most 50 separately compiled procedures in segmented mode.

At most 131072 words of object code per compilation.

Maximum replication (in a format): 262143.

At most 24 z's and d's before the exponent part in a number format.

At most 4 z's and d's in the exponent ~art.

At most 136 characters in a format item after replication.

At most 30 variables in a call to FORMAT.

R-L > 21 for the right and left margins of an output file.

33

It might be worth mentioning ~hat the segmented mode is not available

at SARA. Algol 3's segmented execution works only on certain obsolete

versions of the Scope operating system. However, the current system has a

loader with a different method of performing segmented loading of relocatable

object code, which has nothing at all to do with the Algol 3 "segmented"

option.

The following restrictions apply to Algol 4: ·

Maximum length of identifiers: 63.

* At most 4000 different identifiers, although the table is usually full

earlier.

* At most 253 blocks.

Static block nesting at most 63.

At most 63 parameters per procedure.

* At most 131072 words of object code per compilation.

At most 63 subscripts for an array.

Maximum replicator: 262143.

At most 24 z's and d's before the exponent part in a number format.

At most 4 z's and d's in the exponent part.

At most 136 characters in a format item after replication.

6. LARGE PROGRAMS

When large programs are written, or when small programs become large

(they inevitably do), serious logistic problems arise. The first difficul­

ty is that the program itself becomes difficult to understand because of

its complexity. At still greater size, it becomes difficult merely to deal

with the amounts of text involved.

To deal with these problems, programming languages and their imple­

mentations have adopted various small-scale and large-scale structuring

facilities and shoehorns. These may involve:

- pleasant control structures, such as the if-then-else of Algol 60

and loops.

34

- the ability to break a program into modules, such as procedures or

groups of declarations.

- the ability to use textual layout to indicate program structure

(e.g. indentation and pagination).

- the ability to restrict the scopes of names to those portions of

the text where they are meaningful.

- the ability to code large modules containing smaller modules.

- the ability to compile modules separately, and to combine them

subsequently.

- the ability to manage complicated file structures containing

source and object code in an intelligent manner.

- shoehorns (such as overlay mechanisms) to handle object code or

data which is too large for the address space of the machine.

Alas, any program management facilities that make vital use of the

file system on direct-access secondary storage have to be considered use­

less at SARA, because of the policy of scratching files after four days

of inactivity.

It is important to notice that it should be possible to fragment

programs into separate compilations without having planned it beforehand,

and without extensive rewriting. An unexpected split may become necessary

through slow and gradual growth of an originally small program, or through

importing programs from a larger installation.

The use of separate compilation and other shoehorn mechanisms should

not exclude the use of other implementation facilities, such as run-time

debugging tools. It is precisely when a program is large that one needs

all the debugging aids one can get.

6.1. Pascal

Two methods are available for managing large programs.

First, procedures can be declared within one another, subject to the

usual nested name scope rules. Unfortunately, this block structure does

not permit declarations within begin-end blocks. The only "blocks" for

deterrdning the scopes of names are procedures. Declarations can be made

within each procedure, and are then valid throughout the procedure. Such

nested procedure structure is adequate up to a fairly large program. It

tends to break down only when the program itself becomes physically hard

to manage.

Secondly, groups of procedures can be compiled separately. It is

possible (but not easy) to surmise from the Pascal manual how this is to

be done. The main program, which calls the procedures, is provided with

duI!lllly declarations of the separately com~iled procedures. Such a dunnny

declaration is just like a normal declaration except that the body is

replaced by the singly reserved word extern or Fortran. If Fortran is

coded, the separately compiled program is called using Fortran linkage

conventions (and it can thus be a Fortran routine; see the section on

escape for complaints), and if extern is used Pascal linkage conventions

are used.

35

To compile the external routines, a program is compiled with the "E+"

option. The object code for each procedure will then have an entry

point name consisting of the first seven letters of the procedure name.

If the dummy procedure in the calling program has the same name, contac·t

is achieved.

When one attempts to use this mechanism, however, one begins to feel

like a sneak thief, relying on his wits and good luck to keep things from

going wrong.

First, the E+ option should normally not be used if one is not in­

terested in separate compilation. If two procedures happen to have the

same name (which is legal it they are in different ranges) they will get

the same entry point, and the system loader will refuse to load more than

one of them. All calls will be routed to this single one, regardless of

the program block structure.

Thus (as hinted in the manual) one must use the E- option, whereupon

"a unique symbol is generated by the compiler" for each procedure. This

would seem clear. However, if one is concerned with separate compilation,

new phenomena occur. If one compiles a group of procedures separately,

one might expect that one can use E+ for some of them to make them avail­

able publicly, and E- for others in the group that are to be available

internally (perhaps one of them is a local procedure within a larger

public one). However, as soon as one attempts this, the compiler begins

36

to generate nonunique names, contrary to promise. They are unique within

the separate compilation, true, but they are the same "unique" external

names generated by the compiler in the compilation of the main program

and in every other separate compilation.

The only way to avoid this is, despite the apparent block structure

of Pascal, to give each procedure in the separate compilation a unique

name and specify E+ for all of them. No checks are provided by the com­

piler for duplicate external names. It is even possible to confuse pro­

cedures in disjoint blocks, with different static nesting depths. Further­

more, none of these names may be of the form "PRCdddd" (where each "d"

stands for a digit) (these are the names Pascal generates).

There is no check on parameter compatibility between separately com­

piled procedures. The separate compilation method can, with care, be used

in building large programs. However, it is virtually useless when building

program libraries because of the array-bound restrictions. As lamented in

the section "Expressive power", all Pascal array bounds are fixed at com­

pile time. It is therefore impossible to precompile procedures for program

libraries for array manipulation without knowing what the users' array

sizes are going to be (before the users have even thought of the problem

they are going to use the library for).

The Pascal compiler is capable of compiling itself. It itself is a

Pascal program of some 5,000 lines.

o.2. Algol 68

The CDC Algol 68 compiler has already been used on a program of 2083

lines. To compile this program takes 83 seconds of CPU time on the CYBER 73

The orogram was not divided into senarate compilations, although this would

have been possible. No difficulties were encountered that would indicate

any inherent capacity limits of the compiler. The compiler used approxi­

mately 77000 (octal) words of memory during compilation. Since the compiler

is new, there is little experience with larger programs.

The separate comoilation mechanism seems quite adequate for the devel­

opment of some kinds of single large programs, but there are drawbacks and

there is no adequate program library facility. In order to break a program

37

into parts to enable separate compilation, one must make a "user nrelude".

A user prelude much resembles a program, except that a special marker is

placed in its outer range to indicate the placement of a not-yet-provided

"main program". In addition, procedures in procedure declarations in the

outer range may be replaced by place markers in another way. The compila­

tion of this prelude produces two files, an object file and a symbol table.

The missing procedures and the missing main program may then be com­

piled separately as often as desired, if the symbol table is provided to

the compiler as well. This symbol table provides information about global

indicators. Full unrestricted use of global identifiers is possible, and

type-checking occurs at compile time.

It is also possible to compile a further prelude in the hole provided

for the main program.

This method is quite acce~table as a means for dividing a large pro­

gram into pieces; it is not, however, adequate as a means for maintaining

program libraries. Each such library will have to be compiled as a prelude.

If they are compiled independently, they will cause the same storage to be

allocated for their global variables; if they are compiled together they

cannot be used separately.

It is to be hoped that CDC will eventually provide a proner library

facility for their Algol 68 compiler.

6.3. Fortran

The only nrogram structuring tools provided by Fortran are the DO-loop,

the subprogram, the logical IF statement (for one-statement conditionals),

the arithmetic statement functions, and the COMMON block. These have to be

considered inadequate. Other small-scale tools are needed for conditional

execution and for other kinds of loops. Algorithms involving these methods

have to be encoded in a cumbersome way involving GO TO statements. If more

than three or four such constructions are used in a single subprogram, it

tends to become difficult to understand, and more subprograms must be used.

This in itself would not be so serious if adequate communication were

possible between clearly identified grou~s of subprograms. Unfortunately,

there is no means of grouning subprograms together into larger modules,

38

and the only means of sharing values between· subprograms is to use para­

meter lists or COMMON blocks. Both mechanisms are highly error-prone.

Since subprograms can be compiled completely independently of each other,

no checks are performed to ensure type compatibility. If two subprograms

do not agree as to the types or contents of parameters or COMMON blocks,

the result is usually not an error message but complete chaos or wrong

answers.

When a subprogram reaches about 200 lines, its internal structuring

tends to break down; by the time a program reaches about 2000 lines, the

hierarchy in its subprograms has usually become unclear.

Fortran Extended supports the same overlay mechanism as does Algol 4.

6.4. Algol 60

The conditional and loop control mechanisms and compound statements

enable programs of 50 to 100 lines to be easily readable. Block structure

and procedures extend this to 500-3000 line programs.

After this, no further syntactic aids are provided.

To enable truly gigantic programs to be compiled, separate compila­

tion and libraries are available. To enable them to be executed, Algol 3

provides segmented execution, (but not with current versions of the Scope

operating system, which can accomplish it independently of the Algol 3

"segmented" option), and Algol 4 provides overlays.

Unfortunately, separate compilation is more restrictive than in

Fortran. In particular,

- only procedures may be compiled separately.

- there is no facility (such as Fortran's CoIIllllon storage) to enable

separately compiled procedures to share coIIllllon global variables.

Parameters can very quickly become unwieldy, and moreover, there

may be only 63 of them.

- in Algol 3, numbers, not names, must be assigned to separately

compiled procedures, and they must be referred to by number. This

is unwieldy. Algol 4 permits names.

39

7. COMMUNICATION WITH THE OPERATING ENVIRONMENT

For a programming language to be useful for general use, it must have

a decent operating-system interface. This means that those options in the

operating system which might reasonably be expected to match with language

features must indeed interact harmoniously. The most important areas in­

volve fault detection, input/output, and interactiveness.

The implementation must cause errors detected by the operating system

to be signalled to the progranrrner in a reasonable way. It must not give up

on error recovery and readable nost-mortem activity simply because the

operating system has detected the error instead of the language implemen­

tation.

The implementation should be capable of accepting and producing the

various kinds of files that the operating system sunports. On the Cyber 73

under Scope 3.4, these supported file types are implemented by the "Record

Manager".In addition, SARA provides an encoding for paper tapes as se­

quences of 12-bit characters. (Since line length is not always clearly

defined on paper tape, it may be difficult to use the Record Manager for

such files.) Furthermore, another form of 12-bit character files is recog­

nized by some of the line printers as representing a character set of more

than 64 characters. The Record Manager understands 6-bit characters only;

it can therefore be difficult to recognize 12-bit characters. Most of the

languages discussed here do not.

The implementation must be able to produce object code that is suit­

able for interactive use. Many implementations have a buffering problem:

in a question-answer sequence between a user and the program, some systems

require the user to provide the next line of input before giving him the

response to his previous line. Furthermore, an interactive system often

has difficulty with programs using large amounts of memory and exhibiting

poor localitv of reference. Since the CDC Cyber has no paging mechanism,
- j

poor locality of reference cannot be a problem; on the other hand, large

memory consumption can significantly reduce system performance. At SARA,

there is a limit of 60000 (octal) words of storage for an interactive

nrogram.

40

7.1. Pascal

All Pascal input/output files must reside on disk. Card reader and

printer files are acceptable because the operating system, Scope, auto­

matically spools them via disk. Magnetic tape files are not available to

Pascal programs; they must first be copied to disk (and afterwards copied

back) using a system utility. This causes the length of every ta~e record

to be rounded upwards to a multiple of sixty bits, which may be tolerable

on input, but probably not on output.

Pascal does not use the Record Manager. In one blow this eliminates

most of the file types accepted by most other systems on the Cyber. Mag­

netic tapes would probably have been available if the Record Manager had

been used: the problem is one of buffer length, and the Record Manager is

willing to manage its own buffer length correctly.

The Pascal implementation recognizes two kinds of files: "character

files" and "other files". Character files have the type "fiZe of character";.

the other files have the type "file of othertype", where "othertype" stands

for some ?ther type. Conceptually, Pascal sees these files as sequences of

values of the given type, without arbitrary boundaries. On the other hand,

character files are used for character input-output from the card reader

and printer, and this imposes further structure on them. Now and then, be­

tween otherwise normal characters, an "end of line" or an "end of page"

may occur. On output files for the line printer, the operating system re­

quires the program to prefix a carriage-control character to each line to

indicate whether it is to appear at the top of the page. This responsibi­

lity is faithfully handed over to the programmer by Pascal, and thenforses

him to treat print files differently from all other kinds of character

files. (End of line already makes character files different from other

files.) There is an obscure procedure called "newpage" mentioned in the

Pascal manual, which is supposed to cause further output to begin on a new

page; it is, however, not clear how it interacts with the programmer­

supplied carriage-control character.

It is possible to get Pascal to read every bit of a disk file. To do

this, one declares the file to be of a type which fills entire words even­

ly, for example:

file !!i. packed array [0 .• 59] 9f_ booi

file !!I packed array [0 •• 4] 9f_ 0 .. 4095

41

Other types are of course possible (subject to a number of peculiarities),

and the choice of type can be used to provide some elementary structure

for the file. The first type mentioned above will give easy access to in­

dividual bits; whereas the second provides twelve-bit bytes.

On the other hand, not everything reasonable will work. "file 9f_ set

of 0 .• 59", for example, is rejected by the compiler because it exceeds the

maximum number of elements in a set (0 .. 58 is allowed, but does not have the

desired meaning). "file of packed array [1..15] !!I 0 .. 255, which one might

consider to indicate 15 bytes of eight bits packed into every two machine

words (most 9-track tape files look like this) will not work, although

it is proper Pascal. Pascal refuses to split an element of a packed array

across a word boundary, and insists on leaving unused bits of padding in

each word and using an extra word fort.he fifteenth byte. This completely

defeats the purpose of the exercise. It may be said in defence of .Pascal

that its data structures were never intended to be used in this Cobol-like

manner.

So-cal led !!connected" f,iles, which are "connected" to time-sharing

terminals, suffer from a one-line lag. Pascal makes the end-of-file test

available to the user before he reads the next (possible nonexistent)line.

This is very reasonable. Unfortunately, Scope refuses to give end-of-file

information until an attempt is made to read the possibly nonexistent line.

Pascal therefore reads an extra line ahead internally. This is not objection­

able in batch, but it is intolerable during time-sharing. It would have been

better to wait for the programmer to issue the end-of-file test before read­

ing ahead internally.

7.2. Algol 68

Algol 68 uses the Record Manager for its input and output, but it does

not support all normal Record Manager file or record types. Only those kinds

of files explicitly mentioned in the Algol 68 users' manual are supported.

This appears to be because the Algol 68 implementation may move the

input/output buffers during garbage collection, and then update the Record

42

Manager's tables accordingly. It appears, however, that the Record Manager

occasionally maintains pointers other than those advertised in its docu­

mentation. The Algol 68 run-time system has not been debugged to handle

input/output situations outside its specifications. Other record types may

therefore work anyway if the Record Manager deals with them in a sufficient­

ly uniform manner; this is not guaranteed.

The Algol 68 compiler and its object programs can both be run inter­

actively under Intercom. The field length required fits into that tolerated

at the SARA installations; however, since it requires more storage than the

default field length, an EFL (Extend Field Length) must be given.

There is a peculiar incompatibility between the Algol 68 input/output

system in the Report and that implemented. In most places where a program­

mer might expect to open a file by using open (according to the Report),

the implementation requires that establish must be used instead. This is

to inform the Algol 68 input/output of the maximum number of characters

per line, the maximum number of lines per page, and the maximum number of

pages. These must be provided by establish the first time that a file is

accessed from a run of an Algol 68 program; thereafter the Algol 68 system

remembers the data, and an open is required instead.

The Algol 68 system attempts to recover from operating-system-detected

faults and to produce the normal diagnostic traceback anyway. Occasionally

(such as when the escape mechanism is used to call a Fortran routine) it

may fail to do this, presumably because of temporary non-adherence to its

internal conventions.

7.3. Fortran

When working on the CDC Cyber, one rapidly gets the feeling that CDC

in some way gives a preferred status to Fortran. New system features re­

ceive kludges for use with Fortran more often than with other languages.

The other languages and compilers are then adapted to fit the Fortran con­

ventions. Implementers of other languages therefore often provide a special

interface for calling Fortran subroutines. Ttis interface can fai1 if the

Fortran subroutine attempts any input, since its input-output subsystem

may not have been initialized.

43

Fortran, when calling subroutines, uses a Return Jump instruction,

after placing the address of the parameter list in register Al (and thus

the address of the first parameter. in register XI). The return Jump in­

struction places the return address in the called program itself, and

transfers control to the word after the word in which it places the re­

turn address. This calling sequence is the closest thing there is in Scope

to a standard subroutine linkage convention. (It is, of course, useless

for recursion; therefore, it is not used by languages which do permit re­

cursion).

Fortran accepts the normal operating-system file structures, as de­

fined by the Record Manager. It does not support the so-called 12-bit PE

files for printing on an extended character-set printer. In fact, it uses

the 6-bit 63-character display code that is normal in Scope.

CDC Fortran formatted input/output is as slow as it is in most Fortran

systems. Extra nonstandard BUFFER IN and BUFFER OUT statements have been

provided to enable progrannners who are willing to do bit-fiddling to

perform relatively fast and raw input and output.

The Record Manager has a special interface that enables its routines

to be called directly using the Fortran linkage conventions. This is none­

theless somewhat awkward, since Fortran does not have convenient data­

structuring facilities for describing the various system tables. Routines

are therefore provided to fill in the various tables, given their addres­

ses and strings describing the desired fields. Since storage allocation

is left to the programmer, and is not checked by the system, the resulting

communication can be tricky and insecure. Among the four languages we are

comparing here, however, Fortran is the only one who provides complete

access to the Record Manager, although it does it by completely bypassing

the rest of its input/output system.

7.4. Algol 60

Algol 3 and Algol 4 have different interfaces with the operating sys­

tem. They will therefore be discussed separately.

44

7.4.1. Algol 3

Algol 3 does not use the Record Manager. It processes Z-type files,

with or without carriage control, which are the kinds of files that Scope

uses for card reader, terminal, and printer input/ output. Algol 3 provides

a version of the so-called Knuth (or ACM) proposal, which handles format­

ting and provides procedures for input/output. In practice, The Algol 3

input/output system is abysmally slow, taking up unreasonable amounts of

CPU time. It is not clear whether this is a fault of the implementation or

of the specifications.

No random-access input/output is provided. The only thing remotely

resembling it is a pair of procedures WRITE ECS and READ ECS for copying

data between main store and ECS (extended core store).

When an Algol 3 program is used with a terminal, entire lines are

transmitted as soon as they are complete. There is a one-line delay.

Algol 3 provides a segmentation mechanism for programs which would

otherwise be too large for main memory. If this segmentation option is

requested, object code is divided into segments, each of at most 512 words.

There may be at most 511 segments. A segmented object program must be run

under the control of the Algol 3 compiler, and then segments are loaded

into memory as required, and removed again when the storage is required

for other segments or for the run-time stack. This segmented mode is,

however, not available under current versions of the Scope operating

system. Instead, a segmenting option is provided by the normal relocating

loader which has nothing to do with Algol 3's "segmented" option.

Since Algol 3 programs refer to files by channel numbers, some mechan­

ism 1.s needed to indicate the correspondence between channel numbers and

files. This is the "channel card". An Algol 3 program requires one for

each input/output file it uses (except for a standard input channel 60

for INPUT, and a standard output channel 61 for OUTPUT). The channel

control cards do not form part of the Scope control card record; they are

instead read from INPUT by the Algol 60 run-time system. For each channel

used one must specify the channel number and its file name. One may also

specify other parameters such as the maximum line width, the maximum page

length, the number of spaces between numbers in standard format, the length

45

of physical records, buffering, whether the channel is to be used with the

procedures GET ARRAY or PUT ARRAY, and the density and parity for magnetic

tape.

Some of these parameters are parameters which can also be specified or

respecified by the program itself.

7.4.2. Algol 4

Algol 4 uses the Record Manager for its input and output, and is there­

fore directly compatible with more of the recording modes available under

Scope than Algol 3. Unfortunately, the channel card is still required to­

specify the correspondence between logical unit (channel) number and file

names, but the other options are quite different. Most of the options on

the channel card have been replaced by corresponding options on the Record

Manager's file card, which does appear with the other control cards and

not on the INPUT file. It is unfortunate that Algol 4 did not see fit to

abolish the channel card entirely, although it does provide limited

compatibity with Algol 3. The correspondence between channel number and

file name could have been accomplished by the Record Manager LFN (logical

file name) parameter. The other necessary leftovers are the length of a page

(which the Algol 60 program can specify anew anyway), the presence or absence

of carriage control characters, and the file type (word-addressible, indexed

sequential, or sequential). It seems strange that a matter such as file type

is not specified in the program but is left to a mandatory channel card at

execution; if a user specifies it wrongly, the program would not be likely

to function at all reasonably. It is not likely that the programmer would

fail to know the file type when writing the program, because he must use

different procedures for performing operations on files of different types.

The Algol 4 input/output system is also abysmally slow.

Algol 4 provides random access input/output in the form of word­

addressible and indexed-sequential files. Unfortunately, the keys for the

indexed-sequential file are restricted to integers.

Algol 4 provides an explicit planned overlay mechanism for segmenting

large programs. Comments in various blocks identify the blocks as being

overlays. Overlays form a tree structure with a nesting depth of 2.

46

8. ESCAPE

Sometimes it is necessary for a programmer to escape from the program­

ming language in order to code a small part of the program in an other lan­

guage. This is usually done

- in order to improve efficiency,

- in order to use subroutines already written in another language, or

- in order to gain access to system facilities not supported by the

run-time system of the language.

It is clear that the practicality of a language implementation for

large projects depends in part on the nature of the escape facilities, and

on the frequency with which the escape facilities are necessary.

Such a method of escape is usually done by providing a mechanism for

calling assembly language routines. Systems providing this usually adver­

tise this as calling Fortran routines, in order to convince former Fortran

users that they will not have to rewrite all their old subroutine libraries.

An assembler language program then masquerades as a Fortran program by using

the same linkage conventions.

Some compilers for high-level languages provide another scheme for

escape. They permit the programmer to specify the machine instructions to

be generated for each use of an operator or procedure when he declares the

operator or procedure. This method is especially good for operations that

can be implemented by a few machine instructions in line.

We also have the following questions:

- Does the implementation use normal operating-system interfaces for

calling other subroutines?

- Does the operating system suggest any normal subroutine-linkage con­

vention? If not, one can hardly blame the language.

- Can the programmer establish communication with the operating system

concerning matters not or poorly built into the implementation?

- Does the language support the standard operating-system overlay

mechanism?

47

8.1. Pascal

Pascal makes it possible to call subprograms written in Fortran. Such

a Fortran subprogram must have a procedure declaration in the Pascal pro­

gram, except: that the procedure body is replaced by the reserved word

"Fortran". It is of course possible to write the called subroutine in

any language that supports Fortran linkage conventions appropriately,

including Compass, the assembly language.

Unfortunately, there are some restrictions. If the Fortran subroutine

expects a function or subroutine as parameter, then it must be provided a

Fortran function or subroutine as parameter. It is not possible to provide

a Pascal function; Pascal and Fortran have different linkage conventions,

and neither is willing to provide the necessary interface for procedure

parameters. One cannot even get around this by writing the alien procedure

in Compass; the Pascal compiler perform a compile-time check to enforce

the restriction.

If one has a Fortran routine which accepts an array of adjustable di­

mensions, as in

SUBROUTINE X(N, A(N))

DIMENSION A(N),

one must still declare it with fixed dimensions in the Pascal program. This

is a direct consequence of the general Pascal restriction on array bounds,

and it makes it impossible to call that one Fortran routine with Pascal

arrays of different sizes from within one Pascal program. In this respect

Pascal is actually less powerful than Fortr~n.

There is one other peculiarity with arrays as parameters. In Fortran,

arrays are stored with the first subscript varying most rapidly; in Pascal,

the last subscript varies most rapidly. Arrays are thus effectively trans­

posed when Pascal hands them over to Fortran: A Pascal 6 by 4 array will

be accepted in Fortran as a 4 by 6 array (transposed).

There are also peculiarities with complex numbers, since Pascal does

not support them. In Pascal, a complex number must be represented as a

record with two fields. Since it is a record, if it is passed as parameter

it must be as a variable, and it cannot be yielded as a function value.

This rather severely restricts the use of Fortran complex number library

functions.

48

8.2. Algol 68

The Algol 68 compiler provides two means of escape.

The first is the declaration of a separately compiled routine which is

written in another language. To call such a routine, it is necessary to pro­

vide the Algol 68 compiler with its entry-point name and the entry-point

name of an interface module. An interface module is already provided for

calling Fortran.

It is of course also possible to write Compass routines that directly

conform to the Algol 68 linkage conventions.

The second means of escape is the so-called "ICF macros". The letters

"ICF" stand for "Intermediate Code File". In the standard prelude, which

defines all the basic Algol 68 operations and was itself compiled by the

Algol 68 compiler, these ICF macros are used to provide the semantics for

operations such as addition, and shift left. These ICF instructions re­

semble machine instructions, but do not specify registers or storage al­

location. Each ICF instruction can be considered to produce a value when

executed, and the programmer is provided with a means to specify which

values are to be used in which later instructions. When a program contains

a primitive operation which has been defined by an ICF macro, the ICF macro

is expanded in-line into an intermediate code file. A later scan provides

reasonably efficient storage and register assignment.

ICF macros can be used by the programmer instead of escape via sepa­

rate compilation, although they appear to be intended as an internal

compiler mechanism. If the prograrrnner does this, he can in theory obtain codE

as efficient as that which the compiler itself produces, but there are draw­

backs. Misuse of ICF code can impair reliability and error detection. The

ICF macros are mentioned but not documented in the versions·of the

CDC Reference manual we have seen so far.

One serious problem with escaping to other programming languages is

that Algol 68 takes over storage management within the entire user main

storage area. It performs its own stack and heap administration within this

area~ Communicating with programs written in other languages (such as Pascal

and Algol 60) which also manage storage within the user main storage area

may therefore be practically impossible. The various run-time systems will

engage in a storage-allocation war.

49

8.3. Fortran

Escape to machine and operating-system facilities other than those

provided or consumed by Fortran is done by writing Compass subroutines

with Fortran linkage conventions. Although no means are provided for call­

ing Algol 60, Algol 68, or Pascal programs from Fortran, convenient means

are nonetheless provided for calling Fortran programs from Algol 4, Algol

68, and Pascal programs. It is not possible to pass foreign-language pro­

cedures as parameters to Fortran subprograms and expect to be able to call

them from the Fortran subprograms.

It is possible to bypass the Fortran input/output system and call the

Record Manager directly from a Fortran program.

Fortran does support the operating-system standard overlay mechanism

(as does Algol 4).

8 4. Algol 60

The Algol 3 separate-compilation facility can be used to escape

from the Algol 3 system, by writing Compass programs that match the Algol 3

procedure calling conventions. These conventions are complicated. There

exist Compass macros to reduce the. effort, but these are also complicated.

An entire chapter of the Algol 3 manual is dedicated to describing them.

Since parameter passing and procedure calling are seriously expensive

features in Algol 3, simply recoding a small routine in Compass is not

likely to increase its efficiency significantly.

When the escape facilities are used with Algol 3, it is usually to

perform input/output of an unusual nature or-to gain efficiency. For example,

KUMAL 3, a program library for numerical mathematics available from the

;-1athematical Centre, Amsterdam, uses Compass routines for elementary row

c,perations on matrices. To use the Record Manager, it is necessary to use

the escape mechanism. Algol 3 itself does not.

In Algol 4, the situation is different. Algol 4 provides a mechanism

to specify that separately compiled routines use Fortran linkage conven­

tions. Since the Record Manager and other system components are often writ­

ten to match this linkage convention, escape to such other systems can be

done more conveniently than from Algol 3. It is not necessary to write a

50

Compass conversion routine to translate Algol calls to Fortran calls; the

Algol 4 compiler takes it on itself to use the proper linkage conventions.

The linkage conventions for Algol 3 and Algol 4 are incompatible.

9. COSTS

It is necessary that one be able to afford the language one uses. In

some ways, the presence of a feature may make language use more expensive.

since work may be necessary to implement it. Contrariwise, the implementer,

with the hard machine at his disposal, may well do a better job than the

language user who has only the programming language. Suc.h a feature, if

present and used, may reduce the costs from what they were without it. If

one needs dynamic arrays, one needs dynamic arrays, no matter what kind of

triangular hashed fixed-length tables the language may provide. If the lan­

guage does not provide dynamic arrays, the programmer must construct his

own for his own dialect, and he may do much worse than the implementer

could have, because he does not have proper tools at his disposal.

It is therefore not possible to divide language features into ''ex­

pensive" and "cheap" i-·ithout considering the purposes for which they are

used. Costs must be judged by the user, relative to his budget, his problem,

and his experience.

It is of interest to indicate the cost imposed by various kinds of

language use .. These costs often arise from the overall quality of the im­

plementation, instead of from any specific feature. It is also possible,

however, that the demands imposed on the implementation by a specific

feature increase the costs of other features, even when that specific

feature is not used in a particular program. Garbage collection is a good

example of this. The presence of a garbage collector for storage manage­

ment in Algol 68 means that the rest of the Algol 68 system has to take

appropriate precautions to ensure that the garbage collector can interpret

storage layouts. The compiler cannot tell whether the garbage collector will

actually be invoked by any particular program; therefore these precautions

are always taken.

Four programs were written to provide information about costs:

Ackermann's function, to test recursion.

Cyclotomic polynomials, as a typical program.

Various input/output tests.

Feature timing, to give an approximate idea of the costs of various

statements of the language.

51

Not all the timing measurements are equally reliable. A change of

operating system occurred while the measurements were being made, and the

clock on the new system (Scope 3.4.4) was much less accurate than the old

one (Scope 3.4.1). The new clock has a tendency to remain stuck on a single

value during many calls to the clock routine, and then to spontaneously

jump to a new value by a step of between two to fifty-eight milliseconds

(actual measurements!). There is a resulting uncertainty of this order of

magnitude in every timing measurement performed under the new system. The

only way around this is to increase the time the program takes to run,

possibly by using a loop that executes it a hundred times, but this can get

excessively expensive. (Since the above was written, SARA has replaced the

3.4.4 clock routine with the older, more reliable one. Clock jumps are now

back down to one or two milliseconds).

All of the languages measured here use the same operating-system

clock. They vary in their documentation, however, as to their claims to

precisio~Algol 68 claims to produce microsecond accuracy, Pascal and

Algol 60 claim millisecond accuracy and Fortran claims centisecond accuracy.

Readers wishing to see additional statistics should consult [15] and

[I 6].

The following abbreviations are used throughout this section:

ch

7ch

full subscript checking, or, in Pascal, range limit checking.

No subscript checking.

pch Partial checking, i.e., it is checked that final array­

element addresses are within the array, but the individual

subscripts are not checked against their individual bounds.

In addition, compiler options are occasionally mentioned in the form

in which they must be specified to the compiler.

9. I Ackermann's Function

Ackennann' s function has been proposed by Wichmann [23, 24 J as a benchmark

for systems programi'ling languages. Its calculation by a straightforward algo­

rithm involves much procedure calling and comparison, but little computa-

52

tion. The function is computed by a recursive procedure coded according to

the following algorithm:

Ack (m,n) =

if ID 0 then n + I

elif n = 0 then Ack (m-1,l)

else Ack (m-1, Ack(m,n-1))

fi

Since Fortran does not provide recursion, it was left out of this test. The

time per (recursive) call of the function and the number of words placed

on the stack for each call were measured, the latter by examining core

dumps.

average
system options time per call words

(µs) per call

Pascal ch 33 10

Algol 3 ch 478 21

Algol 4 ch 488 18

, ch , O= 2 , x= 0 ? 17

Algol 68 ch 63 7

,ch,z 62 7

These times were computed by measuring the time taken to compute

Ack(J,i) for various values of i, and dividing by the (known) number of

recursive calls this implies. The value of i was raised sufficiently high

to force convergence of the average time; the above average times are

precise to the microsecond.

9.2 A hundred and fifty cyclotomic polynomials

The various compilers were tested using a real program, at least one

version of which had been originally written for a purpose other than that

53

of testing the compiler. The program choosen was one which symbolically com­

putes and prints out the first one hundred and fifty cyclotomic polyno­

mials. Various measurements were made on jobs compiling and running this

program in various languages:

Job cost: the cost of the entire job, as judged by the SARA accounting

routines.

Job CP: the amount of CP (central processor) time taken by the job.

compile CP: the CP time taken to compile the program, if reported by the

compiler.

execution CP: the CP time taken to execute the program, as measured by

the program itself.

calculation CP: the CP time taken to calculate the coefficients of the 150

cyclotomic polynomials.

IO CP: the CP time taken to format and print the answers.

compile FL: the amount of main storage required by the compiler to compile

the program, if reported by the compiler.

The following abbreviations are used in the table:

ch full subscript checking.

pch partial subscript checking: the final array element must be

within the array, but each subscript is not checked indiv­

idually.

7ch no subscript checking.

exec execution.

calc calculation.

The options actually given to the compiler to achieve various forms

of checking are shown as well.

54

compiler options check'. job job compile exec calc I /0 ~ompile
cost CP CP CP CP CP FL

Pascal T+ ch 3.85 I 4. I 65 I. I 84 12.514 9.781 2.733 41412
T- 7ch 2.91 I0'.465 1. 070 8.934 6.290 2.644 41412

A68 ch 18. 18 61.259 6.125 51.813 31.870 19.943 53600
z ch 17.97 60.566 7.096 50.237 30.807 19.425 53600
A 7ch 13.09 43,244 5.907 34.046 15.446 18.600 53600
A,Z 7ch 14.25 46.978 7.625 35.946 16.254 19.692 53600

Algol 3 pch 16.54 56.576 3. 272 52.512 31.466 21.046
0 pch 17.03 58.032 4.708 52.516 30.900 21.616
N 7ch 15.31 52.892 2.994 49.112 28.134 20.978

O,N 7ch 15.25 52.426 4.094 47.544 26.527 21.017

Algol 4 c=3[X=O] ch 30.28 87.841 3.806 8 I. 296 57.889 23.407
[X=O] 7ch 16.20 46.165 3.837 39. 487 1 7. I 7 4 22.313

O= I ,X=O 7ch 16.20 45.968 4.016 39.413 17.784 21.629
0=2,X=O 7ch 15.35 43.340 4.069 36.435 15.288 21. 207

FTN OPT=O,D pch 17.94 45.583 1.910 40.888 36.470 4.418
OPT=O 7ch 6.45 13.740 1. 393 IO. 169 6.351 3.818
OPT=l 7ch 5.30 1 1 • 036 I. 564 7.333 3.785 3.548
OPT=2 7ch 5.25 11. I 33 2.156 6.784 3. I 37 3.647

MNF D ch 5.82 16.304 0.898 12.410 9. I 21 3.289 45200
lch 4.48 12.306 o. 596 8.414 5.444 2.970 45000

Algol 4 X=O,c=3,0=0 ch 30.38 88.223 3.872 8 I . 72 I 5 7 • 808 23.913
X= 1, O=O 7ch 18.31 52.462 3.990 45.979 23.593 22.386
X=O, O=O 7ch 1 6. 1 9 46. 153 4.062 39.447 17.302 22. 145
X=I 0=2 7ch 15.33 43.416 4.176 36.741 14.916 2 I. 825
X=O,c=3,0=2 ch (I. 59) (3. 208) compiler crash in pass 5

The MNF compiler appears to perform subscript checking remarkably

rapidly. This is because of a trick. If a subscript is a do-loop index,

the subscript check may be performed on the limits of the do loop instead

of on the subscript itself. The check is thus performed twice, once each

on the initial and final limits in the do-loop, and it is not performed

within the loop at all. This check will catch invalid programs as well as

the more usual check on the subscript itself, and is much more efficient.

Unfortunately, it will catch some valid programs as well, such as the

following one:

DIMENSION A(I 0)

DO 3 I= 1, 50
IF (I.GT.8) GO TO 6
•.••• A (I)

3 CONTINUE

6

55

The versions of the program in the different languages are not iden­

tical, since the languages offer different possibilities. To make a fair

judgement of a language, it is of course necessary to write the program in

such a way that it fits the language. The language differences have effects

on efficiency and on style; it is worthwhile studying the programs them­

selves as well as the execution times. The most notable differences are

discussed below.

9.2.1. Algol 68

Polynomials are represented as arrays of ~coefficients by values of

the mode pol, which is defined by

mode pol = flex [0:0] int.

This enables us to treat polynomials as single objects, and makes it pos­

sible to use only as much storage for a polynomial as is indicated by its

degree. Individual coefficients can be altered in a polynomial without the

cross-talk that might result if the mode ref [J int had been used in-

stead. The operators"*" and "over" have been defined to operate on poly­

nomials, so that the resulting expressions involving polynomial arithme­

tic will have the same form as normal arithmetic expressions.

56

In order to determine good points at which to break output lines, the

standard procedure char number was used. This procedure reports the current

position on an output line. If the. program has come too near to the end of

the line for another term of a polynomial to fit, it changes to a new line

with pleasing indentation.

'BEGIN. #CYCLOTOMISCHE POLYNOMEN#

'REAL' Pl:=CLOCK,P2,P3,P4;
"MODE' 'POL'= 'FLEX' (0:0) 'INT';
'INT. K=l50;
[l:K] 'POL' PHI;

57

'PROC. F= (. INT. N) 'REF. 'POL.: # X**N - 1 #
'BEGIN' 'HEAP' [0:N] 'INT' FX;

FX[N]:=l;FX[0]:=-l;
'FoR· I 'To' N-1 ·co· FX[I):=0 ·oo·;
FX

'END. # OF F # ;

•op' *=('REF' 'POL' A,B) 'REF' 'POL':
'BEGIN' 'INT' N='ups' A,M= 0 UPB' B;

'HEAP' [0:M+N] 'INT' D;

A*B t

°FOR' I 'FROM' 0 'To' M+N 'Do' D[I):=0 ·oo';

'FOR' I 'FROM' N 'sy' -1 ·To' 0 LWB 0 A
·co, °FOR. J °FROM, M 'sy, -1 'TO, 'LWB. B

·co· D[I+J]+:=A[I)*B[J] 'OD'
·oD ·;

D
'END , # OF * I ;

'op' ·ovER 0 =('REF' 'POL' A,B) 0 REF 0 'POL':
0 BEGIN° 'INT' M:='ups' B;

'WHILE' B[M]=0 'co~ M-:=l ·oo·;
0 INT 0 J= 0 UPB 0 A - M;
0 HEAP. (0 :J] 0 INT, D;

#A/Bi

'FOR' I ·.FROM" 0 ·To· J 'Do" D(I]:=0 ·oo·;

°FOR 0 N 'FROM" ·ups· A 0 BY 0 -1 °T0° M
·co· 0 IF 0 A[N]/=0

0 THEN° 0 IF 0 A[N] 0 MOD 0 B[M]/=0

·oo ·;
D

0 END 0 # OF 'OVER"#

0 THEN° PRINT("DELING GAAT NIET OP")
°FI.;
0 INT° K=A[N] 0 0VER' B[M] , J=N-M;
°FOR 0 I 'FROM" J 'TO' N
·co· A[I]-:=K*B[I-J] ·oo·;
D[J]:=k

58

'END.

'FOR' I 'To· K
·oo· 'POL' G;G[0]:=l;

'FOR' J 'To' I 'OVER' 2
·oo. 'IF' I 'MOD' J=0

'THEN' G:=G*PHI[J]
'FI'

·oo ·;
PHI[I]:=F(I) ·ovER' G

·oo ·;

P2:=CLOCK;

P3:=CLOCK;

PRINT((NEWLINE,"DE EERSTE ",WHOLE(K,0) ," CYCLOTOMISCHE ",
"POLYNOMEN",NEWLINE));

• FOR , I • TO • K
·oo •

·oo ·;

PRINT((NEWLINE,NEWLINE,"PHI",WHOLE(I,0) ," "));
'FOR' J 'FROM' 0 ·To· ·ups· PHI[I]
·oo· 'IF' PHI[I] [J]/=0

'THEN' 'IF' CHAR NUMBER(STAND OUT)>l28
'THEN, PRINT ((NEWLINE," "))
'FI.;
PRINT ((WHOLE (PHI [I] [J] , 0) , "X", WHOLE (J, 0) , n "))

P4:=CLOCK;

·To' 5 ·oo. PRINT (NEWLINE) ·oo.;
PRINT(("REKENTIJD: ",FIXED(P2-Pl,0,6) ," SEC.",NEWLINE));
PRINT(("UITVOERTIJD: ",FIXED(P4-P3,0,6) ," SEC.",NEWLINE));
PRINT(("TOTALE TIJD: ",FIXED(P4-Pl,0~6) ," SEC.",NEWLINE))

PHI103 lX0
1X22
1X42
1X62
1X82
1Xl02

PHI104 1X0

PHI105 1X0
1X32

PHI106 1X0
1X20
-1X39

PHI107 1X0
1X22
1X42
1X62
1X82
1Xl02

PHI108 1X0

lXl 1X2 lXJ 1X4 lXS lX6 1X7 1X8 1X9 1Xl0 lXll 1X12 1Xl3 1Xl4 lXlS 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 1X61
1X63 1X64 1X65 1X66 1X67 lX68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81
1X83 1X84 1X85 lX86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01

-1X4 1X8 -1Xl2 1X16 -1X20 1X24 -1X28 1X32 -1X36 1X40 -1X44 1X48

lXl 1X2 -lXS -1X6 -2X7 -1X8 -1X9 1Xl2 lXlJ 1X14 lXlS 1Xl6 1Xl7 -1X20 -1X22 -1X24 -1X26 -1X28 lXJl
lX33 1X34 lXJS 1X36 -1X39 -1X40 -2X41 -1X42 -1X43 1X46 1X47 1X48

-lXl 1X2 -1X3 1X4 -lXS 1X6 -1X7 1X8 -1X9 1Xl0 -lXll 1X12 -1X13 1Xl4 -lXlS 1Xl6 -1Xl7 1Xl8 -1X19
-1X21 1X22 -1X23 1X24 -1X25 1X26 -1X27 1X28 -1X29 1X30 -1X31 1X32 -1X33 1X34 -lXJS 1X36 -1X37 1X38

1X40 -1X41 1X42 -1X43 1X44 -1X45 1X46 -1X47 1X48 -1X49 1X50 -lXSl 1XS2

lXl 1X2 · lXJ 1X4 lXS 1X6 1X7 1X8 1X9 1X10 lXll 1X12 1X13 1X14 lXlS 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30. lXJl 1X32 lXJJ 1X34 lXJS 1X36 1X37 1X38 1X39 1X40 1X41
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 lXSJ 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 1X61
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 . 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01

1Xl03 1Xl04 1Xl05 1Xl06

-1Xl8 1X36

V,
1.0

60

9.2.2. Pascal

Pascal does not permit variable array bounds, and it was therefore

necessary to use the maximum size of polynomials, 150, for all arrays

which might contain polynomials. This, of course, causes a significant

waste of storage. The rather large array of results is thereby doubled

in size. The number of array elements actually used by a polynomial has

been placed in element -1 of each array. This limit is used during multi­

plication and division to save execution time.

It is not possible to redefine operators in Pascal, and therefore pro­

cedures were written instead to perform mutiplication and division. These

procedures produce their computed results in parameters, because Pascal pro­

hibits yielding an array as function value.

A number of global variables have been declared. We would have prefer­

red to declare these variables locally in the blocks where they are used,

but Pascal does not permit this. The variable declarations have therefore

been moved to the procedure headings.

Pascal does not provide a procedure to determine the current position

in an output line. It was therefore necessary to maintain an independent

counter to determine this. Producing output with reasonable layout was

therefore marginally more difficult than in Algol 68.

PROGRAM CYCLPOL(OUTPUT);
(*ST-*)

(*CYCLOTOMISCHE POLYNOMEN*)

VAR I,Pl,P2,P3,P4:INTEGER;

PROCEDURE HOOFDPROGRAMMA;

CONST K=l50;
TYPE POL=ARRAY(-1 •. K] OF INTEGER;
VAR I,J,C,H:INTEGER; G,FX:POL; PHI:ARRAY[l •• K] OF POL

PROCEDURE F(N:INTEGER;VAR P:POL);
VAR !:INTEGER;
BEGIN P(-1] :=N;P[0]:=-l;P[N] :=l;

FOR I:=l TO N-1 DO P[I]:=0
END (* OF F *) ;

PROCEDURE MULPOL(VAR A,B:POL);
VAR I,J,M,N:INTEGER;

C:POL;
BEGIN M:=A(-1] ;N:=B[-1);

A(-1] :=M+N;
FOR I:=i TOM DO C[I] :=A[I];

FOR I:=0 TO M+N DO A[I):=0;

FOR I:=0 TOM
DO FOR J:=0 TON

DO A[I+J] :=A[I+J]+C[I]*B[J]

END (* OF MULPOL *) ;

PROCEDURE DIVPOL(VAR A,B,C:POL);
VAR M,I,J,KK,N:INTEGER;
BEGIN M:=B[-1];

WHILE B[M]=0 DO M:=M-1;

J:=A(-1]-M;
FOR I:=0 TO J DO C[I] :=0;
c (-1 l : =J; .
FOR N:=A[-1] DOWNTO M
DO IF A[N]<>0

TH.EN BEGIN J: =N-M;

61

(* X**N - 1 *)

(* A:=A*B *)

(* C: =A/B *)

IF A[N] MOD B[M]<>0
THEN WRITELN(, DELING GAAT NIET OP');
KK:=A[N] DIV B(M];

END
END (* OF DIVPOL *)

FOR I:=N DOWNTO J
DO A(I]:=A[I]-KK*B[I-J];
C[J] :=KK

62

BEGIN FOR I:=l TOK
DO BEGIN G[-1] :=0;G[0] :=l;

FOR J:=l TO I DIV 2
DO IF I MOD J=0

END;

THEN MULPOL(G,PHI[J]);
F(I,FX);
DIVPOL(FX,G,PHI[I]);

P2:=CLOCK;

P3:=CLOCK;

WRITELN('lDE EERSTE ',K:l,, CYCLOTOMISCHE POLYNOMEN') ;WRITELN;
FOR I:=l TOK
DO BEGIN WRITELN;WRITELN;WRITE(' PHI',I:l,' ');

C:=10;
FOR J:= 0 TO PHI [I] [-1]
DO IF PHI [I] [J] <>0

THEN BEGIN IF C>l28 THEN BEGIN WRITELN;C:=10;

END
END;

BEGIN Pl:=CLOCK;
HOOFDPROGRAMMA;
P4:=CLOCK;

END

FOR I:=l TO 5 DO WRITELN;

WRITE(' ')
END;

WRITE(PHI[I][J]:l,'x',J:l,· ');
H:=10;
WHILE J>=H DO BEGIN C:=C+l ;H:=H*l0 END;
IF PHI [I] [J] <0 THEN C:=C+6

ELSE C:=C+S

WRITELN(' REKENTIJD: ·,P2-Pl:6,' MSEC.');
WRI'f•ELN(. UITVOERTIJD: ·,P4-P3:6,· MSEC •.);
WRITELN (, TOT ALE TIJD: , , P4-Pl: 6, . MSEC ..)
END.

PHI103 1X0
1X22
1X42
1X62
1X82
1Xl02

PHI104 1X0

PHI105 1X0
1X32

PHI106 1X0
1X20
-1X39

PHI107 1X0
1X22
1X42
1X62
1X82
1Xl02

PHI108 1X0

lXl 1X2 1X3 1X4 lXS 1X6 1X7 1X8 1X9 1Xl0 lXll 1Xl2 1Xl3 1Xl4 1Xl5 1Xl6' 1Xl7 1Xl8 1Xl9 1X20 1X21
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 lXSS 1X56 1X57 1X58 1X59 1X60 lX'&l
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 1X97 1X98 1X99 1Xl00 1Xl01

-1X4 1X8 -1Xl2 1Xl6 -1X20 1X24 -1X28 1X32 -1X36 1X40 -1X44 1X48

lXl 1X2 -lXS -1X6 -2X7 -1X8 -1X9 1Xl2 1Xl3 1Xl4 lXlS 1Xl6 1Xl7 -1X20 -1X22 -1X24 -1X26 -1X28 1X31
1X33 1X34 1X35 1X36 -1X39 -1X40 -2X41 -1X42 -1X43 1X46 1X47 1X48

-lXl 1X2 -1X3 1X4 -lXS 1X6 -1X7 1X8 -1X9 1Xl0 -lXll 1Xl2 -1Xl3 1Xl4 -lXlS 1Xl6 -1Xl7 1Xl8 -1Xl9
-1X21 1X22 -1X23 1X24 -1X25 1X26 -1X27 1X28 -1X29 1X30 -1X31 1X32 -1X33 1X34 -1X35 1X36 -1X37 1X38

1X40 -1X41 1X42 -1X43 1X44 -1X45 1X46. -1X47 1X48 -1X49 1X50 -lXSl 1X52

lXl 1X2 1X3 1X4 lXS 1X6 1X7 lXS 1X9 1Xl0 lXll 1Xl2 1Xl3 1Xl4 1Xl5 1Xl6 1Xl7 1Xl8 1Xl9 1X20 1X21
1X23 1X24 1X25 1X26 1X27 1X28 1X29 1X30 1X31 1X32 1X33 1X34 1X35 1X36 1X37 1X38 1X39 1X40 1X41
1X43 1X44 1X45 1X46 1X47 1X48 1X49 1X50 lXSl 1X52 1X53 1X54 1X55 1X56 1X57 1X58 1X59 1X60 1X61
1X63 1X64 1X65 1X66 1X67 1X68 1X69 1X70 1X71 1X72 1X73 1X74 1X75 1X76 1X77 1X78 1X79 1X80 1X81
1X83 1X84 1X85 1X86 1X87 1X88 1X89 1X90 1X91 1X92 1X93 1X94 1X95 1X96 -· 1X97 1X98 1X99 1Xl00 1X10l

1Xl03 1Xl04 1Xl05 1Xl06

-1Xl8 1X36

Q'\
w

64

9.2.3. Algol 60

It is impossible to declare new data types or for arrays to have arrays

as elements in Algol 60. The result is that polynomials have been placed

as rows in a two-dimensional array. The -1st element of each row once again

indicates the number of rows in actual use. To give a procedure a specific

row of this array as parameter, the entire array is handed over, together

with an integer specifying which row is meant.

The procedures for multiplication and division must once again yield

their results in output parameters.

Unlike in Algol 68 and Pascal, in Algol 60 it is difficult to let the

field width for printing a number depend on the number, even with "expensive"

Knuthput. We therefore chose a fixed field width and used it for all

exponents. The result is that the output is slightly less readable, since

the "x" is separated from the exponent by spaces. Once more, we have used

an independent counter to determine the position on the output line.

"BEGIN"

11 COMMENT 11 CYCLOTOMISCHE POLYNOMEN

"INTEGER" K ;
"REAL" Pl,P2,P3,P4

Pl := CLOCK

K := 150 ;

"BEGIN"
"INTEGER" I,J,C;
"INTEGER" "ARRAY" PHI[l:K,-1:K]
"COMMENT" "CHECKON" PHI ;

"PROCEDURE" F(N,P) "VALUE" N ; "INTEGER" N
"COMMENT" X**N - l ;

"INTEGER" "ARRAY" P
"COMMENT" "CHECKON" P

"BEGIN"
"INTEGER" I ;
P[-1] := N P[0] := -1 ; P[N] := l ;
"FOR" I := 1 "STEP" l "UNTIL" N - l "DO" P[I] := 0

"END" OFF;

"PROCEDURE" MUL(A,B,T)
"COMMENT" A:=A*B ;

"BEGIN"

"VALUE" T ; "INTEGER" T

"INTEGER" "ARRAY" A,B
"COMMENT" "CHECKON" A,B

"INTEGER" I,J,M,N ;
"INTEGER" "ARRAY" C[0:A[-l]]
"COMMENT" "CHECKON" C ;
M :=A[-1] ; N := B[T,-1] ;
A[-1] := M + N ;
"FOR" I:= 0 "STEP" 1 "UNTIL" M "DO" C[I] := A[I] ;

"FOR" I := 0 "STEP" 1 "UNTIL" M + N "DO" A[I] := 0 ;

"FOR" I := 0 "STEP" 1 "UNTIL" M
"DO" "FOR" J := 0 "STEP" 1 "UNTIL" N

II DO II A [I + J l : = A [I + J l + C [I l * B [T , J l

"END" OF MOL;

"PROCEDURE" DIV(A,B,C,T)
"COMMENT" C[T,] :=A/B ;

"VALUE" T ; "INTEGER" T

"INTEGER" "ARRAY" A,B,C
"COMMENT" "CHECKON" A,B,C

65

66

"BEGIN"
"INTEGER" M,I,J,KK,N;
M := B[-1] ; I := 1 ;
"FOR" I :=I+ 1 "wHILE" B[M] = 0 "DO" M := M - 1

J := A(-1] - M;

"FOR" I := 0 "STEP" 1 "UNTIL" J "DO" C [T, I] := 0 ;
C[T,-1] := J ;

8 FOR" N :=A(-1) "STEP" -1 "UNTIL" M
8 DO" "IF" A[N] ·= 0

"THEN" "BEGIN"

8 END" OF DIV;

J := N - M;
"IF" A[N] // B[M] • B[M] •= A[N]
"THEN" OUTPUT(61,"(""("DELING GAAT ")",

"("NIET OP")"")");
KK := A[N] // B[M] ;
"FOR" I := N "STEP" -1 "UNTIL" J
"DO" A[I] := A[I] - KK * B[I - J];

C [T ,J] := KK
"END"

"FOR" I := 1 "STEP" 1 "UNTIL" K
"DO" "BEGIN"

"INTEGER" "ARRAY" G,FX[-1:I]
"COMMENT" "CHECKON" G,FX;
G(-1) := 0 ; G[0] := 1 ;
"FOR" J := 1 "STEP" 1 "UNTIL" I// 2
"DO" "IF" I// J * J = I

"THEN" MUL(G,PHI,J);

F(I,FX) ;
DIV(FX,G,PHI,I)

"END" ;

P2 :=CLOCK:

P3 :=CLOCK:

OUTPOT(61,"(""("DE EERSTE ")",2ZD,"(" CYCLOTOMISCHE ")",
"("POLYNOMEN")",//")",K):

"FOR• I := 1 "STEP" 1 "UNTIL" K
. •oo• "BEGIN"

P4 :=CLOCK:

OUTPUT (61, 11 ("/ /, 11 (H PHI") " 1 2ZD3B 11) " , I) :
C := 10 :
•FOR" J := 0 "STEP" 1 "UNTIL" PHI[I,-1)
•oo" "IF" PHI[I,J] ·= 0

•END"

"THEN" "BEGIN"
"IF" C > 129
"THEN" "BEGIN"

OUTPUT(61,"("/,9B")"):
C := 10

"END" :
OUTPUT(61,"("+D,"("X")",2ZDB")",

PH I [I , J) , J) :
C := C + 7

"END"

OUTPUT(61,"("7/,"("REKENTIJD: ")",ZD.6D,"(" SEC.")"")",P2-Pl):
OUTPUT(61," ("/," ("UITVOERTIJD: ")" ,ZD.6D," (" SEC.")"")" ,P4-P3):
OUTPUT(61,"("/,"("TOTALE TIJD: ")",ZD.6D,"(" SEC.")"")",P4-Pl)

"END"

67

PHI103

PHI104

PHI105

PHI106

PHI107

PHI108

+lX 0 +lX 1 +lX 2 +lX 3 +lX 4 +lX 5 +lX 6 +lX 7 +lX 8 +lX 9 +lX 10 +lX 11 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17
+lX 18 +lX 19 +lX 20 +lX 21 +lX 22 +lX 23 +lX 24 +lX 25 +lX 26 +lX 27 +lX 28 +lX 29 +lX 30 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35
+lX 36 +IX 37 +lX 38 +lX 39 +lX 40 +lX 41 +lX 42 +lX 43 +lX 44 +lX 45 +lX 46 +lX 47 +lX 48 +lX 49 +lX 50 +lX 51 +lX 52 +lX 53
+lX 54 +lX 55 +lX 56 +lX 57 +lX 58 +lX 59 +lX 60 +lX 61 +lX 62 +lX 63 +lX 64 +lX 65 +lX 66 +lX 67 +lX 68 +lX 69 +lX 70 +lX 71
+IX 72 +lX 73 +lX 74 +lX 75 +lX 76 +lX 77 +lX 78 +lX 79 +lX 80 +lX 81 +lX 82 +lX 83 +lX 84 +lX 85 +lX 86 +lX 87 +lX 88 +lX 89
+lX 90 +lX 91 +lX 92 +lX 93 +lX 94 +lX 95 +lX 96 +lX 97 +lX 98 +lX 99 +1Xl00 +1Xl01 +1Xl02

+lX 0 -lX 4 +lX 8 -lX 12 +lX 16 -IX 20 +lX 24 -lX 28 +lX 32 -lX 36 +lX 40 -lX 44 +lX 48

+lX 0 +lX 1 +lX 2 -lX 5 -lX 6 -2X 7 -lX 8 -lX 9 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17 -lX 20 -lX 22 -lX 24 -lX 26
-lX 28 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35 +lX 36 -lX 39 -lX 40 -2X 41 -lX 42 -lX 43 +IX 46 +lX 47 +IX 48

+IX 0 -lX 1 +lX 2 -IX 3 +lX 4 -lX 5 +lX 6 -lX -7 +lX 8 -lX 9 +lX 10 -lx 11 +lX 12 -lX 13 +lX 14 -lx 15 +lX 16 -lx 17
+lX 18 -lX 19 +lX 20 -IX 21 +lX 22 -lX 23 +lX 24 -lX 25 +IX 26 -lX 27 +lX 28 -lX 29 +lX 30 -lX 31 +lX 32 -lX 33 +lX 34 -IX 35
+lX 36 -IX 37 +lX 38 -lX 39 +lX 40 -lX 41 +lX 42 -lX 43 +lX 44 -lX 45 +lX 46 -lX 47 +lX 48 -lX 49 +lX 50 -lX 51 +lX 52

+lX 0 +lX 1 +lX 2 +lX 3 +lX 4 +lX 5 +lX 6 +lX 7 +lX 8 +lX 9 +lX 10 +lX 11 +lX 12 +lX 13 +lX 14 +lX 15 +lX 16 +lX 17
+IX 18 +lX 19 +lX 20 +lX 21 +IX 22 +lX 23 +lX 24 +lX 25 +lX 26 +lX 27 +lX 28 +lX 29 +lX 30 +lX 31 +lX 32 +lX 33 +lX 34 +lX 35
+lX 36 +lX 37 +lX 38 +lX 39 +lX 40 +lX 41 +lX 42 +lX 43 +lX 44 +lX 45 +lX 46 +lX 47 +lX 48 +lX 49 +lX 50 +lX 51 +lX 52 +lX 53
+lX 54 +lX 55 +lX 56 +lX 57 +lX 58 +lX 59 +lX 60 +lX 61 +lX 62 +lX 63 +lX 64 +lX 65 +lX 66 +lX 67 +lX 68 +lX 69 +lX 70 +lX.71
+lX 72 +lX 73 +lX 74 +lX 75 +lX 76 ,+lX 77 +lX 78 +lX 79 +lX 80 +lX 81 +lX 82 +lX 83 +lX 84 +lX 85 +lX 86 +lX 87 +lX 88 +lX 89
+lX 90 +lX 91 +lX 92 +lX 93 +lX 94 +lX 95 +lX 96 +lX 97 +lX 98 +lX 99 +1Xl00 +1Xl01 +1Xl02 +1Xl03 +1Xl04 +1Xl05 +1Xl06

+lX 0 -lX 18 +lX 36

O'\
00

69

9.?..4. Fortran

As in Algol 60, the polynomials have once more been placed in an array.

Because all Fortran arrays have a lower bound of 1 instead of -1, array ele­

ments have all been shifted over by two places. The first element of each

row gives the upper bound of the array elements used.

Polynomial multiplication and division is once more done in subroutines,

but this time the language requires array bounds to be passed as parameters,

in order to use them in DIMENSION statements. In Fortran, it is less easy

to localize dependency on the number of polynomials computed to one place

in the program, since each array dimension must be specified as an integral

constant, and a manifest constant such as Pascal uses is not permitted.

The routine for producing output is considerably more complicated than

in the other three languages, since Fortran starts a new line for each out­

put statement. The values to be printed must therefore be selected before­

hand and placed in a buffer, so that an implied DO loop in an output state­

ment can write them all neatly. The repetition mechanisms of the FORMAT

statement can be used to determine proper line breakage. Field widths are

constant again; it is as difficult to let the width of a number depend on

its value as in Algol 60.

70

C$ DEBUG
C$ ARRAYS

PROGRAM CYPO (OUTPUT,TAPE 6=0UTPUT)
C CYCLOTOMISCHE POLYNOMEN

IMPLICIT INTEGER (A-0).
COMMON/Ll/P2,P3
K=l50
Pl=SECOND (T)
CALL PROC(K)
P4=SECOND(T)
WRITE(6,3R P2-Pl,P4-P3,P4-Pl

3 FORMAT(S(/) ,* REKENTIJD: *,F9.6,* SEC.*,/,* UITVOERTIJD: *,F9.6,*
CSEC.*,/,* TOTALE TIJD: *,F9.6,* SEC.*)

STOP
-END

SUBROUTINE PROC(K)
INTEGER G(l52) ,FX(l52) ,PHI(l50,152) ,COEF(l51) ,POW(l51)
COMMON/Ll/P2,P3
Kl=K+2
DO 50 I=l,K

G(l)=2
G(2)=1
IF (I.EQ.l) GO TO 45

I2=I/2
DO 40 J=l,I2

IF (I/J*J.NE.I) GO TO 40
CALL MUL(G,PHI,J,K,Kl)

40 CONTINUE
45 CALL F(I,FX,Kl)
50 CALL DIV(FX,G,PHI,I,K,Kl)

P2=SECOND(T)

P3=SECOND(T)
WRITE(6,20) K

20 FORMAT(*lDE EERSTE *,13,* CYCLOTOMISCHE POLYNOMEN*//)
DO 62 I=l,K

Jl=PHI(I,l)
L=0
DO 61 J=2,Jl

IF (PHI(I,J) .EQ. 0) GO TO 61
L=L+l
COEF(L)=PHI(I,J)
POW(L)=J-2

61 CON'I'INUE
WRITE(6,60) I, (COEF(J) ,POW(J) ,J=l,L)

60 FORMAT(lH0,*PHI*,I3,3X,10(18(I2,lHX,I3,lH)/lH ,9X))
62 CONTINUE

RETURN
END

SUBROUTINE F(N,P,Kl)
C X**N - 1

INTEGER P (Kl)
P(l)=N+2
P(2)=-l
Nl=N+l
DO 10 I=3,Nl

10 P(I)=0
P(N+2)=1
RETURN
END

SUBROUTINE MUL(A,B,T,K,Kl)
C A:=A*B[T,]

INTEGER A,B,T,C
DIMENSION A(Kl) ,B(K,Kl),C(l52)
M=A (1)
N=B(T,l)
L=M+N-2
A(l)=L
DO 70 I=2,M

70 C(I)=A(I)
DO 80 I=2,L

80 A(I)=0
DO 90 I=2,M

DO 90 J=2,N
90 A(I+J-2)=A(I+J-2)+C(I)*B(T,J)

RETURN
END

SUBROUTINE DIV(A,B,C,T,K,Kl)
C C [T,] : =A/B

IMPLICIT INTEGER (A-Z)
INTEGER A(Kl) ,B(Kl) ,C(K,Kl)
M=B(l)

100 IF (B(M) .NE.0) GO TO 110
M=M-1
GO TO 100

110 J=A(l)-M+2
Al=A(l)
DO 120 I=2,J

120 C(T,I)=0
C(T,l)=J
DO 130 Nl=M,Al

N=Al+M-Nl
IF (A(N) .EQ.0) GO TO 130

J=N-M+2
IF (A(N)/B(M)*B(M).NE.A(N)) PRINT 140

140 FORMAT(* DELING GAAT NIET OP*)
KK=A(N)/B(M) . .
DO 150 I=J,N

150 A(I)=A(I)-KK*B(I-N+M)
C(T,J)=KK

130 CONTINUE
RETURN
END

71

PH 1103 lX 0 lX 1 lX 2 lX 3 lX 4 lX 5 lX 6 IX 7 lX 8 lX 9 lX 10 lX 11
lX 18 lX 19 lX 20 lX 21 lX 22 lX 23 lX 24 lX 25 lX 26 IX 27 lX 28 lX 29
lX 36 lX 37 lX 38 lX 39 lX 40 IX .41 lX 42 lX 43 lX 44 lX 45 lX 46 lX 47
lX 54 lX 55 lX 56 lX 57 lX 58 IX 59 IX 60 IX 61 IX 62 IX 63 IX 64 IX 65
lX 72 lX 73 IX 74 IX 75 lX 76 IX 77 lX 78 IX 79 IX 80 lX 81 lX 82 lX 83
lX 90 lX 91 lX 92 IX 93 IX 94 lX 95 IX 96 lX 97 IX 98 IX 99 1Xl00 1Xl01

PHI104 lX 0 -lX 4 lX 8 -IX 12 lX 16 -lX 20 lX 24 -IX 28 IX 32 -IX 36 IX 40 -lX 44

PHI105 lX 0 lX 1 lX 2 -IX 5 -lX 6 -2X 7 -IX 8 -IX 9 lX 12 lX 13 lX 14 lX 15
-IX 28 lX 31 lX 32 lX 33 lX 34 lX 35 lX 36 -lX 39 -IX 40 -2X 41 -IX 42 -lX 43

PHI106 IX 0 -IX 1 lX 2 -lX 3 IX 4 -lX 5 lX 6 -IX 7 lX 8 -lX 9 lX 10 -lX 11
lX 18 -lX 19 lX 20 -IX 21 lX 22 -lX 23 lX 24 -IX 25 lX 26 -IX 27 IX 28 -IX 29
lX 36 -IX 37 IX 38 -lX 39 lX 40 -IX 41 IX 42 -IX 43 IX 44 -IX 45 IX 46 -IX 47

PHI107 lX 0 lX 1 lX 2 lX 3 lX 4 lX 5 lX 6 lX 7 lX 8 IX 9 lX 10 lX 11
lX 18 lX 19 lX 20 lX 21 lX 22 lX 23 lX 24 lX 25 lX 26 lX 27 lX 28 lX 29
lX 36 lX 37 lX 38 lX 39 lX 40 lX 41 lX 42 lX 43 lX 44 lX 45 lX 46 lX 47
lX 54 IX 55 lX 56 lX 57 lX 58 lX 59 lX 60 lX 61 lX 62 lX 63 lX 64 lX 65
lX 72 lX 73 lX 74 lX 75 lX 76 lX 77 lX 78 lX 79 lX 80 lX 81 lX 82 lX 83
lX 90 lX 91 lX 92 IX 93 lX 94 , lX 95 lX 96 lX 97 lX 98 lX 99 1Xl00 1Xl01

PHI108 lX 0 -IX 18 lX 36

lX 12 lX 13 lX 14 lX 15 lX 16 lX 17
lX 30 lX 31 lX 32 lX 33 IX 34 lX 35
lX 48 lX 49 lX 50 lX 51 IX 52 lX 53
lX 66 IX 67 IX 68 IX 69 lX 70 lX 71
lX 84 lX 85 lX 86 IX 87 IX 88 lX 69
1Xl02

IX 48

lX 16 IX 17 -IX 20 -lX 22 -IX 24 -IX 26
lX 46 lX 47 lX 48

lX 12 -lX 13 lX 14 -lX 15 lX 16 -IX 17
lX 30 -IX 31 lX 32 -IX 33 lX 34 -IX 35
lX 48 -IX 49 lX 50 -lX 51 lX 52

lX 12 lX 13 lX 14 lX 15 lX 16 lX 17
lX 30 lX 31 lX 32 lX 33 lX 34 lX 35
IX 48 IX 49 lX 50 lX 51 lX 52 lX 53
lX 66 lX 67 lX 68 lX 69 lX 70 lX 71
lX 84 IX 85 lX 86 lX 87 IX 88 1x·99
1Xl02 1Xl03 1Xl04 1Xl05 1Xl06

.....
N

73

9.3. Input/output

It is frequently necessary for a program to perform input/output, and

quite often character by character. We have therefore run a number of pro­

grams to do such operations with various variations.

Several progrannning languages do not provide true character input/ output

and one is instead forced to read an entire line at a time and write extra

code to pick it apart.

The test performed was to copy the first 200 lines of the file A68DOC

to the OUTPUT file. A68DOC contained the documentation for the CDC Algol 68

compiler; it is a character file with varyinglength lines. If a language

is unable to represent varying length lines faithfully to the program-

mer and must instead pad all lines to some fixed length (such as 80

characters), then the extra CPU time wasted will be charged against is,

and not against another language which avoid~ processing nonexistent
characters.

In each language, language features were found or procedures written

to read and write single characters, one character in or out for each call.

In Pascal, single character input-output is provided directly by the

language. It was therefore used directly in the run labelled "c". In the run

"cs", Pascal's string output was used. Pascal does not provide string input

on character files.

In Algol 68, single character input/output is provided by the language,

but is absurdly slow. There appears to be a large fixed overhead associated

with each input/output operation that is independent of the amount of in­

put or output to be performed. Reading or printing an entire line takes

only about twice as much time as reading or printing a single character.

Three tests were therefore performed on Algol 68,

"c" - use the language's character i/o.

"s" - use the language's string i/o, reading and writing entire

lines at a time.

"scs" - write character i/o procedures which use the string i/o

internally, and then use these procedures to copy the file.

In Fortran, no character i/o is provided by the language. An input

operation always processes an entire line, and if the entire line is not

74

completely read, the rest of it is simply lost. Therefore, it was decided

to read 80 characters from each line, in the hope that this would be

sufficient. The fact that it was necessary to hope already shows a defi­

ciency in Fortran. It turned out that A68DOC indeed did contain a few lines

that were longer than 80 characters, but these were, fortunately, not among

the first 200. The following tests were performed on Fortran. In each case,

entire lines were read and written; and no character-at-a-time procedures

were used:

"Al" - the format BOAi was used with formatted i/o.

"AJO" - BAIO was used with formatted i/o.

In Algol 60, we again used various methods.

"char" - the character i/o routines "in character" and "out character"

were used.

II SA" - the format "SA" was used to read and write blocks of 8

characters at a time.

"A" the "A" format was used to read and write single characters.

It was felt that the presence or absence of array-bound checking

would make little difference to the measured results, since in these pro­

grams

(I) little array bound checking needs to be done, and

(2) Extended Fortran refuses to perform array-bound checking on

input/output operations even if asked to.

The execution times are as follows:

CP time per line

(milliseconds)

Pascal ch C 2.8
cs 7.3

Algol 68 C 245
scs 100
s 50

Fortran Al 27.5
AIO 5.0

MNF Al 25.5
AIO 5.0

75

Algol 3 pch char 115

A 260

8A .40

Algol 4 7ch char 2,05

A 330

8A 55

It is possible that experienced users of each language may have found

sneaky ways to reduce character i/o times; however, a casual user is about

as likely to strike upon such special techniques as the authors were.

9.4. Feature timings

I

We also performed a number of runs in order to determine how efficient­

ly various classes of language features are implemented. To do this for each

language feature, a loop of the form

for i := 1 until 10000 do test statement;

was timed. From this the time taken by an empty loop

for i := 1 until 10000 do;

is subtracted, and the result divided by the number of iterations. The re­

sults appear in the accompanying tables.

WICHMANN [15 J has obtained, by actual measurement, the frequencies in

which Algol 60 features are used during Algol 60 program execution in real

life. These frequencies have been used here to compute weighted averages

of the various feature timings. These averages should not be taken too

seriously, though, because

- Patterns of usage in different progrannning languages are likely to

differ; something often used in one language may be used hardly at

all in another.

- The tests themselves differ slightly from those performed by

Wichmann.

Loop optimization in a compiler can cause the feature timings to

go awry.

In any case, to determine what was actually timed, the program list­

ings should be examined. The Pascal and Fortran timings were run with loops

76

of 50,000 iterations, whereas the Algol 60 and Algol 68 timings were done

with runs of 10,000 iterations. Timings were performed on a CDC Cyber 73

(functionally equivalent to a twin CPU CDC 6400 or a CDC 6500) under Scope

3.4.1. An attempt was made to repeat some of the timings under Scope 3.4.4,

but the CPU interval timer had become sufficiently irregular on the newer

system that this attempt had to be abandoned. It is reasonable to suppose,

however, that the CPU itself has not changed in speed with the change to a

new version of the operating system. Some of the Algol 68 timings were made

under Scope 3.4.4 with the old system's clock, which provided reasonable

precision.

All times are given in microseconds. The digit after the decimal point

should not be considered significant, but is provided in case the reader

wishes to use statistical noise reduction techniques. The precision of the

figures can be judged by examining them for internal consistency. They

reflect a compromise between the costs of performing tests and the impreci­

sion of the clock.

9.4.l. Pascal timings

ch ,ch

3.2 3.0
6.9 3.8
3.2 2.9
4.6 4.5
8.9 8.7
9.1 8.6
I. 7 2.0
9.4 9.5
3.6 3.6

I 1.4 10.3
19.5 14.3
3.7 3.6
6.9 4.2
9.3 10.4
9.0 8.8

14.0 14.7
251. I 249. 5

9.1 5.1
14.6 8.6
20.l 9.2

X:=l. l
X:=11
X:=Y
X:=Y+Z
X:=Y*Z
X:=Y/Z
K:=11
K: =ROUND (1 • 1)
K:=L+M
K:=L*M
K:=L DIV M
K:=L
X:=L
L:=ROUND(Y)
X:=SQR(Y)
X:=SQR(Y)*Y
X:=EXP(Z*LN(Y))
E[J]:=L
E2[J,FJ:=L
E3[J,F,GJ:=L
L:=E[JJ
VAR A:REAL;~EGIN A:=3.14 END
VAR A:ARRAY[l •• 1] OF REAL;BEGIN A[l]:=2.72 END
VAR A:ARRAY[l •• 500] OF REAL;BEGIN A[23]:=7. 8 END
VAR A:ARRAY[l •• 1,1 •• 1] OF REAL;BEGIN A[l,1]:=4.65 END

77

9.9 5.7
18.8 18.2
19.l 18.4
19.2 18.3
19.7 18.3
18.8 18.l
17.3 17.2
13.4 7.5

VAR A:ARRAY[l..1,l..1,1..1] OF REAL;BEGIN A[l,1,1]:=l.7 END
LABEL 1 ; BEGIN GOTO I; I : END .

134. I 129. 9
129.2 127.l

5.2 3.9
131.3 128.5
126.7 126.5
93.3 93.2

134.7 133.2
16.8 11.5
10.7 6.7
18.7 18.7
23.5 22.9
27. I 27. 2
28.7 28.9
6.8 6.8

CASE J OF I : END
X:=SIN(Y)
X:=COS(Y)
X:=ABS(Y)
X:=EXP(Y)
X:=LN(Y)
X:=SQRT(Y)
X:=ARCTAN(Y)
IF Y>O THEN X:=l ELSE IF Y=O THEN X:=O ELSE X:=-1
X:=TRUNC(Y)
PO
Pl (X)
P2(X, Y)
P3(X,Y,Z)
LOOP OF FOR I:=l TON DO;

12.5 10.9 MIXTURE

ch: range checking is performed.

,ch: no range checking is performed.

78

PROGRAM TIMER(OUTPUT);
(* TIMER (PASCAL EXECUTION TIME,IDEA WICHMANN)*)

CONST N=50000;M=ll;Y=l.l;Z=l.l;

VAR I,J,F,G,EP,K,L,T:INTEGER;P,Q,C,FSUM,S,RELFREQ,LOAD,TYD,X:REAL;
TT,FREQ:ARRAY[l .. 42] OF REAL;E:ARRAY[l .. l] OF INTEGER;
E2:ARRAY[l .• l,l •. 1] OF INTEGER;E3:ARRAY[l .. l,l •• l,l •. l] OF INTEGER;

PROCEDURE SAVE;BEGIN EP:=EP+l;TT[EP] :=(Q-P-C)/N END;

PROCEDURE NOTE;
BEGIN EP:=EP+l;RELFREQ:=FREQ[EP]*FSUM;TYD:=1E3*TT[EP];

LOAD:=RELFREQ*TYD;S:=S+LOAD;
WRITELN;
WRITE (' ',RELFREQ: 5: 3 ,LOAD: 6: l ,TYD: 7: 1,. ');

END;

PROCEDURE P0;BEGIN X:=3.14 END;
PROCEDURE Pl(X:REAL) ;BEGIN X:=2.71 END;
PROCEDURE P2(X,Y:REAL) ;BEGIN X:=1.25 END;
PROCEDURE P3(X,Y,Z:REAL) ;BEGIN Z:=5.6 END;
PROCEDURE Ql;VAR A:REAL;BEGIN A:=3.14 END;
PROCEDURE Q2;VAR A:ARRAY[l .. l] OF REAL;BEGIN A[l] :=2.72 END;
PROCEDURE Q3;VAR A:ARRAY[l .. 500] OF REAL;BEGIN A[23] :=7.8 END;
PROCEDURE Q4;VAR A:ARRAY[l .. 1,1 .. 1] OF REAL;BEGIN A(l,l] :=4.65 END;
PROCEDURE QS;VAR A:ARRAY(l .. 1,1 .. 1,l •. l] OF REAL;

BEGIN A[l,1,1] :=l. 7 END;
PROCEDURE Q6;LABEL l;BEGIN GOTO l;l: END;

PROCEDURE EXTRAl;
BEGIN

P:=CLOCK;FOR I:=l TO N DO X:=1.1;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=11;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=Y;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=Y+Z;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=Y*Z;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=Y/Z;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO K:=11;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO K:=ROUND(l.l);
Q::cCLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO K:=L+M;
Q:=CLOCK;SAVE;

P:=CLOCK;F'OR I:=l TO N DO K:=L*M;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO K:=L DIV M;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO K:=L;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=L;
Q:=CLOCK;SAVE;

79

P:=CLOCK;FOJR I:=l TO N DO L:=ROUND(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=SQR(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=SQR.(Y) *Y;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=EXP(Z*LN(Y));
Q:=CLOCK;SAVE;

P:=CLOCK;FO.R I:=l TO N DO E[J]:=L;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO E2[J,F] :=L;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO E3[J,F,G] :=L;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO L:=E[J];
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO Ql;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO Q2;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR· I:=l TO N DO Q3;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO Q4;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO QS;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO Q6;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO CASE J OF 1: END;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=SIN (Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=COS(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l·TO N DO X:=ABS(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=EXP(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X: =LN (Y) ;
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=SQRT(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO X:=ARCTAN(Y);
Q:=CLOCK;SAVE;

P:=CLOCK;FOR I:=l TO N DO IF Y>0 THEN X:=l
ELSE IF Y=0 THEN X:=0

ELSE X:=~l;

Q:=CLOCK;SAVE;
P:=CLOCK;FOR I:=l TO N DO X:=TRUNC(Y);

Q:=CLOCK;SAVE;
P:=CLOCK;FOR I:=l TO N DO P0;

Q:=CLOCK;SAVE;
P:=CLOCK;FOR I:=l TO N DO Pl (X);

Q:=CLOCK;SAVE;
P:=CLOCK;FOR I:=l TO N DO P2(X,Y);

Q:=CLOCK;SAVE;
P:=CLOCK;FOR I:=l TO N DO P3(X,Y,Z);

Q:=CLOCK;SAVE;
END;

80

PROCEDURE EXTRA2;
BEGIN

NOTE;WRITE('X:=1.1');
NOTE;WRITE('X:=11');
NOTE;WRITE('X:=Y');
NOTE;WRITE('X:=Y+Z');
NOTE;WRITE('X:=Y*Z');
NOTE;wRITE('X:=Y/Z');
NOTE;WRITE('K:=11');
NOTE;WRITE('K:=ROUND(l.l) ');
NOTE;WRITE('K:=L+M');
NOTE;WRITE('K:=L*M');
NOTE;WRITE('K:=L DIV M');
NOTE;WRITE('K:=L');
NOTE;WRITE('X:=L');
NOTE;WRITE('L:=ROUND(Y) ');
NOTE;WRITE('X:=SQR(Y) ');
NOTE;WRITE('X:=SQR(Y)*Y');
NOTE;WRITE('X:=EXP(Z*LN(Y)) ');
NOTE;WRITE('E[J] :=L');
NOTE;WRITE('E2[J,F):=L');
NOTE;WRITE('E3[J,F,G) :=L');
NOTE;WRITE('L:=E[J) ');
NOTE;WRITE('VAR A:REAL;BEGIN A:=3.14 END');
NOTE;WRITE('VAR A:ARRAY[l •• l) OF REAL;BEGIN A[l):=2.72 END');
NOTE;WRITE('VAR A:ARRAY[l •• 500) OF REAL;BEGIN A[23):=7.8 END');
NOTE;WRITE('VAR A:ARRAY[l •• 1,1 •. 1) OF REAL;BEGIN A[l,l):=4.65 END');
NOTE;WRITELN('VAR A:ARRAY[l..1,1..1,1. .1) OF REAL;');

WRITE(' BEGIN A[l,1,1):=l.7 END');
NOTE;WRITE('LABEL !;BEGIN GOTO l;l: END');
NOTE;WRITE('CASE J OF 1: END');
NOTE;WRITE('X:=SIN(Y) ');
NOTE ;WRITE ('x: =COS (Y) ');
NOTE ;\mITE ('x: =ABS (Y) ');
NOTE;WRITE('X:=EXP(Y) ');
NOTE;WRITE(0 X:=LN(Y} ');
NOTE;WRITE(0 X:=SQRT(Y) 0

);

NOTE;WRITE(0 X:=ARCTAN(Y) ');

NOTE;WRITE(0 IF Y>0 THEN X:=l ELSE IF Y=0 THEN X:=0 ELSE X:=-1 ');
NOTE ;WRITE ('x: =TRUNC (Y) ');
NOTE;WRITE('P0');
NOTE;WRITE('Pl(X}');
NOTE ;WRI'I·E (0 P2 (X, Y) .) ;
NOTE;WRITE('P3(X,Y,Z) ');
NOTE;WRITE('LOOP OF FOR I:=l TON DO;');

END;

BEGIN
L:=ll;E[l):=ll;FSUM:=0;

FOR I:=l TO 42 DO
CASE I OF
l,3:FREQ[IJ:=10000;

2:FREQ[I):=7000;
4:FREQ[I):=26682;
5:FREQ[I):=31210;
6:FREQ[IJ:=11000;
7:FREQ[IJ:=3000;

8,14:FREQ[IJ:=500;
9:FREQ[IJ:=4300;

10:FREQ[I):=4978;
ll:FREQ[IJ:=480.9;
12:FREQ[I):=5000;
13:FREQ[IJ:=4000;
15:FREQ[IJ:=2780;
16:FREQ[I):=309;
17:FREQ[IJ:=442;

18,21:FREQ[IJ:=23795;
19:FREQ[I]:=15963;
20:FREQ[IJ:=296;
22:FREQ[I}:=0.0;

23,24:FREQ[I):=59;
25:FREQ[I):=39;
26:FREQ[IJ:=0.73;
27:FREQ[IJ:=2010;
28:FREQ[IJ:=94;
29:FREQ[IJ:=1020;
30:FREQ[IJ:=1490;
31:FREQ[IJ:=1390;
32:FREQ[IJ:=831;
33:FREQ[IJ:=644;
34:FREQ[IJ:=1750;
35:FREQ[I]:=591;
36:FREQ[I]:=81.9;
37:FREQ[IJ:=909;
38:FREQ[I]:=788;

39,40:FREQ[I] :=2316;
41:FREQ[I]:=6053;
42:FREQ[IJ :=17800;

END;

FOR I:=l TO 42 DO FSUM:=FSUM+FREQ[I);
FSUM:=42/FSUM;

C:=0;FOR EP:=l TO 10 DO
BEGIN P:=CLOCK;FOR I:=l TON DO;

Q:=CLOCK;C:=C+(Q-P)
END;

C:=C/10;TT[42}:=C/N;EP:=0;J:=l;F:=l;G:=l;

EXTRA!;
WRITELN;
WRITELN(' PASCAL EXECUTION TIME');
WRI'l'ELN;
WRITELN(' FREQ WEIGHT TIME STATEMENT');
EP:=0;S:=0;
EXTRA2;
S:=S/42;
WRITELN;WRITELN;
wRITELN(' 1.000·,s:6:l,S:7:l,' MIXTURE');
END.

, 81

82

9.4.2 Algol 68 timings

ch

4.9
5.5
6. 1

10.0
14.8
13.4
4.6
8.9
8.0

14.3
18. 1
6.5
6.6

10.8
35.8
39.9

301. 7
53.3
76.9

I 01. 9
58.5
22.6

220.0
1303.5
258.9
305.7

2.0
70.4

166.5
159.9

6.6
128.8
165.7
113. 4
l 66. I

7.5
13.7
52.4
46.8
50.3
54.5
6.5

JI. 6

ch,Z

3.6
4.3
6.2
9.5

12.6
14. 1
5.8

10.3
7.6

14. 1
18.5
5.4
6.7

10.8
35.5
41. 1

305.4
50.2
74.5

100.6
56.7
20.8

224.6
1386.7
269.4
316.0

0.5
73.9

170.3
167.7

6. 1
135.8
165.3
110.6
171.0

7. I
14.7
51.4
45.6
49. I
51. 9
7. I

30.5

A

4.8
6.2
6.6

11.7
14.0
13.5
3.5
8.9
7.3

14.9
19. I
5.8
6.5

10.6
34.6
40. 1

302.5
23.7
39.8
51. 9
25.2
21.4

220.2
1365.9
273.9
316.8

1.2
73.0

173.9
169.8

7.6
134.8
167. 1
113. 7
170.7

7.9
15. I
52.9
47.8
52. I
54.7
6.5

22.6

A,Z

4.5
4.8
5.6

10.2
13.7
14. 1
4. 1
8.7
7.7

13.6
17.4
6.0
6.0

10. 1
36.4
41.4

294.3
23.5
37.6
51. 9
23.7
19.4

215. 1
1288.2
256.5
312.4

0.8
69.2

1 71 . 1
168.7

6.4
133.7
163.2
109. I
177. 2

7.6
14.3
52.4
45.0
48.4
51.4
6.8

2 I. 7

ch: Array subscript checking is performed

X:=l .1
X:= 11
X:=Y
X:=Y+Z
X:=Y*Z
X:=Y/Z
K:= 11
K:= ROUND I. I
K:=L+M
K:=L*M
K:=L OVER M
K:=L
X:=L
L:= ROUND Y

X:=Y**3
X:=EXP(Z*LN(Y))
E[JJ :=L
E2[J,F]:=L
E3[J,F,G]:=L
L:=E[J]
REAL A:=3. 14 ;A
[1:1] REAL A:=(2.72);A
[1:500] REAL A;A[23]:=7.8
[1:1,1:1] REAL A:=((4.65));A
[I : I , 1 : I , 1 : 1] REAL A:= (((1 . 7))) ;A
ABCD;ABCD: SKIP
PROC SS= VOID :PQ;SS;PQ: SKIP
X:=SIN(Y)
X:=COS(Y)
X:=ABS Y
X:=EXP(Y)
X:=LN(Y)
X:==SORT(Y)
X:=ARCTAN(Y)
X:=SIGN Y
X:=ENTIER Y
PO
Pl (X)
P2(X,Y)
P3(X,Y,Z)
LOOP OF TON DO

MIXTURE

A: No array subscript checking is performed

Z: some extra object code optimization is performed (apparently with little
effect).

#TIMER (ALGOL68 EXECUTION TIME,IDEA WICHMANN) #
'BEGIN,

'INT' I,J::=l,F:=l,G:=l,EP, 'INT' N=50000;
'REAL' P,Q,C,FSUM,S,RELFREQ,LOAD,TIME;
[1:42] 'REAL, TT,FREQ;

'PROC' SAVE='voro': (EP+:=l;TT[EP] :=(Q-P-C)/N);

'PROC, NOTE= C [1 'CHAR, STAT) ·vorn,:
(EP+:=l;RELFREQ:=FREQ[EP]*FSUM;TIME:=1E6*TT[EP];
LOAD:=RELFREQ*TIME;S:=S+LOAD;
PRINT((NEWLINE,FIXED(RELFREQ,6,3),

FIXED(LOAD,7,1) ,FIXED(TIME,8,1) ," ",STAT))

'INT' K,L, 'INT M=ll;
'REAL' X,Y:=1.1,Z:=l.l;
[1:11 ·rn~r· E, (1:1,1:1] 'INT' E2, [l:l,1:1,1:l] 'INT' E3;

'PROC' P0='VOID":x:=3.14;
'PROC. Pl== ('REF, 'REAL, X) ·vorn,: X: =l. 25;
'PROC' P2==('REF' 'REAL' X,Y) ·vorn':Y:=1.4;
'PROC' P3==('REF' 'REAL' X,Y,Z) ·voro':z:=5.6;

L:=E[l] :=Jll;FSUM:=0;

'PRoc· XX=('INT' N) 'REAL':
'CASE' N 'IN' 10000, 7000,10000,26682,31210,

11000,3000,500,4300,4978,480.9,5000,
4000,500,2780,309,442,23795,15963,296,
23795,0,59,59,39,.7J,2010,94,1020,1490,
1390,831,644,1750,591,81.9,909,788,
2316,2316,6053,17800

'ESAC,;

'FOR' I ·~w· 42 ·oo' FREQ[I] :=XX(I) ;FSUM:=FSUM+FREQ[I] ·oo';

FSUM:=42/FSUM;
PRINT((NEWLINE,"ALGOL68 EXECUTION TIME",NEWLINE,NEWLINE,

" FREQ WEIGHT TIME STATEMENT",NEWLINE));

C : = 0 ; • TO , 10
·oo, p: =CLOCK; 'TO, N ·oo, 'SKIP, ·oo,;

Q:=CLOCK;C:=C+(Q-P)
·oo · ;:

C/:=10;TT[42] :=C/N;EP:=0;

P:=CLOCK;'To' N 'oo· X:=1.1 'oo';
Q:=CLOCK;SAVE;
P:=CLOCK; 'To' N 'oo' X:=11 ·oo';

Q:=CLOCK;SAVE;
P:=CLOCK; 0 TO' N 'oo' X:=Y ·oo';

Q:=CLOCK;SAVE;
P:=CLOCK; 0 TO' N 'oo' X:=Y+Z ·oo·;

Q:=C:LOCK;SAVE;
P:=CLOCK; 0 TO' N 'co' X:=Y*Z ·oo';

Q:=CLOCK;SAVE;
P:=CLOCK; 0 TO' N 'oo' X:=Y/Z ·oo';

Q:=C:LOCK;SAVE;
P:=CLOCK; 0 TO' N ·oo· K:=11 'oo·;

Q:=CLOCK;SAVE;
P:=CLOCK; 0 TO' N 'oo' K:='ROUND' 1.1 ·oo·;

Q:=CLOCK;SAVE;

83

84

P:=CLOCK; "TO" N ·oo· K:=L+M ·oo·;
Q: =CLOCK; Sil.VE;

P:=CLOCK; 0 T0° N ·oo· K:=L*M ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO" N ·oo· K:=L 'OVER'. M ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 1 T0° N ·oo· K:=L ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO" N ·oo· X:=L ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; ··ro· N ·oo· L:= 0 ROUND 0 y ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO" N ·oo· X:=Y**2 ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 1 T0° N ·oo· X:=Y**3 ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; ··ro· N ·oo· X:=EXP(Z*LN(Y)) ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· E[J]:=L ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO" N ·oo· E2[J,F] :=L ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 'To' N ·oo· E3[J,F,G] :=L ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· L:=E[J] ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· 0 REAL 0 A:=3.14;A ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· [1:1] 0 REAL' A:=(2.72);A ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· [1:500] 0 REAL 0 A;A[23] :=7.8 ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· [1:1,1:1] 0 REAL 0 A:=((4.65));A ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· [l:l,l:l,1:1] 'REAL' A:=(((l.7)));A ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO" N ·oo· ABCD;ABCD: 0 SKIP' ·oo:;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· 0 PROC 0 SS= 0 VOID 0 :PQ;SS;PQ: 0 SKIP 0 ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; ·To· N ·oo· X:=SIN(Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 'To" N ·oo· X:=COS(Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 T0° N ·oo· X:= 0 ABS' y ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· X:=EXP(Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· X:=LN(Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· X:=SQRT(Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· X:=ARCTAN(Y) ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; 0 TO° N ·oo· X:= 0 SIGN° y ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· X:="ENTIER 0 y ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· P0 ·oo';
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· Pl(X) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· P2(X,Y) ·oo·;
Q:=CLOCK;SAVE;

P:=CLOCK; "To· N ·oo· P3(X,Y,Z) ·oo·;
Q:=CLOCK;SAVE;

EP:=0;S:=0;

NOTE("X:=1.1");
NOTE("X:=11");
NOTE("X:=Y");
NOTE("X:=Y+Z");
NOTE("X:=Y*Z");
NOTE("X:=Y/Z");
NOTE ("K: = 11") ;
NOTE("K:='ROUND' 1.1");
NOTE("K:=L+M");
NOTE("K:=L*M");
NOTE("K:=L 'OVER' M");
NOTE ("K: =L");
NOTE (II X: =L") ;
NOTE("L:='ROUND' Y");
NOTE("X:=Y**2");
NOTE("X:=Y**3");
NOTE ("X:=EXP (Z*LN (Y)) ");
NOTE (II E [J l : = L II) ;

NOTE("E2[J,F] :=L ");
NOTE("E3[J,F,G]:=L ");
NOTE("L:=E[J]");
NOTE(" 'REAL. A:=3.14;A");
NOTE("[l:l] 'REAL' A:=(2.72);A");
NOTE("[l:500] 'REAL' A;A[23] :=7.8 ");
NOTE (" [1: 1 , 1: 1] 'REAL • A:= ((4. 6 5)) ; A") ;
NOTE("[l:1,1:1,1:l] 'REAL' A:=(((l.7)));A");
NOTE("ABCD;ABCD: 'SKIP'");
NOTE(" 'PRoc· SS='VOID':PQ;SS;PQ: 'SKIP'");
NOTE ("X: ==SIN (Y) ");
NOTE("X:=COS(Y)");
NOTE("X:=ABS Y");
NOTE("X:=EXP(Y)");
NOTE("X:=LN(Y)");
NOTE("X:=SQRT(Y)");
NOTE("X:=ARCTAN(Y)");
NOTE("X:=SIGN Y ");
NOTE("X:=ENTIER Y ");
NOTE("P0"');
NOTE("Pl(X) ");
NOTE ("P 2 (X, Y) ") ;
NOTE ("P 3 1[X, Y , Z) ") ;
NOTE("LOOP OF 'To· N ·oo· ");

S/:=42;
PRINT((NEWLINE,NEWLINE,"+l ",FIXED(S,7,1) ,FIXED(S,8,1),

" MIXTURE",NEWLINE))

'END.

85

86

9.4.3.J Fortran Extended timings

D,OPT=O OPT=O OPT=I OPT=2
pch 7ch 7ch 7ch

3.9 4.0 3.3 J.0 X= I. I
2.9 3.0 3.2 3.5 X=I I
2.9 3.5 3.0 I.I X=Y
6.0 5.9 5.8 1.2 X=Y+Z

10.2 10.6 9.5 I. 2 X=Y*Z
10.2 10.3 9.5 J.3 X=Y/Z

J.9 3. I J.7 2. I K=I I
3.8 3.7 3.7 2.9 K=I. I
5. I 5.9 4.5 J. 4 K=L+M

10.3 10.6 9.8 J.3 K=L*M
13.9 13.7 13.0 J.4 K=L/M
2.9 3.8 3.2 J.9 K=L
3.8 3.7 3.6 2.7 X=L
3.9 4.0 4. I 3.2 L=Y
9. I 8. I 8.2 6.3 K=Y**2

13.8 14.3 14.2 13.3 X=Y**3
233.9 235.0 222.8 223.4 X=Y**Z
40.6 5.5 3.2 I.I E(J)=L
50.4 7.7 3. I J.3 E2(J,F)=L
67.0 8.9 3.3 J. 2 E3(J,F,G)=L
41. 2 5.0 3.3 3.2 L=E(J)
8.5 8.6 13.3 13.9 SUBROUTINE A=3.14 END
9.0 8.6 13.9 13.9 SUBROUTINE REAL A(I) A(l)=2.72 END
8.9 8.6 14.4 13.6 SUBR. REAL A(500) A(23)=7.8 END
8.2 8.6 13.5 13.8 SUBR. REAL A(l,I) A(J ,1)=4.65 END
9.0 8.4 14.0 13.6 SUBR. REAL A(l,1,1) A(l,1,1)= 1.7 END
5.7 4.9 9.5 10.0 SUBROUTINE GOTO 26 26 END
8.2 7.7 I J.O 10.5 GOTO (127,227) ,J 127 CONTINUE

135.7 136.4 133.4 131. 2 X=SIN(Y)
132. 7 131 .6 126.9 126.9 X=COS(Y)

10.3 10.5 3.8 2.6 X=ABS(Y)
98.4 98.0 89.7 89.6 X=EXP(Y)

129.8 128.7 125.2 125.6 X=ALOG(Yr
77.1 77.3 72. 7 72.6 X=SQRT(Y)

134.6 135.7 13 I. I 131 .8 X=ATAN(Y)
15.3 I 5. 2 I 2. 2 12.0 X=O IF(Y.GT.0) X=I IF (Y.LT.O) X=-1
13.0 12.6 4.8 3.7 X=INT(Y)
8.7 8.5 13.8 13. 7 CALL PO

36.0 36.9 21. 7 22.7 CALL Pl (X)
53.3 52.7 21. 6 21.7 CALL P2(X,Y)
69.8 69.9 21. 4 21.9 CALL P3(X,Y,Z)
7.4 7.5 2.5 2.5 LOOP OF DO 40 I=I ,N 40 CONTINUE

23. I I 2. 7 9.2 6.3 MIXTURE

7ch: no subscript checking

pch: partial checking

87

The figures given above for OPT=2 connot be trusted, since the

optimizer may well be capable of ~emoving part of the calculation being

measured out of the loop. The suspiciously low timings for some statements

suggest that this may have happened. CDC provides their own measurements

of the Fortran mathematics routines in [19].

88

PROGRAM TIMER(OUTPUT,TAPE6=0UTPUT)
C TIMER (FORTRAN EXECUTION TIME , IDEA WICHMANN)

COMMON/Ll/EP,TT(42)/L2/O,P,C,N/L3/RELFREQ,FREQ(42) ,FSUM,LOAD,TIJD,
CS,Bl,B2,B3,B4/L4/X .

INTEGER I,J,F,G,N,EP,K,L,M,E(l) ,E2(1,l) ,E3(1,l,l) ,B1,B2,B3,B4
REAL P,Q,C,FSUM,S,RELFREQ,LOAD,TIJD,X,Y,Z,T,TT,FREQ
DATA FREQ/10000.,7000.,10000.,26682.,31210.,11000.,3000.,500.,

C4300.,4978.,480.9,5000.,4000.,500.,2780.,309.,442.,23795.,15963.,
C296.,23795.,0.,59.,59.,39.,.73,2010.,94.,1020.,1490.,1390.,831.,
C644.,1750. ,591.,81.9,909.,788.,2316.,2316.,6053.,17800./

N=50000 $M=ll $Y=l.l $Z=l.l
L=ll $E(l)=ll $FSUM=0.
J=l $F=l $G=l
DO 10 I=l,42

10 FSUM=FSUM+FREQ(I)
FSUM=42./FSUM
PRINT 15

15 FORMAT(8X,*FORTRAN EXECUTION TIME (50000 KEER) *//)
PRINT 16

16 FORMAT(* FREQ WEIGHT . TIME STATEMENT*,/)
C=0.
DO 20 EP=l,10
P=SECOND(T)
DO 30 I=l,N

30 CONTINUE
Q=SECOND(T)

20 C=Q-P+C
C=C/10. $TT(42)=C/N $EP=0
P=SECOND(T)
DO 100 I=l,N

100 X=l.l
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 101 I=l,N

101 X=ll
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 102 I=l,N

102 X=Y
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 103 I=l,N

103 X=Y+Z
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 104 I=l,N

104 X=Y*Z
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 105 I=l,N

105 X=Y/Z
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 106 I=l,N

106 K=ll
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 107 I=l,N

107 K=l.l
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 108 I=l,N

89

108 K=L+M
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO Hl9 I=l,N

109 K=L*M
O=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 110 I=l,N

110 K=L/M
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 111 I=l,N

111 K=L
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 112 I=l,N

112 X=L
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 113 I=l,N

113 L=Y
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 114 I=l,N

114 X=Y**2
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 115 I=l,N

115 X=Y**3
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 116 I=l,N

116 X=Y**Z
O=SECOND(T) $CALL SAVE

C$ TRACE SUBSCRIPTS
P=SECOND(T)
DO 117 I=l,N

117 E(J)=L
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 118 I=l,N

118 E2(J,F)=L
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 119 I=l,N

119 E3(J,F,G)=L
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 120 I=l,N

120 L=E(J)
Q=SECOND(T) $CALL SAVE

C$ NO TRACE SUBSCRIPTS
P=SECOND(T)
DO 121 I=l,N

121 CALL Ql
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 122 I=l,N

122 CALL Q2
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 123 I=l,N

90

123 CALL Q3
Q=SECOND{T) $CALL SAVE
P=SECOND{T)
DO 124 I=l,N

124 CALL Q4
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 125 I::::l,N

125 CALL Q5
Q::::SECOND(T) $CALL SAVE
P=SECOND(T)
DO 126 I=l,N

126 CALL Q6
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 127 I=l,N
GOTO (127,227) ,J

127 CONTINUE
227 Q=SECOND(T) $CALL SAVE

P=SECOND(T)
DO 128 I=l,N

128 X=SIN (Y)
Q::::SECOND(T) $CALL SAVE
P::::SECOND(T)
DO 129 I=l,N

129 X=COS(Y)
Q=SEC:OND(T) $CALL SAVE
P=SEC:OND(T)
DO 130 I=l,N

130 X=ABS(Y)
Q=SEC:OND(T) $CALL SAVE
P=SEC:OND(T)
DO 1311 I=l,N

131 X=EXP(Y)
Q=SEC:OND(T) $CALL SAVE
P=SEC:OND(T)
DO 1312 I=l,N

132 X=ALOG(Y)
Q=SEC:OND(T) $CALL SAVE
P=SEC:OND ('I')
DO 1313 I=l,N

133 X=SQRT(Y)
Q=SEC:OND(T) $CALL SAVE
P=SEC:OND(T)
DO 134 I=l,N

134 X=ATJl,N (Y)
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 135 I=l,N
X=0
IF (Y.GT.0) X=l

135 IF (Y.LT.0) X=-1
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 136 I=l,N

136 X=IN'l: (Y)
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 137 I=l,N

137 CALL P0
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 138 I=l,N

138 CALL Pl(X)
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 139 I=l,N

139 CALL P2(X,Y)
Q=SECOND(T) $CALL SAVE
P=SECOND(T)
DO 140 I=l,N

140 CALL P3(X,Y,Z)
Q=SECOND{T) $CALL SAVE
EP=0. $8=0.
Bl="X=l.l" $B2=" " $B3=" " $B4=" " $CALL NOTE
Bl="X=ll" $CALL NOTE
Bl="X=Y" $CALL NOTE
Bl="X=Y+Z" $CALL NOTE
Bl="X=Y*Z" $CALL NOTE
Bl="X=Y/Z" $CALL NOTE
Bl="K=ll" $CALL NOTE
Bl="K=l.l" $CALL NOTE
Bl="K=L+M" $CALL NOTE
Bl="K=L*M" $CALL NOTE
Bl="K=L/M" $CALL NOTE
Bl="K=L" $CALL NOTE
Bl="X=L" $CALL NOTE
Bl="L=Y" $CALL NOTE
Bl="X=Y**2" $CALL NOTE
Bl="X=Y**3" $CALL NOTE
Bl="X=Y**Z" $CALL NOTE
Bl="E{J)=L" $CALL NOTE
Bl="E2{J,F)=L" $CALL NOTE
Bl="E3(J,F,G)=" $B2="L" $CALL NOTE
Bl="L=E{J)" $B2=" " $CALL NOTE
8l="SUBROUTINE" $B2=" A=3.14 EN" $83="D" $CALL NOTE
8l="SUBROUTINE" $B2=" REAL A{l)" $B3=" A{l)=2.72" $84=" END"
CALL NOTE
8l="SUBR. REAL" $B2=" A(500) "$B3="A{23)=7.8" $B4=" END"
CALL NOTE
Bl="SUBR. REAL" $B2=" A{l,l) " $B3="A{l,1)=4.6" $B4="5 END"
CALL NOTE
Bl="SUBR. REAL" $B2=" A{l,1,1)" $B3="A{l,l,l)=" $84="1.7 END"
CALL NOTE
Bl="SUBROUTINE" $B2=" GOTO 26" $B3=" 26 END" $B4=" " $CALL NOTE
Bl="GOTO (127," $B2="227) ,J" $B3=" 127 CONTI" $B4="NUE"
CALL NOTE
8l="X=SIN{Y)" $B2=" " $83=" " $84=" " $CALL NOTE
Bl="X=COS(Y)" $CALL NOTE
Bl="X=ABS(Y)" $CALL NOTE
Bl="X=EXP(Y)" $CALL NOTE
Bl="X=ALOG(Y)" $CALL NOTE
Bl="X=SQRT(Y)" $CALL NOTE
8l="X=ATAN(Y)" $CALL NOTE
Bl="X=0 IF(Y." $82="GT.0) X=l" $B3="IF (Y.LT.0" $B4=") X=-1"
CALL NOTE
Bl="X=INT(Y)" $82=" " $83=" " $84=" " $CALL NOTE
Bl="CALL P0" $CALL NOTE
Bl="CALL Pl(X)" $CALL NOTE
Bl="CALL P2(X," $B2="Y)" $CALL NOTE
Bl="CALL P3(X," $82="Y,Z}" $CALL NOTE
Bl="LOOP OF" $B2="0O 40 I=l," $B3="N 40 CON" $B4="TINUE"

91

92

CALL NOTE
S=S/42.
WRITE(6,200) S,S

200 FORMAT(lH //* l.000*,2F7.l,* _MIXTURE*,/)
STOP
END
SUBROUTINE P0
COHMON/L4/X
1=3.14
RETURN
END
SUBROUTINE Pl (X)
X=l.25
RETURN
END
SUBROUTINE P2(X,Y)
Y=l.4
RETURN
END
SUBROUTINE P3(X,Y,Z)
Z=S.6
RETURN
END
SUBROUTINE SAVE
CO~JION/Ll/EP,TT(42)/L2/Q,P,C,N
EP=EP+l
TT(EP)=(Q-P-C)/N
RETURN
END
SUBROUTINE NOTE
COMMON/Ll/EP,TT(42)/L3/RELFREQ,FREQ(42),FSUM,LOAD,T!JD,S,Bl,32,B3,

CB4
REAL LOAD
EP=EP+l
RELFREQ=FREQ(EP)*FSUM
TIJD=l.E6*TT(EP)
LOAD=RELFREQ*TIJD
S=S+LOAD
~RITE(6,25) RELFREQ,LOAD,TIJD,Bl,B2,B3,B4

25 FOR~.AT(lH ,F6.3,2F7.l,2X,4Al0)
RETURN
END
SUBROUTINE Ql
A=3.14
RETURN
END
SUB,WUTINE Q2
REAL A(l)
A(l)=2.72
RETURN
END

SUBROUTINE 03
REAL A(500)
A(23)=7.8
RETURN
END
SUBROUTINE 04
REAL A(l,1)
A(l,1)=4.65
RETURN
END
SUBROUTINE 05
REAL A(l,1,1)
A(l,1,1)=1.7
RETURN
END
SUBROUTINE 06
GOTO 26

26 RETURN
END

93

94

9.4.3.2. MNF

The MNF

survey.

check
D
. 7

3.8
.7

3.2
7.0
6.3
2.0
3.2
I. 3
6.3

10.7
. 7

3.2
2.6
8.2

14.5
203.0

.9
I. 3

.9
1.3

20.2
20.6
20.3
20.2
20.5
16.4
9.7

129.7
136.0

3.8
98. 2

l I 8. I
93.6

l 01. 8
19. 4
5.9

20.8
29.G
32.0
34.2
2.4

8. I

timings

Fortran

,check

.9
3.3
I .3
3.3
6.4
6.3
2.2
3.2

. 8
6.4

10.9
. 9

3. I
2.7
8.0

14.3
202.7

.8
I. 3
I.I
1.3

20.5
20.4
20.5
21. 4
20.6
16.9
9.4

129.6
135.3

3.9
97.8

I I 7. 9
93.2

I O I . I
20.3
5.8

20.0
29.1
3 I. 2
34.8

2.5

8. I

compiler has not been discussed extensively in this

X= I . I
X=I I
X=Y
X=Y+Z
X=Y*Z
X=Y/Z
K=l I
K= I. I
K=L+M
K=L*M
K=L/M
K=L
X=L
L=Y
X=Y**2
X=Y**3
X=Y**Z
E(J)=L
E2(J ,F)=L
E3(J,F,G)=L
L=E(J)
SUBROUTINE A= 1 .. 4 END
SUBROUTINE REAL A(I) A(l)=2.72 END
SUBR. REAL A(500) A(23)=7.8 END
SUBR. REAL A(l,I) A(l,1)=4.65 END
SU BR . REAL A (I , I , I) A (I , I , I) = I . 7 END
SUBROUTINE GOTO 26 26 END
GOTO (127,227),J 127 CONTINUE
X=SIN(Y)
X=COS(Y)
X=ABS(Y)
X=EXP(Y)
X=ALOG(Y)
X=SQRT(Y)
X=ATAN(Y)
X=O IF(Y.GT .0) X=I IF (Y. LT. 0) X=-1
X=INT(Y)
CALL PO
CALL PI (X)
CALL P2(X,Y)
CALL P3(X,Y,Z)
LOOP OF DO 40 I=I ,N 40 CONTINUE

MIXTURE

9.4.4. Algol 60 timings

3pch 3,ch 4ch 4,ch

2.9
4.8
I.I
5.4
8.6

11.3
2. I
3.3
6.2

11.2
15.2
4.0
4.5
7.8

11.3
17.9

342. I
21.9
36. 1
48.2
21. 5
85.6

159.2
158.6
180.3
213.4

2.6
6. I
2.8
4.4

12.7
8.7
4.3
5.8
6.4
9.7

14.4
21.6

,4. 9
7.4

10.8
19.4

346.2
13.7
31.0
40.3
17.9
87.6

155.1
151 . 3
170.7
205.9

2.2
5.3
5.3
5.3
9.2

11.6
5.3
8.5
2. 1

14.6
21.0
5.9
2.4
8.4

I I. 7
I 3. 1

252.9
58.5
89. 1

114.7
58.4
62.7

143.6
142.5
175.6
208.4

6.2
3.5
2.9
6.4
9.3

11.9
3.0

12.5
4. 1
9.9

26.3
2.6
4.3
9.5
8. I

15.6
260. I

9.7
20.4
31.8
10.8
66.6

144.2
I 44. I
168.9
202.8

I 8. 7 I 7. 0 21 • 0 20. 6
123.0 128.3 107.2 112.8
178.3 176.6 135.5 137.1
177.8 175.0 130.3 131.1

6.6 5.1 5.9 5.2
175.8 178.5 132.7 135.3
1 71 • 7 172. 9 I 27. 2 1 28. 8
136.4 137.2 89.6 92.5
181.2 179.0 133.5 135.6

10.4 10.8 20.9 19.2
71.7 70.0 11.6 12.3

212.7 212.1 256.3 266.8
250.5 250.9 331.8 330.9
291.7 289.9 406.5 409.5
331.8 328.9 489.9 483.6
39.7 39.6 25.9 26.7

34.9 34.0 50.4 35.3

X:= 1. 1
X:= 'l 1
X:= y
X:= Y + Z
X:= Y * Z
X:= Y / Z
K:= 11
K:= 1. 1
K:= L + M
K:= L * M
K:= L I I M
K:= L
X:= L
L:= y
X:= Y ** 2
X:= Y ** 3
X:= Y ** Z
E [J]:= L
E2LI,F]:= L
E3[J,F,GJ:=L
L:= E [JJ
'BEGIN' 'REAL' A; A:=3. 14 'END'

95

'BEGIN' 'ARRAY' A[l:1]; A[l]:=2.72 'END'
'BEGIN' 'ARRAY' A [I: 500] ; A [23] : =7. 8 'END'
'BEGIN' 'ARRAY' A[l:1,1:1]; A[l,I]:=4.65 'END'
'BEGIN' 'ARRAY' A[l:l,l:1,1:l]; A[l,1,1]:=l.7
'END'
'BEGIN' 'GOTO' ABCD; ABCD: 'END'
'BEGIN' 1 SWITCH' SS :=PQ ;' GOTO I SS [l]; PQ: 'END 1

X:= SIN(Y)
X:= COS(Y)
X:= ABS(Y)
X:= EXP(Y)
X:= LN(Y)
X:= SQRT(Y)
X:= ARCTAN(Y)
X:= SIGN(Y)
X:= ENTIER(Y)
PO
Pl (X)
P2(X, Y)
P3(X,Y,Z)
LOOP OF 'FOR'I:=l 'STEP'l 'UNTIL'N'DO';

MIXTURE

96

3: Algol 60 version 3.

4: Algol 60 version 4.

pch: partial check: it is checked that final array-element addresses are

within the array.

ch: each subscript is checked against its proper bounds.

7ch: no subscript checking is done.

TITLE: TIMER (ALGOL60 EXECUTION TIME, IDEA WICHMANN)
AUTHOR: SARA, VELDHUYZEN, 740401.
LAST MODIFIED AT 760202.
"BEGIN"

"INTEGER"I,J,F,G,N,EP;
"REAL" P,Q,C,FSUM,S,RELFREQ,LOAD,TIME;
"REAL" "ARRAY" TT,FREQ[l:42];

"PROCEDURE" SAVE;"BEGIN" EP:=EP+l; TT[EP]:=(Q-P-C)/N "END";

•PROCEDURE" WRITE(STAT); "STRING" STAT;
"BEGIN" EP:= EP+l;RELFREQ:=FREQ[EP]*FSUM;TIME:= 6*TT[EP];

LOAD:=RELFREQ*TIME; S:=S+LOAD; -
OUTPUT(61," ("/ ,ZD.3D,2 (4ZD.D) ,2B")" ,RELFREQ,LOAD,TIME,STAT)

"END"; .

•INTEGER" K,L,M;
•REAL" X,Y,Z;
"INTEGER""ARRAY"E[l:l] ,E2[1:l,l:l] ,E3[1:l,l:l,1:l];

"PROCEDURE" P0; X:=3.14;
"PROCEDURE" Pl (X); "VALUE"X; "REAL"X; X:=1.25;
"PROCEDURE" P2(X,Y); "VALUE"X,Y; "REAL"X,Y; Y:=1.4;
"PROCEDURE" P3(X,Y,Z); "VALUE"X,Y,Z; "REAL';X,Y,Z; Z:=5.6;

Y:=Z:=1.1; L:=M:=E[l]:=11; I:=J:=F:=G:=l; FSUM:=0;

"FOR"X:=10000,7000,10000,26682,31210,11000,3000,500,4300,4978,
480.9,5000,4000,500,2780,309,442,23795,15963,296,
23795,0,59,59,39,.73,2010,94,1020,1490,
1390,831,644,1750,591,81.9,909,788,2316,2316,
6053,17800 "DO""BEGIN"FREQ[I]:=X;FSUM:=FSUM+X;I:=I+l"END";

FSUM:=42/FSUM;

OUTPUT(61,"("/,16B,"("ALGOL60 EXECUTION .TIME")",2/,
"(" FREQ WEIGHT TIME STATEMENT")",/")•);

N:=10000;

C:=0;"FOR"EP:=l"STEP"l"UNTIL"l0"DO"
"BEGIN"
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO";
Q:= CLOCK; C:= C+(Q-P)
"END";

97

98

C:=Cll0; TT[42]:=CIN; EP:= 0;

P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= 1.1;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= 11;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= Y;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y + Z;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y * Z;
O:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y I Z;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= 11;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"D0° K:= 1.1;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L + M;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L * M;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L II M;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" K:= L;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= L;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" L:= Y;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** 2;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** 3;
Q:= CLOCKi SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= y ** Z;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E [J] : = L;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E2[J,F]:= L;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" E3[J,F,G]:= L;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" L:= E [J];
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" "BEGIN" "REAL" A;

A:=3.14 "END";
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:l];

A [1] :=2. 72 "END";

Q:= CLOCK; SAVE;
P:=CLOCK;"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:500];

A[23] :=7.8 "END";
Q:= CLOCK; SAVE;
P:=CLOCK;

"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""ARRAY"A[l:1,1:1];
A [1 , 1] : = 4 • 6 5 " END" ;

Q:= CLOCK; SAVE;
P:=CLOCK;
"FOR" I: =l" STEP" l "UNTIL"N"DO" "BEGIN"" ARRAY" A [1: 1, 1: 1, 1: 1] ;

A[l,1,1]:=l.7 "END";
Q:= CLOCK; SAVE;
P:=CLOCK;"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""GOTO"ABCD;ABCD: "END";
Q:= CLOCK; SAVE;
P:= CLOCK;

"FOR"I:=l"STEP"l"UNTIL"N"DO""BEGIN""SWITCH"SS:=PQ;"GOTO"SS[l] ;PQ:"END";
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SIN(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= COS(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ABS(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= EXP(Y);
Q:= CLOCK; SAVE;·
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= LN(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SQRT(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ARCTAN(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= SIGN(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" X:= ENTIER(Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P0;
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" Pl(X);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P2(X,Y);
Q:= CLOCK; SAVE;
P:= CLOCK; "FOR"I:=l"STEP"l"UNTIL"N"DO" P3(X,Y,Z);
Q:= CLOCK; SAVE;

EP:=0., S:=0;

99

100

WRITE("("X:= l.1") 11);

WRITE("("X:= 11 11) 11);

WRITE("("X:= Y")");
WRITE (" (11 X: = Y + Z 11) 11) ;

WRITE("("X:= Y * Z")");
WRITE(" (11 X:= Y / Z11) "):

WRITE("("K:= 11 11) 11);

WRITE (" ("K: = 1.1 11) 11) ;

WRITE (II (II K: = L + M") II) ;
WRITE(11 (11 K:= L * M11) 11);

WRITE("(11 K:= L // M11)");

WRITE("("K:= L")");
WRITE("("X:= L")");
WRITE("("L:= Y")");
WRI'l'E(" ("X:= Y ** 2") ");
WRITE("("X:= Y ** 3")");
WRITE("(X:= Y ** Z")");
WRITE(" (E[J] := L") ");
WRITE("(E2[J,F]:= L")");
WRITE("(E3[J,F,G]:= L")");
WRITE("{ L:= E[J]")");
WRITE("('BEGIN' 'REAL' A; A:=3.14 'END'")");
WRITE("{ 'BEGIN' 'ARRAY' A[l:l]; A[l]:=2.72 'END.")");
WRITE("{ 'BEGIN' 'ARRAY. A[l:500); A[23]:=7.8 'END'")");
WRITE("('BEGIN' 'ARRAY' A[l:1,1:1); A[l,l]:=4.65 'END'")");
WRITE("('BEGIN. 'ARRAY. A[l:1,1:1,1:1); A[l,1,1]:=l.7 'END'")");
WRITE(."{ 'BEGIN' 'GOTO' ABCD; ABCD: 'END'")");
WRITE (('BEGIN. ·swITCH ·ss:=PQ; 'GOTO ·ss [1] ;PQ: 'END'") 11):

WRITE((X:= SIN(Y)")");
WRITE((X:= COS(Y)~)"):
WRITE(("X:= ABS(Y)")");
WRITE((X:= EXP(Y)")");
WRITE((X:= LN(Y) ") ");
WRITE((X:= SQRT(Y)")");
WRITE((X:= ARCTAN(Y)")");
WRITE((X:= SIGN(Y)")");
WRITE((X:= ENTIER(Y)")");
WRITE ((P0") ") ;
WRITE ((II Pl (X) ")II) ;
WRITE(("P2(X,Y)")");
WRITE(("P3(X,Y,Z)")");
WRITE { { "LOOP OF 'FOR ·1: =l ·sTEP ·1 'UNTIL 'N 'DO.;")"):

S:=S/42;
OUTPUT(61,"("2/,ZD.3D,2(4ZD.D) ,2B,"{"MIXTURE")",/ 11) 11 ,l,S,S)
"END"

IO I

10. Conclusions

Two of the language implementations surveyed seem to be the most

appropriate for general prograrmning: Algol 68 and Pascal. Pascal should be

considered if efficiency of input and output is crucial. Algol 68 is better

if the program is logically complex and especially if it deals in complicated

data structures, because of its greater internal run-time security. If sizes

of arrays are to be chosen at run-time, as is necessary for many numerical

applications, Algol 68 should be chosen above Pascal.

LITERATURE

[l] JENSEN, KATHLEEN & NIKLAUS WIRTH, PASCAL User Manual and Report,

Springer Verlag 1975.

[2] Draft Proposed ANS Fortran, BSR X3.9, X3J3/?6, in Sigplan Notices 11

(1975) 3.

[3] VAN \✓ IJNGAARDEN, A., et al., Revised Report on the Algorithmic Language

Algol 68, Actainformatica5(1975), pp. 1-236.

[4] LEARNER, A. & A.J. POWELL, An Introduction to Algol 68 through Problems,

MacMillan 1974.

[5] NAUR, l'ETER et al., Revised Report on the Algorithmic Language Algol 60,

Cormn. ACM (Jan. 1963), pp. 1-17.

[6] USA Standard Fortran (USAS X:3.9-1966), USA Standards Institute, New

York, 1966.

[7] USA Standard Basic Fortran (USAS X3.10-1966), USA Standards Institute,

New York, 1966.

rs: Fort1?avt vs. Basic Fortran, Comm. AC~f 7,10 (Oct. 1964), 591-625.

[9] HEISING, W.P., History and Summary of FORTRAN Standardization Develop­

ment for the ASA, Cormn. ACM 7,10 (Oct. 1964), 590.

[JO] Standard FORTRAN Programming Manual, the National Computing Centre

Limited, 1972, SBN 85012 063 2.

102

[II] KUKI, H., Mathematical Function Subprograms for Basia System Libraries

- Objectives, Constraints, and Trade-Off, in Mathematical Soft­

ware, edited by John R.Rice, ACM Monograph Series, Academic

Press, 1971.

[12] TANENBAUM, A.S., A tutorial on Algol 68, Computing Surveys,September

1976.

[13] WIRTH, NIK.LADS, On "Pascal", aode generation, and the CDC 6600 aorrrputer,

Report STAN-CS-72-257, Computer Science Department, School of

Humanities and Sciences, Stanford University.

[14] KNUTH, D.E., et al., A proposal for input/output conventions inALGOL-60,

CACM vol. 7, no. 5, May 1964, pp. 273-283.

[15] WICHMANN, B.A., Algol 60 Compilation and Assessment, APIC Studies in

Data Processing, IO, Academic Press 1970.

[16] KOK, J. & K. DEKKER (samenstellers), Vergelijking van Rekentijden,

Report NN 8/76, Mathematisch Centrum, Amsterdam, 1976.

[I 7] DE MORGAN R.M., I.D. HILL & B.A. WICHMANN, A supplement to the Algol 60

Revised Report, the Computer Journal, vol. 19, no. 3, 1977

August, pp. 276-288.

I 81 DE MORGAN R.M., I. D. HILL & B.A. WICHMANN, et al., Modified repor>t on

A lgorithmia Lung1.10Je ALGOL 60, !;he Computer Journal, vol. 19,

no. 4, pp. 364-379.

[19 I ?oPtr•c:.n Common Liby,a-y,y Mathematical Routines, CDC publication no.

60387911, revision B. (other revisions may also suffice).

! ~' 0 I PAGAN, FRANK G. , A Praatiaa l G11.ide to Algol 6 8, John Wiley & Sons,

1976, ISBN O 471 65746 8 (cloth) or O 471 65747 6 (paperback).

I 2.1 I VAN DER MEULEN, SIETSE G., & PETER KUHLINC, !)i'0:11•u;:-,m·(,,·,,en Lz /U,:'JO.',

68, Walter de Gruyter, Berlin, New York, (band I) 1974, ISBN 3

II 004698 9, (band II) 1977, ISBN 3 II 004978 3.

[221 WIRTH, NIKLAUS, An assessment of the Programming Language Pascal, in

Pr-oceedings International Conference on Reliable Software,

Sigplan Notices, v.10, n.6, June, 1975, pp.23-30.

103

[23] WICHMANN, B.A., AckeY'rna:nn 's Function: A study in the efficiency of calling

procedures, BIT Bind 16, Hefte I, 1976, pp.103-110.

[24] WICHMANN, B.A., Second thoughts on AckeY'rnann's Function, M.O.L. Bulletin

Nb. 5, September 1976, pp.178-190

